
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, FEBRUARY 2023 1

Studying the Influence and Distribution of the
Human Effort in a Hybrid Fitness Function for

Search-Based Model-Driven Engineering
Rodrigo Casamayor, Carlos Cetina, Óscar Pastor, Francisca Pérez

Abstract—Search-Based Software Engineering (SBSE) offers solutions that efficiently explore large complex problem spaces. To obtain
more favorable solutions, human participation in the search process is needed. However, humans cannot handle the same number of
solutions as an algorithm. We propose the first hybrid fitness function that combines human effort with human simulations. Human effort
refers to human participation for providing evaluations of candidate solutions during the search process, whereas human simulations
refer to recreations of a scenario in a specific situation for automatically obtaining the evaluation of candidate solutions. We also propose
three variants for the hybrid fitness function that vary in the distribution of human effort in order to study whether the variants influence
the performance in terms of solution quality. Specifically, we leverage our hybrid fitness function to locate bugs in software models for the
video games of game software engineering. Video games are a fertile domain for these hybrid functions because simulated players are
naturally developed as part of the video games (e.g., bots in First-Person Shooters). Our evaluation is at the scale of industrial settings
with a commercial video game (Play Station 4 and Steam) and 29 professional video game developers. Hybridizing the fitness function
outperforms the results of the best baseline by 33.46% in F-measure. A focus group confirms the acceptance of the hybrid fitness
function. Hybridizing the fitness function significantly improves the bug localization process by reducing the amount of tedious manual
work and by minimizing the number of bugs that go unnoticed. Furthermore, the variant that obtains the best results is a counter-intuitive
result that was under the radar of the interactive SBSE community. These results can help not only video game developers to locate
bugs, but they can also inspire SBSE researchers to bring hybrid fitness functions to other software engineering tasks.

Index Terms—Interactive SBSE, Search-Based Software Engineering, Bug Localization, Video Games, Model-Driven Engineering

✦

1 INTRODUCTION

Search-Based Software Engineering (SBSE) addresses
problems throughout the Software Engineering lifecycle
(from requirements to maintenance) using search-based
algorithms. Increasingly, the community has been paying
more attention to SBSE [1] since it offers automated or semi-
automated solutions that efficiently explore large complex
problem spaces. For example, SBSE can be used to locate
model fragments from an input query in a family of soft-
ware products that has been developed and maintained
by a company over years [2]. Only three key ingredients
are needed to apply SBSE: 1) a representation (encoding)
of the problem (e.g., a bit string); 2) the definition of the
set of operations (e.g., mutation); and 3) the definition of
the fitness function (e.g., similarity to the input query).
Then, candidate solutions (which are encoded following
the representation chosen) are evolved (by applying the
operations) and are assessed (by the fitness function) in an
iterative process until a stop condition is met (e.g., a time
slot).

Although SBSE reformulates software engineering prob-
lems as search problems, some contexts require the human’s

• R. Casamayor, C. Cetina and F. Pérez are with the SVIT Research
Group of Universidad San Jorge, Zaragoza, Spain. E-mail: {rcasamayor,
ccetina, mfperez}@usj.es. C.Cetina is also with University College Lon-
don, London, United Kingdom. Ó. Pastor is with the Research Center
on Software Production Methods (PROS) of Universitat Politècnica de
València, Valencia, Spain. E-mail: {opastor}@dsic.upv.es

Manuscript received February X, 2023; revised .

subjective evaluation in the search process in order to obtain
the most favorable solutions that alleviate some limitations
of SBSE techniques (e.g., vocabulary mismatch and tacit
knowledge). This refers to interactive SBSE (iSBSE) [3]. For
example, Wang et al. [4] suggest that there are complex
approaches that are partially successful on multiple fault
problems that need more human intervention. Marculescu
et al. [5] involve a human in the fitness function when the
optimization goal depends on ”human preference, intuition,
emotion, and psychological aspects”. Feldt [6] emphasizes
the importance of collaboration between a human and a sys-
tem in identifying and comprehending a bug’s root cause.
Most previous iSBSE works [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21], [22] interleave the
human’s subjective evaluation with the evaluation that is
performed by the algorithm until the stop condition is met.
Although other works use the human’s subjective evalua-
tion differently (before [23], [24], [25], [26] or after [27], [28],
[29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [39] the
algorithm), none of these iSBSE works compare whether a
different distribution of the human evaluations improves
the quality of the solutions.

For the first time, our previous work [17] completely
replaced the fitness function with a human for Search-Based
Model-Driven Engineering (SBMDE), specifically, for locat-
ing features in software models. Software models are a more
favorable context for humans than code because of their
higher abstraction. Although involving a human as fitness

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, FEBRUARY 2023 2

function (HaFF) improves the results, human participation
must be limited in order to prevent fatigue [40]. All in
all, humans are not immune to fatigue, so logically they
cannot handle and process the same number of evaluation
requests as an algorithm. According to Takagi’s [41] recom-
mendations for avoiding human fatigue, both the size of
the population to be evaluated and the number of iterations
should be 10 or 20.

For more demanding problems (e.g., large-scale software
systems) where human fatigue may appear due to the high
number of human evaluations that are needed to locate a
solution, it is necessary to combine the effort of an algorithm
that automatically obtains the best solution possible with the
human. Hybridizing the fitness function by exploiting both
the algorithm and the human as fitness function in SBMDE
can enrich the solution quality. Hence, in this work, we
propose a hybrid fitness function that is the first to combine
human effort with human simulations. On the one hand,
human effort refers to human participation for providing
manual evaluations of candidate solutions during the search
process. On the other hand, human simulations refer to
recreations of a scenario in a specific situation for auto-
matically obtaining the evaluation of candidate solutions.
Building a simulated human may be a bigger challenge
than the task at hand. However, in the domain of video
games that Game Software Engineering (GSE) tackles [42],
there are human simulations that have been built as part
of the development of the video game. Some examples of
human simulations in video games are: the rival drivers in
a racing game, the bots in a First-Person Shooter (FPS), or
the generals of the enemy troops in a Real-Time Strategy
(RTS).

In this work, we study the influence of hybridizing the
fitness function in terms of solution quality in the con-
text of Bug Localization (BL) in software models for GSE.
Moreover, we propose three variants of the hybrid fitness
function in order to study the influence in the quality of the
solution of different ways of distributing the human effort
during BL: Variant 1 interleaves the assessment between the
human and the algorithm; Variant 2 relies on the human
assessment first, and then the assessment of the algorithm;
and Variant 3 relies on the assessment the algorithm first,
and then the human assessment.

In the evaluation, 29 professional video game developers
were involved, acting as the human component of the fitness
function with the objective of locating 29 bugs in Kromaia,
which is a commercial video game about flying and shoot-
ing with a spaceship in a three-dimensional space1. Kromaia
was released on PC, PlayStation and translated to eight
different languages.

To assess the performance of our hybrid fitness func-
tion in terms of solution quality, we apply metrics (recall,
precision, and F-measure) that have been widely accepted
by the software engineering community in the domain of
evolutionary algorithms [43]. In order to put the perfor-
mance of the variants into perspective, we set two baselines
that include: only using the human as fitness function as
proposed in [17], and only using an algorithmic fitness

1. See the official Playstation trailer to learn more about Kromaia:
https://youtu.be/EhsejJBp8Go

function as proposed in [44]. In order to compare the results
of the variants with the baselines, we perform a statistical
analysis (following the guidelines by Arcuri and Briand [45])
in order to provide quantitative evidence of the impact of
the results and to show that this impact is significant.

The results show that all of the variants of our hybrid
fitness function significantly outperformed the baselines in
F-measure. Specifically, Variant 3 (the algorithm assessments
first and the human afterwards) was the one that yielded
the best results, improving the results of the best baseline
(only using the human as fitness function) by 40.3% in
recall, 26.46% in precision, and 33.46% in F-measure. All of
the comparisons show significant differences except when
the recall of Variant 1 (interleaving the assessment between
the human and the algorithm) and Variant 2 (the human
assessment first and the algorithm afterwards) is compared
to the baseline that only uses the algorithm as fitness
function. The significant improvement in precision and F-
measure in all of the comparisons comes from the influence
of the human on the unattended algorithm. According to
the magnitude scales of the Cliff Delta values [46], the
magnitude of improvement using Variant 3 instead of the
baselines can be considered large.

To the best of our knowledge, this is the first SBMDE
work that empowers humans with a hybrid fitness function
that combines human assessment with simulations during
BL in GSE and which obtains more favorable solutions than
the baselines at an industrial scale. Specifically, we claim
that:

• Our hybrid fitness function significantly improves
the results of BL compared to the baselines. Further-
more, we created a focus group that confirms the
acceptance of using a hybrid function in the context
of BL for GSE. Our results can also motivate other
researchers to use a hybrid fitness function to benefit
other software maintenance activities.

• The variant of the hybrid fitness function that obtains
the best results distributes all of the effort of the al-
gorithm at the beginning and the human afterwards
(Variant 3). This result is counter-intuitive from an
initial survey that we made. The group of video
game developers responded that Variant 1 would
obtain the best results (interleaving simulations au-
tomatically produced by the evolutionary algorithm
with human evaluations).

• Previous works that have involved the human in
the fitness function (e.g., the human refines the al-
gorithm’s solution [21]) interleave the human partic-
ipation and the algorithm execution. These works do
not consider other approaches to distribute human
effort. Our work reveals that interleaving is not the
approach that achieves the best results. We acknowl-
edge that our results are obtained in a different con-
text of simulation-human-based hybrid fitness func-
tion, but our results might motivate other researchers
to reconsider the decision of using interleaving as the
default approach.

• The current shortage of bug-localization approaches
in video games results in longer development times,
delayed deadlines, and postponed release dates. Hy-

https://youtu.be/EhsejJBp8Go

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, FEBRUARY 2023 3

bridizing the fitness function significantly improves
the BL process by reducing the amount of tedious
manual work and minimizing the number of bugs
that go unnoticed.

The remainder of this paper is organized as follows.
Section 2 introduces bug localization in the GSE domain.
Section 3 reviews the related work. Section 4 describes the
variants that we propose for hybridizing and distributing
human effort as fitness function. Section 5 presents the eval-
uation. The results are reported in Section 6 and discussed in
Section 7. Section 8 describes the threats to validity. Finally,
Section 9 concludes the paper.

2 BACKGROUND

This section introduces how SBMDE is used to locate bugs
in the software models of a commercial video game by
leveraging game simulations. In this context, we also mo-
tivate the need for an approach that involves a human
in the evaluation of candidate solutions. This section also
introduces iSBSE.

2.1 SBMDE for locating bugs in a commercial video
game
Our previous work [44] uses SBMDE to find the model
fragments that are the source of bugs in a commercial video
game (Kromaia). The content of Kromaia is specified using
the Shooter Definition Model Language (SDML), which is
a Domain Specific Language (DSL) model for the video
game domain [47]. This DSL adheres to the fundamental
principles of MDE using models for Software Engineering.
The models are built with SDML and interpreted at runtime.

