
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, NOVEMBER 2021 1

How the Quality of Maintenance Tasks
is Affected by Criteria for

Selecting Engineers for Collaboration
Francisca Pérez, Raúl Lapeña, Ana C. Marcén, Carlos Cetina

Abstract—In industrial software projects, projects might span over decades and many engineers join or leave the company over time.
For these reasons, no single engineer has all of the knowledge when maintenance tasks such as Traceability Link Recovery (TLR), Bug
Localization (BL), and Feature Location (FL) are performed. Thus, collaboration has the potential to boost the quality of maintenance
tasks since the solution of an engineer might be enhanced with contributions of solutions from other engineers. However, assembling
a team of software engineers to collaborate may not be as intuitive as we might think. In the context of a worldwide industrial supplier
of railway solutions, this work evaluates how the quality of TLR, BL, and FL is affected by the criteria for selecting engineers for
collaboration. The industrial supplier uses software models to generate the software that controls their trains. The criteria for collaboration
are based on engineers’ profile information to select the set of search queries that are involved in the maintenance task. Collaboration
is achieved by applying automatic query reformulation, and the location of the relevant model fragment for the requirement/bug/feature
being located relies on an Evolutionary Algorithm. We assess the quality of the retrieved model fragment in terms of recall, precision,
and F-measure. We provide evidence of the significance of the results by means of statistical analysis. A focus group confirmed the
relevance of the findings. Our work uncovers how software engineers who might be seen as not being relevant in the collaboration
(because of low confidence levels) can lead to significantly better results.

Index Terms—Collaborative Software Engineering, Search-Based Software Engineering, Model-Driven Engineering

✦

1 INTRODUCTION

Software maintenance is a challenging activity in industrial
environments where a vast number of software artifacts are
accumulated over the years and these artifacts have been
created and maintained by different software engineers.
Since no single software engineer has a full understanding
of the entirety of the software artifacts, several software
engineers can collaborate to complement the knowledge
that each one has of the artifacts [1].

Previous works [2], [3], [4], [5], [6] address collaboration
using external knowledge to reformulate an individual’s
queries for code location. Specifically, this external knowl-
edge is obtained from the Stack Overflow Q&A site. How-
ever, external knowledge may not be available to obtain
relevant information in specific industrial contexts (e.g.,
due to intellectual property rights concerns). Therefore, in
these contexts, collaboration should be performed among
the software engineers who work on maintaining the soft-
ware products. However, software engineers are confronted
with the following question once they decide to collaborate:
What profile should the software engineers involved in the
collaboration have?

In this paper, we evaluate how the criteria for the selec-
tion of software engineers influence the quality of mainte-

• F. Pérez, R. Lapeña, A. C. Marcén and C. Cetina are with the SVIT
Research Group of Universidad San Jorge, Zaragoza, Spain. E-mail:
{mfperez, rlapena, acmarcen, ccetina}@usj.es. C.Cetina is also with Uni-
versity College London, London, United Kingdom.

Manuscript received November X, 2021; revised .

nance solutions that are obtained as a result of collaboration.
In our work, we address the following maintenance tasks:
Traceability Link Recovery (TLR), Bug Localization (BL),
and Feature Location (FL). We address these maintenance
tasks because they are among the most common and rel-
evant tasks in the Software Engineering field, especially
when maintaining software products [7], [8], [9], [10].

We have built on industrial experience through the
participation of software engineers to address the mainte-
nance tasks. The software engineers are from three different
distributed teams of an industrial partner. The industrial
partner, Construcciones y Auxiliar de Ferrocarriles (CAF)1, is a
worldwide supplier of railway solutions that has developed
a family of PLC software to control the trains they have
manufactured for more than 25 years. To develop this soft-
ware, the industrial partner uses software models for code
generation following the ideas of Model Driven Software
Development [11]. We acknowledge that software models
have not replaced source code as a means of software
development, but they have nonetheless been reported as a
successful paradigm for developing industrial software [12].

In our evaluation, each engineer (19) produces a search
query and a profile for the following: each requirement
for TLR (50), each bug description for BL (42), and each
feature name for FL (43). For a total of 2565 search queries
and profiles. The profile is in terms of model ownership,
self-rated confidence level, and number of days since the
last modification in the model. The collaboration takes into

1. www.caf.net/en

www.caf.net/en

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, NOVEMBER 2021 2

account the profiles for the selection of the participants’
queries. Once the queries are selected, collaboration is
achieved by applying automatic query reformulation [13],
[14], and the search for the relevant model fragment relies
on an Evolutionary Algorithm that is guided by similitude
to the resulting query [15], [16]. This Evolutionary Algo-
rithm establishes the model fragment that implements a
specific requirement (TLR), identifies the model fragment
that causes a particular error (BL), or identifies the model
fragment that is associated with a specific functionality or
characteristic (FL).

To assess the quality of the result, we compare the re-
sulting model fragment with an oracle, which is the ground
truth. From the comparison, we obtain a report with the
following performance measures that are widely accepted
in the software engineering research community [17]: recall,
precision, and F-measure. Moreover, we provide evidences
of the significance of the results by means of statistical
analysis.

After analyzing the results, we have learned that the
combination of software engineers who provide the best
quality of the solutions may not be intuitive. Our indus-
trial experience offers a new interpretation of the role that
underdogs (i.e., software engineers who might be seen
as not being relevant in the collaboration because of low
confidence levels) can play in the collaboration:

• In TLR, engineers who do not belong to the owner
team of the requirement should be involved. When
dealing with non-familiar requirements, an engineer
produces a more detailed search query, which miti-
gates the issue of tacit knowledge that the engineers
who belong to the owner team have.

• In FL, instead of only requesting the confidence level,
both the confidence level and an estimated coverage
of the feature should be requested. Even though
engineers report low confidence levels when they
do not have knowledge of the whole feature, they
have deep knowledge of a small part of the feature.
Coverage estimations help to prevent this feature
knowledge from being overlooked.

In addition, our results confirm the Defect Principle [18].
In BL, engineers who performed the latest modifications
should be prioritized.

A focus group acknowledged that the lessons learned
to improve the selection of engineers for collaboration are
counterintuitive, but they do lead to better results. No pre-
vious work has reported the positive influence of underdogs
on collaboration. Thus, more software engineers and re-
searchers (as happened with the engineers of the industrial
partner of this work) might be missing the potential of
underdogs that this work uncovers.

The remainder of the paper is structured as follows:
Section 2 introduces the industrial partner domain and
explains the motivation for our work. Section 3 presents
an overview of our work. Section 4 presents the real-world
criteria for performing the selection of participants. Sec-
tion 5 describes collaborative fragment retrieval on models.
Section 6 describes the evaluation, and Section 7 presents
the results. Section 8 presents the discussion and lessons
learned. Section 9 describes the threats to validity. Section 10

presents related work. Finally, Section 11 concludes the
paper.

2 BACKGROUND AND MOTIVATION

This section introduces the Domain-Specific Language
(DSL) that our industrial partner uses to specify and gen-
erate the implementation code of their products. We also
present the motivation for the need of our work. Figure 1
depicts a basic example of a model using an equipment-
focused, simplified subset of the DSL of our industrial
partner. It shows two separate pantographs (High Voltage
Equipment) that collect energy from the overhead wires
and send it to their respective circuit breakers (Contactors),
which, in turn, send it to their independent Voltage Convert-
ers. The converters then power their assigned Consumer
Equipment: the HVAC shown in the upper-right part of
the figure (the train’s air conditioning system), and the PA
(public address system) and CCTV (television system) on
the right.

Pr
od

uc
t M

od
el Pantograph 1

Pantograph 2

Circuit
Breaker 3

PA

Converter 2

Converter 1

Model fragment

Circuit
Breaker 2

Circuit
Breaker 1 HVAC

CCTV

DS
L

Sy
nt

ax

High Voltage Equipment Contactors Voltage Converters Consumer Equipment

Fig. 1. Example of a product model and a model fragment

Figure 1 also depicts (in gray) a set of model elements
that belong to the product model. These model elements
show an example of a model fragment, which is the realiza-
tion of the feature: HVAC Assistance. This model fragment
allows the passing of current from one converter to the
HVAC that is assigned to its peer for coverage in case of
overload or failure of the first converter.

At this point, it is important to highlight that a model
fragment is not extracted from its parent model as a new
isolated model. The model fragment is used to identify
elements of the model that are relevant for a require-
ment/bug/feature. This could be understood as highlight-
ing/tagging model elements of the model (that is, no new
artifact is created). Guided by the feature to be located,
different combinations of model elements can be highlight-
ed/tagged.

In addition, it is important to highlight the differences
between a feature and a requirement. They are written in a
different style, in a different phase of development, and with
a different goal in mind. Requirements are written before
development, are client-influenced and are for contracts. In
contrast, features are written when products already exist,
are internal, and are for reuse.

Although the product model and the model fragment
that realizes the feature of the example of Figure 1 makes
feature location in models appear easy, it can become very

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, NOVEMBER 2021 3

complex and time-consuming in models of industrial size.
The DSL of our industrial partner addresses specification
and code generation in a domain (software for railway
control) where UML and SysML are also used for these
particular tasks. For example, the data set provided by our
industrial partner for feature location comprises 23 trains,
and the model of each train has more than 1200 model
elements. Therefore, 27600 model elements should be eval-
uated. In addition, it is reasonable to consider the properties
of each model element since they hold domain knowledge.
In the data set, each element has about 15 properties. There-
fore, about 414000 properties of model elements should be
considered, which is not viable even when assuming that an
engineer only needs one second to evaluate a property.

Previous works [19], [20], [15] suggest the use of Search-
based Software Engineering [21] to alleviate the above effort
to locate model fragments. In these works, an evolutionary
algorithm searches the space of model fragments to locate
the relevant model fragments. The similarity between the
text of each model fragment and a textual description (that
is produced by a software engineer) guides the evolutionary
algorithm. However, in industrial settings where products
have been developed for 25 years (as is the case for the
industrial partner), no single software engineer has knowl-
edge of the entirety of the software models. Collaboration
approaches extend the query produced by a software en-
gineer with the queries of other software engineers. This
collaboration by query expansions leads to an improvement
in the quality of the results [16]. Nevertheless, the question
of who should participate in the collaboration is still open,
and this work contributes to addressing it.

