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Abstract

Game developers often face more challenges when reusing code compared to non-game developers, and Software Product
Lines (SPLs) have been successful in addressing this issue. In this study, we compare different approaches to code reuse
in Classic Software Engineering (CSE) and Game Software Engineering (GSE) through a commercial video game called
Kromaia. We specifically focus on two development paradigms: Model-Driven Development (MDD) and Code-Driven
Development (CDD). We conduct an empirical evaluation where subjects develop game elements using two approaches:
Clone and Own (CaO) and SPLs.The results show that game elements developed using SPLs are more correct (over
23%) than those developed with CaO in both MDD and CDD paradigms. In CDD, there are significant improvements
in efficiency (51%) and satisfaction (13%) when using SPLs compared to CaO. However, no improvements are observed
when working under MDD. The impact of using SPLs or CaO is greater in CDD than in MDD for game developers.
Our findings suggest that SPLs in GSE may have a different role compared to their traditional role in CSE. Specifically,
SPLs can be valuable in balancing game difficulty or generating new video game content, such as the one present in the
bosses of the game.

Keywords: Empirical evaluation, Software Product Line Engineering, Game Software Engineering, Model-Driven
Development, Code-Driven Development

1. Introduction

Nowadays, the video game industry is one of the fastest-
growing industries in the world. According to a 2019 re-
port [46], the total number of active software developers
is 18.9M. The same report indicates that 8.8M of these
active developers have worked or are working on video
games. This means that almost half of the active develop-
ers have been involved in video game development at some
point. Video game development has differences from clas-
sic software development [26, 36]. Hence, it is important to
note that Game Software Engineering (GSE) aligns with
Classic Software Engineering (CSE), sharing many similar-
ities rather than significant differences [1]. One difference
is that game developers often face more challenges when
reusing code compared to non-game developers and do not
have standards to avoid technical debt [8, 42].

The majority of video games are developed using game
engines, which are development environments that inte-
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grate two engines for graphics and physics and a set of
tools to accelerate development. The most popular are
Unity [48] and Unreal Engine [20], but it is also possible
for a studio to make its own engine (e.g., CryEngine [12]).
Game engines allow video game developers to create con-
tent directly using code (e.g., C++) or software models.

Software models raise the abstraction level using terms
that are much closer to the problem domain. The Model-
Driven Development (MDD) [44] paradigm focuses on the
creation of models that can then be translated into source
code. This means that developers can focus on the game
content itself, abstracting from the implementation details.
In addition, game engines also allow working under the
traditional Code-Driven Development (CDD) paradigm.
Working at the code level allows developers to have more
control over the implementation details when needed.

The use of Software Product Lines (SPLs) has proven
to be effective in CSE for developing different types of
software at a lower cost, in less time, and with higher
quality [41]. That is why there are recent research efforts
that propose applying SPLs in the domain of video games
[29, 32, 45]. However, recent research [40] has provided
evidence that game developers perceive more difficulties
than non-game developers when reusing code. Contrary to
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a systematic development method exists Clone and Own
(CaO), it involves the informal ad-hoc practice of extract-
ing reusable artifacts (e.g., code) from the software and
duplicating them in other parts of the program [19]. This
practice is commonly known as copy and paste.
This paper is an extension of our previous work [50] in

which we performed an empirical evaluation to compare
two development approaches, CaO and an SPL under the
MDD paradigm. The evaluation was performed using Kro-
maia, a commercial video game that other authors have
previously analyzed [6, 17, 16, 5]. The 28 participants had
to develop two final bosses of Kromaia, one using CaO
and another one using a compositional SPL. The results
were compared in terms of correctness, efficiency, and user
satisfaction. Although the bosses developed with the SPL
were more correct than those developed with CaO, the re-
sults did not indicate significant changes in efficiency or
satisfaction.

The evaluation of the previous work focused only on
the MDD paradigm; in this work, we extend the empiri-
cal evaluation of our previous work to include a new de-
velopment paradigm in the analysis, the CDD paradigm.
Although the MDD paradigm is being used by video game
developers, working at the level of source code is more
common in GSE. With this work, we want to determine
if the benefits of using an SPL rather than CaO when de-
veloping video game content under the MDD paradigm
discovered in the previous work still apply under the CDD
paradigm. Furthermore, we will analyze the aggregated
results from the MDD and CDD paradigms to determine
the effect of the paradigm on the results.

To this end, 51 new subjects were recruited to develop
two final bosses of Kromaia in C++. Each boss was cre-
ated following a different development approach: one us-
ing CaO, reusing code from existing bosses and libraries,
and another using an annotative SPL that derives final
bosses in C++ code. Then, the results were analyzed and
compared following the same indicators of correctness, ef-
ficiency, and user satisfaction employed in our previous
work.

The empirical evaluations we perform are presented
from the perspective of controlled experiments [54] in
which humans apply different treatments to one or more
objects of study in a laboratory setting. The use of a labo-
ratory setting allows greater control over the manipulation
and measurements of the variables involved in the study in
order to test hypotheses or determine causal relationships.
We acknowledge that some readers may refer to this study
as a case study. However, we use the Wohlin et al. termi-
nology for empirical studies [54]. In this context, the term
case study does not fit our empirical evaluation because
although we use a real video game to extract the objects
to evaluate the approaches SPL & CaO, our study does
not take place in a real-world context but in laboratory
settings and the focus of the study is not the video game
analysis itself.

Our results suggest that the SPLs obtain better results

than CaO, especially under the CDD paradigm. However,
the SPL approach in GSE does not have the same effects
that have made SPLs attractive to CSE. In light of our
results, we may need to rethink the role of SPLs for GSE,
treating GSE as a different domain than CSE when dealing
with SPLs. Our work suggests new research directions for
SPL in GSE. Specifically, our work reveals that SPLs can
be relevant to the particularities of GSE: generating new
video game content (one of the hot topics of video game
research), making software accessible to multidisciplinary
teams, or balancing difficulty (one of the seminal problems
of video games).

The remainder of the paper is structured as follows. Sec-
tion 2 presents the video game Kromaia and the two de-
velopment paradigms studied (MDD and CDD). Section
3 describes our experiment. Section 4 presents the re-
sults obtained. Section 5 discusses the findings. Section 6
describes the threats to validity. Section 7 examines the
related work of the area. Finally, Section 8 concludes the
paper.

2. Kromaia and its paradigms

This section presents Kromaia1 and the multiple pro-
cesses available to generate bosses applying the two de-
velopment approaches (CaO or SPL) under the two
paradigms studied (MDD and CDD).

Kromaia is a three-dimensional space game created by
Kraken Empire, in which the player’s spaceship flies from a
starting point to an ending point, reaching the goal of each
level before being destroyed. Throughout each level, the
player has to explore floating structures, avoid asteroids
and find items. Along the way, the player will encounter
basic enemies trying to damage the player’s spaceship by
firing projectiles. If the player reaches the destination, the
final boss corresponding to that level appears and must be
defeated in order to complete the level.

Figure 1 presents an overview of the architecture of Kro-
maia. The top layer (content creation) allows the develop-
ers to add new content to the video game in two different
ways, using models (SDML) or source code (C++):

• SDML: The Shooter Definition Modeling Language,
created by the developers of the game, allows the cre-
ation of any type of element that is present in the
game. It will be used in the experiment under the
MDD paradigm.

• C++: The C++ programming language can also be
used to create content for the game. Game elements
created in C++ must follow some structure rules and
patterns (e.g., inherit from a specific class) in order
to be properly integrated with the rest of the game.

1Kromaia Omega - Launch — PlayStation 4: https://youtu.be/
EhsejJBp8Go
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Figure 1: Architecture of Kromaia. Adapted from [6]

The middle layer (video game domain) contains the core
of the game and its main functionality. When the content
is provided as an SDML model, it will be interpreted at
run-time and transformed into a C++ run-time object.
When the content is provided in the form of source code,
it will interact directly with the proprietary custom engine.
The engine contains the base classes and functionality used
by the game elements. The developers of the game also
created an Application Programming Interface (API) to
facilitate the creation of new content and its integration
with the rest of the game.

The bottom layer (external libraries) contains the set
of libraries used for specific purposes, such as the render-
ing of the game (Ogre) or the management of the physics
(Bullet). The engine is built upon those libraries and will
interact with them when needed.

Below, we present how the two development paradigms
studied (MDD and CDD) are realized in the Kromaia ar-
chitecture.

2.1. The MDD paradigm in Kromaia

Figure 2 shows the main artifacts used under the MDD
paradigm for developing final bosses in Kromaia. Bosses
are specified using the Shooter Definition Modeling Lan-
guage (SDML) [6]. SDML is a Domain-Specific Language
(DSL) that defines components that appear in video game
entities: the anatomical structure (including which parts
are used in it, their physical properties, and how they
are connected); the amount and distribution of vulnera-
ble parts, weapons, and defenses in the structure/body of
the character; and the movement behaviours associated to
the whole body or its parts. This modeling language has
concepts such as hulls, links, weak points, and weapons.