SDML defines aspects that are included in video game
entities such as bosses, which must be defeated in order
to complete a level. The definition of a boss includes: the
anatomical structure (including which parts are used in it,
their physical characteristics, and how they are connected
to one another); the quantity and distribution of vulnerable
parts, weapons, and defenses in the structure/body of the
character; and the movement behaviors associated to the
whole body or its parts. This modeling language includes
concepts such as hulls, links, weak points, weapons, and AI
components.

Fig. 1 shows a simplified example of the graphical rep-
resentation of a boss and a player. For further informa-
tion, the following URL contains examples of the models,
the metamodel, and an online visualizer that displays the
models as they would appear in the Kromaia video game:
https://svit.usj.es/tse23/bl-in-mgse.

To locate the bugs in Kromaia, our previous work [44]
uses game simulations. The simulations mimic a duel be-
tween a boss and an algorithm that can behave like a human
player (i.e., the simulated player). During a simulation, the
boss acts in accordance with the anatomy, behavior, and
attack/defense balance that are included in its model, trying
to defeat the simulated player, whereas the simulated player
confronts the boss in order to destroy the available weak
points. Both the boss and the simulated player try to win
the fight, avoid draw/tie games, and make sure there is a
winner in the simulation.

Simulation with an explorer player

Simulation with a conservative player

Steps in
the hull Order Remaining

steps Direction

15 1 -5 1

...

...

Steps in
the hull Order Remaining

steps Direction

30 3 -10 -1

...

...

Individual 1

Individual 2

Player

Boss

Boss

Player

Player movement AttackLegend

Fig. 1. Examples of simulations between a player and boss.

Fig. 1 shows two examples of simulations. Each simula-
tion emulates the behavior of a player when the battle with
the boss occurs. The algorithm can fight a boss by applying
different strategies. The fighting strategy can therefore be
defined by parametrizing the algorithm. Thus, different
player profiles can be formed. For example, the parameters
can define how many steps the simulated player takes in
each hull of the boss, the order in which the hulls are
visited following different patterns (one by one, visit one
skip one, visit one skip three...), if the player requires all of
the remaining steps in the hull when he/she is attacked by
it, or the direction used to visit the hulls of the boss (forward
or backward).

Each example in Fig. 1 corresponds to different fighting
strategies applied to a simulation. In both cases, the triangle
corresponds to the simulated player, the set of connected
circles and lines correspond to the boss, the dashed and
dotted lines correspond to the path that follows the sim-
ulated player in his/her strategy to defeat the boss, and the
crosses correspond to the attacks that the simulated player
performs to the hulls. The upper example of Fig. 1 shows
the simulation of a conservative player in which the player
attacks each hull one at a time. The lower example of the
figure shows the simulation of an explorer player in which

https://svit.usj.es/tse23/bl-in-mgse

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, FEBRUARY 2023 4

the player attacks the last hull of the boss, skips two hulls,
and then attacks the following hulls up to the head of the
boss.

Fig. 1 shows a set of parameters applied to a simulation
for each example. Each set of parameters defines a candidate
solution (individual). Each individual is encoded as a vector
representation whose size corresponds to the number of pa-
rameters (dimensions) in the vector. The simulation param-
eters were provided by the developers based on the analysis
of battles between real players and bosses. Furthermore,
a scenario is defined as the union between the simulation
parameters (i.e., duel settings), the agent parameters (i.e.,
the parameters that define the behavior of a player in the
simulation), and the software model (e.g., the model of
the boss) to be analyzed for potential bug localization. The
fitness function of our previous SBMDE work [44] rewards
simulations that are the farthest from what is expected (i.e.,
the further from what is expected, the more relevant when
it comes to locating a bug).

To obtain more favorable solutions, the human should
be involved in the search process as previous works have
detected [4], [5], [6], [17]. However, human participation
must be limited to prevent fatigue from demanding prob-
lems where the humans cannot handle the same number
of candidate solutions as an algorithm [17], [41]. For these
demanding problems, we propose to study the influence
and distribution of human effort in a hybrid fitness function
during the location of model fragments that are sources of
bugs.

2.2 Interactive SBSE

Interactive SBSE (iSBSE) has been formalized as an emergent
subarea within SBSE that promotes active human effort
by providing intermediate results for inspection by the
humans. Human feedback is later integrated into either
the problem formulation or the search process so that the
algorithm progressively adapts the search to the human’s
preferences [18], [41]. A recent survey on iSBSE [3] acknowl-
edges that any attempt to involve the human in the search
process with the aim of adapting the results to the human’s
preferences can be viewed as iSBSE.

The use of interactivity during the search process has
shown more favorable solutions than fully automated solu-
tions since some limitations of SBSE techniques (e.g., vocab-
ulary mismatch and tacit knowledge) are alleviated [3], [4],
[5], [6], [17].

Nevertheless, iSBSE also poses new challenges like deal-
ing with the inherent human fatigue. Table 1 shows the
strategies for addressing human fatigue of the 33 iSBSE
works, which are also compared in the next section (related
work). Most of the iSBSE works (81.82%) do not report
strategies for addressing human fatigue. Specifically, 57.58%
of the iSBSE works do not explicitly mention fatigue (“-” in
Column 2 of the table), whereas 24.24% of the works ex-
plicitly mention that they do not limit the time or iterations
for human evaluations (“No limit” in Column 2 of the table).
The rest of the iSBSE works (18.18%) limit the human partic-
ipation with a set of interaction-related parameters to adapt
the human participation to their needs (“Parameter Limit:
parameter” in Column 2 of the table). These parameters limit

the number of interactions, evaluations, or the time that the
human can spend evaluating. The previous parameters limit
the human participation to avoid fatigue.

TABLE 1
Strategies for addressing human fatigue in iSBSE related work

Strategy for addressing fatigue

Ghannem et al. [7] –
Amal et al. [8] –
Lin et al. [27] –
Yue et al. [23] –
Van Rooijen and Hamann [28] –
Lu et al. [24] –
Debreceni et al. [29] –
Batot and Sahraoui [30] No limit
Fleck et al. [31] –
Martı́nez et al. [9] Parameter Limit: interactions
Gómez-Abajo et al. [32] –
Calinescu et al. [33] –
Araujo et al. [10] No limit
Kessentini et al. [11] No limit
Martı́nez et al. [12] –
Marculescu et al. [13] –
Kolchin [34] –
Filho et al. [25] Parameter Limit: evaluations
Bindewald et al. [14] Parameter Limit: interactions
Procter et al. [35] –
Le Calvar et al. [36] –
Zubcoff et al. [37] –
Alkhazi et al. [38] –
Alkhazi et al. [39] No limit
Silva et al. [26] –
Alizadeh et al. [15] No limit
Kessentini et al. [16] No limit
Pérez et al. [17] Parameter Limit: interactions

and evaluations
Ramı́rez et al. [18] Parameter Limit: time
Kuviatkovski et al. [19] No limit
Delgado-Pérez et al. [20] Parameter Limit: interactions
Kessentini et al. [21] No limit
Freire et al. [22] –

As in the previous works, we also limit the number of
human evaluations and iterations in this work to address
human fatigue since humans cannot evaluate the same
solutions as an algorithm. To set this limit, we follow Tak-
agi’s [41] recommendations, which are that both the size of
the population to be evaluated and the number of iterations
should be 10 or 20. Therefore, we address fatigue as in
previous works (limiting the human participation), but, in
this work, we focus on studying the influence of different
ways of distributing the human effort during BL on the
quality of the solution.

3 RELATED WORK

Table 2 shows the related work, which is organized in two
main parts in order to take into account the topics that are
covered in the paper (BL and human effort in a hybrid
fitness function). Also, the lower part of the table includes
a row to compare the related work with our work. The
columns of the table show: the related work (Column 1); if
the work includes human interaction before, during, or after
of the search process (Column 2); if the human participation
is done during the search process in the fitness function

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, FEBRUARY 2023 5

by assessing candidate solutions (Column 3); if the fitness
function is a hybrid combining a simulation and the effort of
a human (Column 4); whether or not the distribution of the
human effort in the fitness function is studied (Column 5);
and if the evaluation performed explicitly mentions that
industry is involved (Column 6). In each cell of the table, we
use either a check mark (to indicate that the work explicitly
addresses what is mentioned in the column) or a cross mark
otherwise.

TABLE 2
Related work in bug localization and iSBSE

In the fitness function

Human
interaction

Human
assessment

Hybrid: simulation
and human

Studies human
effort distribution

Industrial
scale

Burgueño et al. [48] ✗ ✗ ✗ ✗ ✗
Iftikhar et al. [49] ✗ ✗ ✗ ✗ ✓
Sánchez-Cuadrado et al. [50] ✗ ✗ ✗ ✗ ✗
Sánchez-Cuadrado et al. [51] ✗ ✗ ✗ ✗ ✗
Troya et al. [52] ✓ ✗ ✗ ✗ ✗
Ariyurek et al. [53] ✗ ✗ ✗ ✗ ✗
Zheng et al. [54] ✗ ✗ ✗ ✗ ✓
Ariyurek et al. [55] ✗ ✗ ✗ ✗ ✗
Cheng et al. [56] ✗ ✗ ✗ ✗ ✗
Zhang et al. [57] ✗ ✗ ✗ ✗ ✗
Arcega et al. [58] ✓ ✗ ✗ ✗ ✓
Ferdous et al. [59] ✗ ✗ ✗ ✗ ✗
Quach et al. [60] ✗ ✗ ✗ ✗ ✗
Casamayor et al. [44] ✗ ✗ ✗ ✗ ✓
Ciborowska et al. [61] ✗ ✗ ✗ ✗ ✓
Khanfir [62] ✗ ✗ ✗ ✗ ✓
Liang et al. [63] ✗ ✗ ✗ ✗ ✓
Tufano et al. [64] ✗ ✗ ✗ ✗ ✓