3 OVERVIEW OF OUR WORK

The aim of Fragment Retrieval on Models [15] is to ob-
tain the most relevant model fragment (i.e., set of model
elements) for a specific TLR, BL, or FL query. To leverage
collaboration, the query is obtained by automatically refor-
mulating different software engineers’ search queries [16].
In other words, the idea of collaboration in this paper is that
of leveraging locally crowd-sourced information through
mutual collaboration between engineers performing the
software tasks.

This work evaluates the influence of the selection criteria
on the quality of the retrieved model fragment. The results
will serve to recommend the profile that software engineers
should have in order to be involved in the collaboration of
TLR, BL, and FL tasks.

Figure 2 presents an overview of our work. The left part
of the figure shows the inputs from the industrial partner: 1)
requirements for TLR, bug descriptions for BL, and feature
names for FL; 2) the software models that are going to be
used as search space; and 3) information input by software
engineers.

For each requirement for TLR, bug description for BL,
and feature name for FL provided by the industrial partner,
each engineer provides a search query as input information.
For each search query, the engineer also provides informa-
tion about his/her profile in terms of a self-rated confidence
level (Likert scale). We request a self-rated confidence level
to identify relevant search queries. In addition, for each

search query, as profile information the engineer provides
the number of days from his/her last modification in the
model fragment of the given requirement, feature name,
or bug description. We request this information to iden-
tify relevant search queries since the Defect Principle (or
Defect Localization Principle) states that the most recent
modifications to a project are the most relevant for certain
Information Retrieval purposes [22], [18], [23].

Since the industrial partner has different teams of soft-
ware engineers that perform maintenance tasks on models
across different cities, each engineer also indicates whether
his/her team owns the given requirement, feature, or bug.
According to the industrial partner, the engineers consider
that their team is the owner if the team has participated in
the specification of the given requirement or feature in the
software models.

Once the input information is provided, the engineers
who participate in the collaboration are automatically se-
lected (see the middle part of Figure 2). After the selection
of participants for collaboration, their search queries are
used as input to perform collaborative fragment retrieval
on models as Figure 2, right shows. The result is the most
relevant model fragment for the given type of query (natural
language requirements for TLR, bug descriptions for BL,
and feature descriptions for FL).

The next two sections describe the selection of partici-
pants for collaboration and collaborative fragment retrieval
on models.

4 SELECTION OF PARTICIPANTS FOR COLLABO-
RATION

To perform the selection of participants for collaboration,
we relied on real criteria that have been used in industry
when maintenance tasks need to be performed. We selected
these real criteria based on the experience of our industrial
partner. Specifically, we conducted interviews with soft-
ware team leaders as well as brainstorming meetings with
software engineers of our industrial partner to obtain the
criteria. Below, we present each selected criterion from the
most used to the least used by the industrial partner:

Criterion 1: Available owners. It selects software engi-
neers who are available and belong to the team that is the
owner of the requirement or feature, which is affected by
the given requirement (for TLR), bug description (for BL) or
feature name (for FL). Availability depends on many factors
(e.g., work load, holidays, schedules, etc.), and it changes
over time. Therefore, we selected random owners to emulate
the real scenario of the industrial partner.

Criterion 2: The most confident engineers. It selects
software engineers who have the highest scores in self-rated
confidence for the given requirement, bug description, or
feature name. The software engineer provides the self-rated
confidence level from 7 (highest self-rated confidence) to 1
(lowest self-rated confidence).

Criterion 3: The latest modifications. It selects software
engineers who have performed the most recent modifica-
tions in the model fragment of the given requirement, bug
description, or feature name. The time difference is based on
the number of days and can therefore be very large when the
model fragment was modified a long time ago. To normalize

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, NOVEMBER 2021 4

Collaborative Fragment Retrieval on Models

Requirement

Model fragment

Bug Description

Feature Name

Participants’
search
queries

Selection of
participants

for
collaboration
(Criterion 1,
Criterion 2,
Criterion 3, or
Gold criterion) Na

tu
ra

l L
an

gu
ag

e
Pr

oc
es

sin
g

Queries with
homogenized

text

Models with
homogenized

text

1 Automatic Query
Reformulation

2

Fragment Retrieval
on Models

3

Software Engineers

- Search Query
- Profile:
• Team-owner
• Confidence
• Modification

Software models

Reformulated query

From Industrial Partner

Fig. 2. Overview of our work

the time difference, mathematical solutions such as square
root or logarithm can be used. We used square roots because
it has achieved good results in other works that use time
differences [18].

Although the next criterion (gold criterion) has never
been used by the industrial partner, the intuition of the
industrial partner suggests that it would be the criterion
that obtains the best results.

Gold criterion: The most confident owners who per-
formed the latest modification. This criterion selects soft-
ware engineers who have the highest scores in self-rated
confidence, perform the latest modifications in the model
fragment, and belong to the team that is the owner of the
given requirement, bug description, or feature name.

The number of engineers to be selected is a configuration
parameter (N) ranging from 2 to the maximum number of
engineers who are considered for collaboration.

Other research works [24], [25], [26], [27], [28], [29], [30],
[31], [32], [33], [34], [35] have also reported that these criteria
are being used in industry: available owners [26], [27], [28],
confidence [29], [30], [31], [32], [33], and the latest modifi-
cations [34], [35]. In other words, the industrial partner is
not the only one that uses these criteria, but they are also
relevant for other software developers. However, previous
works have not yet compared these criteria as we have done.

5 COLLABORATIVE FRAGMENT RETRIEVAL ON
MODELS

This section describes how the collaborative fragment re-
trieval on models is done once the participants’ search
queries have been selected. To do this, Natural Language
Processing techniques, automatic query reformulation, and
fragment retrieval on models are used.

5.1 Natural Language Processing

The participants’ search queries and all available text in
the model elements are homogenized through Natural Lan-
guage Processing (NLP) techniques since it is often regarded
as beneficial and a frequent practice [36]. This homogeniza-
tion is performed in the following steps using state-of-the-
art NLP techniques. 1) The text is tokenized (i.e., divided
into words). As a result, the text is divided using a white
space since it is a tokenizer that can usually be applied.
More complex tokenizers, such as CamelCase naming, need
to be applied for some sources. 2) The Parts-of-Speech (POS)

tagging technique analyzes the words grammatically and
infers the role of each word in the text provided. As a result,
each word is tagged in a category and some categories that
do not provide relevant information (e.g., prepositions) can
be removed. 3) Stemming techniques unify the language
that is used in the text by reducing each word to its root.
This serves to group together different words that refer
to similar concepts. For instance, plurals are turned into
singulars (circuits to circuit). 4) The Domain Term Extraction
and Stopword Removal techniques are applied to automat-
ically filter kind of terms in or out of the queries. To apply
this, software engineers provide two separate lists of terms:
one list of both single-word and multiple-word terms that
belong to the domain and that must be kept for analysis,
and a list of irrelevant words that have no analysis value.

For example, the following feature description of the
industrial partner “The breaker changes to another converter in
case of failure in the HVAC converter” is homogenized into the
following terms: breaker, convert, failur, hvac, convert, chang.

5.2 Automatic Query Reformulation

Once the participants’ search queries are homogenized,
we apply automatic query reformulation to automatically
combine the participants’ search queries in a single query.
Several query expansion techniques have been proposed
to expand a query by adding terms [37], but not all of
these techniques can be applied in our work because of
the following: they do not support a model-based corpus;
they rely on word relationships that exist in NL because in
software words do not share the same relationships [38];
they rely on external sources such as the web; or they are
based on algorithms with high computational complexity
to produce query reformulations for daily maintenance
tasks. The technique that we selected is based on Rocchio’s
method, which is perhaps the most commonly used method
for query reformulation [13], [14], [16]. Rocchio’s method
orders the terms in the top K relevant documents based on
the sum of the importance of each term of the K documents
relative to the corpus by using the following equation:
Rocchio =

∑
d∈R TfIdf(t, d), where R is the set of top

K relevant documents in the list of retrieved results, d is a
document in R, and t is a term in d. The first component
of the measure is the Term Frequency (Tf), which is the
number of times the term appears in a document and which
is an indicator of the importance of the term in the docu-
ment compared to the rest of the terms in that document.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, NOVEMBER 2021 5

The second component is the Inverse Document Frequency
(Idf), which is the inverse of the number of documents in
the corpus containing that term and which indicates the
specificity of that term for a document containing it.

In our work, Rocchio’s method serves to expand one
of the participants’ search queries (i.e., base query) with
the top E terms of the other participants’ search queries.
From the N participants’ search queries that are selected
for collaboration (as described in Section 4), the search
query that has the highest score according to the selected
criterion is set as the base query. The other participants’
search queries (N-1) are set as relevant documents, whose
terms are ordered, and the top E terms are used for query
expansion.

For example, three participants are selected for col-
laboration in feature location, and the feature description
that has the highest score (i.e., base query) is made up of
the homogenized terms of the previous example: “breaker,
convert, failur, hvac, convert, chang”. The other two feature
descriptions are set as relevant documents and they have
the following homogenized terms: “current, convert, hvac,
coverag, overload, failur, convert, assign” from the feature
description “Passing of current from one converter to the HVAC
assigned to its peer for coverage in case of overload or failure
of the first converter”; and the homogenized terms ”failur,
overload, convert, energi, air condit, unit, circuit, breaker, energi,
convert, provid, provid” from the feature description “In case
of failure or overload in the converter that provides energy to the
air conditioning unit, the circuit breaker provides energy from its
converter”. By ordering the terms of the relevant documents
(from highest to lowest relevance) the result is “energi,
provid, current, coverag, overload, assign, overload, air, condit,
unit, circuit, convert, failur, hvac, breaker”. Afterwards, the
base query is reformulated by adding the top five terms of
the relevant documents: “breaker, convert, failur, hvac, convert,
chang, energi, provid, current, coverag, overload”.