The top part of Figure 2 shows a simplified version of
the SDML metamodel and its concrete syntax. The com-
plete metamodel contains more than 20 concepts, over 20

relationships, and more than 60 properties [6]. However,
this simplified version is complete enough to understand
the elements that compose the structure of a boss and
their relationships with each other. The figure depicts the
concrete syntax of each of the elements. Overall, a boss is
composed of hulls and links. Each link joins two hulls. A
hull can contain weak points that the player must attack,
weapons such as cannons, lasers, or spikes, and shields that
protect weak points and weapons.
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SPL Features

P1 P3

P2

F2 F3 F4
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F5 F6
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F2 F5
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Figure 2: Kromaia MDD paradigm: the Shooter Definition Modeling
Language (SDML) (Simplified version) and a subset of the SPL used
to develop models of bosses under the MDD paradigm.

An actual example of a final boss of Kromaia is pre-
sented in the top part of Figure 3. The Serpent is the
final boss that the player must defeat in order to complete
Level 1. The middle part of the figure shows the model
of the boss using the SDML concrete syntax. This boss is
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Hulls

Shield

Vital Points

Links

Projec�le Guns

Spike

Serpent: using SDML concrete syntax

Level 1 final boss: Serpent

Serpent: using the API to build bosses

Boss createBoss() {

Boss boss = Boss();

boss.createHead();
boss.createSegment(8);
boss.addWeaponsSpike(3);
boss.addWeaponsProjectile(ProjectileType::LINEAR,6);
boss.addVitalPoints(11);
boss.addShields(10);
boss.setApperance(ApperanceType::ORGANIC);
boss.setHighlightColor(ColorType::RED);
boss.createBehaviour(1);
boss.setEvasive();
boss.setSpeed(SpeedType::FAST);

return boss;
}

Figure 3: Example of a final boss in Kromaia.

composed of a series of nine hulls that are linked in a line.
The first hull is the head, which includes three weak points
and will drive the movement of the boss. The next seven
hulls contain either two vital points covered with shields
or two cannons. The last hull is the tail, containing two
shields and three spikes that are used to hit the player.

Under the MDD paradigm, when bosses are created us-
ing the CaO development approach, the developer has ac-
cess to a set of SDML models that have been created in the
past (such as the serpent in the middle part of Figure 3).
The developer can use them to serve as the basis for the
new boss being created or can reuse parts of the existing
models to build the new boss. For example, the developer
could copy the existing serpent model and add some new
weapons to one of the existing hulls or copy the last two
hulls and connect them to create a two-tailed serpent boss.

Under the MDD paradigm, when bosses are created us-
ing the SPL development approach, the developer has ac-
cess to a feature-oriented SPL that can be used to generate
SDML models. The SPL follows a compositional approach
[25]. The developer will begin with an initial model and
perform some substitutions of model fragments using a li-

brary of model fragments and following the rules specified
by the variability specification.

The middle part of Figure 2 shows a subset of the as-
sets of the SPL for developing Kromaia bosses. The fig-
ure shows one of the initial models that can be used to
create new bosses. The bottom of Figure 2 shows some
feature models that represent the variability specification
and some of the features present in the library of the SPL.
Each feature corresponds to a model fragment that is ex-
pressed using the concrete syntax of SDML.

The domain experts of Kromaia defined the variability
specification. The elements denoted with a P represent
variation points that can be substituted by a feature, F,
following the variability specification. For example, the
variability specification that is shown in the first position
(P1 ) indicates that it can be substituted with the model
fragments F1 or F2. Furthermore, some features can in-
clude variation points that must be fulfilled with another
feature. For example, feature F2 has a variation point,
P2, which has to be substituted following its variability
specification (by F2, F3 or F4 ).

2.2. The CDD paradigm

Figure 4 shows the main artifacts used when creating
a boss under the CDD paradigm. The bottom part of
Figure 3 shows an example of a boss created under the
CDD paradigm, where the final bosses are specified using
the C++ programming language and the API of Kromaia
[6].

The API contains a set of base classes that can be ex-
tended when creating new content. It also contains func-
tionality shared by many elements of the video game. The
top part of Figure 4 shows a subset of the API for creating
bosses in Kromaia. It is structured in different sections
that include: functions to create a series of hulls linked to-
gether following different forms (rings, segments, squares)
and different sizes; functions to add weapons to existing
hulls and to manage the properties of those weapons (e.g.,
type of projectile used); functions to include vital points
and shields to the different hulls; and functions to deter-
mine the appearance (e.g., predominant color for the hulls)
and behaviour (e.g., different IA parameters that deter-
mine the actions taken in the game) of the boss being
created.

Under the CDD paradigm, when bosses are created us-
ing the CaO development approach, the developer has ac-
cess to the API, its documentation, and a set of source
codes of other bosses that have been created in the past
(such as the Serpent shown at the bottom part of Figure
3). The developer will use them in the same way as in
the MDD paradigm by serving as the basis for the new
boss being created, reusing parts of the existing code to
build the new boss, adding new lines of code, or calling
the functions in the API.

Under the CDD paradigm, when bosses are created us-
ing the SPL development approach, the developer has ac-
cess to an annotative SPL [25] that can be used to generate
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Figure 4: Kromaia CDD paradigm: a subset of the API functions and a subset of the SPL used to develop bosses under the CDD paradigm.

the source code of the bosses (see the bottom and right
part of Figure 4). The developer will derive new prod-
ucts through the feature model, creating a configuration
that will then be used to generate the source code. The
developer has access to the feature model itself, the doc-
umentation of each of the features present in it, and the
annotated source code that is being configured through
the feature model.

Figure 4 shows part of the feature model driving the
SPL under the CDD paradigm. It determines the differ-
ent features that can be selected when creating a boss from
the SPL and some constraints about the choices that can
be made (e.g., having a segment shape implies a single
multiplicity). The documentation includes a description
of each of the features that can or cannot be included
in the boss being created. When a configuration of a
product is done, it will be used to generate the source
code of the boss following an annotative approach. Each
of the features will produce a set of define macros that
will be used to pre-compile a C++ source code that in-
cludes the information about all the bosses (see Figure
4, right). Depending on the features selected and the
#define macros generated, a different set of C++ lines
will be included in the resulting C++ code. For exam-
ple, if the feature Arms and the feature Quadruple are se-
lected, the macro define SHAPE ARMS and define MUL-
TIPLICITY QUADRA will be used to pre-compile the
source code, resulting in the line boss.createArm(x) being
included four times in the final source code (the QUAN-
TITYHULLS is defined by another feature that is related

to the size of the boss being created).

3. Experiment design

This section presents the experimental design of both
experiments. It includes information about the objectives,
the variables studied, the research questions, the design
chosen, the participants recruited, the experimental ob-
jects used during the experiments, the procedure followed
in each execution of the experiments, and the statistical
analysis selected for the treatment of the data collected.

3.1. Objectives

According to Wohlin’s guidelines [54] for reporting soft-
ware engineering experiments, we have organized our re-
search objectives using the Goal Question Metric template
for goal definition [4].

Our goal is to analyze different development ap-
proaches for the purpose of comparison, with respect
to the correctness, efficiency, and user satisfaction of the
software constructed, from the point of view of the ex-
perience of the developer (inexperienced or experienced),
in the context of creating software for video games un-
der two different development paradigms: MDD and CDD.

3.2. Variables

In this study, the factor under investigation is the Devel-
opment Approach (DA). We investigate two alternatives of
the factor: create the final bosses of a video game using
CaO or using an SPL.
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To evaluate the effects of the use of the different ap-
proaches, we selected Correctness and Efficiency (related
to the subjects’ performance) as objective dependent vari-
ables, and user Satifaction (related to the subjects’ per-
ception) as subjective dependent variable.

We measured Correctness using a correction template,
which was applied to the bosses developed by the subjects
after the experiment. Their values range from 0 to 100
and represent the percentage of points obtained according
to the correction template.

To calculate Efficiency, we measured the time employed
by each subject to finish the task, using the start and end
times of each task. Efficiency is the ratio of Correctness
to time spent (in minutes) to perform a task.

We measured Satisfaction using a 5-point Likert-scale
questionnaire based on the Technology Acceptance Model
(TAM) [37]. We decompose Satisfaction into three subjec-
tive dependent variables as follows:

• Perceived Ease of Use (PEOU), the degree to which
a person believes that learning and using a particular
DA would require less effort.

• Perceived Usefulness (PU), the degree to which a per-
son believes that using a particular DA will increase
performance.

• Intention To Use (ITU), the degree to which a person
intends to use a DA.

Each of these variables corresponds to specific items in
the TAM questionnaire. We average the scores obtained
for these items to obtain the value for each variable.

To take into account the effects that the different de-
velopment paradigms could have on the DA, we consid-
ered the Paradigm blocking factor with two alternatives:
CDD and MDD. We carried out two experiments with the
same design, each one based on a different development
paradigm. The first experiment involves GSE tasks under
the MDD paradigm, while the second experiment involves
GSE tasks under the CDD paradigm.

3.3. Research questions and hypotheses

The research questions and null hypotheses are formu-
lated as follows:

RQ1 - Does the DA used to create software for video
games impact the Correctness of the software? The cor-
responding null hypothesis is H0,C : The DA used for cre-
ating software for video games does not have an effect on
Correctness.

RQ2 - Does the DA used to create software for video
games impact the Efficiency of developers? The null hy-
pothesis for Efficiency is H0,E : The DA does not have an
effect on Efficiency.

RQ3 - Is user satisfaction different when developers use
different DA to create software for video games? To answer
this question, we formulated three hypotheses based on the

variables PEOU, PU, and ITU with their corresponding
null hypotheses:

H0,PEOU - The DA does not have an effect on PEOU.
H0,PU - The DA does not have an effect on PU.
H0,ITU - The DA does not have an effect on ITU.
RQ4 - Are the answers to RQ1, RQ2, and RQ3 the

same when using different development paradigms (MDD
and CDD)? To address this question, we will answer RQ1,
RQ2, and RQ3 for each of the two paradigms considered.

