
Chapter 1
Feature Location in Models (FLiM): Design time
and Runtime

Lorena Arcega, Jaime Font, Øystein Haugen and Carlos Cetina

Abstract In this chapter, we apply feature location to automate the identifi-
cation and extraction of the features existing among a family of product mod-
els and re-engineering them into a model-based SPL. To address the feature
location in software models (FLiM) challenge, we present two approaches:
at design time (FLiMEA) and at runtime (FLiMRT). Both FLiMEA and
FLiMRT approaches are different but complementary. FLiMEA takes in-
formation from design time models while FLiMRT takes information from
runtime models. The FLiMEA approach combines Genetic Operations and
Information Retrieval. Given a model and a description of a possible feature,
model fragments extracted from the model are generated using genetic oper-
ation and are assessed using an information retrieval technique to rank the
candidates based on the similarity with the feature description. The FLiMRT
approach leverages the use of software architecture models at runtime. The
information is collected in the software architecture model at runtime and
each model element is assessed based on its similarity to the feature descrip-
tion. We evaluated our approaches in two real-world industrial case studies:
BSH and CAF. The application of FLiMEA shows that the values of recall
and precision are higher than 85 per cent while FLiMRT ranks the relevant
elements in the top ten positions of the ranking in 84 per cent of the cases.

Lorena Arcega, Jaime Font and Carlos Cetina
Universidad San Jorge, SVIT Research Group, Autova A-23 km. 299, 50830 Zaragoza,
Spain, e-mail: {larcega,jfont,ccetina}@usj.es

Lorena Arcega
University of Oslo, Department of Informatics, Postbooks 1080 Blindern, 0316 Oslo,
Norway

Øystein Haugen
Østfold University College, Faculty of Computer Science, Postboks 700, 1757 Halden,
Norway e-mail: oystein.haugen@hiof.no

1

2 Lorena Arcega, Jaime Font, Øystein Haugen and Carlos Cetina

1.1 Introduction

Software Product Lines (SPLs) aim at reducing development cost and time to
market while improving quality of software systems by exploiting common-
alities and managing variabilities across a set of software applications [52].
The SPL engineering paradigm separates two processes; domain engineer-
ing (where the commonalities are identified and realized as reusable assets)
and application engineering (where specific software products are derived by
reusing the variability of the SPL) [12]. Traditionally, a domain analysis is
performed to build a feature model that captures the variability of the sys-
tem in terms of features [13, 29]. The domain knowledge from the experts is
captured and used to build the library of reusable assets.

A recent survey [6] reveals that most of the SPLs are built when there are
already products; therefore, the set of existing products is re-engineered into
an SPL [34]. This is known as the extractive approach to SPLs [34]; it cap-
italizes on existing systems to initiate a product line, formalizing variability
among a set of similar products into a variability model. The resulting SPL
is capable of generating the products used as input (among others) with the
benefit of having the variability among the products formalized, enabling a
systematic reuse.

Feature Location is known as the process of finding the set of software
artifacts that realize a particular feature. This topic has gained momentum
during recent years [16, 57]. However, most of the research efforts in feature
location have been directed towards the location of features into source code
artifacts, neglecting other software artifacts such as models [43, 44, 67]. In
addition, Search-Based Software Engineering (SBSE) has had notable suc-
cesses and there is an increasingly widespread application of SBSE across the
full spectrum of Software Engineering activities and problems [25].

The task of feature location in models may appear easy, however it becomes
very complex in the models of our industrial partners [51]. For example,
suppose we ask the domain experts of one of our industrial partners, CAF
in this case, to manually locate the model elements that correspond to the
121 features of the data set provided. Taking into account that the data set
comprises 23 trains and the model of each train has more than 1200 model
elements, at least 27,600 model elements should be evaluated. To assess a
model element, it is reasonable to consider its properties. In the data set,
each element has about 15 properties. Therefore, about 414,000 properties of
model elements should be considered. Assuming that a domain expert only
needs 1 second to consider a property of a model element, the domain expert
needs 4.79 days to manually locate each feature. Considering the 121 features
and 19 domain experts, the result is 30.17 years.

Domain experts could make use of simple text search tools in the models,
but these tools would not prevent domain experts from first knowing the
models of the trains. There is no domain expert who knows all models com-
pletely in CAF. Although we ignore that domain experts can forget models

1 Feature Location in Models (FLiM): Design time and Runtime 3

that belong to trains manufactured over two decades as is the case in CAF,
the models have always been created by different domain experts. Moreover,
the models may have been maintained by other domain experts who have
not participated in the creation. Time improvements because of the learning
effect, or locating several features simultaneously are not accounted here, but
these improvements could also be source of errors which take time to fix.

In addition, the 30.17 years do not include the time that is necessary to
reach a consensus on 19 solutions for each of the 121 features. In an indus-
trial environment like in CAF, the domain experts are distributed in three
different cities of Spain (Zaragoza, Beasain and Bizkaia). This geographical
distribution implies that the domain experts are not used to carrying out
consensus tasks, which can negatively influence the time they need to agree
on the solutions.

Therefore, feature location in real-world models is not a trivial task. From
the 121 features of the data set, only the model elements of 43 features are
documented in CAF. The documentation of these 43 features is the result
of months of manual work with external consultants to address certification
needs or bugs. Moreover, this data set is made up of tramway models, but
the need to locate features is also present in more CAF models of similar
complexity as subway models, or in more complex models such as suburban
and high speed.

We can apply feature location to automate the identification and ex-
traction of the features existing among a family of product models and re-
engineering them into a model-based SPL (an SPL whose final products are
models) by establishing precisely the variability between the features. To ad-
dress this challenge we present an approach that turns a set of similar but
different product models with no variability specification into a set of product
models with a formal variability definition that specifies the commonalities
and variability among them [23].

In addition, we can apply feature location in systems that work with mod-
els at runtime. We use the information extracted from software architecture
models at runtime to perform feature location. In our dynamic feature loca-
tion approach [3], the software engineer executes a scenario, which uses the
desired feature to be located. The information is collected in the software
architecture model at runtime. Then, our approach filters the trace in order
to extract the relevant elements of the software models.

In the evaluation, we have applied our approaches to two industrial do-
mains: BSH and CAF. BSH is one of the largest manufacturers of home
appliances in Europe. Its induction division has been producing induction
hobs under the brands of Bosch and Siemens for the last 15 years. CAF
produces a family of PLC software to control the trains they manufacture,
which has been under development for more than 25 years. The firmware for
their products is generated from models using a model-based approach. The
results of the evaluations show a good performance of our approaches. The
application of FLiMEA shows that the mean values of recall and precision

4 Lorena Arcega, Jaime Font, Øystein Haugen and Carlos Cetina

are around 72.99% for BSH and 68.34% for CAF. Our FLiMRT approach
ranks the relevant elements in the top ten positions of the ranking in 84% of
the cases.

1.2 Background

This section provides some basic background for understanding this chap-
ter. Specifically, we present Software Product Lines (SPLs), feature location,
information retrieval, and evolutionary algorithms. In addition, the Domain-
Specific Language (DSL) used by our industrial partner to formalize their
products, the IHDSL. It will be used through the rest of the chapter to
present a running example. Then, the Common Variability Language (CVL)
is presented, CVL is the language used by our approach to formalize the
model fragments.

1.2.1 Software Product Lines

Mass production was popularized by Henry Ford in the early 20th Century.
McIlroy coined the term software mass production in 1968 [45]. It was the
beginning of SPLs. In 1976, Parnas introduced the notion of software program
families as a result of mass production [50]. The use of features (to drive mass
production) was proposed by Kang in the early 1990s [29]. Shortly, the first
conferences appeared turning SPL into a new body of research [37].

SPLs are defined as “a set of software-intensive systems, sharing a common,
managed set of features that satisfy the specific needs of a particular market
segment or mission and that are developed from a common set of core assets
in a prescribed way” [12, 17]. This definition can be redefined into five major
issues:

1. Products. SPL shift the focus from single software system development to
SPL development. The development processes are not intended to build
one application, but a number of them (e.g., 10, 100, 10,000, or more). This
forces a change in the engineering processes where a distinction between
domain engineering and application engineering is introduced. Doing so,
the construction of the reusable assets (platform) and their variability is
separated from production of the product-line applications.

2. Features. Features are units (i.e., increments in application functionality)
by which different products can be distinguished and defined within an
SPL [5].

3. Domain. An SPL is created within the scope of a domain. A domain is
a specialized body of knowledge, an area of expertise, or a collection of
related functionality [48].

1 Feature Location in Models (FLiM): Design time and Runtime 5

4. Core Assets. A core asset is an artifact or resource that is used in the
production of more than one product in an SPL [12].

5. Production Plan. It states how each product is produced. The production
plan is a description of how core assets are to be used to develop a product
in a product line and specifies how to use the production plan to build the
end product [9]. The production plan ties together all the reusable assets
to assemble (and build) end products. Synthesis is a part of the production
plan.

SPLs (or system families) provide a highly successful approach to strategic
reuse of assets within an organization. A standard SPL consists of a product
line architecture, a set of software components and a set of products. A
product consists of a product architecture, derived from the product line
architecture, a set of selected and configured product line components and
product specific code.

Therefore, SPL engineering is about producing families of similar systems
rather than the production of individual systems. SPL engineering consists
of three main processes: domain engineering (also called core asset develop-
ment), application engineering (also called product development) and man-
agement. These three processes are complementary and provide feedback to
each other.

Domain engineering is, among others, concerned with identifying the com-
monality and variability for the products in the product line and implement-
ing the shared artifacts such that the commonality can be exploited while
preserving the required variability. Using a “design-for-reuse” approach, do-
main engineering (core asset development [12]) is on charge of determining
the commonality and the variability among product family members. In gen-
eral, domain engineering is divided into domain analysis, domain design and
domain implementation.

During application engineering, individual products are developed by se-
lecting and configuring shared artifacts and, where necessary, adding product
specific extensions. To achieve this, it reuses the reusable assets developed
previously. This process is subdivided into application analysis, application
design and application implementation.

Management is responsible for giving resources, coordinating, and super-
vising domain and application engineering activities. See [12, 52] for more
details about the processes.