5.3 Fragment Retrieval on Models
Once the reformulated query is obtained and the text of
the models is homogenized, we rely on an Evolutionary
Algorithm [15], [16] that iterates over model fragments,
modifying them using genetic operations. We have chosen
to use an evolutionary algorithm because they have ob-
tained good results by addressing similar problems with
large search spaces [20]. The output of the algorithm is a
model fragment ranking for the input query (requirement
in TLR, bug in BL, and feature in FL).

Step 1) Initialization of model fragments. This step
randomly generates an initial model fragment population
from the product models, which serves as input for the
evolutionary algorithm.

Step 2) Genetic Operations. This step generates a set of
model fragments that could realize the reformulated query
provided. The generation of new model fragments is done
by applying two genetic operators that are adapted to work
on model fragments: crossover and mutation [15], [16].

• The crossover operation enables the creation of a
new individual by combining the genetic material
from two parent model fragments. The operation
looks for the model fragment of Parent 1 in the

whole model of Parent 2. If the model fragment is
found in the model of Parent 2, the process creates
a new individual with the model fragment taken
from Parent 1, but referencing the model from Parent
2. Thus, this operation enables the search space to
be expanded to a different model, i.e., both model
fragments (the one from Parent 1 and the one from
the new individual) will be the same. However, since
each of them is referencing a different product model,
they will mutate differently and provide different
individuals in further generations. If the compari-
son does not find the model fragment in Parent 2,
the crossover returns Parent 1 (the model fragment)
unchanged.

• The mutation operator is used to imitate the mu-
tations that randomly occur in nature when new
individuals are born. Specifically, the mutation op-
erator is applied to add or remove elements of the
model fragment. If the operator is applied to add,
one element that is directly related to elements of
the model fragment is chosen to be added to the
model fragment. If the operator is applied to remove,
an element of the fragment is removed from the
fragment. The resulting model fragment is a new
candidate in the population for the realization of the
input reformulated query.

Step 3) The Fitness Function. This step assesses the
relevance of each of the candidate model fragments pro-
duced by ranking them according to a fitness function. The
objective of the fitness function is the similitude between the
model fragment and the reformulated query. To do this, we
apply methods that are based on Information Retrieval (IR)
techniques. Specifically, we apply Latent Semantic Indexing
(LSI) [39], [40] to analyze the relationships between the
model fragments in the population and the reformulated
query.

LSI constructs vector representations of a query and a
corpus of text documents by encoding them as a term-
by-document co-occurrence matrix where each row corre-
sponds to terms and each column corresponds to documents
followed by the reformulated query in the last column. Each
cell of the matrix contains the number of occurrences of a
term inside a document or inside the reformulated query.

In our work, the terms are all of the individual terms
that are extracted from the homogenized NL of model
fragments and the reformulated query, the documents are the
NL representations of model fragments, and the query is the
reformulated query.

Afterwards, the matrix is normalized and decomposed
into a set of vectors using a matrix factorization technique
called Singular Value Decomposition (SVD) [39]. One vec-
tor that represents the latent semantics of the NL texts is
obtained for each document and for the reformulated query.

Finally, the similarities between each document and the
reformulated query are calculated as the cosine between both
of their vectors, obtaining values between -1 and 1. The
fitness function is as follows: fitness(d1) = cos (θ) =

A·B
||A||·||B|| where d1 is a document, A is the vector represent-
ing the latent semantic of d1, B is the vector representing the
latent semantics of the reformulated query, and the angle

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, NOVEMBER 2021 6

formed by the vectors A and B is θ.
After the similitude scores are obtained, if the stop con-

dition is not yet met, the evolutionary algorithm will keep
iterating. Once the stop condition is met, a ranking of model
fragments is obtained as result. The software engineers can
choose one of the model fragments of the ranking, or they
can consider these solutions as a starting point from where
solutions can be manually refined, or they may refine the
query to automatically obtain different solutions.

Note that the focus of this work is on how to improve
real-world criteria for selecting software engineers for col-
laboration. We do not make claims related to search-based
approaches vs. other approaches. We think the problem is
relevant when the reformulated query is used as input by
search-based or other approaches.

6 EVALUATION

6.1 Research questions

To address the evaluation, we formulated the following
research questions:

RQ1: What is the quality of the retrieved model fragment
using the different criteria and the baseline in TLR, BL, and FL?

RQ2: Is the difference in the quality of the solution between
the different criteria and the baseline significant?

RQ3: How much is the quality of the solution influenced using
each criterion?

6.2 Planning and execution

The process that was planned to answer the research ques-
tions is as follows. To start with, the data set provided by
our industrial partner was taken as input. Our industrial
partner, CAF, is an international provider of railway so-
lutions all over the world. Their railway solutions can be
seen in different types of trains (regular trains, subway, light
rail, monorail, etc.). The data set is made up of 23 trains
where product models are specified using a DSL for Train
Control and Management, which conforms to MOF (the
OMG metalanguage for defining modeling languages that
is widely used in the modelling community). The industrial
supplier uses the product models to generate the firmware
that controls their trains. Product models have over 27600
model elements and about 414000 properties. Each product
model on average is composed of more than 1200 elements.
Specifically, the industrial partner provided the following
documentation of their railway solutions: 50 requirements
for TLR, 42 bug descriptions for BL, and 43 feature names
for FL; the 23 models where the model fragments should be
located; and the model fragment that corresponds to each
requirement, bug, and feature, which will be considered
to be the ground truth (oracle). The oracle was randomly
extracted from documented examples from the company.
They were solutions accepted by the company that have
been present in their software for years. The oracle has 135
model fragments where each model fragment has from 5 to
42 model elements.

Nineteen software engineers were randomly selected
from 42 software engineers who belong to three geo-
graphically distributed teams (in different cities of Spain:
Zaragoza, Beasain, and Bizkaia) of the industrial partner.

The selected engineers have been working from 1 to 15
years (mean of 6.65 years) for an average of 3.68 hours per
day developing software. Each software engineer provided
input information (search query, owner team, self-rated
confidence and latest modification) for each requirement,
feature name and bug description, as described in Section 3.
The engineers’ input information was used to select the
participants for collaboration by following a criterion, as
presented in Section 4. The result of applying each criterion
is a set of the search queries of the engineers who par-
ticipated in the collaboration. Afterwards, the participants’
search queries were used to perform collaborative fragment
retrieval on models, as described in Section 5. As a result,
a model fragment was obtained for each criterion and for
each requirement, feature name, and bug description.

For perspective, we compared our work with a baseline
to study the impact on the results of selecting participants
for collaboration. The baseline does not select participants
for collaboration. The baseline takes an engineer’s search
query as input, and it locates the model fragment that real-
izes the search query using NLP and fragment retrieval on
models, as described in Subsection 5.1 and Subsection 5.3,
respectively. For each requirement, bug, and feature, the
retrieval is performed using the engineer’s search query
with the highest confidence level. We chose those engineers
with the highest confidence level since the industrial partner
states that these engineers are supposed to achieve the best
results in a solo scenario.

6.2.1 Answering RQ1

To assess what the quality of the retrieved model fragment is
using the different criteria and the baseline in TLR, BL, and
FL, we executed 30 independent runs for each requirement,
bug, feature, criterion (four), and the baseline as suggested
by [41] (i.e., 50 (requirements) x 5 (four criteria and the
baseline) x 30 repetitions + 42 (bug descriptions) x 5 (four
criteria and the baseline) x 30 repetitions + 43 (feature
names) x 5 (four criteria and the baseline) x 30 repetitions =
20250 independent runs).

To assess the quality of each retrieved model fragment,
a comparison was performed between the best retrieved
model fragment of the ranking (i.e., the model fragment at
position 1) and the oracle in order to calculate a confusion
matrix. A confusion matrix is a table that is often used to
describe the performance of a classification model on a set
of test data (the best solutions) for which the true values
are known (from the oracle). In our case, each solution
obtained is a model fragment composed of a subset of the
model elements that are part of the product model. Since the
granularity is at the level of model elements, the presence
or absence of each model element is considered to be a
classification. The confusion matrix distinguishes between
the predicted values and the real values, classifying them
into four categories: 1) True Positive (TP), values that are
predicted as true (in the solution) and are true in the real
scenario (the oracle); 2) False Positive (FP), values that are
predicted as true (in the solution) but are false in the real
scenario (the oracle); 3) True Negative (TN), values that are
predicted as false (in the solution) and are false in the real
scenario (the oracle); and 4) False Negative (FN), values that

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, NOVEMBER 2021 7

are predicted as false (in the solution) but are true in the real
scenario (the oracle).

From the comparison, we obtained a report with the fol-
lowing performance measures, which are widely accepted
in the software engineering research community [17]: recall
= TP

TP+FN (measures the number of elements of the oracle
that are correctly retrieved), precision = TP

TP+FP (measures
the number of elements from the solution that are correct ac-
cording to the oracle), and F-measure = 2 ∗ Precision∗Recall

Precision+Recall
(corresponds to the harmonic mean of precision and recall).
Recall and precision values can range from 0% to 100%. A
value of 100% precision and 100% recall implies that both
the solution and the oracle are the same.

6.2.2 Answering RQ2

To determine whether the difference in the quality of the
solution between the different criteria and the baseline is
significant in TLR, BL, and FL, the results should be prop-
erly compared. To do this, all of the data resulting from the
empirical analysis was analyzed using statistical methods
following the guidelines in [42]. The goal of our statistical
analysis is to provide formal and quantitative evidence
(statistical significance) that the criteria and the baseline do
in fact have an impact on the comparison metrics (i.e., the
differences were not obtained by mere chance).

The statistical tests provide a probability value, p-value,
which obtains values between 0 and 1. The lower the
p-value of a test, the more likely that the null hypothesis
H0 (defined to state that there is no difference among the
criteria and the baseline) is false. Since it is accepted by the
research community that a p-value under 0.05 is statistically
significant [42], H0 can be considered false.