3.4. Design

For the two experiments of this study, we use a factorial
crossover design with two periods, using different tasks
(T1 and T2) for each period. The subjects are randomly
divided into two groups (G1 and G2). In the first period
of the experiment, all of the subjects perform T1, with
subjects in G1 using CaO and subjects in G2 using SPL.
Then, in the second period of the experiment, all of the
subjects perform T2, with subjects in G1 using the SPL
and subjects in G2 using CaO.

The repeated measures design increases the sensitivity
of the experiment [52]: the observation of the same subject
using the two alternatives controls between-subject differ-
ences, improving experiment robustness regarding varia-
tion among subjects. By using two different sequences for
each group (G1 uses CaO first and SPL second; G2 uses
SPL first and CaO second) and different tasks, the design
counterbalances some of the effects that can be caused by
the order in which development approaches are used (i.e.,
learning effect, fatigue).

Before conducting each experiment, to verify the exper-
iment design, we conducted a pilot study with two sub-
jects. The pilot study allowed us to estimate the time
needed to perform the tasks and complete the question-
naires, detect typographical and semantic errors, and test
the instruments used to collect the data and conduct the
experiment. The two subjects were different for each pilot
study, and they did not participate in the experiments.

3.5. Participants

We selected the subjects using convenience sampling [54]
via an open call to volunteers. A total of 79 subjects
with different knowledge about programming, modeling,
and video game development performed the experiment;
28 of them performed the experiment under the MDD
paradigm and 51 performed the experiment under the
CDD paradigm. Table 1 presents detailed demographic
data about the subjects.

Each execution of the experiment was conducted by
two instructors and one expert in video game develop-
ment. The expert provided information about the Kro-
maia framework and examples of how to create bosses us-
ing CaO and the SPL under the paradigm studied in the
experiment. During the experiment, one of the instructors
gave instructions and managed the focus groups, while the
other clarified doubts for the subjects and took notes.
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3.6. Experimental objects

The tasks of our experiments consisted in developing
two final bosses of Kromaia from a gameplay video show-
ing its structure and behavior. A video game software
engineer involved in the development of Kromaia and a
researcher designed the tasks, balanced the complexity (to
ensure similar difficulty across tasks), and prepared the
correction templates.

The subjects got access to training material with ex-
amples of how to create a boss under the paradigm being
studied (MDD or CDD) using CaO or the SPL. Depending
on the DA and paradigm being used, the subjects got ac-
cess to different artifacts to create the bosses (see Section
2).

For the data collection, we prepared a set of two forms
for each experiment (one for each experimental sequence)
with the following sections: (I) an informed consent state-
ment that the subjects had to review and accept voluntar-
ily, which clearly explained what the experiment consisted
of and what will be the treatment given to personal data;
(II) a demographic questionnaire to characterize the sam-
ple; and (III) a specific questionnaire to collect the sub-
jects’ responses during the experiment (their tasks, their
times, and their answers to the satisfaction questionnaire).

The experimental objects used in these experiments (the
training material, the tasks, and the forms used for the
questionnaires), as well as the results and the statistical
analysis, are available to the reader2.

3.7. Experimental procedure

Each of the experiments performed for this study was
conducted on two different days. On one of the days, the
experiment was conducted online with professionals (expe-
rienced subjects). On the other day, the experiment was
conducted face-to-face with the group of students (inexpe-
rienced subjects). All of the sessions were scheduled for a
duration of one hour and 45 minutes and were carried out
following the experimental procedure described below:

1. (∼ 5 min) An instructor explained the parts of the
session and clarified that it was not a test of their
abilities.

2. (∼10 min) The subjects attended a tutorial about the
video game bosses to be created and how to use CaO
or SPL to create these bosses under the paradigm
studied in the experiment (MDD or CDD).

3. (∼5 min) The subjects received clear instructions on
how to access the form for the experiment and the
artifacts needed to complete the task. The subjects
were randomly divided into two groups (G1 and G2)
and each group got access to the corresponding form.

4. (∼5 min) The subjects accessed the form and then
read and confirmed having read the information about
the experiment, the data treatment of their personal

2Available at http://svit.usj.es/SPLvsCAO-MDD-CDD

information, and the voluntary nature of their partic-
ipation before accessing the questionnaires and tasks
of the experiment.

5. (∼5 min) The subjects completed a demographic
questionnaire.

6. (∼30 min) The subjects performed the first task. The
subjects from G1 had to use the CaO approach to cre-
ate a given boss of the video game, and the subjects
from G2 had to create the same boss but using the
SPL. After submitting their solutions, the subjects
completed a satisfaction questionnaire about the ap-
proach used for development.

7. (∼30 min) The subjects performed the second task,
which has the creation of another boss. This time,
the subjects from G1 created it using the SPL ap-
proach, while the subjects from G2 created it using
the CaO approach. Then, the subjects completed the
satisfaction questionnaire.

8. (∼15 min) A focus group interview about the tasks
was conducted by the instructors.

3.8. Analysis procedure

To analyze the data extracted from the experiments,
we performed a statistical study of the aggregated data
from the two experiments, and we also performed a sta-
tistical study of the data extracted from each experiment
separately. The analysis procedure was the same for all
three data sets. We chose the Linear Mixed Model (LMM)
[53] for the statistical data analysis. LMM handles corre-
lated data resulting from repeated measurements, and it
allows us to study the effects of factors that intervene in a
crossover design (period and sequence) and the effects of
other blocking factors (Paradigm or Experience) [52].

In the hypothesis testing, we applied the Type III test of
fixed effects with unstructured repeated covariance. Type
III is the default test, which enables LMM to produce
the exact F-values and p-values for each dependent vari-
able and each fixed factor. The assumption for applying
LMM is the normality of the residuals of the dependent
variables. To verify this normality, we used Kolmogorov-
Smirnov tests as well as visual inspections of the histogram
and normal Q-Q plots.

In this study, DA was defined as a fixed-repeated factor
to identify the differences between using CaO or SPL, and
the subjects were defined as a random factor (1|Subj.) to
reflect the variability among subjects. The dependent vari-
ables (DV) for this test were Correctness and Efficiency,
and the three subjective variables related to Satisfaction:
PEOU, PU, and ITU.

To analyze the potential effects of the development
paradigm to determine the variability due to DA in the
dependent variables, in the statistical models used for an-
alyzing the aggregated data, we considered the Paradigm
fixed factor and the combination of this factor with DA. In
the statistical models used to analyze the three data sets,
we also considered Period and Sequence as fixed factors
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to take into account the potential effects of factors that
intervene in a crossover design. In order to take into ac-
count the potential effects of the subjects’ experience to
determine the variability in the dependent variables, we
also considered Experience as a fixed factor and its com-
binations with the other fixed factors considered in the
statistical models (DA, Paradigm, Sequence, and Period).

We tested different statistical models to find out which
factors, in addition to DA, could best explain the changes
in the dependent variables. Some of these statistical mod-
els are described mathematically in Formula 1. The start-
ing statistical model (Model 0) reflects the main factor
used in this experiment (DA) and the Subject random fac-
tor (1|Subj.). We also tested other statistical models (e.g.,
models M1, M2, M3, or M4) that included other fixed fac-
tors (Paradigm, Experience, Period, or Sequence), or their
combinations, which could have effects on the dependent
variables.

(M0) DV ∼ DA+ (1|Subj.)
(M1) DV ∼ DA+ Paradigm+DA ∗ Paradigm+ (1|Subj.)
(M2) DV ∼ DA+ Paradigm+ Experience+ (1|Subj.)
(M3) DV ∼ DA+ Experience+DA ∗ Experience+ (1|Subj.)
(M4) DV ∼ DA+ Sequence+ Period+ (1|Subj.)

(1)

The statistical model fit of the tested models was evalu-
ated based on goodness of fit measures such as Akaike’s
information criterion (AIC) and Schwarz’s Bayesian In-
formation Criterion (BIC). The model with the smallest
AIC or BIC is considered to be the best fitting model
[24, 17]. In the analysis, we only considered statistical
models verifying the normality of the residuals of the de-
pendent variables. Therefore, to describe the changes in
each dependent variable, we selected the statistical model
that obtained the smallest AIC or BIC value from the sta-
tistical models that satisfied the normality of residuals.

To quantify the differences in the dependent variables
due to significant fixed factors, we calculated the Cohen d
value [10] between the alternatives of these factors. Cohen
d values between 0.2 and 0.3 indicate a small effect, values
around 0.5 indicate a medium effect, and values greater
than 0.8 indicate a large effect. We selected histograms
and box plots to describe the data and the results graphi-
cally.

4. Results

The subjects filled out a demographic questionnaire that
was used for characterizing the sample. Table 1 shows
the number of subjects of each experiment grouped by
experience, “inexperienced” subjects were students, and
“experienced” subjects were professionals in the game de-
velopment industry. The table shows the mean and stan-
dard deviation of age, hours per day developing software
(Developing time), and hours per day working with mod-
els (Modeling time). A 5-point Likert-scale was used for
the self-assessment of the subjects’ knowledge of program-
ming languages (Programming knowledge) and modeling
languages (Modeling Knowledge), which are also shown in
Table 1.

