Evaluating the Benefits of Software Product Lines in Game
Software Engineering

Jose Ignacio Trasobares, Africa Domingo, Lorena Arcega, Carlos Cetina
jtrasobaresibor@acm.org,{adomingo,larcega,ccetina}@usj.es
Universidad San Jorge. Escuela de Arquitectura y Tecnologia

Zaragoza, Spain

ABSTRACT

Video game development is one of the fastest-growing industries
in the world. The use of software product lines (SPLs) has proven
to be effective in developing different types of software at a lower
cost, in less time, and with higher quality. There are recent research
efforts that propose to apply SPLs in the domain of video games.
Video games present characteristics that differentiate their develop-
ment from the development of classic software; for example, game
developers perceive more difficulties than other non-game develop-
ers when reusing code. In this paper, we evaluate if the adoption
of an SPL in game software engineering (GSE) can generate the
same benefits as in classic software engineering (CSE) considering
the case study of Kromaia. As in other disciplines dealing with
human behaviour, empirical research allows for building a reliable
knowledge base in software engineering. We present an experiment
comparing two development approaches, Clone and Own (CaO)
and an SPL in terms of correctness, efficiency, and satisfaction when
subjects develop elements of a commercial video game. The results
indicate that the elements developed using the SPL are more cor-
rect than those developed with CaO but do not indicate significant
improvement in efficiency or satisfaction. Our findings suggest that
SPLs in GSE may play a different role than the one they have played
for decades in CSE. Specifically, SPLs can be relevant to generating
new video game content or to balancing video game difficulty.

CCS CONCEPTS

« Software and its engineering — Software product lines; «
General and reference — Empirical studies.

KEYWORDS

Empirical comparison, Software Product Line Engineering, Game
Software Engineering

ACM Reference Format:

Jose Ignacio Trasobares, Africa Domingo, Lorena Arcega, Carlos Cetina.
2022. Evaluating the Benefits of Software Product Lines in Game Software
Engineering. In 26th ACM International Systems and Software Product Line
Conference - Volume A (SPLC °22), September 12-16, 2022, Graz, Austria. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3546932.3546998

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SPLC 22, September 12-16, 2022, Graz, Austria

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9443-7/22/09...$15.00
https://doi.org/10.1145/3546932.3546998

1 INTRODUCTION

Nowadays, the video game industry is one of the fastest-growing
industries in the world. According to a 2019 report [31], the total
number of active software developers is 18.9M. The same report
indicates that the video game industry is responsible for 8.8M active
developers. This means that almost half of the active developers
are involved in the video game sector.

Nowadays, the majority of video games are developed using
game engines. A game engine is a development environment that
integrates two engines for graphics and physics and a set of tools
to accelerate the development. The most popular are Unity [33]
and Unreal Engine [15], but it is also possible for a studio to make
its specific engine (e.g., CryEngine [9]).

Software models are a key artifact of game engines. Software
models raise the abstraction level using terms that are much closer
to the problem domain. This means that developers can focus on the
game content itself, avoiding the implementation details of physics
and graphics. Game engines allow video game developers to create
content directly using code (e.g., C++) or software models. The code
allows developers to have more control over the content. Although
Unity and Unreal propose their own modeling language, a recent
survey in Model-Driven Game Development [38] reveals that UML
and Domain Specific Language (DSL) models are also adopted by
development teams.

The use of software product lines (SPLs) has proven to be effec-
tive in developing different types of software at a lower cost, in less
time, and with higher quality [29]. That is why there are recent
research efforts that propose to apply SPLs in the domain of video
games [19, 22, 30]. Another recent research [28] provided evidence
that video game development is different from classical software de-
velopment. For example, game developers perceive more difficulties
than non-game developers when reusing code.

In this paper, we evaluate whether the adoption of an SPL in
Game Software Engineering (GSE) can generate the same benefits as
in classical software engineering (CSE) by analyzing the case study
of a commercial video game: Kromaia. Kromaia has been previously
analyzed by other authors since it uses a specific DSL to automati-
cally generate the final bosses of the video game [4, 5, 12, 13]. We
present an experiment in which we compare two development ap-
proaches, Clone and Own (CaO) and an SPL, both based on the
Kromaia DSL, in terms of correctness, efficiency, and satisfiability.
A total of 28 subjects (classified into two groups according to their
experience) performed the tasks of the experiment, developing two
final bosses of Kromaia. Although the bosses developed with SPL
are more correct than those developed with CaO, our results do not
indicate significant changes in efficiency or satisfaction.

https://doi.org/10.1145/3546932.3546998
https://doi.org/10.1145/3546932.3546998

SPLC 22, September 12-16, 2022, Graz, Austria

Our results suggest that the efficiency that for decades has made
SPLs attractive to CSE may not be the key to GSE. In light of our
results, we may need to rethink the role of SPLs for GSE. Our work
suggests new research directions for SPL in GSE. Specifically, our
work reveals that SPLs in GSE can be relevant to generating new
video game content (one of the hot topics of video game research)
and to balancing difficulty (one of the seminal problems of video
games).

The remainder of the paper is structured as follows. Section
2 presents the case study (Kromaia) and the SPL used in the ex-
periment. Section 3 describes our experiment. Section 4 presents
the results obtained. Section 5 discusses the findings. Section 6 de-
scribes the threats to validity. Section 7 examines the related work
of the area. Finally, Section 8 concludes the paper.

2 BACKGROUND

We use the video game Kromaia® in our experiment. Kromaia is a
three-dimensional space game in which the player’s spaceship flies
from a starting point to an ending point reaching the goal of each
level before being destroyed. Throughout the level, the player has
to explore floating structures, avoid asteroids and find items. Along
the way, the player will encounter basic enemies that will try to
damage the player’s spaceship by firing projectiles. If the player
reaches the destination, the final boss corresponding to that level
appears and must be defeated to complete the level.

1

Metamodel

Boss IComponent]

sourceb

Link Hull 0—*Weapon

targeth

1T1 A
: S o

Weak_Point IShieId Laser| |Spike| |[Cannon
L
L

Concrete syntax
O Hut ik P Weak Point

f Shield m Laser

—>> Spike /o\ Cannon

Figure 1: The Shooter Definition Modeling Language (SDML).

The final bosses are specified using the Shooter Definition Mod-
eling Language (SDML) [5]. SDML is a Domain-Specific Language
(DSL) that defines components that appear in video game enti-
ties: the anatomical structure (including which parts are used in it,
their physical properties, and how they are connected); the amount
and distribution of vulnerable parts, weapons, and defenses in the

IKromaia Omega - Launch | PlayStation 4: https://youtu.be/EhsejJBp8Go

Trasobares at al.

structure/body of the character; and the movement behaviours as-
sociated to the whole body or its parts. This modeling language has
concepts such as hulls, links, weak points, and weapons.