In SPL processes, variability is made explicit through variation points.
A variation point represents a delayed design decision. When the architect
or designer decides to delay the design decision, he or she has to design
a variation point. The design of the variation point requires several steps:
(1) the separation of the stable and variant behaviour, (2) the definition
of an interface between these types of behaviour, (3) the design of a variant
management mechanism and (4) the implementation of one or more variants.
Given a variation point, it can be bound to a particular variant. For each
variation point, the set of variants may be open, i.e. more variants can be

6 Lorena Arcega, Jaime Font, Øystein Haugen and Carlos Cetina

added, or closed, i.e. no more variants can be added. Overall, during domain
engineering new variation points are introduced, whereas during application
engineering these variation points are bound to selected variants

1.2.2 Feature Location

In software systems a feature represents a functionality that is defined by
requirements and accessible to developers and users [16]. Identifying an initial
location in the software artifacts that corresponds to a specific functionality
is known as feature location [7].

The majority of existing approaches for feature location in program code
can be divided in three categories: static, dynamic, and hybrid. Static feature
location approaches examine structural information such as control or data
flow dependencies. These approaches require a set of software artifacts which
serve as a starting point for the analysis in order to generate program elements
relevant to the initial set. This initial set is usually specified by the software
engineer. Dynamic feature location approaches examine a software system’s
execution. They are often used for feature location when features can be
invoked and observed during runtime. Typically, these approaches rely on a
post-mortem analysis of an execution trace. The combination of more than
one type of analysis results in a hybrid approach for feature location.

Existing approaches for feature location in models rely on mechanical com-
parisons to find model differences. First, several comparisons among the prod-
uct models are performed. Then, a set of model fragments is extracted based
on the differences and common parts spotted among the models. Identical
elements are extracted as common parts of the product line, similar elements
are extracted as variable alternative parts, and unmatched elements are ex-
tracted as variable optional parts. As a result, the variability existing among
the set of similar product models is formalized.

1.2.3 Information Retrieval

Information Retrieval (IR) is the task, given a set of documents and a
user query, of finding the relevant documents. There are many informa-
tion retrieval techniques: program analysis dependencies [11, 19, 20, 33], tex-
tual similarity [38, 42, 55, 60], trace analysis [21, 53, 65, 66], type systems
[18, 31, 32, 30] or propositional logic [2, 14, 46, 47]. In these approaches, we
focus on information retrieval techniques based on textual similarity.

The IR techniques based on textual similarity, are based on mathematical
and statistical methods to determine the similarity between different collec-
tions of texts. Three of the most popular IR techniques are: Vector Space

1 Feature Location in Models (FLiM): Design time and Runtime 7

Model (VSM) [59], Latent Semantic Analysis (LSA) [36] or Latent Dirichlet
Allocation (LDA) [8].

The current results are ambiguous and contradictory about which tech-
nique provides the best performance [64]. However, some works state that LSI
performs better working with bug reports [10] or with text [54], while VSM
works better with source code. This is due to the reason that VSM works
very well in case of exact match while LSI retrieves relevant documents based
on the semantic similarity.

We decided to apply Latent Semantic Analysis (LSA) to analyze the re-
lationships between the description of the features and the bugs provided
by the user and the model. This decision is because of product models are
representations at a higher abstraction level than the source code, and the
language used to build them is closer to the bug description language; similar
to text.

1.2.4 Evolutionary Algorithms

The approach for feature location in models at design time explined is in this
chapter comes in the form of an Evolutionary Algorithm. In Evolutionary
Algorithms, a population of individuals (candidate solutions for the prob-
lem) is evolved and ssessed through several iterations in the search for the
best possible individual. When applied to model artifacts, the population of
individuals will be in the form of model fragments. These individuals need to
be properly encoded, enabling the evolutionary algorithm to work efficiently
with them. Next, each candidate solution from the population is evaluated
using a fitness function (a formalization of the overall quality goal) to de-
termine how well it performs as a solution to the problem. As a result, the
population of solutions is ranked depending on their fitness value and, based
on the ranked population, some genetic manipulations are performed over
the individuals. This cycle of genetic manipulations and assessment will be
repeated until some stop criteria is met.

As we said, each possible solution to the problem (called individual) needs
to be encoded so the genetic operations can be applied to them. Tradition-
ally, individuals are encoded as a fixed-size string of binary values, but other
encodings can be used such as tree encodings. In fact, it is suggested [15] to
use an encoding natural for the problem and then devise genetic operations
capable of working for that specific encoding. The individuals of our problem
are model fragments (extracted from some product model); therefore, the en-
coding must be able to represent a model fragment extracted from a product
model.

Next, the fitness function is used as an heuristic to guide the search per-
formed by the evolutionary algorithm. To do so, the function assigns a fitness
value to each of the model fragments based on their quality as feature real-

8 Lorena Arcega, Jaime Font, Øystein Haugen and Carlos Cetina

ization. This information can be used in two ways: to determine that the
algorithm should terminate as a desirable level of fitness has been reached
and to determine the best candidates to be used as parents for the next
generation.

Finally, different operations are performed to manipulate the individuals,
with the hope that manipulated individuals (so-called offspring) will perform
better after manipulation. Then, to perform the genetic manipulations some
parents are selected based on previous fitness assessment, giving priority to
the solutions with higher fitness values. Then two types of genetic operations
can be performed: crossover, that combines two parents into a new individual;
mutation, the individual is evolved and some of its characteristics are modified
(added or removed).

1.2.5 The Induction Hob Domain

Traditionally, stoves have a rectangular shape and feature four rounded areas
that become hot when turned on. Therefore, the first Induction Hobs (IHs)
created provided similar capabilities. However, the induction hobs domain is
constantly evolving and, due to the possibilities provided by the induction
phenomena and the electronic components present in the induction hobs, a
new generation of IHs has emerged 1.

Base Model

P1

Library Model

R4

R1

R2

R3

P2

Inverter

Channels
Power

manager

Inductors

IHDSL Metamodel

Induction
HobInverter

Power
Manager

Inductor

IHDSL syntax

Product Realization layer

Provider
Channel

Consumer
Channel

Feature Specification layer

Induction
Hob

0..1

small
Inductor

P2 R2

lower
Inverter

P1 R4

medium
Inductor

P2 R1

large
Inductor

P2 R3

upper
Inductor

Fig. 1.1 IHDSL and CVL applied to it.

For instance, the newest IHs feature full cooking surfaces, where dynamic
heating areas are automatically calculated and activated or deactivated de-
pending on the shape, size, and position of the cookware placed on top. There

1 freeInduction cooktop demo: https://www.youtube.com/watch?v=EZ8UAvt9paI

1 Feature Location in Models (FLiM): Design time and Runtime 9

has been an increase in the type of feedback provided to the user while cook-
ing, such as the exact temperature of the cookware, the temperature of the
food being cooked, or even real-time measurements of the actual consump-
tion of the IH. All of these changes are being possible at the cost of increasing
the software complexity. The Domain-Specific Language (DSL) used by our
industrial partner to specify the Induction Hobs (IHDSL) is composed of
46 meta-classes, 74 references among them and more than 180 properties.
However, in order to gain legibility and due to intellectual property rights
concerns, in this section we use a simplified subset of the IHDSL (see the top
of Fig. 1.1).

Inverters are in charge of converting the input electric supply to match
the specific requirements of the induction hob. Specifically, the amplitude
and frequency of the electric supply needs to be precisely modulated in order
to improve the efficiency of the IH and to avoid resonance. Then, the energy
is transferred to the hotplates through the channels. There can be several
alternative channels, which enable different heating strategies depending on
the cookware placed on top of the IH at runtime. The path followed by the
energy through the channels is controlled by the power manager.

Inductors are the elements where energy is transformed into an electro-
magnetic field. Inductors are composed of a conductor that is usually wound
into a coil. However, inductors vary in their shape and size, resulting in dif-
ferent power supply needs in order to achieve performance peaks. Inductors
can be organized into groups in order to heat larger cookware while shar-
ing the user interface controllers. Each group of inductors can have different
particularities; for instance, some of them can be divided into independent
zones or others can grow in size adapting to the size of the cookware being
placed on top of them. Some of the groups of inductors are made at design
time, while others can occur at runtime (depending on the cookware placed
on top).

Bottom left part of Fig. 1.1 depicts an example of a product model specified
with the IHDSL. The product model contains four inverters used to power
two different inductors. The upper inductor is powered by a single inverter
while the lower inductor is powered by the combination of three different
inverters. Power managers act as hubs to perform the connection between
the inverters and the inductors.

1.2.6 The Common Variability Language applied to Induction
Hobs

Our approach formalizes the features located as model fragments, the subset
of model elements from a whole model that realizes a particular feature.
We use the Common Variability Language (CVL) to formalize the model
fragments used as features.

10 Lorena Arcega, Jaime Font, Øystein Haugen and Carlos Cetina

The Common Variability Language (CVL) [26, 49, 63] was recommended
for adoption as a standard by the Architectural Board of the Object Manage-
ment Group and is our industrial partners choice for specifying and resolving
variability. CVL defines variants of a base model (conforming to MOF) by
replacing variable parts of the base model by alternative model replacements
found in a library model.

The variability specification through CVL is divided across two differ-
ent layers: the feature specification layer (where variability can be specified
following a feature model syntax) and the product realization layer (where
variability specified in terms of features is linked to the actual models in
terms of placements, replacements and substitutions).

The base model is a model described by a given Domain-Specific Language
(DSL) which serves as a base for different variants defined over it. In CVL the
elements of the base model that are subject to variations are the placement
fragments (hereinafter placements). A placement can be any element or set of
elements that is subject to variation. To define alternatives for a placement we
use a replacement library, which is a model described in the same DSL as the
base model that will serve as basis to define alternatives for a placement. Each
one of the alternatives for a placement is a replacement fragment (hereinafter
replacement). Similarly to placements, a replacement can be any element or
set of elements that can be used as variation for a replacement.

CVL defines variants of the base model by means of fragment substitutions.
Each substitution references to a placement and a replacement and includes
the information necessary to substitute the placement by the replacement.
In other words, each placement and replacement is defined along with its
boundaries, which indicate what is inside or outside each fragment (placement
or replacement) in terms of references among other elements of the model.
Then, the substitution is defined with the information of how to link the
boundaries of the placement with the boundaries of the replacement. When
a substitution is materialized, the base model (with placements substituted
by replacements) continues to conform to the same metamodel.