Table 1: Results of the demographic questionnaire
Number of

subjects

Age

µ± σ

Developing

time±σ

Modeling

time±σ

Programming

knowledge±σ

Modeling

knowledge±σ

All subjects 79 23.5±6.3 2.5±2.2 0.7±1 3.4±1.2 2.8±1.2
MDD subjects 28 25.8±7.4 3.4±2.6 0.8±1 4±1.1 3±1.3
CDD subjects 51 22.3±5.3 2±1.8 0.6±0.9 3.1±1.1 2.7±1.1

Experienced 26 29.9±7.2 3.8±2.9 1.2±1.2 4.3±0.9 3.5±1.3
MDD Experienced 13 30.7±8.4 4.5±2.7 1.2±1.2 4.6±0.8 3.8±1.4
CDD Experienced 13 29.2±6.1 3.2±2.9 1.2±1.3 4.1±1 3.3±1.3

Inexperienced 53 20.3±1.6 1.9±1.4 0.4±0.6 2.9±1 2.4±0.9
MDD Inexperienced 15 21.5±1.3 2.4±2 0.5±0.6 3.5±1.1 2.3±0.7
CCD Inexperienced 38 19.8±1.5 1.7±1 0.4±0.6 2.7±0.9 2.5±1

4.1. Changes in the dependent variables

The results of the two experiments are shown in Table 2.
The first set of rows (ALL) corresponds to the aggregated
data of the two experiments; the second and third sets of
rows correspond to the data of each experiment individu-
ally (CDD and MDD). The table also shows the values for
the mean and standard deviation of the dependent vari-
ables Correctness, Efficiency, PEOU, PU, and ITU for each
of the DAs compared (CaO and SPL) and for each of the
alternatives for the fixed factors considered. These include
Experience, with two alternatives (Experienced and Inex-
perienced subjects); Period, with two alternatives (Task 1,
and Task 2); and Sequence, whose two alternatives reflect
the order in which subjects used the DAs, (G1: CaO-SPL,
G2: SPL-CaO). The aggregated data (ALL) should also
contain a column with the Paradigm fixed factor and its
two alternatives CDD and MDD, but it has been removed
to avoid duplicity (those values are also shown under the
corresponding rows of CDD and MDD)

Taking into account the aggregated data from the two
experiments performed in this study, we can state that
there were differences in the means and standard devia-
tions of all of the dependent variables depending on which
DA was used to create the boss. If we compare the sta-
tistical results obtained in each paradigm separately, we
can state that the differences in the dependent variables,
depending on which DA was used to create a boss of a
video game, were smaller under the MDD paradigm than
under the CDD paradigm.

To quantify the differences in the dependent variables,
we analyzed the Cohen d values for each of the factors
considered in the study. Table 3 shows the Cohen d value
of each factor for each dependent variable of the aggregate
data of the two experiments performed. Table 4 and Ta-
ble 5 show the same information but particularized to the
data extracted in each of the experiments under the CDD
paradigm and the MDD paradigm, respectively. Values
indicating high, medium, and small variations due to the
factor are shaded in dark grey, grey, and light grey, re-
spectively. Those values corresponding to significant dif-
ferences according to the hypothesis tests are highlighted
in cursive. Positive values indicate differences in favor of
the first alternative of the factors, while negative values
indicate differences in favor of the second alternative.

According to the Cohen d values of the dependent vari-
ables for the DA of the aggregated data (the first column of
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Table 2: Values for the mean and standard deviation (µ ± σ) of the dependent variables for the factor Development Approach in each
alternative of the fixed factors for data aggregated (ALL), data under the CDD paradigm and data under the MDD paradigm.
Correctness (%) [0-100]; Efficiency (%/min)[0-100]; PEOU,PU,ITU [0-5]

Development
Approach

Experience Period Sequence

Experienced Inexperienced Task 1 Task 2 G1 CaO-SPL G2 SPL-CaO

A
L
L

Correctness
CaO 53.15±16.98 62.42±10.55 48.52±17.74 53.98±17.87 52.32±16.22 53.98±17.87 52.32±16.22
SPL 67.75±20.05 75.69±17.93 64.01±20.06 67.91±15.48 67.59±23.98 67.59±23.98 67.91±15.48

Efficiency
CaO 2.88±1.49 3.37±1.22 2.64±1.57 2.45±1.12 3.31±1.7 2.45±1.12 3.31±1.7
SPL 3.68±1.69 4.02±1.45 3.53±1.79 3.06±0.97 4.31±2.01 4.31±2.01 3.06±0.97

PEOU
CaO 3.56±0.85 3.78±0.84 3.45±0.84 3.59±0.88 3.53±0.84 3.59±0.88 3.53±0.84
SPL 3.97±0.84 4.19±0.95 3.86±0.77 4.18±0.69 3.77±0.94 3.77±0.94 4.18±0.69

PU
CaO 3.65±0.78 3.88±0.77 3.53±0.77 3.69±0.83 3.6±0.74 3.69±0.83 3.6±0.74
SPL 3.89±0.76 4.11±0.8 3.78±0.72 4±0.7 3.78±0.8 3.78±0.8 4±0.7

ITU
CaO 3.25±1.12 3.46±1.12 3.14±1.11 3.3±1.25 3.19±0.97 3.3±1.25 3.19±0.97
SPL 3.51±1.13 3.69±1.13 3.43±1.13 3.85±0.89 3.19±1.25 3.19±1.25 3.85±0.89

C
D
D

Correctness
CaO 53.87±17.28 64.69±8.14 50.06±18.09 55.93±17.64 51.97±17.07 55.93±17.64 51.97±17.07
SPL 69.78±11.21 74.83±11.14 68.18±10.9 67.03±11.49 72.75±10.33 72.75±10.33 67.03±11.49

Efficiency
CaO 2.58±0.92 3.07±0.67 2.41±0.95 2.43±0.97 2.72±0.87 2.43±0.97 2.72±0.87
SPL 3.9±1.61 4.13±0.94 3.83±1.77 2.95±0.73 4.94±1.66 4.94±1.66 2.95±0.73

PEOU
CaO 3.57±0.84 3.72±0.71 3.51±0.88 3.51±0.98 3.62±0.7 3.51±0.98 3.62±0.7
SPL 4.07±0.7 4.45±0.54 3.94±0.7 4.13±0.72 4.01±0.68 4.01±0.68 4.13±0.72

PU
CaO 3.56±0.8 3.58±0.73 3.56±0.83 3.57±0.89 3.55±0.72 3.57±0.89 3.55±0.72
SPL 3.99±0.65 4.31±0.48 3.88±0.66 4.02±0.68 3.97±0.63 3.97±0.63 4.02±0.68

ITU
CaO 3.22±1.11 3±1.17 3.29±1.1 3.18±1.25 3.25±0.99 3.18±1.25 3.25±0.99
SPL 3.65±1.04 3.73±1.07 3.62±1.04 3.85±0.9 3.44±1.15 3.44±1.15 3.85±0.9

M
D
D

Correctness
CaO 51.87±16.64 60.15±12.43 44.7±16.82 50.87±18.39 53.03±15.02 50.87±18.39 53.03±15.02
SPL 64.13±29.96 76.48±22.98 53.43±31.84 69.66±21.88 59.34±35.6 59.34±35.6 69.66±21.88

Efficiency
CaO 3.41±2.09 3.67±1.57 3.19±2.49 2.47±1.37 4.5±2.29 2.47±1.37 4.5±2.29
SPL 3.29±1.8 3.91±1.83 2.76±1.64 3.27±1.34 3.31±2.16 3.31±2.16 3.27±1.34

PEOU
CaO 3.54±0.88 3.85±0.97 3.28±0.73 3.72±0.67 3.33±1.07 3.72±0.67 3.33±1.07
SPL 3.78±1.05 3.92±1.2 3.67±0.93 4.27±0.63 3.37±1.18 3.37±1.18 4.27±0.63

PU
CaO 3.8±0.74 4.18±0.71 3.5±0.7 3.89±0.69 3.7±0.82 3.89±0.69 3.7±0.82
SPL 3.7±0.9 3.91±1.01 3.48±0.62 3.97±0.78 3.47±0.96 3.47±0.96 3.97±0.78

ITU
CaO 3.3±1.14 3.92±0.89 2.77±1.08 .5±1.28 3.08±0.95 3.5±1.28 3.08±0.95
SPL 3.27±1.26 3.65±1.23 2.93±1.22 3.85±0.9 2.77±1.33 2.77±1.33 3.85±0.9

Table 3), the data under the CDD paradigm (the first col-
umn of Table 4), and the data under the MDD paradigm
(the first column of Table 5), we can affirm that the dif-
ferences due to the DA factor were large in Correctness,
medium in Efficiency and PEOU, and small in PU and
in ITU. In addition, we can state that the differences due
to the DA factor were larger under the CDD paradigm
than under the MDD paradigm for all of the dependent
variables considered in the experiment. Under the CDD
paradigm, the effect of DA on Correctness and Efficiency
was large and in favor of the SPL approach. In contrast,
under the MDD paradigm, the effect of DA on Correct-
ness was medium in favor of SPL and the effect on Effi-
ciency was negligible in favor of CaO. The effect of DA on
Satisfaction was also different depending on the paradigm
considered: under the CDD paradigm, the effect of DA on
Satisfaction was medium-large in favor of SPL; in contrast,
under the MDD paradigm, the effect of DA was small for
PEOU in favor of SPL, and very small or negligible for PU
and ITU in favor of CaO.