Figure 1 shows the metamodel and the concrete syntax of SDML.
The metamodel shown in the upper part of the figure is a simplified
version of the entire metamodel of SDML. This simplification omits
concepts, relationships, and properties that are not as relevant as
those presented in the figure. The metamodel contains more than
20 concepts, over 20 relationships, and more than 60 properties.
However, this simplified version is complete enough to understand
the elements and the relationships between them that compose the
structure of a boss. The bottom part of Figure 1 depicts the concrete
syntax of each of the elements. Overall, a boss is composed of hulls
and links. Each link joins two hulls. A hull can contain weak points
that the player must attack, weapons such as cannons, lasers, or
spikes, and shields that protect weak points and weapons.

Level 2 final boss: Octopus

Octopus: using SDML concrete syntax
[\ R
o
&> QQQQO QQOQQ 9
QQQ OQQ
Figure 2: Example of a final boss of Kromaia.

An actual example of a final boss of Kromaia is presented in the
upper part of Figure 2. The Octopus is the final boss that the player
must defeat to complete level 2. The bottom part of the figure shows
the model of the boss using the SDML concrete syntax. This boss
is composed of one main hull (in the center of the model) and four
"tentacles". The main hull has a weak point, a laser weapon, and
four cannon weapons. Each tentacle consists of six hulls, where the
end hull has a weak point, a laser weapon, and a cannon weapon.

Figure 3 shows a subset of the assets of the SPL for developing
Kromaia bosses. In the left top corner, the figure shows one of the
initial models using the concrete syntax of SDML that can be used
to create new bosses. The right upper part of the figure shows
some of the features that form the SPL. Each feature corresponds
to a model fragment expressed using the concrete syntax of SDML.
At the bottom of Figure 3, some feature models that represent
the variability specification of a boss are shown. The variability

https://youtu.be/EhsejJBp8Go

Evaluating the Benefits of Software Product Lines in Game Software Engineering

Initial model

oililsiicte

SPLC 22, September 12-16, 2022, Graz, Austria

Features

hul R
s’s

-
s

hul)
s’a

Figure 3: An example of the SPL for developing Kromaia bosses.

specification was defined by the domain experts of Kromaia. The
elements denoted with a P represent variation points that can be
substituted by a feature, F, following the variability specification.
For example, the variability specification that is shown in the first
place (PI) indicates that can be substituted with the model fragments
F1, F2, or F3. Furthermore, some features can be variation points
that have to be fulfilled with another feature. For example, feature
F2 has two variation points, P6 and P7, which have to be substituted
following their variability specification. P6 has to be replaced by F7
or F8 and P7 has to be replaced by F9 or F10.

3 EXPERIMENT DESIGN

3.1 Objectives

According to the Wohlin’s guidelines [37] for reporting software
engineering experiments, we have organized our research objec-
tives using the Goal Question Metric template for goal definition
[3]. Our goal is to analyze different development approaches for
the purpose of comparison, with respect to the correctness of
the models constructed, efficiency, and user satisfaction, from the
point of view of inexperienced and experienced developers, in
the context of developing for a video game company.

3.2 Variables

In this study, the factor under investigation is Development Ap-
proach. There are two alternatives: to use Clone and Own (CaO)
or the SPL based on the DSL of Kromaia, to create a boss of the
video game.

Since the goal of this experiment is to evaluate the effects of the
use of different approaches when developing a boss of a commercial
video game, we selected Correctness and Efficiency as the objective
dependent variables, which are related to performance. We mea-
sured Correctness using a correction template, which was applied
to the models developed by the subjects after the experiment. Their
values range from 0 to 100 and represent the percentage of points

obtained according to the correction template. To calculate Effi-
ciency, we measured the time employed by each subject to finish
the task, using the start and end time of each task. Efficiency is the
ratio of Correctness to time spent (in minutes) to perform a task.
We also analyzed development approaches with respect to Sat-
isfaction using a 5-point Likert-scale questionnaire based on the
Technology Acceptance Model (TAM) [25]. We decompose Satisfac-
tion into three subjective dependent variables as follows: Perceived
Ease of Use (PEOU), the degree to which a person believes that
learning and using a particular language would require less effort.
Perceived Usefulness (PU), the degree to which a person believes
that using a particular language will increase performance, and
Intention to Use (ITU), the degree to which a person intends to use
a development approach. Each of these variables corresponds to
specific items in the TAM questionnaire. We average the scores
obtained for these items to obtain the value for each variable.

3.3 Design

We chose a factorial crossover design with two periods using two
different tasks, T1 and T2, one for each period. The subjects had
been randomly divided into two groups (G1 and G2). In the first
period of the experiment, all of the subjects solved T1 with G1 using
CaO and G2 using SPL. Afterward, in the second period, all of the
subjects solved T2, G1 using the SPL and G2 using CaO.

These repeated measures design increases the sensitivity of the
experiment [35]: the observation of the same subject using the two
alternatives controls between-subject differences, improving ex-
periment robustness regarding variation among subjects. By using
two different sequences for each group (G1 used CaO first and SPL
afterwards, and G2 used SPL first and CaO afterwards) and differ-
ent tasks, the design counterbalances some of the effects caused by
using the alternatives of the factor in a specific order (i.e., learning
effect, fatigue). To verify the experiment design, we conducted a pi-
lot study with two subjects. This pilot study allowed us to estimate

SPLC 22, September 12-16, 2022, Graz, Austria

the time needed to solve the tasks and complete the questionnaires,
detect typographical and semantic mistakes, and test the online
environment used to develop the experiment. The subjects in the
pilot study did not participate in the experiment.

3.4 Research questions and hypotheses

The research questions and null hypotheses are formulated as fol-
lows:

RQ1 - Does the Development Approach used for creating
software for video games impact the Correctness of software? The
corresponding null hypothesis is Hyc: The Development Ap-
proach used for creating software for video games does not have
an effect on Correctness. .

RQ2 - Does the Development Approach used for creating
software for video games impact the Efficiency of developers? The
null hypothesis for Efficiency is Hy g: The Development Approach
does not have an effect on Efficiency.

RQ3 - Is user satisfaction different when developers use different
Development Approach for creating software for video games?
To answer this question, we formulated three hypotheses based on
the variables Perceived Ease of Use, Perceived Usefulness, and Inten-
tion to Use, with their corresponding null hypotheses. These are:
Hy prou, the Development Approach does not have an effect on
Perceived Ease of Use; Hy py, the Development Approach does not
have an effect on Perceived Usefulness; Hy 7y, the Development
Approach does not have an effect on Intention to Use.

The hypotheses are formulated as two-tailed hypotheses since
we have not found empirical studies that support a specific direction
for the effect in the video game domain.