Fig. 1.1 shows an example of variability specification of IH through CVL.
In the product realization layer, two placements are defined over an IH base
model (P1 and P2). Then, four replacements are defined over an IH library
model (R1, R2, R3, and R4). In the feature specification layer, a Feature
Model is defined that formalizes the variability among the IH based on the
placements and replacements previously defined. For instance, P1 can only
be substituted by R4 (which is optional), but P2 can be replaced by R1, R2,
or R3. Note that each fragment has a signature, which is a set of references
going from and towards that replacement. A placement can only be replaced
by replacements that match the signature. For instance, the P2 signature has
a reference from a power manager (outside the placement) to an inductor
(inside the placement), while the R4 signature is a reference from a power
manager (inside the replacement) to an inductor (outside the replacement).
P2 cannot be substituted by R4 since their signatures do not match.

1 Feature Location in Models (FLiM): Design time and Runtime 11

1.3 Relation between FLiMEA and FLiMRT

The approaches presented in this chapter need some model elements in order
to work. To perform feature location with FLiMRT, we need a system with
at least, design time models and runtime models. And to perform feature
location with FLiMEA, we need a system with at least design time models.
In addition, taking into account the results obtained in our evaluations, we
realized that our approaches are complementary. In the real word, before
locating a feature, in most cases, we do not know the source of the feature
for sure.

We recommend to apply specific approaches taking into account the prob-
lem to be solved and the system where the feature is located. If the results
are not satisfactory, then we can manually refine the solutions or apply other
approaches. For example, if we want to locate a feature and we have a sys-
tem with models at runtime. Our recommendation is to use the FLiMRT
approach as the starting point. If the results obtained by FLiMRT are not
useful, other approaches can be launched since they explore a larger solution
space than FLiMRT.

1.4 FLiM at Design time (FLiMEA)

In this section we explain our approach for feature location in product mod-
els. As we said before, the objective of the approach is to provide a subset
of elements from a given product model that realizes a particular feature be-
ing requested by the user.Then, we are going to use Genetic Operations to
iterate over a population of model fragments and evolve them using genetic
operations. The output is a list of model fragments that might realize the
feature. This list is assessed and ranked taking into account the information
provided by the user as input. The entire explanation of the approach can be
found in [23].

converges?

Model Fragments
Fitness3Genetic

Operations2User Input
Retrieval1 Initial Model

Fragment population
Model Fragment

population

noWeighted Model
Fragments population

Query

Rank of
Feature Candidates

yes

Fig. 1.2 Overview of the FLiM Approach at Design time

12 Lorena Arcega, Jaime Font, Øystein Haugen and Carlos Cetina

Fig. 1.2 shows an overview of the approach. Rounded boxes represent the
different steps of the approach while rectangular boxes represent the inputs
and outputs of each of the steps. Lines indicate that an element is an input
or output of one of the steps.

The input of the approach is the product model where the feature is going
to be located. Then, the user provides a description of the target feature in
terms of an initial seed fragment and a textual description of the feature.
The initial seed and the product model are used to generate some candi-
date fragments. Then, those candidates are assessed taking into account the
textual description of the feature being located. These two steps (generation
and assessment) are repeated until some stop condition is met. When the
stop condition is fulfilled the process returns the list of fragment candidates
ranked according to the assessments.

1.4.1 User Input

The first step is to gather input for the feature location. The input will consist
of the product model and information about the target feature provided by
the user. In particular, the user will provide:

• A seed fragment of the target feature is an element or set of elements that
the engineer believes that could be part of the feature being located. To do
so, the engineer applies her/his knowledge of the domain and the product
models to point to some elements that will be used as the starting point
of the process.

• A feature description of the target feature, using natural language. Typi-
cally these descriptions can come from textual documentation of the prod-
ucts, comments in the code, bug reports or oral descriptions from the engi-
neers. Therefore, the query will include some domain-specific terms similar
to those used when specifying the product models. The knowledge of the
engineers about the domain and the product models will be useful to se-
lect the textual description from the sources available. Fig. 1.3 presents an
example of input for the approach. Left part presents the seed fragment
proposed by the user (a model fragment of the product model where the
feature is going to be located). The user believes that the selected induc-
tor is going to be part of the feature realization. Then, the right part of
the figure shows a textual description for the feature being located, the
hotplate. It is a simplified version of a text description that has been ex-
tracted from the internal documentation used by our industrial partner to
describe their products.

The textual description provided by the user is turned into a query by
using some well-established Information Retrieval (IR) techniques:

1 Feature Location in Models (FLiM): Design time and Runtime 13

Fragment Seed

Fig. 1.3 Input provided to the approach

1. The textual description is tokenized (divided into words). Usually a white
space tokenizer can be applied (that splits the strings whenever it finds
a white space), but for some sources more complex tokenizers need to be
applied. For instance, when the description comes from documents that are
close to the implementation of the product some words can be following
CamelCase naming.

2. We apply the Parts-of-Speech (POS) tagging technique. POS tagging anal-
yses the words grammatically and infers the role of each word into the text
provided. As a result, each word is tagged enabling the removal of some
categories that do not provide relevant information. For instance, con-
junctions (e.g. ’or’), articles (e.g. ’a’) or prepositions (e.g. ’at’) are words
commonly used and do not contribute with relevant information that de-
scribe the feature, so they are removed.

3. Stemming techniques are applied to unify the language used in the text.
This technique consists in reducing each word to its roots enabling that
different words referring to similar concepts can be grouped together. For
instance, plurals are turned into singulars (“inductors” to “inductor”) or
verbs tenses are unified (“using” and “used” are turned into “use”).

The User Input Retrieval step generates as a result an initial population of
fragments (that contain the model fragment provided as seed) and the query
that will be used for the comparisons (obtained from the textual description).
Then, the model fragment from the initial population will be evolved into
several model fragments through the use of the genetic operations.

1.4.2 Encoding

We use a binary string encoding where each position of the string has two
possible values: 0 or 1. However, encoding each model fragment as a string
of binary values is not straightforward. Each individual of our proposed ap-
proach will be a model fragment that is defined in one of the product models.
In other words, each individual is a set of model elements that are present in
one of the product models.

14 Lorena Arcega, Jaime Font, Øystein Haugen and Carlos Cetina

Product Model 2
Model Fragment 1

A
B

C
D

E

F

G

H

I

J

A B C D E F G H I J
0 1 1 1 1 0 0 0 0 0

Encoding

Product Model 4
Model Fragment 4

A B C D E F ... N O P
0 1 1 1 0 1 0 0 0 0

Encoding

A

B

C D

E

F

GH

I
J

K
L

M

N
O

P

Fig. 1.4 Representation of model fragments

Fig. 1.4 shows two examples of our representation of model fragments. We
denote each model element of the product model with a letter. In the example
of the left part of Fig. 1.4, the letters A and F correspond to inverters, the
letters B, D, G, and I correspond to channels, and the letters E and J corre-
spond to inductors. Therefore, the string of binary values that represents the
model fragment from this product model has the positions that correspond
to each letter with a value of 0 or 1. If the model element appears in the
model fragment, the value will be 1; if the model element does not appear in
the model fragment the value will be 0.

Each model fragment representation depends on the product model that
it came from. Both of the examples in Fig. 1.4 represent the same model
fragment, but they come from different product models. Throughout the rest
of the paper, we will refer to each individual as a model fragment that is part
of a product model.

1.4.3 Genetic Operations

The second step is to generate a set of model fragments that could be realizing
the feature. The generation of model fragments is done by applying genetic
operators adapted to work over model fragments. That is, new fragments
based on the existing ones (the seed fragment during the first execution) are
generated through the use of three genetic operators: the selection of parents,
the mutation and the crossover.

1.4.3.1 Selection of parents

In order to apply the genetic operators, it is first necessary to apply the
selection operator that selects the best candidates from the population to
be the input for the rest of operators. There are different methods that can
be used to perform the selection of the parents, but one of the most spread

1 Feature Location in Models (FLiM): Design time and Runtime 15

choices is to follow the wheel selection mechanism [1]. That is, each model
fragment from the population has a probability of being selected proportional
to their fitness score. Therefore, candidates with high fitness values will have
higher probabilities of being chosen as parents for the next generation. Top
part of Fig. 1.5 shows an example of application of the selection operator.

Mask

Crossover
operator

MF1 MF3

MF5

Initial Model
Fragments population

MF1 MF3MF2 MF4

Selection
operator

Mutation
operator

MF7

MF6

Mutation
operator

MF8

Fig. 1.5 Genetic operations: selection, crossover, and mutation over model fragments

16 Lorena Arcega, Jaime Font, Øystein Haugen and Carlos Cetina

1.4.3.2 Crossover

The crossover operator is used to imitate the sexual reproduction followed by
some living beings in nature to breed new individuals. That is, two individuals
mix their genomic information to give birth a new individual that holds some
genetic information from one parent and some from the other one. This could
make it adapt better (or worse) to her/his living environment depending on
the genetic information inherited from her/his parents.

Following this idea, our crossover operator applied to model fragments
takes as input two model fragments and a randomly generated mask to com-
bine them into two new individuals. The mask determines how the combi-
nation is done, indicating for each element of the model fragments if the
offspring should inherit from one parent or the other (including the element
or not if the element is present on the parent or not). A model fragment is a
subset of the elements present in a product model. As both model fragments
have been extracted from the same product model the combination (applying
the mask) of them will always return a model fragment that is part of the
product model. As a result, two individuals will be generated, one by apply-
ing directly the mask and another one by applying the inverse of the mask
as it is usually done in genetic algorithms [15].

Fig. 1.5 shows an example of application of the crossover operator. The
input of the operator is the first parent (MF1), a mask indicating two sets of
elements (one regular and one marked in black) and the second parent (MF3).
To create the first of the new individuals we interpret the mask selecting the
blacked out elements from the first parent (MF1) and the regular elements
from the second parent (MF3). That is, the elements on the top part of
the product model that are in black in this mask are selected depending on
whether they are part of MF1 or not, while the rest of the elements that are
not blacked out in the mask are selected depending on whether they are part
of MF3 or not. As a result, the new MF5 contains some elements from the
first parent (power group connected to the inductor) and some others from
the second parent (the inverter that connects with the power group).