The third column of Table 3, and the second columns
of Tables 4 and 5 show how the Experience factor had
large effects on Correctness, medium effects on Efficiency,
and PEOU, and different effects on PU and ITU depend-
ing on the paradigm considered. The experienced sub-

jects obtained better results in terms of correctness and
efficiency than the inexperienced subjects and were more
generous in rating their satisfaction with the approaches
used in the experiment. The differences were greater be-
tween the experienced and inexperienced subjects under
the MDD paradigm than under the CDD paradigm. Un-
der both paradigms, the effect size of Experience for the
dependent variables was in the same range for all of the
dependent variables except for PU and ITU. Under the
CDD paradigm, the experienced subjects rated slightly
higher PU than the inexperienced subjects; however, both
groups of subjects reported similar values for ITU. In con-
trast, under the MDD paradigm, the differences between
the ratings of experienced and inexperienced subjects were
large in favor of the experienced subjects for both PU and
ITU.

The Period and Sequence factors also had a different ef-
fect on the dependent variables depending on the paradigm
under which the subjects performed the experiment (see
the last two columns of Tables 3, 4, and 5). Under the
CDD paradigm, the Period factor had large effects on
Efficiency, but the effects on the other dependent vari-
ables were small o negligible. However, under the MDD
paradigm, the Period factor had medium-large effects on
all of the dependent variables except Correctness. In both
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experiments, the subjects built bosses of similar correct-
ness in both tasks, but the subjects were more efficient in
the second task and rated their satisfaction higher with the
approach used on the first task. Under both paradigms,
the effect size of Sequence was small for Correctness and
medium-large for Efficiency; however, the effects were the
opposite depending on the paradigm. Under the CDD
paradigm, the subjects in G1 (who started performing the
tasks with CaO) obtained better results in Correctness and
Efficiency, while under the MDD paradigm, the subjects in
G2 (who started performing the tasks with SPL) obtained
better results in Correctness and Efficiency. Under both
paradigms, the subjects who started with SPL reported
being more satisfied than the subjects who started with
CaO.

Table 3: Cohen d values for the independent variables for each fixed
factor.

ALL
Development
Approach
(CaO/SPL)

Paradigm
(CDD/MDD)

Experience
(Experienced/
Inexperienced)

Period
(Task 1/
Task 2)

Sequence
(G1(CaO-SPL)/
/G2(SPL-CaO))

Correctness -0,786 0,181 0,687 0,049 0,034
Efficiency -0,503 -0,065 0,387 -0,682 0,119
PEOU -0,485 0,172 0,378 0,266 -0,2
PU -0,317 0,034 0,432 0,2 -0,086
ITU -0,237 0,127 0,262 0,341 -0,245

Table 4: Cohen d values for the independent variables for each fixed
factor under the CDD paradigm.

CDD
Development
Approach
(CaO/SPL)

Experience
(Experienced/
Inexperienced)

Period
(Task 1/
Task 2)

Sequence
(G1(CaO-SPL)/
/G2(SPL-CaO))

Correctness -1.092 0.713 -0.014 0.294
Efficiency -1.008 0.344 -0.794 0.599
PEOU -0.651 0.462 0.016 -0.146
PU -0.594 0.301 0.058 -0.024
ITU -0.4 -0.079 0.161 -0.217

Table 5: Cohen d values for the independent variables for each fixed
factor under the MDD paradigm

MDD
Development
Approach
(CaO/SPL)

Experience
(Experienced/
Inexperienced)

Period
(Task 1/
Task 2)

Sequence
(G1(CaO-SPL)/
/G2(SPL-CaO))

Correctness -0.506 0.843 0.127 -0.254
Efficiency 0.062 0.433 -0.544 -0.529
PEOU -0.251 0.428 0.675 -0.265
PU 0.119 0.684 0.441 -0.186
ITU 0.030 0.853 0.658 -0.279

4.2. Answers to the Research Questions

Table 6 shows the results of the Type III fixed effects
test applied on the selected statistical models for each of
the dependent variables and for each fixed factor consid-
ering the aggregated data. Tables 7 and 8 show the same
information as Table 6 but related only to the data ex-
tracted during each of the experiments, under the CDD
and the MDD paradigm, respectively. The values indicat-
ing significant differences are shaded in grey. The statisti-
cal model selected for each variable consists of the factors

for which statistical significance is shown in Tables 6, 7,
and 8. If NA appears, it is because the factor in that
column is not part of the fixed factors considered in the
statistical model selected for the variable in that row. For
example, the model selected for Correctness contains all of
the fixed factors that appear as headings in the table and
the random factor. Its mathematical representation would
be DV ∼ DA+Exp+ Period+ Sequence+DA ∗Exp+
Exp ∗ Period+ Exp ∗ Sequence+ (1|Subj.).

The factors and combinations of factors that are part
of the selected statistical models explain the changes in
the dependent variables; however, according to the test
results of the hypotheses, not all the changes in the de-
pendent variables due to these factors were significant.
Statistical models such as those in Formula 1 and other
LMM tested did not verify the normality of the residuals
or obtain higher values for the AIC and BIC fit statis-
tics than those obtained by the selected models. With the
dataset from the experiment under the CDD paradigm,
we obtained normally distributed residuals for Efficiency
and PEOU by using continuous transformations. We used
square root transformation for Efficiency, and we used the
transformation of squaring for PEOU.

4.2.1. Impact of the Development Approach on Correct-
ness

For Correctness, the DA factor obtained a p-value of less
than 0.05 regardless of the paradigm considered. There-
fore, we reject the first null hypothesis, and the answer to
RQ1 is affirmative for both paradigms: The DA used for
creating a boss in a video game had a significant impact
on Correctness regardless of whether the comparison was
made under CDD paradigm or under MDD paradigm. In
addition, the combination of DA and Paradigm was con-
sidered to be statistically significant to explain the changes
in Correctness. The bosses made using the SPL were more
correct than those made using CaO regardless of whether
the comparison was performed under the CDD paradigm
or under the MDD paradigm. In addition, the benefits
for Correctness of using SPL over using CaO were larger
under the CDD paradigm than under the MDD paradigm.
The results of the hypothesis tests confirm the statistical
significance of the differences observed in the mean values
of Correctness for the alternatives of the combination of
DA and Paradigm: CDD-CaO (53.87± 17.28), CDD-SPL
(69.78±11.21), MDD-CaO (51.87±16.64), and MDD-SPL
(64.13± 29.96).

The effect size of a factor measure through the Cohen d
value is related to the percentage of non-overlap between
the distributions of the dependent variables for each alter-
native of the factor. Higher effect sizes correspond with
greater percentages of non-overlap and larger differences.
The histograms in Figure 5 illustrate the differences in
Correctness depending on the DA factor and the com-
bination DA and Paradigm. The first column considers
the aggregated data of the two experiments performed,
the second column shows the results in Correctness un-
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Table 6: Results of the Type III test of fixed effects for each dependent variable and factor. NA=Not Applicable

ALL
Development

Approach (DA)
Paradigm

Experience
(Exp)

Period Sequence DA*Paradigm Paradigm*Exp Paradigm*Period Paradigm*Sequence

Correctness F=33.284; p=<.001 F=2.963; p=0.089 F=19.644; p=<.001 F=0.31; p=0.579 F=0.09; p=0.765 F=0.577; p=0.45 F=1.03; p=0.314 F=1.146; p=0.288 F=2.704; p=0.104
Efficiency F=7.664; p=0.007 F=0.017; p=0.895 F=4.163; p=0.045 NA F=0.83; p=0.366 F=11.167; p=0.001 F=0.279; p=0.599 NA F=10.825; p=0.002
PEOU F=16.765; p=<.001 F=2.367; p=0.128 F=5.54; p=0.021 F=9.843; p=0.002 NA NA NA F=9.118; p=0.003 NA
PU F=2.127; p=0.149 F=0.21; p=0.648 F=7.293; p=0.009 NA NA F=5.376; p=0.023 F=1.128; p=0.292 NA NA
ITU F=1.607; p=0.209 F=0.193; p=0.662 F=5.217; p=0.025 F=6.833; p=0.011 F=2.439; p=0.123 F=1.358; p=0.248 F=6.956; p=0.01 F=2.764; p=0.101 NA

Table 7: Results of the Type III test of fixed effects for each variable and factor under the CDD paradigm. NA=Not Applicable

CDD
Development

Approach (DA)
Experience

(Exp)
Period Sequence DA*Experience Exp*Sequence Exp*Period

Correctness F=31.717; p=<.001 F=8.651; p=0.005 F=2.251; p=0.14 F=1.128; p=0.294 F=2.521; p=0.119 F=0.031; p=0.861 F=3.134; p=0.083
Efficiency F=42.527; p=<.001 F=1.037; p=0.314 NA F=21.086; p=<.001 F=0.904; p=0.347 NA NA
PEOU F=20.293; p=<.001 F=3.545; p=0.066 F=0.223; p=0.639 F=1.304; p=0.259 F=2.322; p=0.134 F=1.339; p=0.253 F=0.005; p=0.941
PU F=13.719; p=0.001 F=1.482; p=0.229 NA NA F=1.972; p=0.166 NA NA
ITU F=5.007; p=0.03 F=0.043; p=0.836 NA F=3.692; p=0.061 F=0.72; p=0.4 F=3.565; p=0.065 NA