3.5 Participants

We selected the subjects using convenience sampling [37]. We in-
vited 20 professionals working in software modeling or video game
development to participate in the experiment. 13 of them decided
to participate and completed the experiment. A total of 28 sub-
jects with different knowledge about modeling and video game
development performed the experiment. We also invited 20 third-
year undergraduate students (inexperienced developers) taking a
course in mobile game development from a technology program
at a University. Of these subjects, 16 decided to participate and 15
completed the tasks and forms. The experiment was conducted by
two instructors and one expert in the video game software domain.
The expert provided information about the domain, the Kromaia
DSL, and the SPL used in the experiment. This expert was not the
same person who was responsible for designing the tasks. During
the experiment, one of the instructors gave instructions and man-
aged the focus groups. The other instructor clarified doubts about
the experiment and took notes during the focus group.

3.6 Experimental objects

The tasks of our experiment were extracted from a real-world soft-
ware development, Kromaia, which is a commercial video game
released on PlayStation 4 and Steam. In Kromaia, the models are
interpreted at run-time to create the C++ games’ objects [5]. The
tasks consisted of developing two final bosses of Kromaia from
their behaviour in a gameplay video. The subjects used a graphical

Trasobares at al.

version of Shooter Definition Modeling Language, which is the DSL
used in Kromaia. In one of the tasks of the experiment, the subjects
used an SPL based on that DSL. A video game software engineer,
involved in the development of Kromaia’s DSL, designed the two
tasks of similar difficulty and prepared the correction templates.
For data collection, we prepared two forms with Microsoft Forms,
one for each experimental sequence, with the following sections:

I Informed consent that subjects must review and accept vol-
untarily. It clearly explains what the experiment consists of
and what will be the treatment of personal data.

II Demographic questionnaire to characterize the sample.

IIT Specific questionnaire to collect the subjects’ responses dur-
ing the experiment (their tasks, their times, and their answers
to the satisfaction questionnaire). This part is different for
each sequence. In one of the sequences, the subjects will
perform the first task using the CaO approach and in the
other sequence, they will perform the first task using the
SPL approach. The second task will be performed with the
approach not used in the first task.

—

The experimental objects used in this experiment (which in-
cludes the training material, the tasks, and the forms used for the
questionnaires), as well as the results and the statistical analysis,
are available at http://svit.usj.es/SPLvsCAO

3.7 Experimental procedure

The experiment was conducted on two different days. On the first
day, the experiment was conducted online with professionals (expe-
rienced subjects). During the online session, all of the participants
joined the same video conference via Microsoft Teams, and the
chat session was used to clarify doubts or share information. On
the second day, the experiment was conducted face-to-face with
the group of students (inexperienced subjects). The experiment,
scheduled for one hour and 45 minutes, was conducted following
the experimental procedure described as follows:

(1) Aninstructor explained the parts of the session, and clarified
to them that it was not a test of their abilities.

(2) The subjects attended a tutorial about the video game bosses
to be developed and about the DSL and the SPL to be used
in the experiment. The time devoted to this tutorial was 10
minutes. The information used was available to the subjects
during the experiment. This information contained the meta-
model, the concrete syntax of SDML (Figure 1), different
examples of models of other video game bosses (such as the
one in Figure 2), and an example of how to use the SPL.
The subjects received clear instructions on where to find the
links to access the forms for the experiment. They were also
told about the structure of these forms and where they could
find information about the DSL and the SPL. The subjects
were randomly divided into two groups (G1 and G2); the
subjects from G1 received the links to access one form and
the subjects from G2 received a link to another form.

(4) The subjects accessed the online form, read and confirmed
having read the information about the experiment, the data
treatment of their personal information, and the voluntary
nature of their participation before accessing the question-
naires and tasks of the experiment.

—
5Y)
=

http://svit.usj.es/SPLvsCAO

Evaluating the Benefits of Software Product Lines in Game Software Engineering

(5) The subjects completed a demographic questionnaire.

(6) The subjects performed the first task. The subjects from G1
had to use the CaO approach to develop a boss of the video
game, and the subjects from G2 had to develop the same boss
using the SPL. The subjects using the SPL approach had ac-
cess to an initial model, a set of features, and the specification
of the variability of the boss to be developed, as in the ex-
ample of Figure 3. The subjects using the CaO approach did
not have access to this information. After submitting their
solution, the subjects completed a satisfaction questionnaire
about the approach used for developing.

(7) The subjects performed the second task. The subjects from
G1 developed another boss of the video game using the SPL
approach, and the subjects from G2 developed the same boss
using the CaO approach. Then, the subjects completed the
satisfaction questionnaire.

(8) A focus group interview about the tasks (lasting 10 to 15
minutes) was conducted by one instructor while the other
instructor took notes.

(9) Finally, the tasks were corrected, and a researcher analyzed
the results.

3.8 Analysis procedure

We have chosen the Linear Mixed Model (LMM) [36] for the sta-
tistical data analysis. LMM handles correlated data resulting from
repeated measurements, and it allows us to study the effects of
factors that intervene in a crossover design (period, sequence, or
subject) and the effects of other blocking variables (e.g., in our ex-
periment, professional experience) [35]. In the hypothesis testing,
we applied the Type III test of fixed effects with unstructured re-
peated covariance. Type Il is the default test, which enables LMM
to produce the exact F-values and p-values for each dependent
variable and each fixed factor. The assumption for applying LDA is
the normality of the residuals of the dependent variables. To verify
this normality, we used Kolmogorov-Smirnov tests as well as visual
inspections of the histogram and normal Q-Q plots.

In this study, Development Approach (DA) was defined as a
fixed-repeated factor to identify the differences between using CaO
or SPL, and the subjects were defined as a random factor (1|Subj.)
to reflect the repeated measures design. The dependent variables
(DV) for this test were Correctness and Efficiency, and the three
other variables correspond to Satisfaction: Perceived Ease of Use
(PEOU), Perceived Usefulness (PU), and Intention to Use (ITU).

In order to take into account the potential effects of factors that
intervene in a crossover design in determining the main effect
of Development Approach, we considered Period and Sequence
to be fixed effects. In order to explore the potential effects of the
subject’s experience to determine the variability in the dependent
variables, we also considered in the statistical model the fixed fac-
tors Experience and the sequence Development Approach and
Experience.

We tested different statistical models in order to find out which
factors, in addition to Development Approach, could best explain
the changes in the dependent variables. Some of these statistical
models are described mathematically in formula 1. The starting
statistical model (Model 0) reflects the main factor used in this

SPLC 22, September 12-16, 2022, Graz, Austria

experiment, Development Approach. We also tested other sta-
tistical models (e.g., model 1, 2, 3, or 4) that included other fixed
factors (experience, period, or sequence) that could have effects on
the dependent variables.

(Model 0) DV ~ DA+ (1|Subj.)

(Model 1) DV ~ DA+ Experience + (1| Subj.)

(Model 2) DV ~ DA + Experience + DA * Experience + (1| Subj.)

(Model 3) DV ~ DA+ Experience + Period + (1| Subj.)

(Model 4) DV ~ DA + Sequence + Period + (1| Subj.)