Ghannem et al. [7] ✓ ✓ ✗ ✗ ✗
Amal et al. [8] ✓ ✗ ✗ ✗ ✗
Lin et al. [27] ✓ ✗ ✗ ✗ ✗
Yue et al. [23] ✓ ✗ ✗ ✗ ✗
Van Rooijen and Hamann [28] ✓ ✗ ✗ ✗ ✗
Lu et al. [24] ✓ ✗ ✗ ✗ ✗
Debreceni et al. [29] ✓ ✗ ✗ ✗ ✓
Batot and Sahraoui [30] ✓ ✗ ✗ ✗ ✗
Fleck et al. [31] ✓ ✗ ✗ ✗ ✗
Martı́nez et al. [9] ✓ ✓ ✗ ✗ ✗
Gómez-Abajo et al. [32] ✓ ✗ ✗ ✗ ✗
Calinescu et al. [33] ✓ ✗ ✗ ✗ ✗
Araujo et al. [10] ✓ ✓ ✗ ✗ ✓
Kessentini et al. [11] ✓ ✓ ✗ ✗ ✗
Martı́nez et al. [12] ✓ ✓ ✗ ✗ ✗
Marculescu et al. [13] ✓ ✓ ✗ ✗ ✓
Kolchin [34] ✓ ✗ ✗ ✗ ✗
Filho et al. [25] ✓ ✗ ✗ ✗ ✗
Bindewald et al. [14] ✓ ✓ ✗ ✗ ✗
Procter et al. [35] ✓ ✗ ✗ ✗ ✗
Le Calvar et al. [36] ✓ ✗ ✗ ✗ ✗
Zubcoff et al. [37] ✓ ✗ ✗ ✗ ✗
Alkhazi et al. [38] ✓ ✗ ✗ ✗ ✗
Alkhazi et al. [39] ✓ ✗ ✗ ✗ ✗
Silva et al. [26] ✓ ✗ ✗ ✗ ✗
Alizadeh et al. [15] ✓ ✓ ✗ ✗ ✓
Kessentini et al. [16] ✓ ✓ ✗ ✗ ✗
Pérez et al. [17] ✓ ✓ ✗ ✗ ✓
Ramı́rez et al. [18] ✓ ✗ ✗ ✗ ✗
Kuviatkovski et al. [19] ✓ ✗ ✗ ✗ ✗
Delgado-Pérez et al. [20] ✓ ✗ ✗ ✗ ✓
Kessentini et al. [21] ✓ ✓ ✗ ✗ ✗
Freire et al. [22] ✓ ✓ ✗ ✗ ✗

Our work ✓ ✓ ✓ ✓ ✓

The upper part of Table 2 includes 18 BL works which
mainly cover: BL in games, BL in models, and BL in games
that use models. Using the query presented in [44], we col-
lected new papers up to January 2023 and identified those
already covered to maintain consistency. For instance, Troya
et al. [52] locate faulty rules in model transformations by
applying Spectrum-Based Fault Localization (SBFL), where
the human picks one assertion from the ranking to locate
and fix the faulty rule that made the assertion fail. Arcega
et al. [58] evaluate different model-based BL approaches in
order to mitigate the effect of starting the localization in
the wrong place. Software engineers are enabled to modify
the solution obtained (e.g., by adding or removing model
elements to a model fragment that the BL approach has
obtained). Our previous work in BL in software models of
video games, Casamayor et al. [44], uses an evolutionary
algorithm where the candidate solutions are automatically
assessed by a fitness function that collects information about
the simulations. Only two BL works [52], [58] include hu-

man interaction, but neither of them consider the human in
the assessment of candidate solutions in the fitness function,
as Column 3 of Table 2 shows. Therefore, none of these
BL works have a hybrid fitness function that combines a
simulation and the effort of a human or the study of how
human effort should be distributed to obtain the best quality
solution possible.

The middle part of Table 2 shows the works of two recent
surveys that include SBMDE works from 1998 to 2016 [65],
and iSBSE works from 1999 to 2017 [3]. Using the queries
presented in the surveys [3], [65], we updated both surveys
from 2016 and 2017 until January 2023, respectively, and
we identified the common works (see the 33 works in the
middle part of the table). All of the works include human
interaction, but only 36.36% of the works involve human
assessment in the fitness function to evaluate candidate
solutions. Of the works that include human assessment in
the fitness function, only four of them involve industry in
the evaluation. For example, Ghannem et al. [7] involve
human assessment in the fitness function by combining
structural similarity and designers’ ratings to evaluate the
model refactorings. Araujo et al. [10] present an architec-
ture that combines interactive optimization and machine
learning to address the next release problem in software
engineering, incorporating human expertise and preferences
for efficient requirement selection. Marculescu et al. [13]
suggest optimizations for test cases using a dynamic fitness
function that changes the weights of the objective values
according to the assessment that is made by a human. The
works by Kessentini et al. [16], [21] involve the human in
the fitness function by interacting at the solution level by
accepting/rejecting/modifying specific edit operations, and
then computing the weighted probability of edit operations
and target model elements.

Martinez et al. [9] completely replace the fitness function
with a human, but they do not provide evidence supporting
the idea that the human is beneficial. Their work makes a
comparison between the human (combined with crossover
and mutation operations) and Random Search. One of our
previous works, Pérez et al. [17], completely replaces the
fitness function with a human in a real-world industrial case
study for Feature Location in Models (FLiM). Although the
results show that the human as fitness function is beneficial,
it is acknowledged that a hybrid approach could be explored
to avoid human fatigue for more demanding problems. As
Column 4 of Table 2 shows, none of the works explore
a hybrid fitness function that combines simulations with
humans, as this work does.

It is important to highlight that all of the works that
combine human assessment with an algorithm in the fitness
function [7], [10], [13], [14], [15], [16], [21], [22] do not
address either BL or GSE, and they interleave the human
effort with the assessment of the algorithm. For example,
even though the works by Kessentini et al. [16], [21] study if
the number of human interactions and time can be reduced
by changing the algorithm, neither of them (see Column 5
of Table 2) study whether the distribution of the human
effort should be different in order to improve the quality
of the solution (e.g., doing all human assessment first and
then the algorithm assessment instead of interleaving the
human-algorithm).

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, FEBRUARY 2023 6

To address this lack, we propose three variants of the
hybrid fitness function in order to study the influence in
the quality of the solution of different ways of distributing
the human effort during BL. The variants: 1) interleave the
assessment of the candidate solutions between the human
and the algorithm (distribution in the hybrid fitness function
that is used by most of the related works); 2) rely on the
assessment performed by the human, and then the assess-
ment of the algorithm; or 3) the reverse (the assessment
performed by the algorithm, and then the assessment of the
human). Specifically, we study whether the selected variant
influences the solution quality for SBMDE in the context of
BL in GSE.

4 HYBRIDIZING THE FITNESS FUNCTION

Fig. 2 shows an overview of our approach, SimuHaFF (Sim-
ulation and Human as the Fitness Function), for BL in GSE.
Our approach consists of an evolutionary algorithm where
the fitness function is hybrid. It is comprised of the assess-
ment of candidate solutions by both the score automatically
provided by an algorithm using simulations and the score
provided by a human. The upper part of Fig. 2 depicts the
set of software models, which the algorithm takes as input
to locate the bug. Afterwards, the population of scenarios
is initialized by a random selection from the input models.
The goal is to obtain a ranked list of simulation traces that
are ordered by their relevance in locating the bug.

The hybrid fitness function assesses each of the sce-
narios. The fitness provided by the algorithm runs the
simulations as described in Section 2. In order to enable the
human to assess candidate solutions, the approach displays
the model fragments that are candidate solutions to be
potential sources of bug. Then, the human provides the
fitness score to each candidate solution, which is given on
a scale of 1 to 7 with a maximum score of 7 (for the best
candidates of having the bug) and a minimum of 1. The
human evaluation is performed using a seven-point scale
rather than a broad rating to reduce the fatigue of the
developers, as recommended in [41].

In order to study how the distribution of the human
effort in a hybrid fitness function influences the results, we
propose three variants that take into account Takagi’s [41]
recommendations for avoiding human fatigue. These rec-
ommendations are the reduction of both the size of the
population to be evaluated and the number of iterations (to
10 or 20). The variants (V1-V3) that we propose are:

Variant 1 interleaves simulations that are performed by
the algorithm with human evaluations. The sim-
ulations are executed by pre-setting a time m (in
seconds) each time that the human provides an
evaluation. In total, the human performs n eval-
uations. Fig. 2-V1 depicts how the simulations
are interleaved with human evaluations in this
variant. The upper part above the dotted line
represents the human evaluation, whereas the
lower part shows the evaluation that is automat-
ically produced by the evolutionary algorithm
using simulations.

Variant 2 relies on n consecutive human evaluations and
then launching the simulations of the algorithm

Software Models with Bugs
SimuHaFF
input

Initialize Population

Population of
scenarios

Genetic operations

SimuHaFF

SimuHaFF
output

Fitness function

Ranked
simulation traces

stop?

yes

no

HumanSimulation

n iterations

n iterations

V1

V2

V3

m seconds

Hu
m

an
 E

ffo
rt

Di
st

rib
ut

io
n.

 V
ar

ia
nt

s:

t

t

iteration1

m seconds

t

iterationn

m seconds

Fig. 2. Overview and variants for hybridizing the fitness function.

for m seconds. Fig. 2-V2 depicts the distribution
of the human evaluations first and then the
simulations of the algorithm.

Variant 3 reverses V2 by launching the simulations of
the algorithm for m seconds and then the n
consecutive human evaluations. Fig. 2-V3 shows
the distribution of this variant.

Once the candidate solutions are assessed by both the
algorithm and the human, new scenarios are generated if
the stop condition of the algorithm is not met. To do this,
existing scenarios are selected using the wheel selection
mechanism, where the selection of a scenario is inversely
proportional to its relative fitness in the population. To
modify the scenario, we use the widespread single-point
crossover and random mutation (the most popular choice
in SBMDE [66]).

Finally, when the stop condition of the algorithm is met,
the output is a ranking of simulation traces, which are
ordered by their relevance in locating the bug.

5 EVALUATION

This section presents the evaluation of our work: the re-
search questions that we aim to answer, the evaluation

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, FEBRUARY 2023 7

process (including recall, precision, and F-measure to mea-
sure the quality of the solutions; baselines; and statistical
analysis), and the implementation details.

5.1 Research questions
We aim to answer the following research questions:

RQ1: What is the performance in terms of solution quality
using the three variants for distributing the human effort in the
hybrid fitness function and the baselines in BL?

RQ2: Is the difference in the quality of the solution between
the variants and the baselines significant?

RQ3: How much is the quality of the solution influenced by
using each variant compared to each baseline?

5.2 Planning and execution
Fig. 3 shows an overview of the evaluation process to
answer the research questions. The upper part of the figure
shows the software models with bugs selected from the bug
catalog provided by our industrial partner, which are the
inputs for the test cases.

Documentation from the industrial partner

Random bug selection

Software models of
VG content

Model fragment
source of bug

Oracle Test cases

SimuHaFFHaFF
(baseline 1)

EMoSim
(baseline 2)

Ranked
simulation

traces

Ranked
model

fragments

Ranked
model

fragments

Ranked
model

fragments

Comparison to oracle

Performance reports

Ranked
simulation

traces

V1 V2 V3

Statistical analysis

Fig. 3. Overview of the evaluation process.

In the figure, the output of the test cases are two
baselines and the three variants of our approach. The first
baseline, HaFF, has the fitness function completely replaced
by a human, and it outputs a sorted collection of model
fragments that are considered to be the most relevant for the
bug. The second baseline, EMoSim, has the unattended al-
gorithm producing simulation traces as the fitness function,

but it outputs a ranking of simulation traces as described in
Section 2. The trace contains all of the model elements that
the interpreter has used at run-time during the simulation.
All of the model elements that appear in the trace form the
most relevant model fragment according to the trace for the
bug. The three variants of our SimuHaFF approach work as
described in Section 4 to form the model fragments that are
considered to be the most relevant for the bug.