Table 8: Results of the Type III test of fixed effects for each variable and factor under the MDD paradigm. NA=Not Applicable

MDD
Development

Approach (DA)
Experience

(Exp)
Period Sequence DA*Experience DA*Period Exp*Period Exp*Sequence

Correctness F=5.448; p=0.028 F=8.531; p=0.007 F=0.574; p=0.456 F=0.737; p=0.399 F=0.501; p=0.486 NA F=0.031; p=0.863 F=4.34; p=0.048
Efficiency F=0.177; p=0.678 F=1.932; p=0.177 F=6.379; p=0.019 F=2.908; p=0.101 F=0.754; p=0.394 NA F=0.37; p=0.549 F=0.632; p=0.435
PEOU F=1.735; p=0.192 F=2.257; p=0.145 F=9.111; p=0.004 NA F=0.572; p=0.452 F=0.885; p=0.356 F=0.216; p=0.643 NA
PU F=0.17; p=0.684 F=6.139; p=0.02 F=3.026; p=0.095 NA F=0.565; p=0.46 F=0.514; p=0.48 F=0.111; p=0.742 NA
ITU F=0; p=0.993 F=11.899; p=0.002 F=6.293; p=0.019 NA F=0.515; p=0.48 F=1.493; p=0.233 F=0; p=0.986 NA

Figure 5: Histograms with normal distributions and box plots for Correctness

der the CDD paradigm, and the third column shows the
results for Correctness under the MDD paradigm. The
non-overlapping parts have a single pattern (either dot-
ted or shaded), while the overlapping parts have both pat-
terns (dotted and shaded). In the first histogram, the non-
overlapping parts for Correctness are around 30%, which
corresponds to a large effect size and to a Cohen d value
of around 0.8. Under the CDD paradigm, there are more

than 40% of non-overlapping parts, which corresponds to
a very large effect size and to a Cohen d value higher than
1.0. Under the MDD paradigm, they are around 20%,
which corresponds to a medium effect size and to a Cohen
d value of around 0.5.

The bottom part of Figure 5 shows nine pairs of box
plots, arranged in three rows and columns, illustrating the
differences in Correctness due to DA. The first row of box
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plots corresponds to all of the subjects. The second row
corresponds to the inexperienced subjects, and the third
row corresponds to the experienced subjects. The median
of the values of Correctness is higher for SPL than for
CaO in all of the box plots and is also higher for expe-
rienced subjects than for inexperienced ones. Both the
experienced and inexperienced subjects developed more
correct bosses when using SPL instead of CaO regardless
of the paradigm considered. However, the bosses created
by the experienced subjects were more correct than those
created by the inexperienced subjects. The Experience
factor was considered to be statistically significant to ex-
plain the changes in Correctness under both paradigms.
However, the changes due to the combination of DA and
Experience (DA*Exp) and the combination of Paradigm
and Experience (Paradigm*Exp) were not considered to
be statistically significant, indicating that the differences
in Correctness between the experienced and inexperienced
subjects did not depend on either the DA or the Paradigm.

4.2.2. Impact of the Development Approach on Efficiency

For Efficiency, the DA factor obtained a p-value
of less than 0.05 for the aggregated data under the
CDD paradigm, but greater than 0.05 under the MDD
paradigm. Therefore, we cannot reject the second null
hypothesis under the MDD paradigm and the answer to
the research question RQ2 is different depending on the
paradigm under consideration. Under the CDD paradigm,
the DA used had a significant impact on Efficiency and its
effect size was large in favor of SPL. In contrast, under
the MDD paradigm, the DA used did not have a signif-
icant impact on Efficiency. Under the CDD paradigm,
the subjects spent less time creating the boss when us-
ing the SPL (19.69 ± 5.62min.) than when using CaO
(21.65 ± 4.93 min.). Under MDD paradigm, the subjects
spent more time creating the boss when using the SPL
(20.6 ± 5.72 min.) than when using CaO (18.43 ± 7.33
min.), which counteracted the positive effect of the use of
SPL on Correctness. In addition, the combination of DA
and Paradigm was statistically significant to explain the
changes in Efficiency. The mean values in Efficiency for
the alternatives of these factors indicate that the differ-
ences in Efficiency between using the SPL or using CaO
were large in favour of the SPL under the CDD paradigm,
but were negligible under the MDD paradigm. The results
of the hypothesis tests confirm the statistical significance
of these differences.

The histograms in Figure 6 illustrate the differences in
Efficiency depending on the DA factor and the combina-
tion DA and Paradigm. The first column considers the ag-
gregated data of the two experiments performed. The sec-
ond column shows the results in Efficiency under the CDD
paradigm, and the third column shows the results for Ef-
ficiency under the MDD paradigm. In the first histogram,
the non-overlapping parts for Efficiency are around 20%,
which corresponds to a medium effect size. Under the
CDD paradigm, they are more than 40%, which corre-

sponds to a very large effect size, and, under the MDD
paradigm, they are less than 3%, which corresponds to a
negligible effect size.

The factor Experience was considered to be statistically
significant to explain the changes in Efficiency. Its effect
was large in favor of the experienced subjects. However,
the changes due to the combination of DA and Experience
(DA*Exp) and the combination of Paradigm and Expe-
rience (Paradigm*Exp) on Efficiency were not significant.
This indicates that the experienced subjects were more
efficient than the inexperienced subjects regardless of the
Development approach used (CaO or SPL) or the develop-
ment paradigm (MDD or CDD). The box plots of Figure 6
show the differences in Efficiency due to DA for all of the
subjects (the first column), for the subjects participating
in the experiment under CDD paradigm (second column),
and for the subjects in the experiment under the MDD
paradigm (third column). The median of Correctness is
higher for SPL than for CaO in all of the box plots. The
box plots of Figure 6 corresponding to the experienced and
inexperienced subjects (the last two rows) show the differ-
ences in Correctness due to the combination of Experience
and DA.

4.2.3. Impact of the Development Approach on Satisfac-
tion

For the dependent variables related to satisfaction, the
DA factor obtained p-values of less than 0.05 under the
CDD paradigm but greater than 0.05 under the MDD
paradigm. Therefore, we can reject the null hypotheses
related to satisfaction only under the CDD paradigm and
the answer to research question RQ3 is different depend-
ing on the paradigm under consideration. Under the CDD
paradigm, the DA factor had a significant impact in all of
the variables related to satisfaction: PEOU, PU, and ITU.
In contrast, under the MDD paradigm, DA did not have a
significant impact on the satisfaction of the subjects when
creating a video game boss. The combination of the DA
and Paradigm factors was statistically significant for PU.
The subjects perceived that the SPL approach was more
useful than the CaO approach, especially under the CDD
paradigm.

The Experience factor had significant and large effects
on satisfaction only under the MDD paradigm: the expe-
rienced subjects scored higher than the inexperienced sub-
jects on PU and ITU for either of the two approaches used
in the experiment. However, under the CDD paradigm,
the differences in PU and ITU between the experienced
and inexperienced subjects were not statistically signifi-
cant. Under both paradigms, the changes in PEOU due
to Experience were not statistically significant.

Figure 7 shows fifteen pairs of box plots arranged in
five rows and three columns, illustrating the differences
in PEOU (the first column), in PU (the second column),
and in ITU (the third column) due to DA. The first row
of box plots shows the differences for all subjects from
both experiments. The second and third rows of box plots
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Figure 6: Histograms with normal distributions and box plots for Efficiency

show the differences due to the combination of DA and
Paradigm. The fourth and fifth rows of box plots show the
differences due to the combination of DA and Experience.
The values for the median of all of the variables related
to satisfaction are higher for SPL than for CaO in all of
the box plots, and they are also higher for the experienced
subjects than for the inexperienced ones. However, there is
hardly any variation between the box plots of the different
paradigms for PEOU, while the box plots for PU and ITU
show that the differences in favor of SPL are larger under
the MDD paradigm than under the CCD paradigm.

4.2.4. Impact of Paradigms on the Differences due to the
Development Approach

From the above results, we can answer question RQ4.
The paradigm under which video game elements were cre-
ated significantly affected the comparison between the de-
velopment approaches in terms of Correctness and Effi-
ciency. The differences in favor of using an SPL instead
of CaO were greater under the CDD paradigm than un-
der the MDD paradigm, especially in Efficiency. Under
CDD there were very large differences in Efficiency in fa-
vor of using an SPL, but, under the MDD paradigm, the
use of an SPL did not provide significant benefits in Effi-
ciency over the use of CaO. The differences in Satisfaction
between the use of SPL and CaO in the two paradigms
are not as clear. Although the Satisfaction values in favor
of SPL were higher under the CDD paradigm, the differ-
ences between the paradigms were only significant in PU,
and the differences in all variables related to Satisfaction
(PEOU, PU and ITU) in favor of SPL were lower than
those obtained in Efficiency or Correction in either of the
two paradigms considered.

5. Discussion

As reported over the last two decades by the Software
Engineering Institute of the Carnegie Mellon University3,
SPLs can multiply productivity by a factor of 10, reduce
costs up to 60%, reduce labor needs up to 87%, and reduce
the time-to-market of new software variants up to 98%.
These benefits have been used repeatedly for years to show
the attractiveness of SPLs for CSE.

However, our results in the video game domain reveal
that efficiency is not always the key aspect that provides
SPLs with an advantage over CaO. Existing differences
between CSE and GSE (e.g., working on different kinds
of artifacts or how they perceive the development process
of their projects) may mean that other aspects and uses
of SPLs are more relevant for GSE. To better understand
the results of the experiments, we carried out focus groups
with the subjects.