In addition, the mask is also interpreted in the opposite way, selecting the
blacked out elements form the second parent and the regular elements from
the first parent. This produces MF6 (see middle-right part of Fig. 1.5), where
an inverter connected to a power manager has been inherited from the second
parent (MF3) and nothing has been inherited from parent 1 (MF1) as all the
elements not blacked out in the mask are not part of MF1.

For the crossover operation to work, it is not necessary to have elements
shared by both parents. It is possible to perform crossovers that return frag-
ments where not all the elements are connected. Indeed, the feature being
located could be realized by several model elements that are not directly con-
nected in the model. Therefore, it is necessary to create this kind of fragments
as they could be the ones realizing the target feature.

1 Feature Location in Models (FLiM): Design time and Runtime 17

1.4.3.3 Mutation

The mutation operator is used to imitate the mutations that randomly occur
in nature when new individuals are born. That is, a new individual holds a
small difference in regards to its parents that could make him adapt better
(or worse) to their living environment.

Following this idea, the mutation operator applied to model fragments
takes as input a model fragment and mutates it into a new one produced
as output. As the approach is looking for fragments of the product model
that realize a particular feature, the new modified fragment must remain
being a part of the product model. Therefore, the modifications that can be
done to the model fragment are driven by the product model. In particular,
the mutation operator can perform two kind of modifications, addition of
elements to the fragment, or removal of elements from the model fragment.

Bottom part of Fig. 1.5 shows two examples of application of the mutation
operator. Left part shows the first example, MF5 is used as input of the
operator that produces M7 as output. In this example, the mutation operation
has added some elements (a new inverter connected to the power manager).
The resulting model fragment remains being part of the product model that
is driving the mutation, so it is a candidate as realization of the feature.
Right part shows the second example, where MF6 is used as input and MF8
is produced as output. In this example the mutation operator has removed
an element (the power manager).

1.4.4 Model Fragment Fitness

The third step of the process consists in the assessment of each candidate
fragment produced and the ranking of them according to a fitness function.
The fitness function is used to imitate the different degrees of adaptation to
the environment that different individuals have. Therefore, individuals that
result of mutations and crossovers that contribute to their adaptation to the
environment will have higher chances of survival than others.

Following this idea, the fitness function is used to determine the suitability
of each candidate as solution to the problem, enabling to rank them from the
best candidate to the worst. The fitness function is based on the comparison
between the feature description query and the identifier names and other
natural language items present in the model fragments. The input of this step
is a population of candidate fragments, and the feature description query; the
output produced is a ranking where each candidate has been assigned with
a fitness value.

To assess the relevance of each model fragment in relation to the feature
description provided by the user, we apply methods that are based on In-
formation Retrieval (IR) techniques. Specifically, we apply Latent Semantic

18 Lorena Arcega, Jaime Font, Øystein Haugen and Carlos Cetina

Analysis (LSA) [36] to analyze the relationships between the description of
the feature provided by the user and the model fragments previously ob-
tained. Recent studies have shown that there is not a statistically significant
difference among different IR techniques [24, 40] when applied to software ar-
tifacts [28]. Hence, we chose LSA because it provides results that are similar
to other IR techniques for software documents.

LSA constructs vector representations of a query and a corpus of text
documents by encoding them as a term-by-document co-occurrence matrix
(i.e., a matrix where each row corresponds to terms, each column corresponds
to documents, and the last column corresponds to the query). We use the
term-frequency (tf) as the term weighting schema to construct the matrix.
In other words, each cell holds the number of occurrences of a term (row)
inside either a document or the query (column).

In our approach, all documents are model fragments (i.e., a document of
text is generated from each of the model fragments). The text of the document
corresponds to the names and values of the properties and the methods of
each model fragment. The query is constructed from the terms that appear in
the feature description. The text from the documents (model fragments) and
the text from the query (feature description) are homogenized by applying
the Natural Language Processing techniques previously described in Section
1.4.1.

The union of all of the keywords extracted from the documents (model
fragments) and from the query (feature description) are the terms (rows)
used by our LSA fitness operation.

Once the matrix is built, we normalize and decompose it into a set of vec-
tors using a matrix factorization technique called Singular Value Decomposi-
tion (SVD) [36]. SVD projects the original term-by-document co-occurrence
matrix in a lower dimensional space k. We use the value of k suggested by
Kuhn et al. [35], which provides good results [61]. One vector that represents
the latent semantics of the document is obtained for each model fragment
and the query. Finally, the similarities between the query and each model
fragment are calculated as the cosine between the two vectors. The fitness
value that is given to each model fragment is obtained as the cosine similarity
between the two vectors, obtaining values between -1 and 1.

Let p1 be an individual of the population; let A be the vector representing
the latent semantic of p1; let B be the vector representing the latent semantics
of the query where the angle formed by the vectors A and B is θ . The fitness
function can be defined as:

f itness(p1) = cos(θ) =
AB

‖A‖‖B‖
(1.1)

Finally, after the cosines are calculated, we obtain a value for each of the
model fragments, indicating its similarity with the query.

1 Feature Location in Models (FLiM): Design time and Runtime 19

1.4.4.1 Loop

At this point, if the stop condition is met, the process will stop returning
the rank of model fragment. If the stop condition is not met yet, the genetic
algorithm will keep its execution one generation more. The next time that
the genetic operators are applied, it will be necessary to select the best can-
didates as parents for the new generation. This will be done based on the
score obtained by each model fragment. As a result, model fragments with
higher similarities will have more chances to be selected as parents of the new
generation.

The process of generation of fragments is repeated until the stop condition
is met. Usually, the stop condition can be a time slot, a fixed number of
generations or a trigger value of the fitness that makes the process finish
when reached. In addition, it is also possible to monitor the fitness values
and determine when they are converging and no further improvements are
being made by new generations. The stop condition highly depends on the
domain and the problem being solved; therefore, it is adjusted depending on
the results being outputted by the process.

As a result, FLiMEA provides a ranking of model fragments. The ranking
is ordered following the similarity of the model fragment to the feature de-
scription, i.e. the fitness value obtained by each model fragment. Then, the
domain experts will select the model fragment from the ranking, using their
knowledge of the domain. At the end, the experts will be the ones working
and manipulating these features as part of their daily work. Hence, they are
the ones that understand and recognize them well. In a previous work [22],
we conducted a usability test to know why the domain experts can discard a
model fragment suggested as feature.

1.5 FLiM at Runtime (FLiMRT)

Fig. 1.6 shows an overview of our feature location approach at runtime
(FLiMRT). In the Dynamic Analysis phase, the software engineer executes a
scenario, which uses the target feature to be located. The information from
the executed scenario is stored by means of models at runtime.

Models at runtime provide a kind of formal basis for reasoning about
the current system state, for reasoning about necessary adaptations, and for
analyzing the consequences of possible system adaptation. This is possible
because there is a causal connection between the system and the runtime
model. Then, we can use the runtime architecture model obtained from the
running scenario. This model contains the elements of the model that are
related to the target feature.

In the Information Retrieval phase, the approach filters the runtime ar-
chitecture model to extract the relevant elements of the target feature to be

20 Lorena Arcega, Jaime Font, Øystein Haugen and Carlos Cetina

Execute
scenario

scenario Executed
model elements

Creating a
Corpus

query

List of model
elements

Normalized attributes
and method names

Ranked executed
model elements

Preprocessing
the Corpus

IndexingTerm-by-model
element Matrix

Querying

Information Retrieval
Phase

Dynamic Analysis Phase

Fig. 1.6 Overview of the FLiM Approach at Runtime

located. To achieve the filtering, we adapt the same Information retrieval
(IR) technique used in the design time approach, LSA [36], which allows the
software engineers to write queries that describe the feature to be located.
The result is a ranked list of model elements that are related to the feature
based on the similarity to the provided query.

1.5.1 The Dynamic Analysis Phase

Dynamic Analysis is used to delimit the search space. Execution information
is gathered via dynamic analysis (see Fig. 1.6), which is commonly used in
program comprehension and involves executing a software system under spe-
cific conditions. In our case, we design scenarios that run the target features
in order to obtain model traces in which the target features are involved. In
other words, executing the target feature during runtime generates a feature-
specific execution trace.

Our approach implies that the software engineer input is needed and of
course, results are sensitive to that input. The software engineer has to decide
on a scenario that will run the desired feature.

Fig. 1.7 shows the behavior of an induction hob at runtime. The induction
hob is turned on in an initial configuration with a known model. In the face of
changes in the context (CCs in Fig. 1.7), reconfigurations (Rs in Fig. 1.7) are
triggered in order to change the configuration of the induction hob. Then, the
induction hob is in a different configuration and therefore in a different model
(Model Configurations in Fig. 1.7). Some examples of scenarios for different
features can include putting a pot on top, the pot reaches the set temperature,
the pot is moved to other place on the induction hob, or liquid spills from the

1 Feature Location in Models (FLiM): Design time and Runtime 21

Legend
CC: Context Change R: Reconfiguration

R1 R2

Initial model
configuration

R3

Model
Configuration

1

Model
Configuration

2

Model
Configuration

3

CCa CCb CCc

turn on turn off

Fig. 1.7 Induction Hob at runtime

pot onto the surface. The reconfigurations activate or deactivate inductors
and inverters and connect them through channels.

1.5.2 The Information Retrieval Phase

To perform Information Retrieval, we use the same technique used in the
previous approach. Our approach follows the same five main steps: creating a
corpus, preprocessing, indexing, querying, and generating results (see Fig. 1.6
Information Retrieval phase). We adapted each step of the LSA technique to
work with architecture models. We used the architecture model that contains
the executed model elements from the dynamic analysis. The adaptation is
performed as follows:

• Creating a corpus. In the first step of LSA, a document granularity needs
to be chosen to form a corpus. A corpus consists of a set of documents.
In this approach, each document corresponds to a model element of the
architecture model. Each document (model element) includes text from
the names of the attributes and methods.

• Preprocessing. Once the corpus is created, it is preprocessed. Preprocess-
ing involves normalizing the text of the documents. In this approach, the
type of the attributes and the type of the parameters in the methods are
removed.