Answering RQ1: After executing the two baselines and
the three variants of our approach, we take the first solution
in the ranking for each of the bugs as suggested in [67].
Afterwards, we compare the solution against the oracle (i.e.,
the ground truth) in order to get a confusion matrix. The
confusion matrix is a table that provides detailed informa-
tion about the performance of a classification algorithm. In
our work, each candidate solution is a model fragment that
is composed of a subset of model elements (where the bug
is to be found). The presence or absence of model elements
is considered as a classification since the granularity is at
the model element level. Accordingly, our confusion matrix
distinguishes between two specific values: TRUE (present)
or FALSE (absent).

A confusion matrix groups the results of a comparison
into four separate categories: True positive (TP), when an
element that is present in the predicted model fragment is
also present in the model fragment from the oracle; True
Negative (TN), when an element that is not present in
the predicted model fragment is not present in the model
fragment from the oracle; False Positive (FP), when an
element that is present in the predicted model fragment is
not present in the model fragment from the oracle; and False
Negative (FN), when an element that is not present in the
predicted model fragment is present in the model fragment
from the oracle.

Once the TP+TN+FP+FN are calculated, some measure-
ments are extracted from the confusion matrix in order to
assess the performance in terms of the solution quality of
the approach. For each baseline and variant of our approach,
we specifically generate a report with three performance
metrics (recall, precision, and F-measure) that are widely ac-
cepted in the software engineering research community [68]:
Recall

(
TP

TP+FN

)
measures the number of elements of the

model fragment from the oracle that are correctly retrieved
by the proposed model fragment; Precision

(
TP

TP+FP

)
mea-

sures the number of elements from the proposed model
fragment that are correct according to the ground truth (the
oracle); and F-measure

(
2 ∗ Precision∗Recall

Precision+Recall

)
corresponds

to the harmonic mean of precision and recall.
Recall and precision values can range between 0 and 1.

A recall value of 0 means that no single model element from
the model fragment from the oracle is present in any of
the model fragments of the predicted solution), whereas a
value of 1 means that all of the model elements from the
oracle are present in the predicted solution. A precision
value of 0 means that no single model element from the
model fragment predicted is present in the model fragment
from the oracle, whereas a value of 1 means that all of
the model elements from the predicted solution are present
in the model fragment from the oracle. A value of 1 in

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, FEBRUARY 2023 8

precision and 1 in recall implies that both the predicted
model fragment and the model fragment from the oracle
are the same.

Answering RQ2: To properly compare the approaches,
all of the data resulting from the empirical analysis was
analyzed using statistical methods following the guidelines
in [45]. The test that we must follow depends on the prop-
erties of the data. Since our data does not follow a normal
distribution in general, our analysis requires the use of non-
parametric techniques. There are several tests for analyzing
this kind of data; however, the Quade test shows that it
is more powerful than the others when working with real
data [69]. The Quade test compares the results of multi-
ple algorithms to determine whether there are significant
differences among them. In addition, according to Conover
[70], the Quade test has shown better results than the others
when the number of algorithms is low (no more than four or
five algorithms). However, with the Quade test, we cannot
know which of the algorithms gives the best performance.
In this case, the performance of each algorithm should be
individually compared against all of the other alternatives.
In order to do this, we perform an additional Holm’s post
hoc analysis. This kind of analysis performs a pair-wise
comparison among the results of each algorithm, determin-
ing whether statistically significant differences exist among
the results of a specific pair of algorithms.

Answering RQ3: When comparing algorithms with a
large enough number of runs, statistically significant dif-
ferences can be obtained even if they are so small as to be
of no practical value [45]. Thus, it is important to assess
if an algorithm is statistically better than another and to
assess the magnitude of the improvement. To assess how
much the quality of the solution is influenced by using
SimuHaFF compared to the baselines, the magnitude of
the improvement should be assessed through effect size
measures. For a non-parametric effect size measure, we
used Cliff’s delta [71]. Cliff’s delta is an ordinal statistic
that describes the frequency with which an observation
from one group is higher than an observation from an-
other group compared to the reverse situation. It can be
interpreted as the degree to which two distributions over-
lap with values ranging from -1 to 1. For example, when
comparing Base2 EMoSim and V3 SimuHaFF a value of
0 means there is no difference, a value of −1 means that
all samples in Base2 EMoSim are lower than all samples
in V3 SimuHaFF, and a value of 1 means the opposite
(all samples in Base2 EMoSim are higher than all sam-
ples in V3 SimuHaFF). Moreover, threshold values were
defined in [46] for the interpretation of Cliff’s delta effect
size (|d| < 0.147 → ”negligible”; |d| < 0.33 → ”small”;
|d| < 0.474 → ”medium”, |d| ≥ 0.474 → ”large”). We
record a Cliff’s delta value for each pair-wise comparison
in recall, precision, and F-measure.

5.3 Implementation details

In order to compare the baseline and variants of our ap-
proach fairly, we chose the parameters shown in Table 3 to
calibrate the evolutionary algorithm and the fitness. As the
table shows, the number of iterations the human performs is
10 and the number of candidate solutions (individuals) that

the human evaluates per iteration is also 10. To determine
the stop condition, we ran some prior tests to determine the
convergence time. According to the tests, the time needed
to converge was below 8 seconds for locating each bug.
Therefore, we established the stop condition at 10 seconds
(adding a margin to ensure convergence), ensuring that
the approaches with the automatic fitness run long enough
to obtain the best solutions. In this way, the number of
possible simulations is defined by how many scenarios can
be simulated during that time. Even though the population
size is at most 100 scenarios, we only present to the human
the best 10 in all of the variants and in the baseline that
includes the human in the fitness function (HaFF) in order
to prevent human fatigue [17]. We assume that the best
candidate solutions are those with the lowest fitness value
since they are ordered by ascending fitness. For the rest
of parameters in the table, we used those settings that are
commonly used in previous works [17] [44].

TABLE 3
Parameter settings

Parameter description Value
Fitness
HaFF and SimuHaFF Iterations 10

Individuals for subjective evaluation 10
EMoSim and SimuHaFF %playerWin: Percentage goal of player’s winnings 0.33

%playerWinLife: Percentage goal of life left when player wins 0.35
Stop: Time (in seconds) from convergence 10

Evolutionary algorithm
HaFF Size: Population size 10
EMoSim and SimuHaFF Size: Population size 100

phitByWeapon: Weapon hit probability 0.014
phitByPlayer : Player hit probability 0.25

Crossover and mutation µ: Number of parents 2
λ: Number of offspring from µ parents 2
pcrossover : Crossover probability 0.9
pmutation: Mutation probability 0.1

In the evaluation, 29 professional video game developers
participated. The recruitment of developers was carried out
by our industrial partner, named Kraken Empire, who ran-
domly selected the developers to participate. Kraken Em-
pire is an independent game development studio, which is
specialized in interactive 3D graphics applications, physics
based simulations and real time systems. Fig. 4 shows the
distribution of the developers’ work experience. One out
of every three has been developing video games for 15+
years, and the other two of them have developed video
games for seven years or less. They all participated in the
development of Kromaia, either from its inception (the most
experienced developers) or creating new content for the
game (19 developers). They were professionals holding a
degree in computing and related areas. All of them were
from Spain, except for one who was from Latin America.

With regard to the time that each developer spends on
the evaluation, we chose a slot of two hours since it is the
median duration of software engineering experiments [72].
Hence, each developer participates in the localization of four
randomly assigned [73] bugs in total (one bug per variant
of the approach, plus another one for pure baseline HaFF).
Hence, 116 bugs (4*29) were located in total. The assignment
was transparent to the developers, so they do not know
whether they are locating the bug using one variant of the
approach or the baseline HaFF. The decision to only select
one bug to locate for each variant of the approach plus
baseline was based on the time needed to rate an individual,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, FEBRUARY 2023 9

0 4 8 12 16 20

Years

W
or

ki
ng

 E
xp

er
ie

nc
e

Fig. 4. Working experience of the participants.

which could last an average of 15 seconds. Thus, the time
that each developer spends on the evaluation of individuals
to locate the four bugs is 100 minutes: 10 (individuals for
subjective evaluation) x 10 (iterations) = 100 (ratings/bug) *
15 (seconds/rating) = 1500 (seconds/bug) * 4 (bugs) = 6000
seconds (100 minutes).

The remaining 20 minutes are to provide a brief tutorial
before the evaluation is started, to conduct a focus group
when they finish and, indeed, to add a margin that ensures
the completion of the evaluation. The brief tutorial mainly
consisted of: 1) describing the objective of locating bugs
in the context of Kromaia; 2) showing the main interface
aspects to evaluate individuals; 3) providing a simple ex-
ample (not using the bugs that will be located during the
evaluation).

The experiment was conducted as scheduled. The ses-
sion was held on December 14, 2022, at the San Jorge
University facilities. None of the subjects in this experiment
exceeded the established evaluation time limit. On average,
the evaluation lasted 87 minutes, and the minimum and
maximum duration were 63 and 100 minutes, respectively.

In order to collect the experimental data we spent about
1 hours and 17 minutes per participant on analyzing the
results obtained. We analyzed a total of 29 participants,
putting in a total of approximately 37.5 hours. The data
related to participant characteristics (e.g., experience) were
gathered automatically. The experiment was carried out
according to the planned schedule. Therefore, there were
no deviations during the execution of the experiment.

The evaluation of SimuHaFF and the baselines was done
using identical gaming PCs with the same features. These
were three ASUS ROG Strix laptops, using an Intel Core
i7-6700HQ processor with 16 GiB of RAM, and running on
a 64-bit Windows 10 host operating system. There are two
reasons why the PCs were identical: (i) to avoid a potential
bias when running the simulations, as technical specifica-
tions can influence the number of simulations run, and (ii)
since the evaluation by professional video game developers
is extremely time-consuming from a computer’s perspective
[41]. With these specifications, the automatic fitness part
converges in 10 seconds and is capable of running more
than 470k simulations on average.

The implementation uses the Java(TM) SE Runtime
Environment (build 17.0.5), together with Kotlin as the
programming language. For purposes of replicability, the
implementation source code and the data (software mod-
els and oracles) as well as a screenshot of the graphical

interface used by humans to evaluate the candidate so-
lutions and the CSV files used as input in the statistical
analysis are publicly available at the following URL: http:
//www.gamesoftwareengineering.com/tse23/bl-in-mgse.

6 RESULTS

In this section, we present the results obtained in the two
baselines (Base1 HaFF and Base2 EMoSim) and in the three
variants of our approach (V1-V3 SimuHaFF) in Kromaia.

6.1 Research Question 1

Table 4 shows the mean values and standard deviations
for recall, precision, and F-measure for each baseline and
variant. All of the variants and the baseline that includes the
human in the fitness function (Base1 HaFF) obtained bet-
ter results than Base2 EMoSim. Specifically, V3 SimuHaFF
(simulations generated by the algorithm first and then the
human evaluations) yielded the best results, followed by
V2 SimuHaFF and then V1 SimuHaFF.