®

The statistical model fit of the tested models was evaluated based
on goodness of fit measures such as Akaike’s information criterion
(AIC) and Schwarz’s Bayesian Information Criterion (BIC). The
model with the smallest AIC or BIC is considered to be the best
fitting model [13, 17]. The assumption for applying LMM is the
normality of the residuals of the dependent variables. In the analysis,
we only consider statistical models verifying this assumption. To
verify this normality, we used Kolmogorov-Smirnov tests as well
as visual inspections of the histogram and normal Q-Q plots. To
describe the changes in each dependent variable, we selected the
statistical model that satisfied the normality of residuals and also
obtained the smallest AIC or BIC value.

To quantify the differences in the dependent variables due to sig-
nificant fixed factors, we calculated the Cohen d value [8] between
the alternatives of these factors. Values of Cohen d between 0.2
and 0.3 indicate a small effect, values around 0.5 indicate a medium
effect, and values greater than 0.8 indicate a large effect. We selected
histograms and box plots to graphically describe the data and the
results.

4 RESULTS

The subjects filled out a demographic questionnaire that was used
for characterizing the sample. Table 1 shows the number of subjects
in the experiment, divided by experience, the mean and standard
deviation of age, hours per day developing software (Developing
time), and hours per day working with models (Modeling time). A
5-point Likert-scale was used for the self-assessment of the subjects’
knowledge of programming languages (Programming knowledge),
and modeling languages (Modeling Knowledge). The mean and
standard deviation of their answers are also shown in Table 1.

Table 1: Results of the demographic questionnaire

Number of Age Developing Modeling Programming Modeling

subjects pxo timeto time+o knowledge+o knowledgeto
All subjects 28 258474 3.4£25 0.8+1 3+1.3 2.6£1.6
Experienced 13 30.7+8.4 4.5+2.6 1.2+1.2 3.8+1.3 3.5+1.4
Inexperienced 15 21513 2.4+2 0.5+0.6 2.3+0.7 1.7£1.2

4.1 Changes in the dependent variables

There were differences in the means and standard deviations of
all of the dependent variables depending on which Development
Approach was used to create a boss of a video game. However,
the differences in Effectiveness and Satisfaction are very small. Ta-
ble 2 shows the values for the mean and standard deviation of

SPLC 22, September 12-16, 2022, Graz, Austria

Trasobares at al.

Table 2: Values for the mean and standard deviation (1 + o) of the dependent variables for the factor Development Approach in
each alternative of the fixed factors

Development Experience Period Sequence

Approach Experienced | Inexperienced Task 1 Task 2 G1 Cao-SPL | G2 SPL-CaO
Correctness
CaO 51.87+£16.64 60.15+12.43 44.7+16.82 50.87+18.39 | 53.03%£15.02 || 50.87+18.39 | 53.03+15.02
SPL 64.13+29.96 76.48+22.98 53.43+31.84 69.66+21.88 | 59.34+35.6 59.34+35.6 | 69.66+21.88
Efficiency
CaO 3.41+2.09 3.67+1.57 3.19+2.49 2.47+1.37 4.5+2.29 4.5+2.29 4.5+2.29
SPL 3.29+1.8 3.91+1.83 2.76x1.64 3.27+£1.34 3.31£2.16 3.27+£1.34 3.27+1.34
PEOU
CaO 3.54+0.88 3.85+0.97 3.28+0.73 3.72+0.67 3.33£1.07 3.72+0.67 3.33£1.07
SPL 3.78+1.05 3.92+1.2 3.67+0.93 4.27+0.63 3.37+1.18 3.37+1.18 4.27x0.63
PU
CaO 3.8+0.74 4.18+0.71 3.5%0.7 3.93+0.72 3.7+0.82 3.89+0.69 3.7+0.82
SPL 3.7+0.9 3.91+1.01 3.48+0.62 3.89+0.69 3.47%0.96 3.47+0.96 3.97+0.78
ITU
CaO 3.3+1.14 3.92+0.89 2.77£1.08 3.66+1.11 3.08+0.95 3.5+£1.28 3.08+0.95
SPL 3.27+1.26 3.65+1.23 2.93+1.22 3.5+£1.28 2.77€1.33 2.77£1.33 3.85+0.9

the dependent variables Correction, Efficiency, Perceived Ease of
Use (PEOU), Perceived Usefulness (PU), and Intention to Use (ITU)
for each one of the Development Approaches compared: CaO
and SPL, and for each one of the alternatives of the fixed factors
considered in the statistical analysis: Experience, with two alter-
natives (Experienced and Inexperienced subjects); for Period with
two alternatives, each one associated with one of the tasks (Task
1, and Task 2), and Sequence, whose two alternatives reflect the
order in which subjects have used the development approaches,
(G1: CaO-SPL, G2: SPL-CaO).

To quantify the differences in the dependent variables due to
each factor, we analyzed the Cohen d values. Table 3 shows the
Cohen d values of the dependent variables for all of the fixed factors
considered in the statistical analysis. Values indicating medium or
high variation due to the factor are highlighted in bold, and those
corresponding to significant differences according to the hypothesis
tests are shaded in grey. Positive values indicate differences in
favor of the first alternative of the factors and negative values
indicate differences in favor of the second alternative of the factor.
According to the Cohen d values of the dependent variables for
Development Approach (first column of Table 3), we can affirm
that the effect size of the factor Development Approach in favor
of SPL for Correctness was medium, with a Cohen d value of -0.516,
and small for Perceived Ease of Use, with a Cohen d value of -0.251.
However, the effect of Development Approach on Efficiency,
Perceived Usefulness, and Intention to Use is negligible with Cohen d
values of less than 2 in favor of CaO. Table 3 also shows the Cohen
d values of the dependent variables for the rest of the fixed factors
considered in the statistical analysis. These values indicate that
the factor Experience has large effects on Correctness, Perceived
Usefulness, and Intention to Use in favor of experienced subjects.
The factor Period has medium effects on Efficiency, Perceived Ease

of Use, and Intention to Use. The subjects were more efficient in the
second task, and Perceived Ease of Use and Intention to Use were
better valued in the first task. The factor Sequence has a small
effect on all dependent variables, except for Efficiency, for which
the effect of sequence is medium. Subjects who started using SPL
in the first task performed better on both tasks than subjects who
started with CaO.

Table 3: Cohen d values for the independent variables for
each fixed factor.