In addition, the benefits in efficiency of using the SPL
instead of CaO were not significant for the subjects in
the MDD paradigm, but, under the CDD paradigm, most
of the subjects acknowledged that the SPL did accel-
erate video game development (also shown by our re-
sults). When asked about it, the subjects under the MDD
paradigm claimed that there was not much difference in
working with one model when using CaO (SDML) or the
other models when using SPL (initial model + variability
models); they were similar for the subjects. However, the
subjects under the CDD paradigm reported that when us-
ing the CaO approach, they had to think in terms of C++,

3Available through their online library collection: https://

resources.sei.cmu.edu/library/asset-view.cfm?assetid=513819
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Figure 7: Box plots for the dependent variables related to Satisfaction: PEOU, PU, and ITU

but when working under the MDD paradigm, they were
just thinking in terms of the feature model, abstracting
away the C++ details. The change between working with
SPL or CaO seemed bigger under the CDD paradigm, as
they effectively abstracted from code details to focus on
the feature model. This may also be augmented by the
fact that the SPL used in MDD followed a compositional
approach, while the SPL used in CDD used an annotative
approach, facilitating the derivation process.

Additionally, most of the subjects observed benefits in
SPL for video games, aside from the task requested in the
experiments. Specifically, most of the subjects mentioned
that the SPL was very relevant for creating new content for
video games. As they explained, creating content is critical
for video game development. Video game worlds may need
a large amount of content to populate them (e.g., non-
player characters or items such as weapons or power-ups).
Furthermore, there is a trend in the video game industry
toward the Games as a Service (GaaS) business model [51].
Once the video game is launched, it is kept alive through
updates and additional Downloadable Content (also called
DLCs). This new content needs to be cohesive with the
already released game.

The subjects reported that thinking in terms of SPL fea-
tures helped them think of new content for the video game.
The subjects positively valued that they could obtain new
content by combining the features following the rules of
the variability specification. This new content was differ-
ent but similar to what already existed in the video game,
and the subjects affirmed that this content was relevant to
developing video games. The subjects imagine that this
new content derived from assembling features can be use-
ful as variants of what was already used in the video game
in order to avoid repetition. It could also be used to fill in
secondary parts of the game that are more sparsely popu-
lated or even as a source of inspiration to create completely

new content.

A group of the subjects reported that the SPL may be
relevant in helping to balance the difficulty of video games.
Balancing the difficulty of video games is one of the main
problems of video game development. The video game
cannot be too difficult because the players would get frus-
trated, but it cannot be too easy because the players would
lose interest. The subjects thought about how the features
could be augmented to include the idea of difficulty in or-
der to derive variants of the same content with different
degrees of difficulty.

In the video game research community, content gen-
eration for video games is a hot topic. Many surveys
[23, 34, 47, 49] talk about how to (completely or partially)
automate content generation. Specifically, the automa-
tion of content generation is known as Procedural Content
Generation (PCG) [3] and uses the most popular Com-
putational Intelligence techniques today (such as machine
learning and search-based). However, the SPLs do not ap-
pear in any of those surveys. This suggests that the use of
SPLs to generate video game content has been neglected
by the video game research community and may be an
opportunity to explore in the future.

Moreover, we suggest that SPLs need not be viewed
solely as an alternative to the current PCG techniques;
SPLs can be an ally when combined with PCG techniques.
One of the subjects highlighted that the strength of SPL
compared to CaO was that only 10 decisions were needed
in SPL, while he had to make between 50 and 100 decisions
in CaO. This reduced search space of SPLs may be more
favorable for the machine learning techniques used in PCG
to extract patterns or for the search-based techniques used
in PCG to explore the search space.

The experienced subjects acknowledge the benefits of
SPLs over CaO under the CDD paradigm. They say SPLs
are easier, more accessible, less error-prone, and clearer to
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understand. However, they sense that they lose expres-
siveness and control over the software they create. As we
have seen in Section 4, there are significant differences in
favor of SPLs for all of the variables, with the exception of
Intent To Use. Even though results are favorable toward
SPLs, the experienced subjects value source code control
of CaO over the many benefits that SPLs offer. Extending
the annotated source code was out of the scope of the ex-
periment, but this lack of control would be mitigated in a
real scenario, where the developers could also modify the
annotated code if needed.

Game development teams are multidisciplinary, and
software engineers work together with plenty of non-
technical roles (artists, designers, musicians, etc.) that
carry the creative part of video games. We claim that
the accessibility of SPLs can bring software creation to
these roles in a game development team. The engineers
focus on building the foundations of the video game with
an SPL that comprises the requirements needed, and the
other team members can focus on creating content for the
game that is new and cohesive with the rest of the content.

One caveat of GSE is that, in general, games have
shorter development times than applications in CSE.
There is a compromise to be made when building an SPL
system to accelerate development in later development
stages. Long developments such as those described in a
GaaS context can benefit more from SPLs than short-
lifetime video games.

We have identified that the industrial-scale artifact of
this work is a game that has already been published. As
future work, further research with other video games still
in development can bring new perspectives to using SPLs
in the video game domain. Finally, one key aspect of video
games is that there are many different platforms on which
to publish the games. Computers, consoles, and mobiles
have plenty of differences that developers need to address
when releasing the same game on these platforms. We
encourage researchers to explore the benefits of SPLs in
this stage of video game development where software reuse
and variability are the main artifacts.

6. Threats to validity

To describe the threats to validity of our work, we have
used the classification of Wohlin et al. [54]:

Conclusion validity is achieved when there is a statis-
tical relationship (with a certain significance) between the
treatment and the results. The low statistical power was
minimized because the confidence interval was 95%. To
minimize the fishing and the error rate threat, the statis-
tical analysis was done by a researcher who did not partic-
ipate in the task design or in the correction process. The
Reliability of measures threat was mitigated because the
objective measurements were obtained from the digital ar-
tifacts generated by the subjects when they performed the
tasks. The reliability of treatment implementation threat

was alleviated because the procedure was identical in each
of the sessions in which the experiment was performed.

Internal validity is achieved when the observed rela-
tionships between treatment and outcome are causal re-
lationships and these relationships are not the result of
a factor over which we have no control or we have not
measured. To avoid the instrumentation threat, we con-
ducted a pilot study to verify the design and the instru-
mentation. The maturation threat affected the experi-
ment. Even though the tasks were designed with similar
complexity, the effect of period was significant for Effi-
ciency, PEOU, and ITU. The subjects were more efficient
in the second task, while PEOU and ITU were better val-
ued in the first task. We minimized this threat by using
a crossover design so that the effect affected the evaluated
approaches equally. The selection threat also affected the
experiment because of the voluntary nature of participa-
tion. To avoid student demotivation, we selected students
from courses whose contents fit the design of the experi-
ment. The interactions with selection threat affected the
experiment because there were subjects who had different
levels of modeling language knowledge and different lev-
els of knowledge of the video game domain. To mitigate
this threat, the treatment was applied randomly and the
effects of the sequence factor have been included in the
statistical analysis. On the other hand, the number of
subjects participating in the experiment under the CDD
paradigm was higher than the number of subjects partici-
pating under the MDD paradigm, which makes the CDD
paradigm more represented in the results associated with
the aggregated data. Similarly, inexperienced subjects are
more represented in the overall results than experienced
subjects.

Construct validity is achieved when the measures ac-
tually represent what is being investigated based on the
research questions. Mono-method bias occurs due to the
use of a single type of measure [39]. To mitigate this threat
to the correctness and efficiency measurements, we mech-
anized these measurements as much as possible by means
of correction templates. We mitigated the threat to sat-
isfaction measurements by using a widely applied model
(TAM) [13]. The hypothesis guessing threat appears when
the subject thinks about the objective and the results of
the experiment. To mitigate this threat, we did not explain
the research questions to the subjects. The evaluation ap-
prehension threat appears when the subjects are afraid of
being evaluated. To weaken this threat, at the beginning
of the experiment, the instructor explained to the subjects
that the experiment was not a test of their abilities, and
in the case of students, that neither their participation nor
their results would affect their grades in the course. Au-
thor bias occurs when the people involved in the process of
creating the experiment artifacts subjectively influence the
results. In order to mitigate this threat, the tasks were ex-
tracted from a commercial video game and were designed
by the same expert and researcher with similar difficulty
for all of the tasks. These people did not participate in

15



the experiment execution.
External validity is achieved when the results can be

generalized outside the settings of the experiment. The
interaction of selection and treatment threat is an effect
of having a subject that is not representative of the pop-
ulation that we want to generalize. The participation of
students rather than software engineers is not a major is-
sue as long as the research questions are not specifically
focused on experienced developers [28], as is the case in
this experiment. In addition, the experience factor has
been taken into account in the data analysis. The inter-
action of setting and treatment threat affected the exper-
iment. The focus group revealed that, for both develop-
ment approaches and paradigms, the subjects spent a lot
of time evaluating if the boss being created was the boss
they wanted to develop. The subjects stated that they
spent a lot of time testing the video game in real time to
understand what they had to develop. This should not
be a problem in a real development scenario because it
is assumed that the game engineers understand the game
they are creating. The domain threat occurred because
the experiment was conducted in a specific domain (video
game) and for a very specific type of task, i.e., to develop
a video game boss from Kromaia. We think that the gen-
eralization of findings should be undertaken with caution.
Other experiments in different games should be performed
to validate our findings.