The test to follow depends on the properties of the
data. Since our data does not follow a normal distribution,
our analysis requires the use of non-parametric techniques.
There are several tests for analyzing this kind of data;
however, it has been shown that the Quade test is more
powerful when working with real data [43]. In addition,
the Quade test has provided better results than the others
when the number of algorithms is low (no more than 4 or 5
algorithms) [44],

To determine whether a criterion has a significant impact
in the quality of the solution, the quality of the solution
of the criterion should be statistically compared against
all others criteria. In order to do this, we performed an
additional post-hoc analysis (pair-wise comparison among
criteria, which also includes the baseline).

6.2.3 Answering RQ3

To determine how much the quality of the solution is influ-
enced using each criterion, it is important to assess (through
effect size measures) if a criterion is statistically better than
another one, and if so, the magnitude of the improvement.

For a non-parametric effect size measure, we used
Vargha and Delaney’s Â12 [45], [46]. Â12 measures the prob-
ability that running one criterion yields higher values than
running another criterion. If the two criteria are equivalent,
then Â12 will be 0.5. For example, Â12 = 0.7 between
Criterion 1 and Criterion 2 means that Criterion 1 would
obtain better results in 70% of the runs, and Â12 = 0.3

means that Criterion 2 would obtain better results in 70% of
the runs. We recorded an Â12 value for every pair of criteria
as well as for every criterion and the baseline in TLR, BL,
and FL.

6.3 Implementation details
We implemented the selection of participants for collabora-
tion using Java. The number of the engineers to be selected
for collaboration was set to four (one engineer provided the
base query and three engineers provided relevant queries
to reformulate) and we considered the first 10 term sugges-
tions to expand the base query. We principally chose these
values by following the recommendation of the domain
literature [15], [16], [37].

We used the Eclipse Modeling Framework to manipu-
late the models and to manage the model fragments. To
implement the techniques that support Natural Language
Processing, we used OpenNLP [47] for the POS-Tagger
and the English (Porter2) stemming algorithm [48] for the
stemming algorithm (originally created using snowball and
then compiled to Java). The LSI was implemented using the
Efficient Java Matrix Library (EJML [49]).

The genetic operations are built upon the Watchmaker
Framework for Evolutionary Computation [50]. The con-
figuration parameters for the algorithm are as follows: the
number of generations (i.e., repetitions of the genetic oper-
ations and fitness loop) is 2500 since it is the value needed
by our case study to converge, the size of the population
is 100, the number of parents is 2, the number of offspring
from µ parents is 2, the crossover probability is 0.9, and
the mutation probability is 0.1. For those settings, we chose
values that are commonly used in the Model Fragment
Retrieval literature [15], [16].

We are limited by the confidentiality agreements that we
have with the industrial partner. The implementation and
the data are not available. Implementation of Collaborative
Fragment Retrieval is currently being used by the industrial
partner. The trains of the data set are currently operating
and under maintenance contracts, or will be released in the
near future. Nevertheless, for purposes of replicability, the
csv files used as input in the statistical analysis are available
at: https://svit.usj.es/criteria-for-collaboration/.

7 RESULTS

7.1 Research Question 1
Table 1 shows the mean values and standard deviations
of recall, precision, and F-measure for the 50 requirements
(TLR), the 42 bugs (BL), and the 43 features (FL) of the
industrial case study for the four criteria and the baseline.

RQ1 answer. The results revealed that the criterion
that obtained the best result is different in TLR, BL, and
FL. In TLR, Criterion 2 (most confident) obtained the best
result in terms of recall, precision, and F-measure (89.08%,
90.59%, and 89.58%, respectively). In BL, Criterion 3 (latest
modifications) obtained the best result in terms of recall,
precision, and F-measure (72.31%, 66.34%, and 68.01%, re-
spectively). In FL, Gold Criterion (most confident and latest
modification owners) obtained the best result, providing an
average value of 91.31% in recall, 92.69% in precision, and
91.83% in F-measure.

https://svit.usj.es/criteria-for-collaboration/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, NOVEMBER 2021 8

TABLE 1
Mean Values and Standard Deviations for Recall, Precision, and

F-Measure in the industrial case study

Recall ± (σ)

TLR BL FL

Criterion 1 70.58 ± 15.78 46.10 ± 13.60 69.22 ± 12.08
Criterion 2 89.08 ± 6.26 40.93 ± 16.27 90.07 ± 6.76
Criterion 3 53.16 ± 15.28 72.31 ± 13.92 67.58 ± 14.59
Gold criterion 68.50 ± 14.33 64.47 ± 15.53 91.31 ± 6.52
Baseline 48.15 ± 15.08 35.95 ± 14.49 65.83 ± 14.99

Precision ± (σ)

TLR BL FL

Criterion 1 71.08 ± 16.74 35.72 ± 17.45 77.52 ± 14.16
Criterion 2 90.59 ± 7.24 33.99 ± 17.41 92.06 ± 5.76
Criterion 3 56.83 ± 13.30 66.34 ± 13.71 72.86 ± 12.70
Gold criterion 69.70 ± 9.60 58.84 ± 14.92 92.69 ± 4.36
Baseline 51.96 ± 14.61 28.12 ± 15.45 68.80 ± 13.86

F-measure ± (σ)

TLR BL FL

Criterion 1 68.76 ± 11.54 36.39 ± 13.63 71.81 ± 9.42
Criterion 2 89.58 ± 4.92 33.19 ± 13.00 90.84 ± 4.62
Criterion 3 53.07 ± 11.64 68.01 ± 10.75 68.90 ± 9.98
Gold criterion 68.10 ± 9.48 59.17 ± 11.17 91.83 ± 4.09
Baseline 47.74 ± 10.97 27.55 ± 12.13 66.06 ± 11.11

7.2 Research Question 2
The p-V alues obtained in the Quade test were lower than
0.05 in all cases, so we reject the null hypothesis. Conse-
quently, we can state that there are significant differences
among the criteria and the baseline in TLR, BL, and FL for
all the performance indicators.

The upper part of Table 2 shows the p-V alues of Holm’s
post-hoc analysis for pair-wise comparison of criteria and
the baseline in the performance indicators of TLR, BL, and
FL. The majority of the p-V alues are lower than their
corresponding significance threshold value (0.05), indicat-
ing that the differences in performance using the criteria
are significant. However, some values are greater than the
threshold, indicating that the differences between those
pair-wise comparisons are not significant.

RQ2 answer. From the results, we conclude that the
criteria and the baseline have significant differences in TLR,
BL, and FL. In TLR, the F-measure shows that all criteria
(Criterion 1, Criterion 2, Criterion 3, and Gold criterion)
produce a significant improvement compared to the base-
line. In BL, the F-measure shows that all of the criteria
except Criterion 2 produce a significant improvement in
the quality of the solution with regard to the baseline.
In FL, the F-measure shows that all of the criteria except
Criterion 3 produce a significant improvement compared to
the baseline.

7.3 Research Question 3
The lower part of Table 2 shows the values of the effect size
statistics between pair-wise comparisons in TLR, BL, and
FL. In TLR, the largest differences were obtained in compar-
isons that entail Criterion 2, where the largest difference is
obtained when compared with the baseline (0.996 for recall,
0.9968 for precision, and 1 for F-measure). Therefore, in TLR,
Criterion 2 outperforms the baseline with a pronounced
superiority (99.6% of the times for recall, 99.68% of the times
for precision, and 100% of the times for F-measure). In BL,

Criterion 3 obtains the largest differences when compared
with the baseline. Criterion 3 outperforms the baseline with
a pronounced superiority (96.32% of the times for recall,
96.2% of the times for precision, and 98.92% of the times
for F-measure). In FL, Criterion 2 and Gold criterion show
a pronounced superiority over Criterion 1, Criterion 3,
and the baseline. The largest difference is obtained when
comparing Criterion 3 and Gold criterion (0.0857 for recall,
0.0776 for precision, and 0.0092 for F-measure). Therefore,
Gold criterion outperforms Criterion 3 with a pronounced
superiority (91.43% of the times for recall, 92.24% of the
times for precision, and 99.08% of the times for F-measure).

RQ3 answer. From the results, we can conclude how
much the quality of the solution was influenced using each
criterion in TLR, BL, and FL (see the lower part of Table 2).

8 DISCUSSION AND LESSONS LEARNED

After analyzing the results, we present the following rec-
ommendations for TLR, BL, and FL. For TLR, the results
reveal that collaboration should avoid involving software
engineers that are only from the owner team. This is because
part of the domain knowledge related to the requirement is
often assumed and not embodied when search queries are
written by the members of the owner team. For example,
given the requirement: At all stations, the doors are automat-
ically opened, the engineers understand that the doors have
to be opened in all of the stations without being requested
by a passenger. However, this requirement also embodies
tacit knowledge that is not written but that is obvious to the
owner engineers: The train has doors on both sides, but only the
doors on the side of the platform will be opened while the doors on
the side of the tracks will remain closed, and all the doors of one
side will be opened, except the driver’s door in the cabin.

A previous work [51] shows differences in style between
requirements that are written by different teams in a com-
pany. Given a requirement, every software engineer of the
company can easily determine whether or not the require-
ment belongs to his/her team. However, our collaborative
model maintenance experience revealed a surprising turn.
When confronting non-familiar requirements, a software
engineer produces longer search queries with less implicit
knowledge. A first glance, unfamiliarity to the requirement
may be seen as a disadvantage to producing a search query,
but this unfamiliarity also drives the software engineer to
produce a detailed search query.

Since the model fragment location depends on the do-
main knowledge that is encoded in the words of the search
query, the location takes advantage of the explicit informa-
tion that the engineer from a non-owner team provides.
Therefore, the tacit knowledge issue can be mitigated with
collaboration by involving a software engineer from a non-
owner team.