Development Experience Period Sequence
Approach (Experienced/ (Task 1/ (G1(CaO-SPL)/
(CaO/SPL) Inexperienced) Task 2) /G2(SPL-CaO))
Correctness -0.506 0.843 0.127 -0.254
Efficiency 0.062 0.433 -0.544 -0.529
PEOU -0.251 0.428 0.675 -0.265
PU 0.119 0.684 0.441 -0.186
ITU 0.030 0.853 0.658 -0.279

The Cohen d values are related to the percentage of non-overlap
between the distributions of the dependent variables for each fixed
factor. Higher values correspond with greater percentages of non-
overlap and larger differences. The histograms in Figure 4 illustrate
the differences in Correctness depending on the factor Develop-
ment Approach. In the histograms, the non-overlapping parts
have a single pattern (either dots or shaded), while the overlapping
parts have both patterns (dots and shaded). The non-overlapping
parts for Correctness are around 20%, which corresponds to a medium
effect size. The box plots of Figure 4 corresponding to all sub-
jects show the differences in Correctness due to Development
Approach. The median of Correctness is 20% higher for SPL than

Evaluating the Benefits of Software Product Lines in Game Software Engineering

for CaO, but also the dispersion increases when subjects use the SPL
approach. The box plots of Figure 4 corresponding to experienced
and inexperienced subjects, show the differences in Correctness
due to the Experience and Development Approach. Both expe-
rienced and inexperienced subjects develop more correct models
when using SPL instead of CaO. However, regardless of the devel-
opment approach used, models developed by experienced subjects
were more correct than those developed by inexperienced subjects.

CORRECTNESS Legend:
77 - DEVELOPMENT APPROACH
™ -} ca0 H-spL
6 .
L . "‘ -'.
. . ‘-‘ .
5+ 1.1 L
J . . N .
." o o “‘ .
4 i de d -
’,.' * . /——NN

o
3
o
3

0 20 40 60 80 100 %

INEXPERIENCED EXPERIENCED ALL SUBJECTS

0 20 4o 60 80 100

Figure 4: Histograms with normal distributions and box plots
for Correctness

Figure 5 illustrates the differences in Efficiency depending on
the factor Development Approach. The non-overlapping parts
for Efficiency are less than 3%, which corresponds to a negligible
effect between the use of CaO or SPL. The box plots of Figure 5
corresponding to all subjects show negligible differences in Effi-
ciency due to Development Approach. The box plots of Figure 5
corresponding to the alternatives of Period (Task 1 and Task 2)
show the differences in Efficiency due to Development Approach
and Period. The subjects were more efficient in Task 2 than in
Task 1, mainly when using the CaO development approach. For the
dependent variables related to Satisfaction (PEOU, PU, and ITU) the
representation of the differences due to Development approach
would be more similar to that shown for Efficiency than that shown
for Correction. Differences due to Experience in PU and ITU, in
favor of experienced subjects, would be represented with boxplots
like those shown for Correction. Boxplots equivalent to the latter

SPLC 22, September 12-16, 2022, Graz, Austria

would also illustrate the differences in favor of Task 1 due to Period
in PEOU and ITU.

EFFICIENCY Legend:
94 5 DEVELOPMENT APPROACH
o . -f-ca0 =-SPL
6_

o

%/ min

ALL SUBJECTS

TASK 1

TASK 2

Figure 5: Histograms with normal distributions and box plots
for Efficiency

The Linear Mixed Model used to study the statistical significance
of the changes in the dependent variables Correction and Efficiency,
was the one given by formula 2:

DV ~ DA + Experience + Period + Sequence+
DA x Experience + Experience * Period+ (2)
Experience * Sequence + (1| Subj.)

To study the statistical significance of the changes in Satisfaction
(PEOU, PU, and ITU) the statistical model chosen was the one given
by formula 3.

DV ~ DA + Experience + Period + DA * Experience+
DA # Period + Experience x Period + (1| Subj.)

Models such as those in formula 1, and others LMM tested, did not
verify the normality of the residuals or obtained higher values for
the AIC and BIC fit statistics than those obtained by the selected
models. The factors and combinations of factors that are part of
formulas 2 and 3 explain the changes in the dependent variables;
however, according to the hypothesis test results, not all the changes
in the dependent variables due to these factors are significant. Table
4 shows the results of the Type III fixed effects test for each of
the dependent variables and for each fixed factor of the statistical
model used in each case. Values indicating significant differences
are shaded in grey.

SPLC 22, September 12-16, 2022, Graz, Austria

Trasobares at al.

Table 4: Results of Type III test of fixed effects for each variable and factor. NA=Not Applicable

ADp (:Ire(}:f:l(g:) EXIZE:;:)H ce Period Sequence DA*Experience DA*Period Exp*Period Exp*Sequence
Correctness F=5.448;p=0.028 F=8.531;p=0.007 F=0.574;p=0.456 F=0.737;p=0.399 F=0.501;p=0.486 NA F=0.031;p=0.863 = F=4.34;p=0.048
Efficiency F=0.177;p=0.678 F=1.932;p=0.177 F=6.379:p=0.019 F=2.908;p=0.101 F=0.754;p=0.394 NA F=0.37;p=0.549 F=0.632;p=0.435
PEOU F=1.735;p=0.192 F=2.257;p=0.145 = F=9.111;p=0.004 NA F=0.572;p=0.452 F=0.885;p=0.356 F=0.216;p=0.643 NA
PU F=0.17;p=0.684 F=6.139;p=0.02 F=3.026;p=0.095 NA F=0.565;p=0.46 F=0.514;p=0.48 F=0.111;p=0.742 NA
ITU F=0;p=0.993 F=11.899;p=0.002 F=6.293;p=0.019 NA F=0.515;p=0.48 F=1.493;p=0.233 F=0;p=0.986 NA

For Correctness, the factor Development Approach obtained a
p-value of less than 0.05. Therefore, our first null hypothesis is re-
jected. Thus, the answer to RQ1 is affirmative. The Development
Approach used for creating a boss in a video game has a significant
impact on Correctness. The results of the hypothesis tests confirm
the statistical significance of the differences observed between the
descriptive statistics and the graphical representations. The models
made with SPL are more correct than those made with CaO. In
Addition, the factor Experience, and the combination of Experi-
ence and Sequence were considered to be statistically significant
to explain the changes in Correctness. The effect of Experience in
Correctness is large in favor of experienced subjects. Experienced
subjects obtain more correct models than inexperienced subjects,
both when using CaO and when using SPL. The descriptive statistics
for the alternatives for the combination of the factors Experience
and Sequence: Experienced-G1 (u = 71.87; ¢ = 20.52), Experienced-
G2 (64.17p; 0 = 19.22), Inexperienced-G2 (u = 49.064; 0 = 25.50),
and Inexperienced-G1 (u = 40.44; 0 = 26.04) indicate large differ-
ences between experienced and inexperienced subjects whose first
exercise was developed using CaO (Group 1). Experienced subjects
in Group 1 obtain the best results in correctness considering both
tasks (CaO and SPL), while inexperienced subjects in this group
perform the least correct models, also in both tasks.

For Efficiency, the factor Development Approach obtained a
p-value greater than 0.05. Therefore, we can not reject the sec-
ond null hypothesis and the answer to the research question RQ2
is negative. The Development Approach used does not have a
significant impact on Efficiency. Subjects spend more time devel-
oping when using SPL (¢ = 20.6 minutes; o = 5.72) instead of CaO
(¢ = 18.43minutes; o = 7.33), which counteracts the positive effect
of the use of SPL on Correctness. On the other hand, Period has a
significant impact on Efficiency. Subjects are more efficient in the
second task, which could indicate a learning effect.