Regarding the generalization of findings, it is important
to note the replication limitation of this study. Although
we share all the data related to the study results, method-
ology, and statistical analysis, some of the artifacts re-
lated to the infrastructure cannot be disclosed (e.g., game
project, DSL, SPL). To mitigate this threat, the experi-
ment was performed using a subset of these systems. We
used a subset of the Kormaia content, a subset of the DSL,
and a subset of the SPL for the tasks to be understandable
and completed in a reasonable amount of time (2 hours).
Using these subsets allows both experiments to be per-
formed likewise, using pen and paper, without the need for
the complete software infrastructure. However, to evalu-
ate the tasks is needed an experienced researcher in the
domain.

All the artifacts needed to perform both experiments are
available, along with the complete data set of the results
and statistical analysis, in the attached link of Section 3.7.

7. Related Work

This section presents the related works. It is divided into
two subsections taking into account the topics covered in
this paper: SPLs applied to the video game domain, and
SPL and CaO evaluations or studies.

7.1. SPLs applied to the video game domain

Some approaches are focused on managing the inher-
ent variability of video games. Boaventura and Sarinho

[7] present a collection of game assets to create small
video games called Minimal Engine for Digital Games
(MEnDiGa). MEnDiGa extends a previous work called
FEnDiGa [43], a product line platform that is able to
integrate and adapt represented game features in differ-
ent types of available game engines. In MEnDiGa, they
develop logic features and modules to represent, inter-
pret, and adapt game features for functionality in mul-
tiple game platforms. Their results show that the core of
game elements developed with MEnDiGa can be indepen-
dent, reusable, and done in a large-scale way. Castro and
Werner [9] present a prototype of a game that was devel-
oped by applying a dynamic SPL to generate game mod-
ifications systematically. The prototype created demon-
strates the possibility of automating the process, having
a product line where the original game is the core of the
game’s functionalities.

Some other research efforts are focused on the creation
of SPLs applying re-engineering. Lima et al. [32, 31]
present two works about Product Line Architecture (PLA)
recovery. They applied their previous proposed approach
and guidelines [33] to create the PLA of the Apo-Games
project [29]. In addition, they developed an automatic
approach for the identification of the minimum subset
of cross-product architectural information for an effective
PLA recovery. Moreira et al. [38] provide and analyze
empirical data of the extraction processes of two open-
source case studies, ArgoUML and Phaser. Although the
results show that there is a great difference between the
re-engineering process of ArgoUML-SPL and Phaser, com-
mon problems were found in both cases, which were related
to a lack of tools that led to incomplete and inconsistent
feature extractions, complexity in managing feature de-
pendencies when using compositional approach, and issues
of not having a variability model for dealing with feature
constraints.

Similarly, Martinez et al. [35] report an experience con-
cerning the creation of an SPL by re-engineering system
variants implemented around an educational game called
Robocode. They discuss their results from different per-
spectives such as educational value, the extractive process,
and the analysis of the time and effort required. Debbiche
et al. [14] analyze the Apo-Games to identify reusable code
or artifacts. They analyzed 5 Java games and migrated 3
of these into a composition-based SPL implemented with
FeatureHouse [2]. They recommend making sure that the
SPL is always testable to ensure the correct transformation
to code, and they also recommend incrementally adopting
new features to facilitate the extraction.

The above works apply SPL approaches in the video
game domain. However, these works do not evaluate
whether the benefits produced by the use of SPLs in CSE
apply in GSE. In our work, we evaluate the SPL with a
commercial video game and with subjects that one linked
to the development of video games.
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7.2. SPL and CaO evaluations or studies

Some works focus on comparing different SPL tech-
niques. Constantino et al. [11] compare two SPL tools
taking into account ease of use, strengths, and weaknesses.
Their results show that the main problem for both tools
is the lack of user guides; however, the automated anal-
ysis and the feature model editor get very good ratings.
Dermerval et al. [15] compared two approaches for feature
modeling based on ontologies. Their results suggest that
the reasoning capabilities of the ontologies can effectively
support product reconfiguration in the context of Dynam-
ics Software Product Lines (DSPLs).

In the context of MDD, Gonzalez-Huerta et al. [22] car-
ried out a family of four experiments to evaluate an MDD
method for developing SPLs. They used effectiveness, ef-
ficiency, PEOU, PU, and ITU in their comparison. Their
experiments show that the method based on MDD obtains
the best results.

Some of the research efforts related to CaO focus on
features. Ghabach et al. [21] proposed an approach to
support the derivation of new product variants based on
CaO. Their evaluation of a case study shows that the pro-
vided support can considerably reduce the amount of time
and effort required to achieve a product derivation. Sim-
ilarly, Krüger et al. [30] proposed a semi-automatic pro-
cess to identify and map features between legacy systems.
Their results indicate that the process can be used to en-
able traceability, prepare refactorings, and extract SPLs.
Kehrer et al. [27] presented a project called VariantSync
to bridge the gap between CaO and SPLs by combining
the minimal overhead and flexibility of CaO with the sys-
tematic handling of variability in SPLs. They believe that
VarianSync has great potential to change the way practi-
tioners develop multi-variant software systems.

After analyzing the above works, we realized that there
is a lack of empirical studies comparing SPLs and CaO.
Along with the previous paper [50] that this work extends,
we were able to find only one paper that performed this
comparison [18]. The authors compare the performances
of software engineers in the software product development
process using SPL and CaO in an industrial context. Their
results achieved better values for effectiveness, efficiency,
and satisfaction with the SPL approach. In contrast to
our work, they focused on CSE and did not address GSE.

8. Conclusion

In this paper, we have presented two experiments that
evaluate whether the adoption of an SPL in GSE can
generate similar benefits as in CSE [18] in terms of cor-
rectness, efficiency, and satisfaction. In our experiments,
we compared two development approaches, CaO and SPL.
Each experiment was conducted under the MDD and CDD
paradigms, respectively. A total of 79 subjects partici-
pated in the experiments (28 in MDD and 51 in CDD)
by developing the final bosses of Kromaia, a commercial
video game.

The results show that the bosses developed using the
SPL approach were more correct than the bosses devel-
oped with CaO under both paradigms. However, there
were no significant changes in efficiency when working un-
der the MDD paradigm, while the changes were large and
significant when working under the CDD paradigm. Simi-
larly, changes in satisfaction favored SPL rather than CaO
and were larger when working under the CDD paradigm
than when working under the MDD paradigm. It turns out
that the use of SPLs for GSE has a greater impact under
the CDD paradigm (where the differences are bigger) than
under the MDD paradigm. The subjects of the experiment
reported that the change in the way of working with SPL
under the CDD paradigm was a real benefit. They could
program without code knowledge, focusing only on the fea-
ture model and leaving the actual code in the background
to the experts.

The results of the previous work [50] revealed that SPLs
in GSE can be relevant in generating new video game con-
tent (a hot topic in the video game research community)
and in balancing the video game difficulty (a seminal prob-
lem of video games). This extension supports the relevance
of SPLs in GSE, where the differences in favor of SPLs
over CaO are greater in a CDD paradigm. Overall, SPLs
perform better in terms of correctness, efficiency, and sat-
isfaction under a CDD paradigm. However, the results
show that the satisfaction manifested by the subjects with
the use of an SPL instead of CaO is not proportional to
the benefits that an SPL may have in correction or effi-
ciency, especially in terms of intention to use. We see that
developers are still reluctant to use SPLs rather than CaO
because of the sense of loss of control over the software
they create, even though they perform better when using
SPLs.

While SPLs performed better in every aspect than CaO,
the SPL approach in GSE did not have the same effects
that have made SPLs attractive to CSE. Other applica-
tions of SPLs in different games, of different genres, and
with different content should be performed to validate the
generalization of findings.

There are new trends, such as the GaaS business model,
and the particularities of the video game domain that dif-
fer from CSE, such as multidisciplinary teams, content cre-
ation, difficulty balancing, or the large range of different
platforms. These trends and particularities bring novel
uses for SPLs within the fertile domain of video games.
Therefore, we hope that this work encourages further re-
search of SPLs in GSE.
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[30] Krüger, J., Nell, L., Fenske, W., Saake, G., Leich, T., 2017.
Finding lost features in cloned systems, Association for Com-
puting Machinery, New York, NY, USA. p. 65–72. doi:10.1145/
3109729.3109736.

[31] Lima, C., Assunção, W.K.G., Martinez, J., do Carmo Machado,
I., von Flach G. Chavez, C., Mendonça, W.D.F., 2018a. To-
wards an automated product line architecture recovery: The
apo-games case study, ACM. pp. 33–42. doi:10.1145/3267183.
3267187.

[32] Lima, C., do Carmo Machado, I., de Almeida, E.S., von Flach
G. Chavez, C., 2018b. Recovering the product line architecture
of the apo-games, ACM. pp. 289–293. doi:10.1145/3233027.
3236398.

[33] Lima, C., Chavez, C., de Almeida, E.S., 2017. Investigating the
recovery of product line architectures: An approach proposal,
Springer International Publishing, Cham. pp. 201–207.

[34] Liu, J., Snodgrass, S., Khalifa, A., Risi, S., Yannakakis, G.N.,
Togelius, J., 2020. Deep learning for procedural content gener-
ation. Neural Computing and Applications 33, 19–37. doi:10.
1007/s00521-020-05383-8.
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