However, involving engineers from different teams also
entails disadvantages because each team develops its own
in-house terms. This contributes to a vocabulary mismatch
issue (i.e., one concept is specified using different terms). If
the terms that are used in the requirements and the terms
that are used in the models are not known synonyms, they
cannot be related, and, therefore, the requirement cannot be
correctly related to the elements of the model. Therefore, the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, NOVEMBER 2021 9

TABLE 2
Holm’s post hoc p-V alues and Â12 statistic for each pair

Holm’s post hoc p-V alues

TLR BL FL

Recall Precision F-measure Recall Precision F-measure Recall Precision F-measure

C1 vs C2 5.5x10−11 4.2x10−10 7x10−15 0.024 0.45 0.19 8.4x10−13 3.7x10−9 2x10−14

C1 vs C3 7.7x10−8 5.1x10−6 5.2x10−10 7.3x10−11 2.1x10−13 4.1x10−14 0.67 0.07 0.23
C1 vs Gold 0.62 0.76 0.68 1x10−1 1.2x10−1 1.5x10−10 1.3x10−13 3x10−10 2x10−14

C1 vs Baseline 1.7x10−9 8.4x10−8 3.2x10−12 0.0024 0.068 0.0016 0.32 0.004 0.021
C2 vs C3 ≪ 2x10−16 ≪ 2x10−16 ≪ 2x10−16 1.6x10−11 3.5x10−13 3.1x10−14 8.6x10−12 3.9x10−11 5.9x10−14

C2 vs Gold 3.7x10−12 3.6x10−16 3.6x10−16 3x10−10 2.5x10−7 1.5x10−12 0.35 0.53 0.26
C2 vs Baseline ≪ 2x10−16 ≪ 2x10−16 ≪ 2x10−16 0.18 0.36 0.06 2.6x10−13 1.3x10−12 1.5x10−14

C3 vs Gold 7.3x10−7 4x10−7 6.9x10−9 0.036 0.028 0.0016 8.6x10−12 2.6x10−13 2x10−14

C3 vs Baseline 0.13 0.12 0.034 7.1x10−14 3.1x10−14 3.1x10−14 0.48 0.2 0.15
Gold vs Baseline 3.3x10−10 1x10−10 8.5x10−15 2.3x10−11 8.5x10−12 9.4x10−14 3.8x10−12 7.6x10−14 1.3x10−13

Â12 statistic

TLR BL FL

Recall Precision F-measure Recall Precision F-measure Recall Precision F-measure

C1 vs C2 0.144 0.1574 0.048 0.6060 0.5368 0.5692 0.0719 0.1650 0.0454
C1 vs C3 0.7812 0.7328 0.8336 0.0811 0.0816 0.0266 0.5376 0.6161 0.5695
C1 vs Gold 0.5478 0.524 0.506 0.1842 0.1593 0.0941 0.0614 0.1366 0.0281
C1 vs Baseline 0.842 0.7904 0.9084 0.6718 0.6378 0.6995 0.5911 0.6836 0.6593
C2 vs C3 0.978 0.9948 0.9988 0.0692 0.0771 0.0153 0.9051 0.9135 0.9832
C2 vs Gold 0.8968 0.9604 0.9788 0.1451 0.1440 0.0646 0.4448 0.5059 0.4299
C2 vs Baseline 0.996 0.9968 1 0.5760 0.6003 0.6332 0.9048 0.9221 0.9773
C3 vs Gold 0.2184 0.2044 0.1464 0.6531 0.6145 0.7177 0.0857 0.0776 0.0092
C3 vs Baseline 0.5944 0.5952 0.6372 0.9632 0.9620 0.9892 0.5473 0.5916 0.5917
Gold vs Baseline 0.8312 0.8484 0.9252 0.9167 0.9155 0.9626 0.9140 0.9259 0.9751

lack of awareness that is caused by the vocabulary mismatch
makes it impossible to locate the elements from the model
that are relevant to the requirement. To address this issue, it
is necessary to extend the NLP techniques with a thesaurus
that contains the in-house terms of the different teams.

For BL, the results show that collaboration should avoid
involving software engineers that only take into account
high confidence levels. A high confidence level suggests
that the software engineer has a deep understanding of the
functionality that is intuitively related to the bug. However,
this understanding is not always enough. In most of the
cases, bugs were connected to recent modifications to the
models.

A high confidence level and the participation in recent
modifications sounds like the perfect profile for collabo-
rating in BL. However, a low confidence level and the
participation in recent modifications was also relevant for
a significant number of cases. Therefore, we can only state
that participating in recent modifications should be specially
considered for collaboration in the context of BL. This
recommendation is aligned with the finding of the Defect
Principle, which states that the most recent modifications
of a project are the most relevant for certain Information
Retrieval purposes [18].

For FL, Gold criterion does not achieve perfect values
because achieving the maximum number of model elements
takes into account the involvement of software engineers
with low confidence levels. For example, in the case of lo-
cating a feature related to the braking equipment, a software
engineer with expertise in the train coupling (i.e., two trains
are physically connected and only one of them commands
the resulting train unit) declares a low confidence level in
his search query because he is not an expert on the braking

equipment, but his query describes what happens to the
braking when two trains are coupled. This information is
not produced by an expert on the braking system who
declares a high confidence level.

Our analysis of the results reveals that the confidence
level is not powerful enough to assess the software engi-
neers’ participation in FL. Engineers with information that is
hard to come by which describes a small part of the feature
declare themselves as low confidence level. Therefore, we
should also ask software engineers about the percentage of
coverage that they think their search query may achieve,
and, consequently, the confidence level for that coverage.

8.1 Focus group interview
We ran a focus group to obtain qualitative data from the
19 selected software engineers of our industrial partner.
Specifically, the focus group was composed of the following
open questions: (1) What do you think about the criteria for
selecting participants for collaboration?; (2) What do you
think about the results of each criterion?; and (3) Why would
you choose the results of one criterion over the results of the
baseline?

The engineers stated that the criteria were appropriate
and complete according to their daily maintenance tasks.
There was a consensus among the engineers that the Gold
criterion (the most confident owners who performed the
latest modification) should get the best results in all mainte-
nance tasks.

After checking the results, the engineers highlighted that
they did not expect the Gold criterion to not obtain the best
results in all maintenance activities. They found the results
to be counterintuitive because they thought that those engi-
neers who are not confident (i.e., underdogs) should not be

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, NOVEMBER 2021 10

involved in the collaboration. However, the engineers real-
ized that the results improved because underdogs produced
longer queries with details that helped to obtain a model
fragment that was more complete than the model fragment
retrieved by confident engineers, who omitted details in the
queries because they were considered to be obvious.

The engineers also acknowledged the importance of
collaboration during maintenance tasks after checking the
results. The engineers mentioned that they would choose
the results of a criterion (collaboration) instead of the results
of the baseline (without collaboration) since they stated that
is difficult to have full knowledge while maintenance tasks
are being performed. Moreover, the engineers highlighted
that this work indicates that they were missing the potential
knowledge of underdogs to obtain better results.

9 THREATS TO VALIDITY

To acknowledge the limitations of our evaluation, we use
the classification of threats of validity of [52], [53], which
distinguishes four aspects of validity.

Construct Validity: Our evaluation uses three measures
to minimize this risk: precision, recall, and F-measure, which
are widely accepted in the software engineering research
community [17].

Internal Validity: We used an oracle (obtained from our
industrial partner, which is considered the ground truth)
where the expected solution was known beforehand. By
doing so, we were able to evaluate the different criteria for
the selection of participants for collaboration in TLR, BL,
and FL and to compute the recall, precision, and F-measure.
Another threat of this type is poor parameter settings. In this
paper, we used values that are commonly used in the Model
Fragment Retrieval literature [15], [16]. For the number of
relevant documents and terms used to expand the query, we
used the values of 3 and 10, respectively, as recommended
in the literature [15], [16], [37]. As suggested by Arcuri and
Fraser [41], default values are good enough to measure the
performance. However, at this stage, we do not know how
using different values would impact the results.

External Validity: To mitigate this threat, our work has
been designed not only to be applied to the domain of
the industrial partner but also to different domains. The
requisites to apply our work are that the set of models
where requirement, bugs, or features have to be located
must conform to MOF (the OMG metalanguage for defining
modeling languages), the queries must be provided as a
textual description in natural language, and the engineers’
input information must be provided (owner team, self-rated
confidence, and latest modification). We think that natural
language queries and MOF-based models would apply in a
wide variety of model driven engineering scenarios.

As occurs in other works [54], [55], [16], the results
depend on the quality of the queries. It is also worth
noting that the language used for the textual elements of the
models and the feature descriptions in the query provided
must be the same. This language is specific to each domain.

Hence, even though our approach can be applied to lo-
cate requirements, bugs, and features on MOF-based models
from different domains, our approach should be applied to
other domains before assuring its generalization.

Reliability: To reduce this threat, even though the indus-
trial partner provided the input information (the require-
ment, bug and feature descriptions, engineers’ input infor-
mation, and the product models) they were not involved in
this research.

10 RELATED WORK

Previous works spent their efforts on improving the systems
that could boost an individual’s search effectiveness by
addressing collaborative information retrieval [56], [57]. Yue
et al. [57] developed a web search system to investigate
factors that influence query reformulation in the context of
explicit Collaborative Information Retrieval based on user
analysis of human subjects. Query reformulation can be au-
tomatically performed to add terms that are either similar or
related to a user query [58]. Most existing research is focused
on query expansion by finding terms in relevant documents
such as source code and Internet sites [2], [59], [3], [4], [60],
[5], [6], [55]. Sirres et al. [59] propose a technique for finding
relevant code using free-form query terms from internet
sites such as Q&A posts from Stack Overflow. Hill et al. [55]
extract possible query expansion terms from the code using
word context. Cao et al. [2] propose an automated query
reformulation approach for efficient search using query logs
provided by Stack Overflow.

In contrast, other approaches propose automatically re-
formulating the query by removing words to reduce long
queries. Chaparro et al. [61] reduce terms of a low-quality
query to only include the terms describing the Observed
behaviour (OB), which describes the current (mis)behaviour
(i.e., incorrect or unexpected behaviour) of software. Cha-
parro et al. [62] evaluate a set of query reformulation
strategies using existing information in bug descriptions
and the removal of irrelevant parts from the original query.
Kumaran and Carvalho [63] analyze the most promising
subsets of terms from the original query to reduce queries.
Haiduc et al. [14] propose an approach that is trained with a
sample of queries and relevant results in order to automat-
ically recommend an automatic query reformulation tech-
nique (expansion or reduction) to improve the performance.
Florez et al. [64] combine query reduction and expansion
techniques to improve the effectiveness of bug localization.
Other works have been proposed to improve the effective-
ness of feature location by involving users’ feedback about
the relevance of the retrieved results. For example, Wang et
al. [65] propose a code search approach, which incorporates
user feedback to refine the query. Despite the effort to im-
prove the performance of retrieving code by automatically
reformulating the queries, it has been neglected in models
and in industry.