TABLE 4
Mean values and standard deviations for Recall, Precision, and

F-measure for each variant.

Recall Precision F-measure

V1 SimuHaFF 75.38 ± 3.98 65.64 ± 9.62 69.67 ± 5.17
V2 SimuHaFF 73.54 ± 4.58 75.86 ± 5.37 74.53 ± 3.66
V3 SimuHaFF 91.64 ± 4.29 84.84 ± 9.59 87.79 ± 5.74

Base1 HaFF 51.34 ± 7.38 58.38 ± 4.8 54.33 ± 5.03
Base2 EMoSim 67.33 ± 19.84 43.54 ± 19.66 49.86 ± 13.56

RQ1 answer. The results of all of the variants reveal that
hybridizing the fitness functions pays off in the context of
BL for GSE. The variants obtained an average value of 80.19
in recall and 75.45 in precision, with V3 SimuHaFF being
the variant that obtained the best results (91.64% in recall
and 84.84% in precision).

6.2 Research Question 2

The p−V alues obtained in the test are lower than 2.2x10−16

for recall, precision, and F-measure. Since the p − V alues
are smaller than 0.05, we can state that there are differences
among the algorithms for the performance indicators of
recall, precision, and F-measure.

Table 5 shows the p − V alues of the Holm’s post hoc
analysis for each pair-wise comparison and performance
indicator. All p − V alues obtained in precision and F-
measure were smaller than their corresponding significance
threshold value (0.05), indicating that the differences in per-
formance between the three variants and the baselines are
significant, except in recall when comparing V1 SimuHaFF
vs. Base2 EMoSim, V2 SimuHaFF vs. Base2 EmoSim and
V1 SimuHaFF vs. V2 SimuHaFF. Although these compar-
isons do not indicate significant differences in recall (mean-
ing that the number of elements of the retrieved model
fragment is similar), it is important to highlight that these
comparisons indicate that there are significant differences
in precision. This means that a higher number of model
elements were correct according to the ground truth, which
is relevant for the solution quality of the model fragment

http://www.gamesoftwareengineering.com/tse23/bl-in-mgse
http://www.gamesoftwareengineering.com/tse23/bl-in-mgse

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, FEBRUARY 2023 10

TABLE 5
Holm’s post hoc p− V alues for each pair-wise comparison

Recall Precision F-measure

V1 vs Base1 3x10−10 0.00051 3x10−10

V1 vs Base2 0.063 1.1x10−6 2x10−8

V2 vs Base1 3x10−10 3x10−10 3x10−10

V2 vs Base2 0.24 4.8x10−8 8.1x10−9

V3 vs Base1 3x10−10 3x10−10 3x10−10

V3 vs Base2 8.1x10−9 1.5x10−9 3x10−10

V1 vs V2 0.21 2.4x10−6 2.2x10−5

V1 vs V3 3x10−10 3x10−9 3x10−10

V2 vs V3 3x10−10 5.4x10−5 3x10−10

as shown in the corresponding F-measure value (which
indicates significant differences).

RQ2 answer. Since the Holm’s post hoc p− V alues for
F-measure that are shown in Table 5 are smaller than 0.05,
we can state that there are significant differences between
the variants and the baselines.

6.3 Research Question 3
Table 6 shows the values of the effect size statistics of the
pair-wise comparisons. Specifically, the table shows Cliff’s
Delta [71] values for recall, precision, and F-measure. From
the results, we can determine how much the quality of
the solution is influenced by using the variants of our
approach compared to the baselines (HaFF and EMoSim)
as well as the influence among the variants. The magnitude
of improvement using any of the variants of our approach
instead of the baselines can be interpreted as being large
according to the magnitude scales [46] of the Cliff’s Delta
values, except for recall when comparing V1 SimuHaFF
vs. Base2 EMoSim, V2 SimuHaFF vs. Base2 EmoSim and
V1 SimuHaFF vs. V2 SimuHaFF.

TABLE 6
Effect size measures for comparing each pair of algorithms in Kromaia.

Cliff’s Delta

Recall Precision F-measure

V1 vs Base1 1 (large) 0.4482759 (medium) 0.9857313 (large)
V1 vs Base2 0.1557669 (small) 0.6575505 (large) 0.7526754 (large)
V2 vs Base1 1 (large) 1 (large) 1 (large)
V2 vs Base2 0.1034483 (negligible) 0.667063 (large) 0.8049941 (large)
V3 vs Base1 1 (large) 1 (large) 1 (large)
V3 vs Base2 0.7812128 (large) 0.8454221 (large) 0.9833532 (large)

V1 vs V2 0.2342449 (small) -0.6147444 (large) -0.529132 (large)
V1 vs V3 -1 (large) -0.8287753 (large) -0.9928656 (large)
V2 vs V3 -1 (large) -0.5386445 (large) -0.9548157 (large)

RQ3 answer. We can draw conclusions about how much
the quality of the solution is influenced each variant of the
hybrid fitness compared to each baseline from the results of
Table 6. The results reveal that the magnitude of improve-
ment in F-measure using any variant is large compared to
the baselines according to the magnitude scales [46] of the
Cliff’s Delta values.

7 DISCUSSION

This section presents: 1) the analysis of the results to under-
stand why the quality of the solutions is influenced by the

SimuHaFF variants; 2) the results of a focus group where
we acquired feedback from the participants to determine
whether the hybrid fitness function is accepted; and 3)
the results of a survey where we obtained the opinion of
video game developers on which SimuHaFF variant would
obtain the best results (in terms of solution quality). Thus,
we compare whether the SimuHaFF variant selected by
the developers coincides with the SimuHaFF variant that
obtains the best results.

We examined the results in order to understand why
the human effort in the variants of SimuHaFF significantly
influenced the quality of the solutions, especially using V3
(simulations of the algorithm first and then human evalu-
ations). We detected that V3 provided the best candidate
solutions that the algorithm locates as input to the human.
Thus, the quality of the candidate solutions were even better
(in all of the performance indicators) after the human eval-
uations than the solutions only produced by the algorithm.

In contrast, V2 (which reverses the V3 variant) did not
obtain results as good as V3 because the human started the
evaluations with candidate solutions that were randomly
generated (in contrast to V3 where the human started with
the best solutions obtained by the algorithm). Even though
the quality of the initial candidate solutions improved after
10 iterations of human evaluations, it was not enough to
obtain the best results due to the following: the genetic op-
erations randomly produce new candidate solutions, which
due to the randomness make solutions worse in some cases
and the execution of the algorithm after the human evalu-
ations produces solutions that are not the ones expected by
the human (e.g., including incorrect model elements).

With regard to the results of V1 (interleaving simulations
automatically produced by the algorithm with human eval-
uations), a similar effect occurred as in V2. Even though the
algorithm provided the best solution possible and a single
human evaluation influenced the selection that the algo-
rithm made to produce new candidate solutions, the results
that were displayed to the human in the next evaluation
were not related to the ones that were previously scored
with the highest fitness due to the algorithm. This ended up
misleading the human and affecting their findings in every
evaluation.

We ran a focus group to acquire feedback from the 29
professional video game developers of the industrial partner
who participated as fitness function. The focus group was
composed of the following open questions: (i) What do you
think of the results of the approaches?; (ii) How do you feel
about evaluating candidate solutions from simulation traces
to locate bugs in video games?; (iii) How do you imagine
the use of SimuHaFF in video games of other genres and in
more complex video games?

The developers thought that the quality of the solution
was better when they participated as fitness function than
when they did not. They mentioned that doing the evalua-
tions was intuitive and clear, and they enjoyed participating
and using our approach even if it was to detect something
that they would not have noticed without the approach. This
is especially true in cases where the bugs comprise elements
or properties of the models that are highly implicit or at a
deep semantic level, since they are extremely complex to
locate by a human alone.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, FEBRUARY 2023 11

The developers stated that the representation of the
model fragments on the graphical interface was adequate.
The heat map helped them to guide the bug localization. In
addition, a potential improvement would be if the model
were directly represented graphically in a model viewer
that actually showed how it would look in-game, with the
added highlighting of the parts that could be the source of a
bug. Also, in their opinion, it would be important to always
maintain a correlation with the textual model to be able to
keep changes afterwards, or better yet, to be interactive to
correct the model at run-time.

The developers also mentioned that SimuHaFF could
be used for other video game genres and more complex
problems if the video game is large (in terms of active assets)
and the unit tests are complex or lack sufficient value or
usefulness and therefore are not sufficiently representative.
This is especially true for cases when a video game is an
open game experience or the possibility of combinations
between actions and results that the player performs are
almost infinite. Some developers also stressed that regard-
less of whether or not you have the capacity (budget and
effort required), it is better to have this type of assistance to
find bugs than not to have it at all. In their opinion, even
if the feedback from the approach is not entirely accurate,
it can alert a developer to whether something may trigger
unexpected behavior. The ideal for them and how they
envision our approach in a real working environment is
in the form of an integration with the model editor that
simulates and tests models as they are built in an assisted
manner. They mentioned that it would be worthwhile to
have this approach even if the hit rate was low (e.g., it
found 3 out of 50 bugs that they would not have to search
for). This would be especially helpful for small studios or
indie developers who have practically no time to test their
games since they invest most of their resources in generating
new content. Therefore, it would save them time and allow
them to concentrate their efforts and focus on what is really
important: creating their game and bringing it to market in
a timely manner.

Furthermore, we emailed a survey to 20 video game
developers to get their opinion on which SimuHaFF variant
they thought would achieve the best results (in terms of
solution quality). The survey included junior and senior
video game developers (4 and 3, respectively) as well as
academic experts (13), who are video game developers and
also teach in the Design and development of video games
degree program of San Jorge University. The survey featured
a single-choice question, where the participants were asked
to select the most promising variant among the SimuHaFF
options. The question itself was accompanied by Fig. 2,
which was supplemented with a descriptive caption ex-
plaining the content of the figure and each variant. Fourteen
of the participants opted for interleaving simulations that
are automatically produced by the evolutionary algorithm
with human expert evaluations (V1), while four others
preferred launching simulations that are generated by the
algorithm first and then they themselves evaluate the results
(V3). Only two thought that the best option for distributing
human effort during bug localization would be to rely on
several consecutive evaluations of the human expert before
launching the simulations that are automatically obtained

by the algorithm (V2). However, the results show that V3
performs best, followed by V2, V1, then B1 HaFF, and
finally B2 EMoSim. Hence, the results are counter-intuitive
for the video game developers who responded to the survey.
Apparently to them, it made more sense for V1 to outper-
form V3. This is possibly influenced by how they envision a
tool-assisted workflow.

8 THREATS TO VALIDITY

To acknowledge the threats to the validity of our work, we
use the classification suggested by De Oliveira et al. [74].