For the dependent variables related to Satisfaction, the factor De-
velopment Approach obtained p-values greater than 0.05. There-
fore, we can not reject the third null hypothesis and the answer
to research question RQ3 is negative. Development Approach
does not have a significant impact on the satisfaction of subjects
when developing a video game boss from a video game. However,
there are significant changes in Perceived Ease of Use due to Period.
Subjects perceive the development approach used in the first task,
regardless of which one (CaO or SPL), as easier to use than the
development approach used in the second task. Also, Intention to
Use achieves higher values in the first task than in the second. In
addition, the factor Experience has significant and large effects on
satisfaction: experienced subjects score higher than inexperienced

subjects on Perceived Usefulness and Intention to Use for either of
the two approaches used in the experiment.

5 DISCUSSION

As recorded over the last two decades by the Software Engineering
Institute of the Carnegie Mellon University?, SPLs can multiply
productivity by a factor of 10, reduce costs up to 60% and labor
needs up to 87%, and reduce the time-to-market of new software
variants up to 98%. These benefits have been used repeatedly for
years to show the attractiveness of the SPLs for Classic Software
Engineering (CSE).

However, our results in the video game domain do not show
significant differences in efficiency when using the SPL. Existing
differences between CSE and Game Software Engineering (GSE)
(e.g., working on different kinds of artifacts or how they perceive the
development process of their projects) may mean that the efficiency
is not the key selling point of SPLs for GSE. To better understand the
experiment results, we carried out a focus group with the subjects.
The focus group had open questions, such as: What development
approach did you like the most and for what would you use each of
them?, Has the mental process or steps you followed to create the boss
been the same with both approaches?.

The focus group revealed that, regardless of whether the subjects
used CaO or SPL, where they spent more time was evaluating in ex-
ecution if what they were understanding was the boss they wanted
to develop. Subjects stated that they needed to constantly check the
video game in real-time to understand what they had to develop.
The efficiency benefits of the SPL were not significant because the
greatest effort belonged to the part of constantly checking the video
game in real-time and this point is common to both CaO and SPL.
Most of the subjects acknowledge that the SPL did not accelerate
video game development.

Despite the above, most of the subjects observed benefits in
SPL for video games. Specifically, most of the subjects mentioned
that the SPL was very relevant to create new content for video
games. As they explained, creating content is critical for video
game development. Video game worlds may need a large amount
of content to populate them (e.g., non-player characters or items
such as weapons or power-ups). Furthermore, it is common that,
once the video game is launched, it is kept alive through updates
that are known as Downloadable Content (also called DLCs).

The subjects reported that thinking in terms of SPL features
helped them to think of new content for the video game. The sub-
jects valued positively that by combining the features following

2 Available through their online library collection: https://resources.sei.cmu.edu/
library/asset-view.cfm?assetid=513819

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=513819
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=513819

Evaluating the Benefits of Software Product Lines in Game Software Engineering

the rules of the variability specification they obtained new con-
tent. This new content was indeed different but similar to what
already existed in the video game, however, the subjects affirmed
that this type of content was relevant to developing video games.
The subjects imagine that this new content derived from assem-
bling features can be useful as variants of what was already used
in the video game to avoid repetition; it could also be used to fill in
secondary parts of the game that were more sparsely populated; or
even as a source of inspiration to create completely new content.

In the video game research community, content generation for
video games is a hot topic. Many surveys [16, 23, 32, 34] talk about
how to automate (completely or partially) the content generation.
Specifically, the automation of content generation is known as
Procedural Content Generation (PCG) [2] and uses the most popular
Computational Intelligence techniques today (such as machine
learning and search-based). However, the SPLs do not appear in any
of those surveys. This suggests that the use of SPLs to generate video
games content is neglected by the video game research community
and may be an opportunity to explore in the future.

Moreover, we suggest that SPLs need not be viewed solely as an
alternative to the current PCG techniques, SPLs can be an ally when
combined with PCG techniques. One of the subjects highlighted
that the strength of SPL compared to CaO was that in SPL only
10 decisions were needed, while in CaO he had to make between
50 and 100 decisions. This reduced search space of SPLs may be
more favorable for the machine learning techniques used in PCG
to extract patterns or for the search-based techniques used in PCG
to explore the search space.

Finally, a group of subjects reported that the SPL may be relevant
to help to balance the difficulty of video games. Balancing the
difficulty of video games is one of the main problems of video game
development. The video game cannot be too difficult because the
players would get frustrated, but it cannot be too easy because the
players would lose interest. The subjects thought about how the
features could be augmented to include the idea of difficulty in
order to derive variants of the same content with different degrees
of difficulty.

6 THREATS TO VALIDITY

To describe the threats to validity of our work, we use the classifi-
cation of Wohlin et al. [37]:

Conclusion validity is achieved when there is a statistical
relationship, with a certain significance, between the treatment and
the results. The low statistical power was minimized because the
confidence interval is 95%. To minimize the fishing and the error
rate threat, the statistical analysis has been done by a researcher
who did not participate in the task design or in the correction
process. The Reliability of measures threat was mitigated because
the objective measurements were obtained from the digital artifacts
generated by the subjects when they performed the tasks. The
reliability of treatment implementation threat was alleviated because
the procedure was identical in the two sessions. Also, the tasks were
designed with similar difficulty.

Internal validity is achieved when the observed relationships
between treatment and outcome are causal relationships and these
relationships are not the result of a factor over which we have no

SPLC 22, September 12-16, 2022, Graz, Austria

control or we have not measured. To avoid the instrumentation
threat, we conducted a pilot study to verify the design and the
instrumentation. The interactions with selection threat affected the
experiment because there were subjects who had different levels of
experience. In addition, the subjects had different levels of modeling
language knowledge and different levels of knowledge of the video
game domain. To mitigate this threat, the treatment was applied
randomly. The interactions with selection threat also affected the
experiment because of the voluntary nature of participation. To
avoid student demotivation, we selected students from a course
whose contents fit the design of the experiment.

Construct validity is achieved when the measures actually rep-
resent what is being investigated based on the research questions.
Mono-method bias occurs due to the use of a single type of mea-
sure [27]. To mitigate this threat to the correctness and efficiency
measurements, we mechanized these measurements as much as
possible by means of correction templates. We mitigated the threat
to satisfaction by using a widely applied model (TAM) [10]. The
hypothesis guessing threat appears when the subject thinks about
the objective and the results of the experiment. To mitigate this
threat, we did not explain the research questions to the subjects.
The evaluation apprehension threat appears when the subjects are
afraid of being evaluated. To weaken this threat, at the beginning
of the experiment, the instructor explained to the subjects that
the experiment was not a test of their abilities, and in the case of
students, that neither participation nor results would affect their
grades in the subject. Author bias occurs when the people involved
in the process of creating the experiment artifacts subjectively in-
fluence the results. In order to mitigate this threat, the tasks were
extracted from a commercial video game and were designed by the
same instructors with similar difficulty for the two tasks. Finally,
the mono-operation bias threat occurs when the treatments depend
on a single operationalization. The experiment was affected by this
threat since we worked with a specific DSL.