Fig. 3 shows the connections and differences between
our previously published works and this work. At the
bottom of the figure, it is possible to find our work regarding
Search-Based Software Engineering (SBSE) [66]. While [66]
also uses automatic query reformulations, its goal is com-
pletely different since it does not address collaboration in
SBSE. It uses automatic query reformulations as opera-
tions of the evolutionary algorithm instead of using the
widespread single-point crossover plus random mutation,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, NOVEMBER 2021 11

leveraging the latent semantics that models hold rather than
randomly generating new candidate solutions.

AUSE [16]:

Access [70]:

CoopIS [69]:

TSE-HaFF [67]:

TSE-Ops [66]:

Co
lla

bo
ra

tio
n

iS
BS

E
SB

SE

DKE [68]:

connects collaboration with an evolutionary algorithm and
studies the number of participants and engineers’ confidence.

extends CoopIS [69] with a low-cost approach.

presents the first collaboration approach that does not use an
evolutionary algorithm for perform FL.

proposes deeper interaction in SBSE by using the human as
the fitness function. To avoid human fatigue, collaboration is
needed for sharing the burden of evaluating the solutions in
the fitness.

proposes reformulations as genetic operations in Search-
Based Software Engineering (SBSE) instead of the widespread
single-point crossover plus random mutation.

This work: explores four criteria for selecting engineers for collaboration.
It is the largest in terms of queries and software engineering
tasks, and it uncovers how software engineers with low
confidence levels can lead to significantly better results.

enriches a participant’s query with terms from models, obtaining
negative results for FL in models.

Fig. 3. Comparing this work with our previous works

The middle part of Fig. 3 shows the work in [67], where
the human plays the role of the fitness function of the
evolutionary algorithm. As one of its outcomes, the work
in [67] motivates the need for collaboration in order to share
the burden of evaluating candidate solutions, which could
lead to success in problems where a single human fails.

The upper part of Fig. 3 shows our previously published
works addressing collaboration and their differences with
this work. Moreover, Table 3 compares these works with
regard to several factors, namely: the number of queries that
the different works evaluate, the criteria for collaboration
that they use, the reformulation techniques that are applied,
and the software engineering tasks that are addressed.
In [68], an engineer’s query is enriched (adding/removing
terms) using an automatic query reformulation technique,
which takes terms of the product models as input. This leads
to negative results since the reformulated queries do not
improve the performance in models. The work in [69] was
our first approach where the criterion of the most confident
engineer is applied to address collaboration among different
engineers (without an evolutionary algorithm to perform
the location of features). Through the work presented in [70],
the work in [69] was extended with a low-cost variant,
which limits the time that engineers can spend for providing
knowledge. This last work also explores other existing query
reformulation techniques. Finally, the work in [16] studies
the impact that the number of engineers that participate in
the collaboration has over the quality of the solution, and
whether the inclusion of the engineers’ confidence produces
an improvement in the results.

In contrast to the above works, the novelty of this work
puts the focus on the selection of participants for collabora-
tion, with the aim of answering the question on who should
participate in collaboration. To do this, this paper explores

TABLE 3
Comparing our works that address collaboration

Queries Criteria Reformulation
techniques

Software
engineering

tasks

This work
2565 C1: Available owners

C2: The most confident
engineer
C3: The latest modification
C4: Gold

Rocchio FL
TLR
BL

AUSE [16] 817 C2: The most confident
engineer

Rocchio FL

Access [70] 817 C2: The most confident
engineer

Rocchio, RSV,
Dice, Reduction

FL

CoopIS [69] 817 C2: The most confident
engineer

Rocchio FL

DKE [68] 217 - Rocchio, RSV,
Dice, Reduction

FL

how the quality of the results is affected by different real-
world criteria for selecting participants for collaboration
(Available owners, The most confident engineer, and The
latest modification) in different maintenance tasks (TLR, BL,
and FL). This implies using the highest number of queries
that we evaluated so far (as the second column of Table 3
shows). Moreover, the intuition of our industrial partner
suggests that a combination of two criteria (The most con-
fident engineer and The latest modification) should be the
criterion that obtains the best results. This new criterion,
identified as the Gold criterion, has never been used before
by our industrial partner nor by our previous research,
and is explored for the first time in this paper. Finally,
our work uncovers novel recommendations (even some
counterintuitive ones, such as the inclusion of engineers that
might be seen as not relevant) towards assembling a team
of engineers for collaboration.

11 CONCLUSION

We have analyzed collaborative maintenance tasks (TLR,
BL, and FL) on software models in a real-world industrial
domain. This kind of real-world experience is hard to obtain
since the majority of related works on collaboration use
academic data. We do not claim collaboration should be
systematically applied to every case. Collaboration, as in
our work, is necessary when the requirement/bug/feature
significantly transcends the knowledge of a single software
engineer. We should mention we do not claim that for every
requirement/bug/feature all engineers should produce a
search query to collaborate. Actually, it is the opposite. Our
work helps to make decisions on the selection of engineers
for collaboration.

We have also compared four criteria for collaboration:
three criteria for collaboration that were used indistinctly
in the industry and a criterion that seemed to be the best
but which, counterintuitively in most cases, has not yielded
the best results. Our results show that collaboration in
the maintenance of industrial models pays off. However,
to release the full potential of collaboration, we should
challenge our intuition in the selection of participants. The
lessons learned show how to improve real-world criteria
for selecting software engineers for collaboration. Therefore,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, NOVEMBER 2021 12

this work provides a better understanding of the profiles
that work best for the three software tasks (TLR, BL, and FL),
which are among the most common and relevant mainte-
nance tasks in the Software Engineering field. Furthermore,
this work raises awareness of the positive role that under-
dogs (software engineers with low confidence levels) can
play in collaboration.

ACKNOWLEDGMENTS

This work was supported in part by the Ministry of Econ-
omy and Competitiveness (MINECO) through the Spanish
National R+D+i Plan and ERDF funds under the Project
ALPS under Grant RTI2018-096411-B-I00, and in part by the
Gobierno de Aragón (Spain) (Research Group S05 20D).

REFERENCES

[1] M. Franzago, D. D. Ruscio, I. Malavolta, and H. Muccini, “Collab-
orative model-driven software engineering: a classification frame-
work and a research map,” IEEE Transactions on Software Engineer-
ing, vol. PP, no. 99, pp. 1–1, 2017.

[2] K. Cao, C. Chen, S. Baltes, C. Treude, and X. Chen, “Automated
query reformulation for efficient search based on query logs from
stack overflow,” in 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE), 2021, pp. 1273–1285.

[3] M. M. Rahman and C. K. Roy, “Quickar: Automatic query refor-
mulation for concept location using crowdsourced knowledge,”
in Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, 2016, pp. 220–225.

[4] M. M. Rahman and C. Roy, “Effective reformulation of query for
code search using crowdsourced knowledge and extra-large data
analytics,” in Proceedings of the International Conference on Software
Maintenance and Evolution (ICSME), 2018.

[5] Z. Li, T. Wang, Y. Zhang, Y. Zhan, and G. Yin, “Query reformu-
lation by leveraging crowd wisdom for scenario-based software
search,” in Proceedings of Internetware, 2016, pp. 36–44.

[6] L. Nie, H. Jiang, Z. Ren, Z. Sun, and X. Li, “Query expansion
based on crowd knowledge for code search,” IEEE Transactions on
Services Computing, vol. 9, no. 5, pp. 771–783, 2016.

[7] R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia, “On
the Equivalence of Information Retrieval Methods for Automated
Traceability Link Recovery,” in IEEE 18th International Conference
on Program Comprehension, 2010.

[8] A. Mahmoud, N. Niu, and S. Xu, “A Semantic Relatedness Ap-
proach for Traceability Link Recovery,” in IEEE 20th International
Conference on Program Comprehension, 2012.

[9] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature
Location in Source Code: A Taxonomy and Survey,” in Journal of
Software Maintenance and Evolution: Research and Practice, 2011.

[10] J. Rubin and M. Chechik, “A survey of feature location tech-
niques,” in Domain Engineering. Springer, 2013, pp. 29–58.

[11] B. Selic, “The pragmatics of model-driven development,” IEEE
Softw., vol. 20, no. 5, pp. 19–25, Sep. 2003. [Online]. Available:
http://dx.doi.org/10.1109/MS.2003.1231146

[12] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software
Engineering in Practice, 1st ed. Morgan & Claypool Publishers,
2012.

[13] L. Martie, T. D. LaToza, and A. van der Hoek, “Codeexchange:
Supporting reformulation of internet-scale code queries in
context,” in 30th IEEE/ACM International Conference on Automated
Software Engineering, ASE, 2015, pp. 24–35. [Online]. Available:
https://doi.org/10.1109/ASE.2015.51

[14] S. Haiduc, G. Bavota, A. Marcus, R. Oliveto, A. De Lucia, and
T. Menzies, “Automatic query reformulations for text retrieval
in software engineering,” in Proceedings of the 2013 International
Conference on Software Engineering, ser. ICSE ’13, 2013, pp. 842–851.

[15] F. Pérez, R. Lapeña, J. Font, and C. Cetina, “Fragment retrieval
on models for model maintenance: Applying a multi-objective
perspective to an industrial case study,” Information & Software
Technology, vol. 103, pp. 188–201, 2018. [Online]. Available:
https://doi.org/10.1016/j.infsof.2018.06.017

[16] F. Pérez, J. Font, L. Arcega, and C. Cetina, “Collaborative
feature location in models through automatic query expansion,”
Automated Software Engineering, vol. 26, no. 1, pp. 161–202, 2019.
[Online]. Available: https://doi.org/10.1007/s10515-019-00251-9

[17] G. Salton and M. J. McGill, Introduction to Modern Information
Retrieval. New York, NY, USA: McGraw-Hill, Inc., 1986.