1) Conclusion Validity threats. We approached the ran-
dom variation threat by considering 30 independent runs
only in Baseline 2 (without human effort) for every single
bug as suggested in [45]. However, that number of runs
could not be contemplated given that the availability of
humans is a limited resource, and the result of subsequent
runs for the same bug would be influenced by the learning
effect. For the lack of a good descriptive analysis threat, we
applied the recall, precision, and F-measure performance
metrics to analyze the confusion matrix obtained (although
other metrics could be applied). We also applied statistical
significance (the Quade test and Holm’s post-hoc analy-
sis) and effect size measurements (Cliff’s Delta) following
accepted guidelines [43]. We tackled the lack of meaningful
comparison baseline issue by comparing the results obtained
from our approach with two baselines: EMoSim and HaFF.

2) Internal Validity threats. To mitigate the threat of poor
parameter settings, we used values from the SBSE literature.
Default ones are adequate to measure performance of local-
ization techniques, as indicated by Arcuri and Fraser [43].
We also used two main metrics (health and victory) to assess
the fitness of a simulation as done in [47]. We handled
the lack of real problem instances by selecting a commercial
video game as the case study for the evaluation. Likewise,
the problem artifacts were directly obtained from the video
game developers and the documentation itself. Then, we
randomly selected 29 bugs from the entire documentation.
Afterwards, we also randomly assigned four different bugs
to each developer in the evaluation. We did not participate
in the selection of the developers to avoid researcher bias [75].
In addition, both the order of the variants of the approach
and the baseline (which only uses the human as fitness
function) and the set of bugs to be localized were randomly
assigned to each engineer so that they would not know
whether they were using a variant or baseline to locate a
certain bug, hence mitigating the imbalanced group of subjects
threat. We conducted the evaluation following a crossover
design: the developers who participated in the oracle pro-
vided by the industrial partner were not involved in the
evaluation, thus addressing the learning effect threat. We
gave a briefing before starting the evaluation so that possible
understandability issues could be minimized. The developers
were not allowed to communicate with each other during
the evaluation to avoid incurring in the information exchange
threat. The number of iterations and individuals of the
algorithm per bug was set to 10 as recommended in the
literature [41] in order to reduce fatigue impact. Besides that,
we established a total duration of the evaluation of two
hours as a whole (including the briefing), in accordance with

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, FEBRUARY 2023 12

the average duration of experiments in software engineer-
ing [72].

3) Construct Validity threats. To prevent the lack of
assessing the validity of cost measures threat, we made a fair
comparison between the variants of our approach and the
two baselines. Furthermore, we used three measurements
(recall, precision, and F-measure) for the evaluation, which
have been widely adopted by the software engineering
research community [68].

4) External Validity threats. We evaluated our approach
in a commercial video game, whose instances are collected
from real-world problems, to avoid the lack of a clear object
selection strategy threat. To mitigate the generalization threat,
we designed our approach to be generic and applicable
not only to our industrial case study but also for locating
bugs in other different video games. To apply our approach
in other video games, three main ingredients are required
as in other SBSE approaches: encoding, operations, and
fitness function. The operations are widespread crossover
and mutation. The encoding and the fitness function depend
on the simulated player. We can apply our approach to other
video games where simulated players are available. These
simulated players can be found in well-known gaming
genres that include racing, first-person shooter, and real-
time strategy. For those cases where there is no simulated
player, the developers should ponder the tradeoff of the cost
of developing the simulated player and the benefits of locat-
ing bugs using our approach. Nevertheless, our approach
should be replicated with other video games before assuring
its generalization.

9 CONCLUSION

Recently, human participation in Search-Based Software En-
gineering (SBSE) has proven to be useful for obtaining more
favorable solutions. However, in order to efficiently explore
large complex problem spaces, humans cannot handle the
same number of solutions as an algorithm since humans are
not immune to fatigue.

In this work, we have proposed a hybrid fitness function
that is the first to combine human effort with human simu-
lations for more demanding problems in the context of BL in
software models for the video games of GSE. Moreover, we
have proposed three variants of the hybrid fitness function
that distribute the human effort in different ways in order
to study their influence on the quality of the solutions. The
evaluation was performed on a commercial video game
(Kromaia) where 29 professional video game developers
were involved, acting as the human component of the
fitness function. As baselines, we replaced the hybrid fitness
function with a fitness function that only uses a human and
a fitness function that is automatically calculated.

Our proposed hybrid fitness function outperformed the
results of the best baseline by 33.46% in F-measure. Fur-
thermore, a focus group confirmed the professional video
game developers’ acceptance of the hybrid fitness function
since it helped them to reduce the amount of manual work
and to minimize the number of bugs that go unnoticed. The
variant that obtained the best results was not only counter-
intuitive with an initial survey that we did with video game

developers, but it was also counter-intuitive with previous
works.

It is important to highlight that our work has implica-
tions from both an academic perspective in software en-
gineering and from a practical standpoint for professional
video game developers. From the academic perspective in
software engineering, our work shows that the distribution
of the human effort (interleaving the algorithm with human
evaluations), which is both preferred by video game devel-
opers and selected by default in most iSBSE works, does
not obtain the best results. This can inspire other academics
to explore other distributions of the human effort (such
as the distributions of the human effort that are studied
in this work) to improve their results. From the practical
standpoint of professional video game developers, there
is a lack of technical solutions that locate bugs and real-
world experience. This is hard to obtain since the majority
of related works use academic data and other video game
studios do not share the details of their technical solutions
to develop and maintain their commercial products. Works
like ours may be the path to compensate for this lack, and
may motivate other video game developers to reduce the
amount of tedious manual work during the location of bugs.

Our results not only help video game developers to
locate bugs, but it can also inspire other SBSE researchers to
bring hybrid fitness functions to other software engineering
tasks instead of using a default approach for distributing the
human effort. In fact, part of our future work is to explore
hybrid fitness functions in other software engineering tasks
and domains.

ACKNOWLEDGMENTS

This work was supported in part by the Ministry of Econ-
omy and Competitiveness (MINECO) through the Spanish
National R+D+i Plan and ERDF funds under the Project
VARIATIVA under Grant PID2021-128695OB-I00 and in
part by the Gobierno de Aragón (Spain) (Research Group
S05 20D).

REFERENCES

[1] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based
software engineering: Trends, techniques and applications,” ACM
Comput. Surv., vol. 45, no. 1, pp. 11:1–11:61, 2012. [Online].
Available: https://doi.org/10.1145/2379776.2379787

[2] J. Font, L. Arcega, Ø. Haugen, and C. Cetina, “Achieving feature
location in families of models through the use of search-based soft-
ware engineering,” IEEE Transactions on Evolutionary Computation,
vol. 22, no. 3, pp. 363–377, 2018.

[3] A. Ramı́rez, J. R. Romero, and C. L. Simons, “A systematic review
of interaction in search-based software engineering,” IEEE Trans-
actions on Software Engineering, vol. 45, no. 8, pp. 760–781, 2019.

[4] Z. Wang, X.-Y. Fan, Y.-G. Zou, and X. Chen, “Genetic algo-
rithm based multiple faults localization technique,” Ruan Jian Xue
Bao/Journal of Software, vol. 27, no. 4, p. 879 – 900, 2016.

[5] B. Marculescu, R. Feldt, R. Torkar, and S. M. Poulding, “An
initial industrial evaluation of interactive search-based testing for
embedded software,” Appl. Soft Comput., vol. 29, pp. 26–39, 2015.
[Online]. Available: https://doi.org/10.1016/j.asoc.2014.12.025

[6] R. Feldt, “An interactive software development workbench based
on biomimetic algorithms,” Dept. of Computer Engineering,
Chalmers University of Technology, Gothenburg, Tech. Rep. Tech.
report 02-16, 2002. [Online]. Available: http://www.cse.chalmers.
se/∼feldt/publications/feldt 2002 wise tech report.html

https://doi.org/10.1145/2379776.2379787
https://doi.org/10.1016/j.asoc.2014.12.025
http://www.cse.chalmers.se/~feldt/publications/feldt_2002_wise_tech_report.html
http://www.cse.chalmers.se/~feldt/publications/feldt_2002_wise_tech_report.html

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, FEBRUARY 2023 13

[7] A. Ghannem, G. El Boussaidi, and M. Kessentini, “Model refactor-
ing using interactive genetic algorithm,” in Search Based Software
Engineering, G. Ruhe and Y. Zhang, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 96–110.

[8] B. Amal, M. Kessentini, S. Bechikh, J. Dea, and L. B. Said, “On the
use of machine learning and search-based software engineering
for ill-defined fitness function: A case study on software refactor-
ing,” in Search-Based Software Engineering, C. Le Goues and S. Yoo,
Eds. Cham: Springer International Publishing, 2014, pp. 31–45.

[9] J. Martinez, J.-S. Sottet, A. G. Frey, T. Ziadi, T. Bissyandé, J. Van-
derdonckt, J. Klein, and Y. Le Traon, Variability Management and
Assessment for User Interface Design. Cham: Springer International
Publishing, 2017, pp. 81–106.

[10] A. A. Araújo, M. Paixao, I. Yeltsin, A. Dantas, and J. Souza,
“An architecture based on interactive optimization and machine
learning applied to the next release problem,” Automated Software
Engg., vol. 24, no. 3, p. 623–671, Sep. 2017.

[11] W. Kessentini, M. Wimmer, and H. Sahraoui, “Integrating the
designer in-the-loop for metamodel/model co-evolution via inter-
active computational search,” in Proceedings of the 21th ACM/IEEE
International Conference on Model Driven Engineering Languages and
Systems, ser. MODELS ’18. New York, NY, USA: Association for
Computing Machinery, 2018, p. 101–111.

[12] J. Martinez, J.-S. Sottet, A. G. Frey, T. F. Bissyandé, T. Ziadi,
J. Klein, P. Temple, M. Acher, and Y. le Traon, “Towards estimating
and predicting user perception on software product variants,” in
New Opportunities for Software Reuse, R. Capilla, B. Gallina, and
C. Cetina, Eds. Cham: Springer International Publishing, 2018,
pp. 23–40.

[13] B. Marculescu, R. Feldt, R. Torkar, and S. Poulding, “Transferring
interactive search-based software testing to industry,” Journal of
Systems and Software, vol. 142, pp. 156 – 170, 2018.

[14] C. V. Bindewald, W. M. Freire, A. M. M. M. Amaral, and T. E.
Colanzi, “Towards the support of user preferences in search-based
product line architecture design: An exploratory study,” in Pro-
ceedings of the XXXIII Brazilian Symposium on Software Engineering,
ser. SBES 2019. New York, NY, USA: Association for Computing
Machinery, 2019, p. 387–396.

[15] V. Alizadeh, M. Kessentini, M. W. Mkaouer, M. Ocinneide,
A. Ouni, and Y. Cai, “An interactive and dynamic search-based
approach to software refactoring recommendations,” IEEE Trans.
Software Eng., vol. 46, no. 9, pp. 932–961, 2020. [Online]. Available:
https://doi.org/10.1109/TSE.2018.2872711

[16] W. Kessentini and V. Alizadeh, “Interactive metamodel/model
co-evolution using unsupervised learning and multi-objective
search,” in MoDELS ’20: ACM/IEEE 23rd International Conference
on Model Driven Engineering Languages and Systems, Virtual Event,
Canada, 18-23 October, 2020, E. Syriani, H. A. Sahraoui, J. de Lara,
and S. Abrahão, Eds. ACM, 2020, pp. 68–78. [Online]. Available:
https://doi.org/10.1145/3365438.3410966

[17] F. Pérez, J. Font, L. Arcega, and C. Cetina, “Empowering the
human as the fitness function in search-based model-driven en-
gineering,” IEEE Transactions on Software Engineering, no. 01, pp.
1–1, oct 2021.