External validity is achieved when the results can be gener-
alized outside the settings of the experiment. The interaction of
selection and treatment threat is an effect of having a subject that
is not representative of the population that we want to generalize.
The participation of students rather than software engineers is not
a major issue as long as the research questions are not specifically
focused on experienced developers [18], as is the case in this ex-
periment. In addition, the experience factor has been taken into
account in the data analysis. The domain threat occurs because the
experiment has been conducted in a specific domain, video game,
and for a very specific type of task, i.e., to develop a video game
boss from Kromaia. We think that the generalizability of findings
should be undertaken with caution. Other experiments in different
games should be performed to validate our findings.

7 RELATED WORK

We summarize related works taking into account the area of the
Software Product Lines applied to the video game domain.

Lima et al. [20, 22] present two works about Product Line Archi-
tecture (PLA) recovery. In [22], they applied their previous proposed
approach and guidelines [21] to create the PLA of the Apo-Games
project [19]. They used a set of cloned Java and Android projects

SPLC 22, September 12-16, 2022, Graz, Austria

as input for recovering architectural information. They created a
set of UML diagrams and Design Structure Matrices (DSMs) that
described the PLA core elements and the variability at the architec-
tural level. Similarly, in [20], they developed an automatic approach
for the identification of the minimum subset of cross-product archi-
tectural information for an effective PLA recovery. They proposed
the improvement of the recovered PLA by combining threshold
analysis with the elimination of outliers and metrics analysis.

Boaventura and Sarinho [6] present Minimal Engine for Digital
Games (MEnDiGa). MEnDiGa is a collection of game assets to create
small video games. They develop minimal features, which are game
logic features, that are related in a hierarchy. In addition, MEnDiGa
has modules to represent, interpret, and adapt game features for
functionality in multiple game platforms. To evaluate their work,
they develop a clone of Doodle Jump and then compare the original
with the clone. The results are that the core of game elements with
MEnDiGa can be independent, reusable, and large-scale way.

Moreira et al. [26] provide and analyze empirical data of the
extraction processes of two open-source case studies, namely Ar-
goUML and Phaser. Phaser * is an open-source 2D game framework
for Web browsers. Their results show that there is a great difference
between the re-engineering process of ArgoUML-SPL and Phaser.
However, even though only a few developers were in charge of
the re-engineering process, common problems were found in both
cases, related to lack of tools that led to incomplete and inconsistent
feature extractions, complexity on managing feature dependencies
when using compositional approach, and issues of not having a
variability model to deal with feature constraints.

Similarly, Martinez et al. [24] report an experience on the creation
of an SPL by re-engineering system variants implemented around
an educational game called Robocode. They discuss their results
from different perspectives such as educational value, participants
gained hands-on practice in implementing systematic reuse so they
can respond to more advanced software engineering challenges
in implementing families of systems, the extractive process, the
process followed by the participants to implement a feature (select,
analyse, implement and/or adapt, test and debug), and the analysis
of the time and effort, around half of their time was spent in the
feature implementation part.

Debbiche et al. [11] analyze the Apo-Games to identify reusable
code or artifacts. They analyze 5 Java games and migrated 3 of these
into a composition-based software product line implemented with
FeatureHouse [1]. In addition, they present their lessons learned:
many changes are required to enable composition which makes ex-
tracting a composition-based software product line challenging and
time-consuming, they recommend making sure that the software
product line is always testable to ensure the correct transformation
to code, and incrementally adopting new features facilitates the
extraction, as various artifacts need updates and must be tested.

Sierra et al. [30] present a comparison between two video game
engines: unity and P5, in order to select the most appropriate option
to implement the SPL core assets. Their comparison considers the
performance, learning curve, and license terms of both engines as
additional criteria to decide which engine to use. They use an SPL of
video games that support oral and written rehabilitation therapies

3Phaser: http://phaser.io/

Trasobares at al.

in children with hearing impairments. Through their comparison,
they verify that using P5 streamlines the development and the
generation times. They proved that the SPL paradigm and the reuse
concept can be applicable, not only for classic software but also in
the development of serious games.

Castro and Werner [7] present a prototype of a game that was
developed by applying a software product line to generate mods
systematically. A mod is a new version of a game that has been
created by applying modifications or adaptations to an existing
game. The prototype created makes use of the idea of dynamic
product lines applied to mods. The prototype created demonstrates
the possibility of automating the process, having a product line
where the original game is the core of the game’s functionalities.
In future work, they intend to evaluate the game with experts to
validate the idea of creating mods using software product lines.

The above works apply software product line approaches in the
video game domain. However, these works do not evaluate whether
the benefits that produce the use of software product lines in classic
software engineering apply in game software engineering. In this
work, we evaluate the SPL with a commercial video game and with
subjects linked to the development of video games. To the best of
our knowledge, this is the first work that empirically evaluates the
application of a software product line in game software engineering.

After analyzing these works, we realized that there is a lack
of empirical studies comparing SPLs and CaO. We were able to
find a paper that performed this comparison [14]. They compare
the performances of software engineers in the software products
development process using SPL and CaO in an industrial context.
Their results achieve better values for effectiveness, efficiency, and
satisfaction with the SPL approach. In contrast to our work, they are
focused on Classic Software Engineering (CSE) and do not address
Game Software Engineering (GSE).

8 CONCLUSION

In this paper, we present an experiment that evaluates whether the
adoption of an SPL in GSE can generate the same benefits as in CSE
[14]. In our experiment, we compare two development approaches,
CaO and SPL. A total of 28 subjects performed the experiment tasks
developing two final bosses of the case study, Kromaia.

We evaluate the effects of the usage of the two development
approaches in terms of correctness, efficiency, and satisfaction. The
results show that the bosses developed with the SPL are more
correct than the bosses developed with CaO. However, there are
not-significant changes in efficiency or satisfaction. It turns out
that SPLs in game software engineering may play a different role
than they have for decades in classic software engineering.

Our results reveal that SPLs in GSE can be relevant to generating
new video game content (a hot topic in the video game research
community) and to balancing the video game difficulty (a seminal
problem of video games). Therefore, we hope that this work en-
courages further research and new research directions for SPLs in
GSE.

ACKNOWLEDGMENTS

Iniciando Lineas de Producto Software Mediante Busquedas Inter-
activas Dirigidas por Modelos. Reference: PID2021-1286950B-100.

http://phaser.io/

Evaluating the Benefits of Software Product Lines in Game Software Engineering

REFERENCES

[1] Sven Apel, Christian Késtner, and Christian Lengauer. 2013.