• Indexing. The corpus is used to create a term-by-document matrix. Each
row of the matrix corresponds to each term in the corpus, and each column
represents each document. Each cell of the matrix holds a measure of the
weight or relevance of the term in the document. The weight is expressed
as a simple count of the number of times that the term appears in the
document. In other words, each term-document pair has a number that
indicates the number of times this term appears as part of the names of
attributes or methods of this model element. In this work, in the term-
by-document co-occurrence matrix, the terms (rows) correspond to the
names of the attributes or operations (i.e., intensity) of the runtime model

22 Lorena Arcega, Jaime Font, Øystein Haugen and Carlos Cetina

and the documents (columns) correspond to the model elements that have
appeared in the runtime model.

Query

6

10

0

4

6

8

0

0

Te
rm

s
Model Elements

ME1 ME2 ME3 ME4 … MEn

size 6 12 9 6 … 12

provider 12 6 4 0 … 24

coil 36 30 0 0 … 0

small 24 12 2 0 … 6

intensity 0 8 10 2 … 0

high 6 0 2 0 … 6

…

8 2 1 12 … 3name

... … … … … …

Q

ME3

ME4

ME2

MEn

ME1

LSI Results

Fig. 1.8 Information Retrieval via Latent Semantic Indexing (LSI)

Fig. 1.8 shows a term-by-document co-occurrence matrix. Each row in the
matrix stands for each one of the unique words (terms) extracted from
the runtime model. Fig. 1.8 shows a set of representative keywords in
the domain such as ’provider’, ’coil’, or ’intensity’ as the terms of each
row. Each column in the matrix stands for the model elements of the
runtime model. Fig. 1.8 also shows the model elements in the columns,
which represent the model elements of the runtime model. Each cell in the
matrix contains the frequency with which the keyword of its row appears
in the document denoted by its column. For instance, in Fig. 1.8, the term
’size’ appears 9 times in the ’ME3’ model element.

• Querying. A user formulates a query in natural language consisting of
words or phrases that describe the feature to be located. Since LSI does
not use a predefined grammar or vocabulary, users can originate queries in
natural language. In this work, we use the requirements to formulate the
queries. Only the relevant terms are taken into account, and words such
as determinants and connectors from the language are avoided.
In Fig. 1.8, the query column represents the words that appear in the
requirement. Each cell contains the frequency with which the keyword of
its row appears in the query. For instance, the term ’provider’ appears 10
times in the query.

• Generating results. In LSA, the query and each document correspond to
a vector. We use the same matrix factorization technique as in the design
time approach. The cosine of the angle between the query vector and a
document vector is used as the measure of the similarity of the document
to the query. The closer the cosine is to 1, the more similar the document
is to the query. A cosine similarity value is calculated between the query
and each document, and then the documents are sorted by their similar-

1 Feature Location in Models (FLiM): Design time and Runtime 23

ity values. The user inspects the ranked list to determine which of the
documents are relevant to the feature.
A three-dimensional graph of the LSI results is provided in Fig. 1.8. The
graph shows the representation of each one of the vectors, labeled with
letters that represent the names of the model elements, which are refer-
enced in the box below the graph. The graph reflects the ’ME3’ model
element vector as being the closest to the query vector, followed by the
’ME1’ model element vector.

After applying the two phases of our approach, the output produced is
a ranking where each model element has been assigned with a value. Only
those model elements that have a similarity measure greater than x must
be taken into account to measure the quality of the results. A good heuristic
that is widely used is x = 0.7. This value corresponds to a 45% angle between
the corresponding vectors. This threshold has yielded good results in other
similar works [42, 58]. Determining a more generally usable heuristic for the
selection of the appropriate threshold is an issue under study, over which
further research is needed. The goal of our approach is to rank the relevant
model elements within the top positions. The ranking of model elements is
ordered by the values of the cosines.

The results obtained can be influenced by the amount of information con-
tained in the model trace [4]. Each execution trace is related to a set of
snapshots of the runtime model. However, we can have different criteria to
decide when a snapshot of the runtime model should be added to the trace.
For example, we could add a snapshot to the trace only when the model
at run time corresponds to a valid configuration of the system, or we could
add a snapshot each time a change in the architecture model at runtime is
performed.

1.6 Evaluation

In this section, we present the evaluations performed to test the Feature Loca-
tion in Models (FLiM) approaches. We have followed a process for evaluating
each of the approaches on each of the case studies.

Fig. 1.9 shows an overview of the generic setup of the evaluation. The
process is composed of: (1) an oracle obtained from our industrial partner;
(2) a set of test cases extracted from the oracle; (3) an approach that is being
evaluated; (4) the set of results obtained when applying the approach to the
test cases; (5) the measure (or measures) that we want to evaluate; and (6)
the measurements obtained based on the results yielded by the approach and
the information available from the oracle.

24 Lorena Arcega, Jaime Font, Øystein Haugen and Carlos Cetina

Oracle

Product
Models Domain

Knowledge

Feature
Realizations

Test
Cases

Approach
under

evaluation
Results

Compare
and

Measure
Measurements

Fig. 1.9 Overview of the process followed in each evaluation

1.6.1 The Induction Hobs Domain

The first case study where we applied our approach is BSH 2. Their induction
division has been producing Induction Hobs under the brands of Bosch and
Siemens for the last 15 years.

They have 46 induction hob models where, on average, each product model
is composed of more than 500 elements. Their induction hobs include 96
different features that can be part of a specific product model. Those features
correspond to products that are currently being sold or will be released to
the market in the near future.

1.6.2 Train Control and Management Domain

The second case study where we applied our approach was CAF, a worldwide
provider of railway solutions 3. Their trains can be seen all over the world and
in different forms (regular trains, subway, light rail, monorail, etc.). A train
unit is furnished with multiple pieces of equipment through its vehicles and
cabins. These pieces of equipment are often designed and manufactured by
different providers, and their aim is to carry out specific tasks for the train.
Some examples of these devices are: the traction equipment, the compressors
that feed the brakes, the pantograph that receives power from the overhead
wires, or the circuit breaker that isolates or connects the electrical circuits
of the train. The control software of the train unit is in charge of making
all the equipment cooperate in providing the train with functionality while
guaranteeing compliance with the specific regulations of each country.

The DSL of our industrial partner has the required expressiveness to de-
scribe the interaction between the main pieces of equipment installed in a
train unit. Moreover, this DSL also has the required expressiveness to specify

2 https://youtu.be/nS2sybEv6j0
3 https://youtu.be/Ypcl2evEQB8

1 Feature Location in Models (FLiM): Design time and Runtime 25

non-functional aspects related to regulation, such as the quality of signals
from the equipment or the different levels of installed redundancy. This re-
sults in a DSL that is composed of around 1000 different elements.

As an example, the high voltage connection sequence can be described
using the DSL. This high voltage connection sequence is initiated when the
train driver requests its start by using interface devices fitted inside the cabin.
The control software is in charge of raising the pantograph to receive power
from the overhead wire and of closing the circuit breaker so the energy can
get to converters that adapt the voltage to charge batteries which, in turn,
power the traction equipment.

Fig. 1.10 Example of product model and model fragment (colored part) of CAF

Fig. 1.10 shows an example of a product model from a real-world train.
It shows two separate pantographs (High Voltage Equipment) that collect
energy from the overhead wires and send it to their respective circuit breakers
(Contactors), which, in turn, send it to their independent Voltage Converters.
The converters then power their assigned Consumer Equipment: the HVAC
on the left (the trains air conditioning system), and the PA (public address
system) and CCTV (television system) on the right.

An example of model fragment is also shown in Fig. 1.10. The elements of
the model fragment are highlighted in green, which are the realization of the
feature: HVAC Assistance. This feature allows the passing of current from
one converter to the HVAC that is assigned to its peer for coverage in case
of overload or failure of the first converter.

They have 23 train models where, on average, each product model is com-
posed of around 1200 elements. The product models are built using 121 dif-

26 Lorena Arcega, Jaime Font, Øystein Haugen and Carlos Cetina

ferent features that can be part of a specific product model. They provide us
with documentation of their features and the model fragments that imple-
ment each feature.

1.6.3 Oracle Preparation

The oracle is the mechanism that we will use to evaluate the results provided
by our approach. The oracle will be considered the ground truth and the
results provided by the approach will be compared (when needed) with the
oracle in terms of the measures that we want to obtain. In addition the oracle
will be used to obtain the test cases used for the evaluation.

The oracle will be mainly composed by a set of product models and a
set of features located over those product models. That is, a set of features
whose realizations are model fragments and a set of product models built
using those model fragments. Therefore, we have the traceability information
between the features, the model fragments realizing those features, and the
features being used by each product model. In addition, the oracle includes
domain knowledge in different forms, such as descriptions and technical doc-
umentations for each product model, descriptions about the features, etc.

The oracle is extracted directly from the family of models of our industrial
partner, that is being used to manage the products that are under produc-
tion. Therefore, we consider it to be the best version available. The domain
experts of each of the companies provide us with documentation and the
model fragments that implements each of the features.

1.6.4 Test Cases

A set of test cases is extracted from the oracle, so the approach under eval-
uation can be applied to them. Fig. 1.11 shows an example of a test case.
It includes a feature description in the format required by the approach (in
this case, a seed fragment and a textual description of the feature) and the
target product model (where the feature will be located). In addition, the test
case has been extracted from the oracle and there is a corresponding model
fragment for that feature description (that will be used to compare with the
output provided by the approach).

1 Feature Location in Models (FLiM): Design time and Runtime 27

Fragment Seed

Test Case

Target Model Textual Description Solution Model Fragment

Oracle

Fig. 1.11 Test case example

1.6.5 Comparison and Measure

Once the results from applying the approach to the test cases are obtained,
we proceed to compare them with the oracle and measure them in terms
of some software quality properties [41]. To compare the model fragments
obtained and the solution from the oracle we are going to use an error matrix
[62], also known as confusion matrix.