[18] A. Ramı́rez, P. Delgado-Pérez, K. J. Valle-Gómez, I. Medina-
Bulo, and J. R. Romero, “Interactivity in the generation of
test cases with evolutionary computation,” in IEEE Congress
on Evolutionary Computation, CEC 2021, Kraków, Poland, June 28 -
July 1, 2021. IEEE, 2021, pp. 2395–2402. [Online]. Available:
https://doi.org/10.1109/CEC45853.2021.9504786

[19] F. H. Kuviatkovski, W. M. Freire, A. M. M. M. Amaral,
T. E. Colanzi, and V. D. Feltrim, “Evaluating machine
learning algorithms in representing decision makers in search-
based PLA,” in IEEE 19th International Conference on Software
Architecture Companion, ICSA Companion 2022, Honolulu, HI, USA,
March 12-15, 2022. IEEE, 2022, pp. 68–75. [Online]. Available:
https://doi.org/10.1109/ICSA-C54293.2022.00057

[20] P. Delgado-Pérez, A. Ramı́rez, K. J. Valle-Gómez, I. Medina-Bulo,
and J. R. Romero, “Interevo-tr: Interactive evolutionary test gen-
eration with readability assessment,” IEEE Transactions on Software
Engineering, pp. 1–17, 2022.

[21] W. Kessentini and V. Alizadeh, “Semi-automated
metamodel/model co-evolution: a multi-level interactive
approach,” Softw. Syst. Model., vol. 21, no. 5, pp. 1853–1876, 2022.
[Online]. Available: https://doi.org/10.1007/s10270-022-00978-2

[22] W. M. Freire, C. T. Rosa, A. M. M. M. Amaral, and T. E.
Colanzi, “Validating an interactive ranking operator for NSGA-II

to support the optimization of software engineering problems,”
in SBES 2022: XXXVI Brazilian Symposium on Software Engineering,
Virtual Event Brazil, October 5 - 7, 2022, M. de Almeida Maia, F. A.
Dorça, R. D. Araujo, C. von Flach, E. Y. Nakagawa, and E. D.
Canedo, Eds. ACM, 2022, pp. 337–346. [Online]. Available:
https://doi.org/10.1145/3555228.3555232

[23] T. Yue, S. Ali, H. Lu, and K. Nie, “Search-based decision ordering
to facilitate product line engineering of cyber-physical system,” in
2016 4th International Conference on Model-Driven Engineering and
Software Development (MODELSWARD), 2016, pp. 691–703.

[24] H. Lu, T. Yue, S. Ali, and L. Zhang, “Nonconformity resolving
recommendations for product line configuration,” in 2016 IEEE
International Conference on Software Testing, Verification and Valida-
tion (ICST), 2016, pp. 57–68.

[25] H. L. Jakubovski Filho, T. N. Ferreira, and S. R. Vergilio, “Pref-
erence based multi-objective algorithms applied to the variability
testing of software product lines,” Journal of Systems and Software,
vol. 151, pp. 194 – 209, 2019.

[26] D. N. A. d. Silva, “Adaptation oriented test data generation for
adaptive systems,” in 2020 15th Iberian Conference on Information
Systems and Technologies (CISTI), 2020, pp. 1–7.

[27] Y. Lin, X. Peng, Y. Cai, D. Dig, D. Zheng, and W. Zhao, “Interactive
and guided architectural refactoring with search-based recommen-
dation,” in Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. FSE 2016.
New York, NY, USA: Association for Computing Machinery, 2016,
p. 535–546.

[28] L. Van Rooijen and H. Hamann, “Requirements specification-
by-example using a multi-objective evolutionary algorithm,” in
2016 IEEE 24th International Requirements Engineering Conference
Workshops (REW), 2016, pp. 3–9.

[29] C. Debreceni, I. Ráth, D. Varró, X. De Carlos, X. Mendialdua,
and S. Trujillo, “Automated model merge by design space ex-
ploration,” in Fundamental Approaches to Software Engineering,
P. Stevens and A. Wasowski, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2016, pp. 104–121.

[30] E. Batot and H. Sahraoui, “A generic framework for model-set
selection for the unification of testing and learning mde tasks,” in
Proceedings of the ACM/IEEE 19th International Conference on Model
Driven Engineering Languages and Systems, ser. MODELS ’16. New
York, NY, USA: Association for Computing Machinery, 2016, p.
374–384.

[31] M. Fleck, J. Troya, and M. Wimmer, “Search-based model transfor-
mations,” J. Softw. Evol. Process, vol. 28, no. 12, p. 1081–1117, Dec.
2016.

[32] P. Gómez-Abajo, E. Guerra, and J. de Lara, “A domain-specific
language for model mutation and its application to the automated
generation of exercises,” Computer Languages, Systems & Structures,
vol. 49, pp. 152 – 173, 2017.

[33] R. Calinescu, M. Češka, S. Gerasimou, M. Kwiatkowska, and
N. Paoletti, “Designing robust software systems through paramet-
ric markov chain synthesis,” in 2017 IEEE International Conference
on Software Architecture (ICSA), 2017, pp. 131–140.

[34] A. Kolchin, “Interactive method for cumulative analysis of soft-
ware formal models behavior,” PROBLEMS IN PROGRAMMING,
no. 2-3, pp. 115–123, 2018.

[35] S. Procter and L. Wrage, “Guided architecture trade space ex-
ploration: Fusing model based engineering design by shopping,”
in 2019 ACM/IEEE 22nd International Conference on Model Driven
Engineering Languages and Systems (MODELS), 2019, pp. 117–127.

[36] T. L. Calvar, F. Chhel, F. Jouault, and F. Saubion, “Toward a
declarative language to generate explorable sets of models,”
in Proceedings of the 34th ACM/SIGAPP Symposium on Applied
Computing, SAC 2019, Limassol, Cyprus, April 8-12, 2019, C. Hung
and G. A. Papadopoulos, Eds. ACM, 2019, pp. 1837–1844.
[Online]. Available: https://doi.org/10.1145/3297280.3297461

[37] J. Zubcoff, I. Garrigós, S. Casteleyn, J.-N. Mazón, J.-A. Aguilar, and
F. Gomariz-Castillo, “Evaluating different i*-based approaches for
selecting functional requirements while balancing and optimizing
non-functional requirements: A controlled experiment,” Informa-
tion and Software Technology, vol. 106, pp. 68 – 84, 2019.

[38] B. Alkhazi, C. Abid, M. Kessentini, D. Leroy, and M. Wimmer,
“Multi-criteria test cases selection for model transformations,”
Automated Software Engineering, pp. 1–28, 2020.

[39] B. Alkhazi, C. Abid, M. Kessentini, and M. Wimmer, “On the value
of quality attributes for refactoring atl model transformations: A

https://doi.org/10.1109/TSE.2018.2872711
https://doi.org/10.1145/3365438.3410966
https://doi.org/10.1109/CEC45853.2021.9504786
https://doi.org/10.1109/ICSA-C54293.2022.00057
https://doi.org/10.1007/s10270-022-00978-2
https://doi.org/10.1145/3555228.3555232
https://doi.org/10.1145/3297280.3297461

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, FEBRUARY 2023 14

multi-objective approach,” Information and Software Technology, vol.
120, p. 106243, 2020.

[40] H. Takagi, “Interactive evolutionary computation: fusion of the
capabilities of EC optimization and human evaluation,” Proc.
IEEE, vol. 89, no. 9, pp. 1275–1296, 2001. [Online]. Available:
https://doi.org/10.1109/5.949485

[41] ——, “Interactive evolutionary computation: Fusion of the capa-
bilities of EC optimization and human evaluation,” Proceedings of
the IEEE, vol. 89, no. 9, pp. 1275–1296, September 2001.

[42] A. Ampatzoglou and I. Stamelos, “Software engineering research
for computer games: A systematic review,” Inf. Softw. Technol.,
vol. 52, no. 9, pp. 888–901, 2010.

[43] A. Arcuri and G. Fraser, “Parameter tuning or default values?
an empirical investigation in search-based software engineering,”
Empirical Software Engineering, vol. 18, no. 3, pp. 594–623, 2013.

[44] R. Casamayor, L. Arcega, F. Pérez, and C. Cetina, “Bug localization
in game software engineering: evolving simulations to locate
bugs in software models of video games,” in Proceedings of the
25th International Conference on Model Driven Engineering Languages
and Systems, MODELS 2022, Montreal, Quebec, Canada, October 23-
28, 2022, E. Syriani, H. A. Sahraoui, N. Bencomo, and
M. Wimmer, Eds. ACM, 2022, pp. 356–366. [Online]. Available:
https://doi.org/10.1145/3550355.3552440

[45] A. Arcuri and L. Briand, “A hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering,”
Softw. Test. Verif. Reliab., vol. 24, no. 3, pp. 219–250, May 2014.

[46] J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek, “Appro-
priate statistics for ordinal level data: Should we really be using
t-test and Cohen’sd for evaluating group differences on the NSSE
and other surveys,” in annual meeting of the Florida Association of
Institutional Research, 2006, pp. 1–33.

[47] D. Blasco, J. Font, M. Zamorano, and C. Cetina, “An
evolutionary approach for generating software models: The
case of kromaia in game software engineering,” J. Syst.
Softw., vol. 171, p. 110804, 2021. [Online]. Available: https:
//doi.org/10.1016/j.jss.2020.110804

[48] L. Burgueño, J. Troya, M. Wimmer, and A. Vallecillo, “Static
fault localization in model transformations,” IEEE Transactions on
Software Engineering, vol. 41, no. 5, pp. 490–506, May 2015.

[49] S. Iftikhar, M. Z. Iqbal, M. U. Khan, and W. Mahmood,
“An automated model based testing approach for platform
games,” in 18th ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems, MoDELS 2015, Ottawa, ON,
Canada, September 30 - October 2, 2015, T. Lethbridge, J. Cabot, and
A. Egyed, Eds. IEEE Computer Society, 2015, pp. 426–435. [On-
line]. Available: https://doi.org/10.1109/MODELS.2015.7338274

[50] J. Sánchez Cuadrado, E. Guerra, and J. Lara, “Static analysis of
model transformations,” IEEE Transactions on Software Engineering,
vol. 43, no. 9, pp. 868–897, 2017.