[18] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller, “Mining
Version Histories to Guide Software Changes,” in Proceedings of
the 26th International Conference on Software Engineering, 2004.

[19] J. Font, L. Arcega, Ø. Haugen, and C. Cetina, “Feature
location in models through a genetic algorithm driven by
information retrieval techniques,” in Proceedings of the ACM/IEEE
19th International Conference on Model Driven Engineering Languages
and Systems, ser. MODELS ’16. New York, NY, USA: ACM,
2016, pp. 272–282. [Online]. Available: http://doi.acm.org/10.
1145/2976767.2976789

[20] ——, “Achieving feature location in families of models through
the use of search-based software engineering,” IEEE Transactions
on Evolutionary Computation, vol. PP, no. 99, pp. 1–1, 2017.

[21] M. Harman and B. F. Jones, “Search-based software engineering,”
Information & Software Technology, vol. 43, no. 14, pp. 833–839,
2001. [Online]. Available: https://doi.org/10.1016/S0950-5849(01)
00189-6

[22] A. E. Hassan and R. C. Holt, “The Top Ten List: Dynamic Fault
Prediction,” in 21st IEEE International Conference on Software Main-
tenance, 2005.

[23] B. Sisman and A. C. Kak, “Incorporating Version Histories in In-
formation Retrieval Based Bug Localization,” in 9th IEEE Working
Conference on Mining Software Repositories, 2012.

[24] M. R. Karim, G. Ruhe, M. M. Rahman, V. Garousi, and T. Zimmer-
mann, “An empirical investigation of single-objective and multi-
objective evolutionary algorithms for developer’s assignment to
bugs,” Journal of Software: Evolution and Process, vol. 28, no. 12, pp.
1025–1060, 2016.

[25] M. M. Rahman, M. R. Karim, G. Ruhe, V. Garousi, and T. Zim-
mermann, “An empirical investigation of a genetic algorithm for
developer’s assignment to bugs,” in Proceedings of the First North
American Search Based Software Engineering Symposium, February
2015.

[26] M. M. Rahman, G. Ruhe, and T. Zimmermann, “Optimized as-
signment of developers for fixing bugs an initial evaluation for
eclipse projects,” in Proceedings of the Third International Symposium
on Empirical Software Engineering and Measurement, ESEM 2009,
October 15-16, 2009, Lake Buena Vista, Florida, USA, 2009, pp. 439–
442.

[27] M. M. Rahman, S. M. Sohan, F. Maurer, and G. Ruhe, “Evaluation
of optimized staffing for feature development and bug fixing,”
in Proceedings of the International Symposium on Empirical Software
Engineering and Measurement, ESEM 2010, 16-17 September 2010,
Bolzano/Bozen, Italy, 2010.

[28] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy, “”not my
bug!” and other reasons for software bug report reassignments,”
in Proceedings of the ACM 2011 Conference on Computer Supported
Cooperative Work, ser. CSCW ’11. ACM, 2011, pp. 395–404.

[29] K. Kevic, S. C. Müller, T. Fritz, and H. C. Gall, “Collaborative
bug triaging using textual similarities and change set analysis,” in
2013 6th International Workshop on Cooperative and Human Aspects of
Software Engineering (CHASE), May 2013, pp. 17–24.

[30] H. Kagdi and D. Poshyvanyk, “Who can help me with this change
request?” in 2009 IEEE 17th International Conference on Program
Comprehension (ICPC 2009), 2009.

[31] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug
triage with bug tossing graphs,” in Proceedings of the 7th Joint
Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on The Foundations of Software Engineering, ser.
ESEC/FSE ’09. New York, NY, USA: ACM, 2009, pp. 111–120.
[Online]. Available: http://doi.acm.org/10.1145/1595696.1595715

[32] K. Nakakoji, “Supporting software development as collective cre-
ative knowledge work,” in 2nd International Workshop on Support-
ing Knowledge Collaboration in Software Development, 2006.

[33] M. Bass, J. D. Herbsleb, and C. Lescher, “Collaboration in global
software projects at siemens: An experience report,” in 2nd IEEE
International Conference on Global Software Engineering, ICGSE 2007,
Munich, Germany, 27-30 August, 2007, 2007, pp. 33–39.

[34] D. W. McDonald and M. S. Ackerman, “Expertise recommender:
a flexible recommendation system and architecture.” in CSCW.
ACM, 2000, pp. 231–240.

http://dx.doi.org/10.1109/MS.2003.1231146
https://doi.org/10.1109/ASE.2015.51
https://doi.org/10.1016/j.infsof.2018.06.017
https://doi.org/10.1007/s10515-019-00251-9
http://doi.acm.org/10.1145/2976767.2976789
http://doi.acm.org/10.1145/2976767.2976789
https://doi.org/10.1016/S0950-5849(01)00189-6
https://doi.org/10.1016/S0950-5849(01)00189-6
http://doi.acm.org/10.1145/1595696.1595715

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, NOVEMBER 2021 13

[35] A. Mockus and J. D. Herbsleb, “Expertise browser: a quantitative
approach to identifying expertise,” in Proceedings of the 24th Inter-
national Conference on Software Engineering, ICSE 2002, 19-25 May
2002, Orlando, Florida, USA, 2002, pp. 503–512.

[36] A. Hulth, “Improved automatic keyword extraction given more
linguistic knowledge,” in Proceedings of the 2003 conference on
Empirical methods in natural language processing, 2003, pp. 216–223.

[37] C. Carpineto and G. Romano, “A survey of automatic query
expansion in information retrieval,” ACM Comput. Surv., vol. 44,
no. 1, pp. 1:1–1:50, Jan. 2012.

[38] G. Sridhara, E. Hill, L. L. Pollock, and K. Vijay-Shanker, “Identify-
ing word relations in software: A comparative study of semantic
similarity tools.” in ICPC, R. L. Krikhaar, R. Lämmel, and C. Ver-
hoef, Eds. IEEE Computer Society, 2008, pp. 123–132.

[39] T. K. Landauer, P. W. Foltz, and D. Laham, “An Introduction to
Latent Semantic Analysis,” Discourse processes, vol. 25, 1998.

[40] T. Hofmann, “Probabilistic Latent Semantic Indexing,” in Pro-
ceedings of the 22nd Annual International ACM/SIGIR Conference on
Research and Development in Information Retrieval, 1999.

[41] A. Arcuri and G. Fraser, “Parameter tuning or default values?
an empirical investigation in search-based software engineering,”
Empirical Software Engineering, vol. 18, no. 3, pp. 594–623, 2013.
[Online]. Available: http://dx.doi.org/10.1007/s10664-013-9249-9

[42] A. Arcuri and L. Briand, “A hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering,”
Softw. Test. Verif. Reliab., vol. 24, no. 3, pp. 219–250, May 2014.
[Online]. Available: http://dx.doi.org/10.1002/stvr.1486

[43] S. Garcı́a, A. Fernández, J. Luengo, and F. Herrera, “Advanced
nonparametric tests for multiple comparisons in the design
of experiments in computational intelligence and data mining:
Experimental analysis of power,” Inf. Sci., vol. 180, no. 10, pp.
2044–2064, May 2010. [Online]. Available: http://dx.doi.org/10.
1016/j.ins.2009.12.010

[44] W. Conover, Practical nonparametric statistics, 3rd ed., ser. Wiley
series in probability and statistics. New York, NY [u.a.]: Wiley,
1999.

[45] A. Vargha and H. D. Delaney, “A critique and improvement
of the cl common language effect size statistics of mcgraw and
wong,” Journal of Educational and Behavioral Statistics, vol. 25, no. 2,
pp. 101–132, 2000. [Online]. Available: http://jeb.sagepub.com/
content/25/2/101.abstract

[46] R. Grissom and J. J. Kim, Effect sizes for research: A broad practical
approach. Mahwah, NJ: Earlbaum, 2005.

[47] “Apache opennlp: Toolkit for the processing of natural language
text,” https://opennlp.apache.org/, 2021.

[48] “English (porter2) stemming algorithm,” http://snowball.
tartarus.org/algorithms/english/stemmer.html, 2021.

[49] “Efficient java matrix library,” http://ejml.org/, 2021.
[50] D. Dyer, “The watchmaker framework for evolutionary com-

putation (evolutionary/genetic algorithms for java),” http://
watchmaker.uncommons.org/, 2016, [Online; accessed 7-April-
2016].

[51] J. Echeverrı́a, F. Pérez, J. I. Panach, C. Cetina, and O. Pastor, “The
influence of requirements in software model development in an in-
dustrial environment,” in Proceedings of the International Symposium
on Empirical Software Engineering and Measurement, ESEM, 2017.

[52] P. Runeson and M. Höst, “Guidelines for conducting and reporting
case study research in software engineering,” Empirical software
engineering, vol. 14, no. 2, pp. 131–164, 2009.

[53] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering, 2012.

[54] B. Sisman and A. C. Kak, “Assisting code search with automatic
query reformulation for bug localization,” in Proceedings of the 10th
Working Conference on Mining Software Repositories, MSR, 2013, pp.
309–318.

[55] E. Hill, L. Pollock, and K. Vijay-Shanker, “Automatically capturing
source code context of nl-queries for software maintenance and
reuse,” in Proceedings of the 31st International Conference on Software
Engineering, ser. ICSE ’09, 2009, pp. 232–242. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2009.5070524

[56] C. Shah and R. González-Ibáñez, “Evaluating the synergic effect
of collaboration in information seeking,” in Proceedings of the 34th
International ACM SIGIR Conference on Research and Development in
Information Retrieval, ser. SIGIR ’11. New York, NY, USA: ACM,
2011, pp. 913–922. [Online]. Available: http://doi.acm.org/10.
1145/2009916.2010038

[57] Z. Yue, S. Han, D. He, and J. Jiang, “Influences on
query reformulation in collaborative web search,” Computer,
vol. 47, no. 3, pp. 46–53, Mar. 2014. [Online]. Available:
doi.ieeecomputersociety.org/10.1109/MC.2014.62

[58] C. Shah, “Collaborative information seeking: A literature review,”
Exploring The Digital Frontier Advances In Librarianship, vol. 32,
2010.