A confusion matrix is a table that is often used to describe the performance
of a classification model (in this case, our algorithms) on a set of test data
(the resulting model fragments) for which the true values are known (from
the oracle). In our case, each solution outputted by the algorithms is a model
fragment that is composed of a subset of the model elements that are part of
the product model (where the feature is being located). Since the granularity
will be at the level of model elements, the presence or absence of each model
element will be considered as a classification. The confusion matrix distin-
guishes between the predicted values and the real values by classifying them
into four categories:

• True Positive (TP): values that are predicted as true (in the solution) and
are true in the real scenario (the oracle).

• False Positive (FP): values that are predicted as true (in the solution) but
are false in the real scenario (the oracle).

• True Negative (TN): values that are predicted as false (in the solution)
and are false in the real scenario (the oracle).

• False Negative (FN): values that are predicted as false (in the solution)
but are true in the real scenario (the oracle).

Then, some performance metrics are derived from the values in the con-
fusion matrix. Specifically, we will create a report that includes four perfor-
mance metrics (precision, recall, the F-measure, and the MCC) for each of
the test cases for each search algorithm.

Precision measures the number of elements from the solution that are
correct according to the ground truth (the oracle) and is defined as follows:

Precision =
T P

T P+FP
(1.2)

28 Lorena Arcega, Jaime Font, Øystein Haugen and Carlos Cetina

Recall measures the number of elements of the oracle that are correctly
retrieved by the proposed solution and is defined as follows:

Recall =
T P

T P+FN
(1.3)

The F-measure corresponds to the harmonic mean of precision and recall
and is defined as follows:

F−measure = 2∗ Precision∗Recall
Precision+Recall

(1.4)

Finally, the MCC is a correlation coefficient between the observed and
predicted binary classifications that takes into account all of the observed
values (TP, TN, FP, FN) and is defined as follows:

MCC =
T P∗T N−FP∗FN√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
(1.5)

1.6.6 Evaluation of FLiM at Design time (FLiMEA)

In Table 1.1, we outline the results of our algorithm in BSH and CAF. We
also show the F-measure and the MCC performance indicators. The algorithm
provides a precision value of 76.47% in the BSH case study and a precision
value of 71.75% in the CAF case study. The Recall achieved is 72.41% for
BSH and 67.96% for CAF. The combined F-measure is 72.99% for BSH and
68.34% for CAF. Finally, the MCC achieved is 0.67 for BSH and 0.62 for
CAF.

Table 1.1 Mean values and standard deviations for Precision, Recall, F-measure, and
MCC for the Search Algorithm in BSH and CAF

Precision ±σ Recall ±σ F-measure ±σ MCC ±σ

BSH 76.47 ± 13.39 72.41 ± 13.79 72.99 ± 9.35 0.67 ± 0.13
CAF 71.75 ± 12.54 67.96 ± 15.07 68.34 ± 10.24 0.62 ± 0.13

1.6.6.1 Analysis of the results

The recall and precision values suggest that the fitness function is performing
well and guiding the algorithm to find feature realization candidates close to
the target feature. Following the classification of the results in precision and
recall presented in [27], we can state that our approach presents excellent
results (range 50% - 100%) in precision in both BSH and CAF, good results

1 Feature Location in Models (FLiM): Design time and Runtime 29

in recall (range 70% - 79%) in BSH, and acceptable results in recall (range
60% - 69%) in CAF.

Input data The presented approach relies on two pieces of information
given by the engineer performing the feature location, the seed fragment
and the query. These two elements will have an impact on the ranking of
model fragments produced and must be chosen carefully by the engineer
performing the feature location.
To test out the impact of the seed fragment in the results, we have executed
the approach with different kind of seed fragments containing one element
(single element belonging to the feature being located or single element
not belonging to the feature being located). But those executions did not
produce noticeable differences in the resulting ranking of model fragments
or in the number of generations needed to converge.
However, when selecting seed fragments of sizes closer to the size of the
feature being located, the effect is noticeable. The number of generations
needed by the GA to converge was reduced when a seed fragment close
to the feature being located was chosen. In particular, when the fragment
seed contained about 50% of the elements belonging to the feature being
located, the number of generations needed for the GA to converge was
reduced up to 15%.
To test out the impact of the query in the results, we have also executed
the approach varying the text description used as input (using longer and
smaller queries by subsetting the original description, including more or
less domain terms and including more or less meta-element terms).
The search query used to locate the feature is in charge of driving the
search and greatly impacts on the precision and recall results. In fact,
depending on the level of detail of the query, the recall and precision
values obtained will change. When the query provided is too broad, the
precision decreases as there are several model elements matching the query
not belonging to the target feature. Anyhow, the elements belonging to
the feature will be also matched positively so the recall value will be high.
However, when the query provided is too specific, some of the elements
relevant for the feature being located can be missed out. Thus, the recall
value is decreased although the precision values remain high.
Two examples of queries can be: (1) “A double hot plate is a group of
two inductors that are heated together” and (2) “A double hotplate is
formed by an inductor of small size and an inductor of big size that are
connected to the same power group”. The second query is completer and
more concise than the first query. Hence, the second query will obtain
better results than the first one.
To achieve good precision and recall values, it is important to avoid the
usage of words included into the meta-elements of the model elements.
That is, if we refer to the metaclass name of one of the model elements,
all instances of this class will match to that word (e.g. any inductor class
model element will match the query “inductor”). By contrast, by using

30 Lorena Arcega, Jaime Font, Øystein Haugen and Carlos Cetina

words specific for the model element (as the value of the name property
or values of some of the parameters contained in those model elements),
those model elements (and not others with the same class) will be included
into the model fragments, affecting positively to the precision values (e.g.
only some inductors will match the query “doubleTwistedCoil” as it is
the value of a property of the inductor class). In fact, when removing the
usage of metaelement names in the queries, the approach obtained similar
values of recall but the precision raised up to a 20% for best cases.

Generalization The presented approach has been designed to be applied,
not only to our industrial partners domain, but to any domain. The only
requisite to apply the approach is that the set of models where features
have to be located conform to MOF (the OMG metalanguage for defining
modeling languages). The query must be provided as a textual description.
The generation and management of fragments is performed using the Com-
mon Variability Language (CVL), which can be applied to any MOF-based
languages. With the use of CVL, the approach is able to work with the
model fragments provided as seed and evolve them applying the genetic
algorithms. As output, the approach produces a ranking in the form of
CVL model fragments.
Furthermore, the fitness function can also be applied to any MOF-based
model. The text elements associated to the models are extracted auto-
matically by the approach using the reflective methods provided by the
Eclipse Modeling Framework. That is, there is no need of knowledge about
the domain of application in order to extract the relevant terms.
However, the approach can be tailored to fit the needs of different domains
if necessary. For instance, the naming conventions used by companies for
model elements, properties and functions can follow different formats, but
the approach can be tailored to handle them. In our case studies some
model elements follow the CamelCase convention while others follow the
Underscore convention. To address that, we applied different tokenizers in
order to obtain the terms properly. Similarly, the Part-of-Speech tagger
that is used to eliminate non-relevant words based on their grammatical
category is language dependant, but can be configured to other languages
when necessary.
In summary, the approach can be applied to locate features on any MOF-
based model from any domain. If necessary, some tweaks and modifications
can be applied to tailor the approach to particular needs of the domains,
but the core of the approach will remain unchanged.

1.6.7 Evaluation of FLiM at Runtime (FLiMRT)

In this case, instead of using precision, recall, F-measure and MCC, we eval-
uate the position of the first model element in the ranking. It is accepted by

1 Feature Location in Models (FLiM): Design time and Runtime 31

the feature location community [39, 56] that a feature location approach is
considered better than another feature location when it produces a ranking
where the elements that belongs to the feature are in higher positions than
in the ranking of the other approach.

Features

P
o

si
ti

o
n

 i
n

 t
h

e
 r

a
n

k
in

g

Fig. 1.12 Position of the first model element that belong to the target feature in the
ranking for each one of the features

We performed this evaluation with thirty-nine features of BSH. We defined
the scenarios based on bug reports of each one of the features. Fig. 1.12 shows
the position of the first model element that belong to the target feature in
the ranking for each one of the thirty-nine features. The x-axis represents the
features, and the y-axis represents the position in the ranking. The blue dots
represent the first model element for each feature. The position of the first
model element that belongs to each one of the features has values between 1
and 28, where the 84% of the results are in the top ten positions.

1.6.7.1 Analysis of the results

Fig. 1.13 shows the graphical representation of the ranking for one feature
(feature number five in Fig. 1.12). Due to space constraints, we only show
the graphical representation for one feature, however, all the rankings follow
a similar distribution in the results.

The query is the vector that is on the x-axis. The remainder of the vectors
are model elements. Those that have been tagged by the oracle have a ri label
at the end of the arrow, while those that have not been tagged have nothing
at the end of the arrow. The angle corresponds to the cosine with which we
calculated the position in the ranking (see Section 1.5.2); the closer the model
element is to the query, the higher the position in the ranking. The length
of each vector indicates the number of times that the terms appear in each

32 Lorena Arcega, Jaime Font, Øystein Haugen and Carlos Cetina

Fig. 1.13 Vectorial representation of the model elements in the Ranking of one feature

model element. The longer the vector is, the more terms appear in the model
element. The graph only shows the thirty-three which have positive cosines,
the rest, thirteen, are in the left of the y-axis and have few relevance for the
query.

The goal of a feature location technique is to reduce the effort required
by software engineers to find the desired feature. Our approach on average
requires searching in less than fifty model elements while a source-code-based
approach on average requires searching in more than three thousand eight
hundred methods.

The graphical representation of Fig. 1.13 allows us to see that the approach
performs a good discrimination between relevant and non-relevant model
elements. The majority of the model elements that belong to the feature
achieve better results than the ones that do not belong.

Since architecture models at runtime allow working on a high level of
abstraction, the words used at the model level are closer to the query. By
raising the level of abstraction with the architecture model, we can prevent
auxiliary methods and variables from interfering with the feature location.

Finally, we realized that the model elements that contained few attributes
and methods got worse positions in the ranking than the ones that contained
more attributes and methods. For example, one of the elements related to
the feature in Fig. 1.13 obtained position 27 in the ranking. This is because
this element corresponds to a channel element. This particular channel only
has three attributes that describe the information that goes through the
channel. The information required by this element was not as detailed as the
other model elements when specifying the model. For this reason, the model
element corresponding to this channel got a lower position in the ranking. In
contrast, other kinds of channels got better positions since, on average, they
have about twenty attributes and methods.