[51] ——, “Quick fixing atl transformations with speculative analysis,”
Softw. Syst. Model., vol. 17, no. 3, p. 779–813, Jul. 2018. [Online].
Available: https://doi.org/10.1007/s10270-016-0541-1

[52] J. Troya, S. Segura, J. A. Parejo, and A. Ruiz-Cortés, “Spectrum-
based fault localization in model transformations,” ACM Trans.
Softw. Eng. Methodol., vol. 27, no. 3, Sep. 2018. [Online]. Available:
https://doi.org/10.1145/3241744

[53] S. Ariyurek, A. Betin-Can, and E. Surer, “Automated video game
testing using synthetic and humanlike agents,” IEEE Transactions
on Games, vol. 13, no. 1, pp. 50–67, 2021.

[54] Y. Zheng, C. Fan, X. Xie, T. Su, L. Ma, J. Hao, Z. Meng,
Y. Liu, R. Shen, and Y. Chen, “Wuji: Automatic online
combat game testing using evolutionary deep reinforcement
learning,” in 34th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2019, San Diego, CA, USA, November 11-
15, 2019. IEEE, 2019, pp. 772–784. [Online]. Available: https:
//doi.org/10.1109/ASE.2019.00077

[55] S. Ariyurek, A. Betin-Can, and E. Sürer, “Enhancing the
monte carlo tree search algorithm for video game testing,”
in IEEE Conference on Games, CoG 2020, Osaka, Japan, August 24-
27, 2020. IEEE, 2020, pp. 25–32. [Online]. Available: https:
//doi.org/10.1109/CoG47356.2020.9231670

[56] X. Cheng, N. Liu, L. Guo, Z. Xu, and T. Zhang, “Blocking bug
prediction based on xgboost with enhanced features,” in 44th IEEE
Annual Computers, Software, and Applications Conference, COMPSAC
2020, Madrid, Spain, July 13-17, 2020. IEEE, 2020, pp. 902–911.
[Online]. Available: https://doi.org/10.1109/COMPSAC48688.
2020.0-152

[57] J. Zhang, R. Xie, W. Ye, Y. Zhang, and S. Zhang, “Exploiting code
knowledge graph for bug localization via bi-directional attention,”
in ICPC ’20: 28th International Conference on Program Comprehension,
Seoul, Republic of Korea, July 13-15, 2020. ACM, 2020, pp. 219–229.
[Online]. Available: https://doi.org/10.1145/3387904.3389281

[58] L. Arcega, J. Font, Ø. Haugen, and C. Cetina, “Bug localization
in model-based systems in the wild,” ACM Trans. Softw. Eng.
Methodol., vol. 31, no. 1, pp. 10:1–10:32, 2022. [Online]. Available:
https://doi.org/10.1145/3472616

[59] R. Ferdous, F. M. Kifetew, D. Prandi, I. S. W. B. Prasetya,
S. Shirzadehhajimahmood, and A. Susi, “Search-based automated
play testing of computer games: A model-based approach,”
in Search-Based Software Engineering - 13th International Symposium,
SSBSE 2021, Bari, Italy, October 11-12, 2021, Proceedings, ser. Lecture
Notes in Computer Science, U. O’Reilly and X. Devroey, Eds.,
vol. 12914. Springer, 2021, pp. 56–71. [Online]. Available:
https://doi.org/10.1007/978-3-030-88106-1 5

[60] S. Quach, M. Lamothe, B. Adams, Y. Kamei, and W. Shang,
“Evaluating the impact of falsely detected performance bug-
inducing changes in JIT models,” Empir. Softw. Eng., vol. 26,
no. 5, p. 97, 2021. [Online]. Available: https://doi.org/10.1007/
s10664-021-10004-6

[61] A. Ciborowska and K. Damevski, “Fast changeset-based bug
localization with BERT,” in 44th IEEE/ACM 44th International
Conference on Software Engineering, ICSE 2022, Pittsburgh, PA, USA,
May 25-27, 2022. ACM, 2022, pp. 946–957. [Online]. Available:
https://doi.org/10.1145/3510003.3510042

[62] A. Khanfir, “Effective and scalable fault injection using bug reports
and generative language models,” in Proceedings of the 30th ACM
Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/FSE 2022, Singapore,
Singapore, November 14-18, 2022, A. Roychoudhury, C. Cadar, and
M. Kim, Eds. ACM, 2022, pp. 1790–1794. [Online]. Available:
https://doi.org/10.1145/3540250.3558907

[63] H. Liang, D. Hang, and X. Li, “Modeling function-level
interactions for file-level bug localization,” Empir. Softw. Eng.,
vol. 27, no. 7, p. 186, 2022. [Online]. Available: https:
//doi.org/10.1007/s10664-022-10237-z

[64] R. Tufano, S. Scalabrino, L. Pascarella, E. Aghajani, R. Oliveto,
and G. Bavota, “Using reinforcement learning for load testing of
video games,” in Proceedings of the 44th International Conference on
Software Engineering (ICSE 2022), Pittsburgh, USA, 2022.

[65] I. Boussaı̈d, P. Siarry, and M. Ahmed-Nacer, “A survey on search-
based model-driven engineering,” Autom. Softw. Eng., vol. 24,
no. 2, pp. 233–294, 2017.

[66] F. Pérez, T. Ziadi, and C. Cetina, “Utilizing automatic query
reformulations as genetic operations to improve feature location
in software models,” IEEE Transactions on Software Engineering,
June 2020. [Online]. Available: https://doi.org/10.1109/TSE.2020.
3000520

[67] H. Ishibuchi, Y. Nojima, and Tsutomu Doi, “Comparison between
single-objective and multi-objective genetic algorithms: Perfor-
mance comparison and performance measures,” in 2006 IEEE In-
ternational Conference on Evolutionary Computation, 2006, pp. 1143–
1150.

[68] G. Salton and M. J. McGill, Introduction to Modern Information
Retrieval. New York, NY, USA: McGraw-Hill, Inc., 1986.

[69] S. Garcı́a, A. Fernández, J. Luengo, and F. Herrera, “Advanced
nonparametric tests for multiple comparisons in the design of
experiments in computational intelligence and data mining: Ex-
perimental analysis of power,” Inf. Sci., vol. 180, no. 10, pp. 2044–
2064, May 2010.

[70] W. Conover, Practical nonparametric statistics, 3rd ed., ser. Wiley
series in probability and statistics. New York, NY [u.a.]: Wiley,
1999.

[71] N. Cliff, Ordinal methods for behavioral data analysis. Lawrence
Erlbaum Associates, Inc, 1996.

[72] D. I. K. Sjoeberg, J. E. Hannay, O. Hansen, V. B. Kampenes,
A. Karahasanovic, N. . Liborg, and A. C. Rekdal, “A survey of
controlled experiments in software engineering,” IEEE Transactions
on Software Engineering, vol. 31, no. 9, pp. 733–753, 2005.

[73] H. J. Seltman, “Experimental design and analysis,” Online at: http:
//www.stat.cmu.edu/∼hseltman/309/Book/Book.pdf , 2012.

[74] M. de Oliveira Barros and A. C. D. Neto, “Threats to validity in
search-based software engineering empirical studies,” RelaTe-DIA,
vol. 5, 01 2011.

https://doi.org/10.1109/5.949485
https://doi.org/10.1145/3550355.3552440
https://doi.org/10.1016/j.jss.2020.110804
https://doi.org/10.1016/j.jss.2020.110804
https://doi.org/10.1109/MODELS.2015.7338274
https://doi.org/10.1007/s10270-016-0541-1
https://doi.org/10.1145/3241744
https://doi.org/10.1109/ASE.2019.00077
https://doi.org/10.1109/ASE.2019.00077
https://doi.org/10.1109/CoG47356.2020.9231670
https://doi.org/10.1109/CoG47356.2020.9231670
https://doi.org/10.1109/COMPSAC48688.2020.0-152
https://doi.org/10.1109/COMPSAC48688.2020.0-152
https://doi.org/10.1145/3387904.3389281
https://doi.org/10.1145/3472616
https://doi.org/10.1007/978-3-030-88106-1_5
https://doi.org/10.1007/s10664-021-10004-6
https://doi.org/10.1007/s10664-021-10004-6
https://doi.org/10.1145/3510003.3510042
https://doi.org/10.1145/3540250.3558907
https://doi.org/10.1007/s10664-022-10237-z
https://doi.org/10.1007/s10664-022-10237-z
https://doi.org/10.1109/TSE.2020.3000520
https://doi.org/10.1109/TSE.2020.3000520
http://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
http://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, FEBRUARY 2023 15

[75] R. Feldt and A. Magazinius, “Validity threats in empirical soft-
ware engineering research-an initial survey.” in Proceedings of the
22nd International Conference on Software Engineering & Knowledge
Engineering (SEKE’2010), 2010, pp. 374–379.

Rodrigo Casamayor is a researcher in the
SVIT Research Group (https://svit.usj.es) at San
Jorge University. He is a PhD Student in Com-
puter Science at the Polytechnic University of
Valencia. His current research interests include
bug localization and game software engineering.
He publishes his research results and partici-
pates in high-level international software engi-
neering conferences, such as the International
Conference on Model Driven Engineering Lan-
guages and Systems (MODELS).

Carlos Cetina is an Associate Professor with
San Jorge University and the Head of the SVIT
Research Group. He received a PhD in com-
puter science from the Polytechnic University
of Valencia. His research focuses on software
product lines and model-driven development.
His research results have reshaped software de-
velopment in world-leading industries from het-
erogeneous domains ranging from induction hob
firmware to train control and management sys-
tems. More information about his background

can be found at his website: http://carloscetina.com.

Óscar Pastor is currently a Full Professor and
the Director of the PROS Research Center at
Polytechnic University of Valencia. With a strong
background in Conceptual Modeling, Model-
driven Development and their practical applica-
tions in Information Systems design and de-
velopment, he is currently leading a multidisci-
plinary project linking information systems and
bioinformatics with designing and implementing
tools for conceptual modeling-based interpreta-
tion of Human Genome information.

Francisca Pérez is an Associate Professor in
the SVIT Research Group (https://svit.usj.es) at
San Jorge University. She received a PhD in
Computer Science from the Polytechnic Univer-
sity of Valencia. Her research interests include
Model-Driven Development, Collaborative Infor-
mation Retrieval, Search-Based Software Engi-
neering, and Variability Modeling. She publishes
her research results and participates in high-
level international software engineering confer-
ences and journals, such as IEEE Transactions

on Software Engineering (TSE), the Automated Software Engineering
(AUSE) journal, the Information & Software Technology (IST) journal,
and the Journal of Systems and Software (JSS). More about Pérez and
her work is available online at http://franciscaperez.com.

https://svit.usj.es
http://carloscetina.com
https://svit.usj.es
http://franciscaperez.com

	Introduction
	Background
	SBMDE for locating bugs in a commercial video game
	Interactive SBSE

	Related work
	Hybridizing the fitness function
	Evaluation
	Research questions
	Planning and execution
	Implementation details

	Results
	Research Question 1
	Research Question 2
	Research Question 3

	Discussion
	Threats to validity
	Conclusion
	References
	Biographies
	Rodrigo Casamayor
	Carlos Cetina
	Óscar Pastor
	Francisca Pérez