[59] R. Sirres, T. F. Bissyandé, D. Kim, D. Lo, J. Klein, K. Kim,
and Y. L. Traon, “Augmenting and structuring user queries
to support efficient free-form code search,” Empirical Software
Engineering, vol. 23, no. 5, pp. 2622–2654, 2018. [Online]. Available:
https://doi.org/10.1007/s10664-017-9544-y

[60] W. Wang, A. Gupta, N. Niu, L. D. Xu, J. C. Cheng, and Z. Niu, “Au-
tomatically tracing dependability requirements via term-based
relevance feedback,” IEEE Trans. Industrial Informatics, vol. 14,
no. 1, pp. 342–349, 2018.

[61] O. Chaparro, J. M. Florez, and A. Marcus, “Using observed
behavior to reformulate queries during text retrieval-based
bug localization,” in 2017 IEEE International Conference on Software
Maintenance and Evolution (ICSME), vol. 00, Sept. 2018, pp. 376–
387. [Online]. Available: doi.ieeecomputersociety.org/10.1109/
ICSME.2017.100

[62] ——, “Using bug descriptions to reformulate queries during text-
retrieval-based bug localization,” Empirical Software Engineering,
vol. 24, no. 5, pp. 2947–3007, 2019. [Online]. Available:
https://doi.org/10.1007/s10664-018-9672-z

[63] G. Kumaran and V. R. Carvalho, “Reducing long queries using
query quality predictors,” in Proceedings of the 32Nd International
ACM SIGIR Conference on Research and Development in Information
Retrieval, ser. SIGIR ’09. New York, NY, USA: ACM, 2009, pp.
564–571.

[64] J. M. Florez, O. Chaparro, C. Treude, and A. Marcus, “Combining
query reduction and expansion for text-retrieval-based bug local-
ization,” in 2021 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER), 2021, pp. 166–176.

[65] S. Wang, D. Lo, and L. Jiang, “Active code search: Incorporating
user feedback to improve code search relevance,” in Proceedings of
the 29th ACM/IEEE International Conference on Automated Software
Engineering, ser. ASE ’14, 2014, pp. 677–682. [Online]. Available:
http://doi.acm.org/10.1145/2642937.2642947

[66] F. Pérez, T. Ziadi, and C. Cetina, “Utilizing automatic
query reformulations as genetic operations to improve feature
location in software models,” IEEE Transactions on Software
Engineering, no. 01, pp. 1–1, jun 2020. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/TSE.2020.3000520

[67] F. Pérez, J. Font, L. Arcega, and C. Cetina, “Empowering the
human as the fitness function in search-based model-driven en-
gineering,” IEEE Transactions on Software Engineering, no. 01, pp.
1–1, oct 2021.

[68] F. Pérez, J. Font, L. Arcega, and C. Cetina, “Automatic query
reformulations for feature location in a model-based family of
software products,” Data & Knowledge Engineering, 2018.

[69] F. Pérez, A. C. Marcén, R. Lapeña, and C. Cetina, “Introducing
collaboration for locating features in models: Approach and indus-
trial evaluation,” in Proceedings of the 25th International Conference
on Cooperative Information Systems, CoopIS, 2017, pp. 114–131.
[Online]. Available: https://doi.org/10.1007/978-3-319-69462-7 9

[70] ——, “Evaluating low-cost in internal crowdsourcing for software
engineering: The case of feature location in an industrial environ-
ment,” IEEE Access, vol. 8, pp. 65 745–65 757, 2020.

http://dx.doi.org/10.1007/s10664-013-9249-9
http://dx.doi.org/10.1002/stvr.1486
http://dx.doi.org/10.1016/j.ins.2009.12.010
http://dx.doi.org/10.1016/j.ins.2009.12.010
http://jeb.sagepub.com/content/25/2/101.abstract
http://jeb.sagepub.com/content/25/2/101.abstract
https://opennlp.apache.org/
http://snowball.tartarus.org/algorithms/english/stemmer.html
http://snowball.tartarus.org/algorithms/english/stemmer.html
http://ejml.org/
http://watchmaker.uncommons.org/
http://watchmaker.uncommons.org/
http://dx.doi.org/10.1109/ICSE.2009.5070524
http://doi.acm.org/10.1145/2009916.2010038
http://doi.acm.org/10.1145/2009916.2010038
doi.ieeecomputersociety.org/10.1109/MC.2014.62
https://doi.org/10.1007/s10664-017-9544-y
doi.ieeecomputersociety.org/10.1109/ICSME.2017.100
doi.ieeecomputersociety.org/10.1109/ICSME.2017.100
https://doi.org/10.1007/s10664-018-9672-z
http://doi.acm.org/10.1145/2642937.2642947
https://doi.ieeecomputersociety.org/10.1109/TSE.2020.3000520
https://doi.org/10.1007/978-3-319-69462-7_9

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, NOVEMBER 2021 14

Francisca Pérez is Associate Professor in the
SVIT Research Group (https://svit.usj.es) at San
Jorge University. She received a PhD in Com-
puter Science from the Polytechnic University of
Valencia. Her research interests include Model-
Driven Development, Collaborative Information
Retrieval, Search-Based Software Engineering,
and Variability Modeling. She publishes her re-
search results and participates in high-level
international software engineering conferences
and journals, such as IEEE Transactions on Soft-

ware Engineering (TSE), the Automated Software Engineering (AUSE)
journal, the Information & Software Technology (IST) journal, and the
Journal of Systems and Software (JSS). More about Pérez and her work
is available online at http://franciscaperez.com.

Raúl Lapeña received a PhD in Computer Sci-
ence from the Polytechnic University of Valencia.
He is currently Assistant Professor in the SVIT
Research Group at San Jorge University. His
main research interests lie in model-driven de-
velopment, feature location, and software prod-
uct lines. He publishes his research results and
participates in high-quality international software
engineering conferences and journals, such as
the Conference on Advanced Information Sys-
tems Engineering (CAiSE), the Information and

Software Technology (IST) journal, and the Journal of Systems and
Software (JSS).

Enhancing software model encoding for feature location approaches based on machine learning...

Ana C. Marcén received the
Ph.D. degree in computer science
from the Universitat Politécnica
de Valéncia. She is currently an
Associate Professor with the SVIT
Research Group, Universidad San
Jorge. She publishes her research
results and participates in high-
quality international software
engineering conferences and jour-
nals, such as the Conceptual Mod-
eling (MoDELS) conference, the
Information and Software Tech-
nology (IST) journal, and the
Journal of Systems and Software

(JSS). Her current research interests include model-driven develop-
ment, feature location, traceability link recovery, and machine learn-
ing.

Francisca Pérez is an Associate
Professor in the SVIT Research
Group (https://svit.usj.es) at San
Jorge University. She received a
Ph.D. in Computer Science from
the Polytechnic University of
Valencia. Her research interests
include Model-Driven Develop-
ment, Collaborative Information
Retrieval, Search-Based Software
Engineering, and Variability Mod-
eling. She publishes her research
results and participates in high-
level international software engi-
neering conferences and journals,

such as IEEE Transactions on Software Engineering (TSE), the Auto-
mated Software Engineering (AUSE) journal, the Information and
Software Technology (IST) journal, and the Journal of Systems and
Software (JSS). More about Pérez and her work is available online at
http://franciscaperez.com.

Óscar Pastor is currently a Full
Professor and the Director of the
PROS Research Center, Universi-
tat Politécnica de Valéncia, Spain.
With a strong background in Con-
ceptual Modeling, Model-driven
Development, and their practical
applications in Information Sys-
tems design and development, he
is currently leading a multidisci-
plinary project linking informa-
tion systems and bioinformatics to
designing and implementing tools
for conceptual modeling-based
interpretation of the Human

Genome

Carlos Cetina received the Ph.D.
degree in computer science from
the Polytechnic University of
Valencia. He is currently an Asso-
ciate Professor with Universidad
San Jorge and the Head of the
SVIT Research Group. His resear-
ch interests include software prod-
uct lines and model-driven devel-
opment. His research results have
reshaped software development in
world-leader industries from het-
erogeneous domains ranging from
induction hob firmware to train
control and management systems.

More information about his background can be found at his website:
http://carloscetina.com.

123

Ana C. Marcén received a PhD in Computer Sci-
ence from the Polytechnic University of Valencia.
She is currently Assistant Professor in the SVIT
Research Group at San Jorge University. She
publishes her research results and participates
in high-quality international software engineering
conferences and journals, such as the Concep-
tual Modeling (MoDELS) conference, the Infor-
mation and Software Technology (IST) journal,
and the Journal of Systems and Software (JSS).
Her current research interests include model-

driven development, feature location, traceability link recovery, and ma-
chine learning.

Carlos Cetina is Associate Professor with San
Jorge University and the Head of the SVIT Re-
search Group. He received a PhD in Computer
Science from the Polytechnic University of Va-
lencia. His research focuses on software prod-
uct lines and model-driven development. His re-
search results have reshaped software devel-
opment in world-leading industries from hetero-
geneous domains ranging from induction hob
firmware to train control and management sys-
tems. More information about his background

can be found at his website: http://carloscetina.com.

https://svit.usj.es
http://franciscaperez.com
http://carloscetina.com

	Introduction
	Background and motivation
	Overview of our work
	Selection of participants for collaboration
	Collaborative Fragment Retrieval on Models
	Natural Language Processing
	Automatic Query Reformulation
	Fragment Retrieval on Models

	Evaluation
	Research questions
	Planning and execution
	Answering RQ1
	Answering RQ2
	Answering RQ3

	Implementation details

	Results
	Research Question 1
	Research Question 2
	Research Question 3

	Discussion and lessons learned
	Focus group interview

	Threats to validity
	Related work
	Conclusion
	References
	Biographies
	Francisca Pérez
	Raúl Lapeña
	Ana C. Marcén
	Carlos Cetina