1 Feature Location in Models (FLiM): Design time and Runtime 33

1.7 Conclusion

In this chapter, we presented approaches for Feature Location in Models
(FLiM) at design time (FLiMEA) and at runtime (FLiMRT). Specifically,
we have presented a Genetic Algorithm for FLiM at design time, and an
approach that combines architecture models and information retrieval for
FLiM at runtime.

Software systems are becoming more increasingly complex, and systems
with models are not an exception. Hence, software maintenance is becoming
more and more important. In particular, the feature location area has gained
significant attention and cannot be neglected in the models area.

The results show that our design time (FLiMEA) and runtime approaches
(FLiMRT) can be applied to address the challenge of feature location in
models (FLiM). Specifically, the use of genetic operations for models provided
good results in our studies. In addition, this demonstrates that FLiMEA and
FLiMRT for feature location at the model level can be applied in real world
environments.

References

1. Affenzeller, M., Winkler, S., Wagner, S., Beham, A.: Genetic Algorithms and Genetic
Programming: Modern Concepts and Practical Applications, 1th edn. Chapman &
Hall/CRC (2009)

2. Alves, V., Schwanninger, C., Barbosa, L., Rashid, A., Sawyer, P., Rayson, P., Pohl,
C., Rummler, A.: An exploratory study of information retrieval techniques in domain
analysis. In: 2008 12th International Software Product Line Conference, pp. 67–76
(2008). DOI 10.1109/SPLC.2008.18

3. Arcega, L., Font, J., Haugen, Ø., Cetina, C.: Feature location through the combi-
nation of run-time architecture models and information retrieval. In: J. Grabowski,
S. Herbold (eds.) System Analysis and Modeling. Technology-Specific Aspects of
Models : 9th International Conference, SAM 2016, Saint-Malo, France, October 3-4,
2016. Proceedings, pp. 180–195. Springer International Publishing (2016). DOI
10.1007/978-3-319-46613-2 12

4. Arcega, L., Font, J., Haugen, Ø., Cetina, C.: On the influence of models at run-time
traces in dynamic feature location. In: Modelling Foundations and Applications -
13th European Conference, ECMFA 2017, Held as Part of STAF 2017, Marburg,
Germany, July 19-20, 2017, Proceedings (2017)

5. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling step-wise refinement. In:
Proceedings of the 25th International Conference on Software Engineering, ICSE
’03, pp. 187–197. IEEE Computer Society, Washington, DC, USA (2003). URL
http://dl.acm.org/citation.cfm?id=776816.776839

6. Berger, T., Rublack, R., Nair, D., Atlee, J.M., Becker, M., Czarnecki, K., Wą-
sowski, A.: A survey of variability modeling in industrial practice. In: Proceed-
ings of the Seventh International Workshop on Variability Modelling of Software-
intensive Systems, VaMoS ’13, pp. 7:1–7:8. ACM, New York, NY, USA (2013).
DOI 10.1145/2430502.2430513. URL http://doi.acm.org/10.1145/2430502.2430513

7. Biggerstaff, T.J., Mitbander, B.G., Webster, D.: The concept assignment problem
in program understanding. In: Proceedings of the 15th International Conference on

34 Lorena Arcega, Jaime Font, Øystein Haugen and Carlos Cetina

Software Engineering, ICSE ’93, pp. 482–498. IEEE Computer Society Press, Los
Alamitos, CA, USA (1993). URL http://dl.acm.org/citation.cfm?id=257572.257679

8. Blei, D.M., Ng, A.Y., Jordan, M.I., Lafferty, J.: Latent dirichlet allocation. Journal
of Machine Learning Research 3(4/5), 993 – 1022 (2003)

9. Chastek, G., McGregor, J.: Guidelines for developing a product line production
plan. Tech. Rep. CMU/SEI-2002-TR-006, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA (2002)

10. Chawla, I., Singh, S.K.: Performance evaluation of vsm and lsi models to determine
bug reports similarity. In: 2013 Sixth International Conference on Contemporary
Computing (IC3), pp. 375–380 (2013). DOI 10.1109/IC3.2013.6612223

11. Chen, K., Rajlich, V.: Case study of feature location using dependence graph. In:
Proceedings IWPC 2000. 8th International Workshop on Program Comprehension,
pp. 241–247 (2000). DOI 10.1109/WPC.2000.852498

12. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns, 3rd

edn. SEI Series in Software Engineering. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA (2001)

13. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and
Applications. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA
(2000)

14. Czarnecki, K., Wasowski, A.: Feature diagrams and logics: There and back again.
In: 11th International Software Product Line Conference (SPLC 2007), pp. 23–34
(2007). DOI 10.1109/SPLINE.2007.24

15. Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York
(1991)

16. Dit, B., Revelle, M., Gethers, M., Poshyvanyk, D.: Feature location in source code:
a taxonomy and survey. Journal of Software: Evolution and Process 25(1), 53–95
(2013). DOI 10.1002/smr.567

17. Donohoe, P.: Proceedings of the 1st International Software Product Lines Confer-
ence (SPLC 2000). ISBN 0-7923-7940-3. Denver, Colorado, USA (2000)

18. Duszynski, S., Knodel, J., Becker, M.: Analyzing the source code of multiple soft-
ware variants for reuse potential. In: 2011 18th Working Conference on Reverse
Engineering, pp. 303–307 (2011). DOI 10.1109/WCRE.2011.44

19. Eaddy, M., Aho, A., Antoniol, G., Gueheneuc, Y.G.: Cerberus: Tracing requirements
to source code using information retrieval, dynamic analysis, and program analy-
sis. In: Program Comprehension, 2008. ICPC 2008. The 16th IEEE International
Conference on, pp. 53–62 (2008). DOI 10.1109/ICPC.2008.39

20. Eisenbarth, T., Koschke, R., Simon, D.: Locating features in source code.
IEEE Transactions on Software Engineering 29(3), 210–224 (2003). DOI
10.1109/TSE.2003.1183929. URL http://dx.doi.org/10.1109/TSE.2003.1183929

21. Eisenberg, A., De Volder, K.: Dynamic feature traces: finding features in unfamiliar
code. In: Software Maintenance, 2005. ICSM’05. Proceedings of the 21st IEEE
International Conference on, pp. 337–346 (2005)

22. Font, J., Arcega, L., Haugen, Ø., Cetina, C.: Building software product lines
from conceptualized model patterns. In: Proceedings of the 19th Interna-
tional Conference on Software Product Line, SPLC 2015, Nashville, TN, USA,
July 20-24, 2015, pp. 46–55 (2015). DOI 10.1145/2791060.2791085. URL
https://doi.org/10.1145/2791060.2791085

23. Font, J., Arcega, L., Haugen, Ø., Cetina, C.: Feature location in models through a
genetic algorithm driven by information retrieval techniques. In: Proceedings of the
ACM/IEEE 19th International Conference on Model Driven Engineering Languages
and Systems, MODELS ’16, pp. 272–282. ACM, New York, NY, USA (2016). DOI
10.1145/2976767.2976789. URL http://doi.acm.org/10.1145/2976767.2976789

24. Gethers, M., Oliveto, R., Poshyvanyk, D., Lucia, A.D.: On integrating orthogonal
information retrieval methods to improve traceability recovery. In: IEEE 27th Inter-
national Conference on Software Maintenance, ICSM 2011, Williamsburg, VA, USA,

1 Feature Location in Models (FLiM): Design time and Runtime 35

September 25-30, 2011, pp. 133–142 (2011). DOI 10.1109/ICSM.2011.6080780. URL
https://doi.org/10.1109/ICSM.2011.6080780

25. Harman, M.: Why the virtual nature of software makes it ideal for search
based optimization. In: Proceedings of the 13th International Conference on
Fundamental Approaches to Software Engineering, FASE’10, pp. 1–12. Springer-
Verlag, Berlin, Heidelberg (2010). DOI 10.1007/978-3-642-12029-9. URL
http://dx.doi.org/10.1007/978-3-642-12029-9

26. Haugen, Ø., Møller-Pedersen, B., Oldevik, J., Olsen, G.K., Svendsen, A.: Adding
standardized variability to domain specific languages pp. 139–148 (2008). DOI
10.1109/SPLC.2008.25. URL https://doi.org/10.1109/SPLC.2008.25

27. Hayes, J.H., Dekhtyar, A., Sundaram, S.K.: Advancing candidate link generation
for requirements tracing: the study of methods. IEEE Transactions on Software
Engineering 32(1), 4–19 (2006). DOI 10.1109/TSE.2006.3

28. Hindle, A., Barr, E.T., Su, Z., Gabel, M., Devanbu, P.: On the naturalness of
software. In: Proceedings of the 34th International Conference on Software En-
gineering, ICSE ’12, pp. 837–847. IEEE Press, Piscataway, NJ, USA (2012). URL
http://dl.acm.org/citation.cfm?id=2337223.2337322

29. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-oriented do-
main analysis (foda) feasibility study. Tech. Rep. CMU/SEI-90-TR-021, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA (1990). URL
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11231

30. Kästner, C., Dreiling, A., Ostermann, K.: Variability mining: Consistent semi-
automatic detection of product-line features. IEEE Transactions on Software Engi-
neering 40(1), 67–82 (2014). DOI 10.1109/TSE.2013.45

31. Kästner, C., Giarrusso, P.G., Rendel, T., Erdweg, S., Ostermann, K., Berger, T.:
Variability-aware parsing in the presence of lexical macros and conditional com-
pilation. In: Proceedings of the 2011 ACM International Conference on Object
Oriented Programming Systems Languages and Applications, OOPSLA ’11, pp.
805–824. ACM, New York, NY, USA (2011). DOI 10.1145/2048066.2048128. URL
http://doi.acm.org/10.1145/2048066.2048128

32. Kästner, C., Ostermann, K., Erdweg, S.: A variability-aware module system.
In: Proceedings of the ACM International Conference on Object Oriented Pro-
gramming Systems Languages and Applications, OOPSLA ’12, pp. 773–792.
ACM, New York, NY, USA (2012). DOI 10.1145/2384616.2384673. URL
http://doi.acm.org/10.1145/2384616.2384673

33. Koschke, R., Quante, J.: On dynamic feature location. In: Proceedings of the 20th
IEEE/ACM International Conference on Automated Software Engineering, ASE
’05, pp. 86–95. ACM, New York, NY, USA (2005). DOI 10.1145/1101908.1101923.
URL http://doi.acm.org/10.1145/1101908.1101923

34. Krueger, C.W.: Easing the transition to software mass customization. In: Revised
Papers from the 4th International Workshop on Software Product-Family Engi-
neering, PFE ’01, pp. 282–293. Springer-Verlag, London, UK, UK (2002). URL
http://dl.acm.org/citation.cfm?id=648114.748909

35. Kuhn, A., Ducasse, S., Gı́rba, T.: Semantic clustering: Identifying topics in source
code. Inf. Softw. Technol. 49(3), 230–243 (2007). DOI 10.1016/j.infsof.2006.10.017.
URL http://dx.doi.org/10.1016/j.infsof.2006.10.017

36. Landauer, T.K., Foltz, P.W., Laham, D.: An introduction to latent semantic analy-
sis. Discourse Processes 25(2-3), 259–284 (1998). DOI 10.1080/01638539809545028

37. van der Linden, F. (ed.): Software Product-Family Engineering, 4th International
Workshop, PFE 2001, Bilbao, Spain, October 3-5, 2001, Revised Papers, Lecture
Notes in Computer Science, vol. 2290. Springer (2002). DOI 10.1007/3-540-47833-7.
URL https://doi.org/10.1007/3-540-47833-7

38. Liu, D., Marcus, A., Poshyvanyk, D., Rajlich, V.: Feature location via information
retrieval based filtering of a single scenario execution trace. In: Proceedings of

36 Lorena Arcega, Jaime Font, Øystein Haugen and Carlos Cetina

the Twenty-second IEEE/ACM International Conference on Automated Software
Engineering, ASE ’07, pp. 234–243. ACM, New York, NY, USA (2007). DOI
10.1145/1321631.1321667. URL http://doi.acm.org/10.1145/1321631.1321667

39. Liu, D., Marcus, A., Poshyvanyk, D., Rajlich, V.: Feature location via information
retrieval based filtering of a single scenario execution trace. In: Proceedings of
the Twenty-second IEEE/ACM International Conference on Automated Software
Engineering, ASE ’07, pp. 234–243. ACM, New York, NY, USA (2007). DOI
10.1145/1321631.1321667. URL http://doi.acm.org/10.1145/1321631.1321667

40. Lucia, A., Penta, M., Oliveto, R., Panichella, A., Panichella, S.: Labeling
source code with information retrieval methods: An empirical study. Empirical
Softw. Engg. 19(5), 1383–1420 (2014). DOI 10.1007/s10664-013-9285-5. URL
http://dx.doi.org/10.1007/s10664-013-9285-5

41. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press, New York, NY, USA (2008)

42. Marcus, A., Sergeyev, A., Rajlich, V., Maletic, J.: An information retrieval approach
to concept location in source code. In: Proceedings of the 11th Working Conference
on Reverse Engineering, pp. 214–223 (2004). DOI 10.1109/WCRE.2004.10

43. Martinez, J., Ziadi, T., Bissyandé, T.F., Klein, J., l. Traon, Y.: Automating the
extraction of model-based software product lines from model variants (t). In: Auto-
mated Software Engineering (ASE), 2015 30th IEEE/ACM International Conference
on, pp. 396–406 (2015). DOI 10.1109/ASE.2015.44

44. Martinez, J., Ziadi, T., Bissyandé, T.F., Le Traon, Y.: Bottom-up adoption of soft-
ware product lines: A generic and extensible approach. In: Proceedings of the 19th
International Software Product Line Conference, SPLC ’15. Nashville, TN, USA.
(2015)

45. McIlroy, M.D.: Mass-produced software components. In: J.M. Buxton, P. Naur,
B. Randell (eds.) Software Engineering Concepts and Techniques (1968 NATO Con-
ference of Software Engineering), pp. 88–98. NATO Science Committee (1968)

46. Nadi, S., Berger, T., Kästner, C., Czarnecki, K.: Mining configuration con-
straints: Static analyses and empirical results. In: Proceedings of the 36th
International Conference on Software Engineering, ICSE 2014, pp. 140–151.
ACM, New York, NY, USA (2014). DOI 10.1145/2568225.2568283. URL
http://doi.acm.org/10.1145/2568225.2568283

47. Niu, N., Easterbrook, S.: On-demand cluster analysis for product line functional
requirements. In: 2008 12th International Software Product Line Conference, pp.
87–96 (2008). DOI 10.1109/SPLC.2008.11

48. Northrop, L.M.: Sei’s software product line tenets. IEEE Softw. 19(4), 32–40 (2002).
DOI 10.1109/MS.2002.1020285. URL http://dx.doi.org/10.1109/MS.2002.1020285

49. OMG: Common variability language (CVL), OMG revised submission 2012. OMG
document: ad/2012-08-05 (2012)

50. Parnas, D.L.: On the design and development of program families. IEEE
Trans. Softw. Eng. 2(1), 1–9 (1976). DOI 10.1109/TSE.1976.233797. URL
http://dx.doi.org/10.1109/TSE.1976.233797

51. Pérez, F., Font, J., Arcega, L., Cetina, C.: Collaborative feature location in models
through automatic query expansion. Autom. Softw. Eng. 26(1), 161–202 (2019).
DOI 10.1007/s10515-019-00251-9. URL https://doi.org/10.1007/s10515-019-00251-
9

52. Pohl, K., Böckle, G., Linden, F.J.v.d.: Software Product Line Engineering: Foun-
dations, Principles and Techniques. Springer-Verlag New York, Inc., Secaucus, NJ,
USA (2005)

53. Poshyvanyk, D., Gueheneuc, Y.G., Marcus, A., Antoniol, G., Rajlich, V.: Feature lo-
cation using probabilistic ranking of methods based on execution scenarios and infor-
mation retrieval. IEEE Transactions on Software Engineering 33(6), 420–432 (2007).
DOI 10.1109/TSE.2007.1016. URL http://dx.doi.org/10.1109/TSE.2007.1016

1 Feature Location in Models (FLiM): Design time and Runtime 37

54. Rahman, M.M., Chakraborty, S., Ray, B.: Which similarity metric to use for soft-
ware documents?: A study on information retrieval based software engineering tasks.
In: Proceedings of the 40th International Conference on Software Engineering: Com-
panion Proceeedings, ICSE ’18, pp. 335–336. ACM, New York, NY, USA (2018).
DOI 10.1145/3183440.3194997. URL http://doi.acm.org/10.1145/3183440.3194997

55. Revelle, M., Dit, B., Poshyvanyk, D.: Using data fusion and web mining to support
feature location in software. In: IEEE 18th International Conference on Program
Comprehension (ICPC), pp. 14–23 (2010). DOI 10.1109/ICPC.2010.10

56. Revelle, M., Dit, B., Poshyvanyk, D.: Using data fusion and web mining to support
feature location in software. In: Program Comprehension (ICPC), 2010 IEEE 18th
International Conference on, pp. 14–23 (2010). DOI 10.1109/ICPC.2010.10

57. Rubin, J., Chechik, M.: A survey of feature location techniques. In: I. Reinhartz-
Berger, A. Sturm, T. Clark, S. Cohen, J. Bettin (eds.) Domain Engineering, pp.
29–58. Springer Berlin Heidelberg (2013). DOI 10.1007/978-3-642-36654-3 2

58. Salman, H.E., Seriai, A., Dony, C.: Feature location in a collection of product vari-
ants: Combining information retrieval and hierarchical clustering. In: The 26th In-
ternational Conference on Software Engineering and Knowledge Engineering, Hyatt
Regency, Vancouver, BC, Canada, July 1-3, 2013., pp. 426–430 (2014)

59. Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-
Hill, Inc., New York, NY, USA (1986)

60. She, S., Lotufo, R., Berger, T., Wasowski, A., Czarnecki, K.: Reverse engineering
feature models. In: Proceedings of the 33rd International Conference on Software
Engineering, ICSE ’11, pp. 461–470. ACM, New York, NY, USA (2011). DOI
10.1145/1985793.1985856. URL http://doi.acm.org/10.1145/1985793.1985856

61. van der Spek, P., Klusener, S., van de Laar, P.: Complementing Software Documen-
tation, pp. 37–51. Springer Netherlands, Dordrecht (2011). DOI 10.1007/978-90-
481-9849-8 3

62. Stehman, S.V.: Selecting and interpreting measures of the-
matic classification accuracy. Remote Sensing of Environment
62(1), 77–89 (1997). DOI 10.1016/S0034-4257(97)00083-7. URL
http://www.sciencedirect.com/science/article/pii/S0034425797000837

63. Svendsen, A., Zhang, X., Lind-Tviberg, R., Fleurey, F., Haugen, Ø., Møller-
Pedersen, B., Olsen, G.K.: Developing a software product line for train control:
A case study of cvl. In: Proceedings of the 14th International Conference on Soft-
ware Product Lines: Going Beyond, SPLC’10, pp. 106–120. Springer-Verlag, Berlin,
Heidelberg (2010). URL http://dl.acm.org/citation.cfm?id=1885639.1885650

64. Thomas, S.W., Hassan, A.E., Blostein, D.: Mining Unstructured Software Reposi-
tories, pp. 139–162. Springer Berlin Heidelberg, Berlin, Heidelberg (2014). DOI
10.1007/978-3-642-45398-4

65. Wilde, N., Scully, M.C.: Software reconnaissance: Mapping program features to code.
Journal of Software Maintenance 7(1), 49–62 (1995)

66. Wong, W.E., Gokhale, S.S., Horgan, J.R., Trivedi, K.S.: Locating program features
using execution slices. In: Proceedings 1999 IEEE Symposium on Application-
Specific Systems and Software Engineering and Technology. ASSET’99 (Cat.
No.PR00122), pp. 194–203 (1999). DOI 10.1109/ASSET.1999.756769

67. Zhang, X., Haugen, Ø., Møller-Pedersen, B.: Model comparison to synthesize a
model-driven software product line. In: 15th International Software Product Line
Conference (SPLC), pp. 90–99 (2011). DOI 10.1109/SPLC.2011.24