[12

[13

[14

[15

[16

[17

[18

[19

[20

]

]
]

]

Language-
Independent and Automated Software Composition: The FeatureHouse Expe-
rience. IEEE Transactions on Software Engineering 39, 1 (2013), 63-79. https:
//doi.org/10.1109/TSE.2011.120

Nicolas A. Barriga. 2019. A Short Introduction to Procedural Content Generation
Algorithms for Videogames. International Journal on Artificial Intelligence Tools
28,02 (2019), 1930001. https://doi.org/10.1142/S0218213019300011

Victor R. Basili and H. Dieter Rombach. 1988. The TAME Project: Towards
Improvement-Oriented Software Environments. IEEE Transactions on Software
Engineering (1988).

Daniel Blasco, Carlos Cetina, and Oscar Pastor. 2020. A fine-grained requirement
traceability evolutionary algorithm: Kromaia, a commercial video game case
study. Inf. Softw. Technol. 119 (2020). https://doi.org/10.1016/j.infsof.2019.106235
Daniel Blasco, Jaime Font, Mar Zamorano, and Carlos Cetina. 2021. An evolu-
tionary approach for generating software models: The case of Kromaia in Game
Software Engineering. Journal of Systems and Software 171 (2021), 110804.
Filipe M. B. Boaventura and Victor Travassos Sarinho. 2017. MEnDiGa: A Minimal
Engine for Digital Games. Int. J. Comput. Games Technol. 2017 (2017), 9626710:1—
9626710:13. https://doi.org/10.1155/2017/9626710

Diego Castro and Claudia Werner. 2021. Rebuilding games at runtime. In 36th
IEEE/ACM International Conference on Automated Software Engineering, ASE 2021
- Workshops, Melbourne, Australia, November 15-19, 2021. IEEE, 73-77. https:
//doi.org/10.1109/ASEW52652.2021.00025

Jacob Cohen. 1988. Statistical power for the social sciences. Hillsdale, NJ: Laurence
Erlbaum and Associates (1988).

Crytek. 2002. CRYENGINE | The complete solution for next generation game
development by Crytek. https://www.cryengine.com. [Online; accessed 21-
November-2021].

Fred D. Davis. 1989. Perceived Usefulness, Perceived Ease of Use, and User
Acceptance of Information Technology. MIS Q. 13, 3 (Sept. 1989), 319-340.
Jamel Debbiche, Oskar Lignell, Jacob Kriiger, and Thorsten Berger. 2019. Migrat-
ing Java-based Apo-Games into a composition-based software product line. In
Proceedings of the 23rd International Systems and Software Product Line Confer-
ence, SPLC 2019, Volume A, Paris, France, September 9-13, 2019. ACM, 18:1-18:5.
https://doi.org/10.1145/3336294.3342361

Africa Domingo, Jorge Echeverria, Oscar Pastor, and Carlos Cetina. 2020. Evalu-
ating the Benefits of Model-Driven Development - Empirical Evaluation Paper. In
Advanced Information Systems Engineering - 32nd International Conference, CAiSE
2020, Grenoble, France, June 8-12, 2020, Proceedings (Lecture Notes in Computer
Science, Vol. 12127), Schahram Dustdar, Eric Yu, Camille Salinesi, Dominique Rieu,
and Vik Pant (Eds.). Springer, 353-367. https://doi.org/10.1007/978-3-030-49435-
322

Africa Domingo, Jorge Echeverria, Oscar Pastor, and Carlos Cetina. 2021. Compar-
ing UML-based and DSL-based Modeling from Subjective and Objective Perspec-
tives. In International Conference on Advanced Information Systems Engineering.
Springer, 483-498.

Jorge Echeverria, Francisca Pérez, José Ignacio Panach, and Carlos Cetina. 2021.
An empirical study of performance using Clone & Own and Software Product
Lines in an industrial context. Inf. Softw. Technol. 130 (2021), 106444. https:
//doi.org/10.1016/j.infsof.2020.106444

Epic Games. 1998. Unreal Engine: The most powerful real-time 3D creation tool.
https://www.unrealengine.com. [Online; accessed 21-November-2021].

Mark Hendrikx, Sebastiaan Meijer, Joeri Van Der Velden, and Alexandru Io-
sup. 2013. Procedural Content Generation for Games: A Survey. ACM Trans.
Multimedia Comput. Commun. Appl. 9, 1, Article 1 (feb 2013), 22 pages. https:
//doi.org/10.1145/2422956.2422957

Evrim Itir Karac, Burak Turhan, and Natalia Juristo. 2019. A Controlled Exper-
iment with Novice Developers on the Impact of Task Description Granularity
on Software Quality in Test-Driven Development. IEEE Transactions on Software
Engineering (2019).

Barbara A. Kitchenham, Shari Lawrence Pfleeger, Lesley M. Pickard, Peter W.
Jones, David C. Hoaglin, Khaled El Emam, and Jarrett Rosenberg. 2002. Prelimi-
nary guidelines for empirical research in software engineering. IEEE Transactions
on Software Engineering 28, 8 (Aug 2002), 721-734.

Jacob Kriiger, Wolfram Fenske, Thomas Thiim, Dirk Aporius, Gunter Saake, and
Thomas Leich. 2018. Apo-games: a case study for reverse engineering variability
from cloned Java variants. In Proceeedings of the 22nd International Systems and
Software Product Line Conference - Volume 1, SPLC 2018, Gothenburg, Sweden,
September 10-14, 2018, Thorsten Berger, Paulo Borba, Goetz Botterweck, Tomi
Minnistd, David Benavides, Sarah Nadi, Timo Kehrer, Rick Rabiser, Christoph
Elsner, and Mukelabai Mukelabai (Eds.). ACM, 251-256. https://doi.org/10.1145/
3233027.3236403

Crescencio Lima, Wesley K. G. Assuncdo, Jabier Martinez, Ivan do
Carmo Machado, Christina von Flach G. Chavez, and Willian Douglas Ferrari
Mendonga. 2018. Towards an Automated Product Line Architecture Recovery:
The Apo-Games Case Study. In Proceedings of the VII Brazilian Symposium on

[21

[22

[23

[24]

[25

™
2

[29

[30

&
=

(32]

[33

(34

[35

&
2

(37

[38

SPLC 22, September 12-16, 2022, Graz, Austria

Software Components, Architectures, and Reuse, SBCARS 2018, Sao Carlos, Brazil,
September 17-21, 2018. ACM, 33-42. https://doi.org/10.1145/3267183.3267187
Crescencio Lima, Christina Chavez, and Eduardo Santana de Almeida. 2017.
Investigating the Recovery of Product Line Architectures: An Approach Proposal.
In Mastering Scale and Complexity in Software Reuse, Goetz Botterweck and
Claudia Werner (Eds.). Springer International Publishing, Cham, 201-207.
Crescencio Lima, Ivan do Carmo Machado, Eduardo Santana de Almeida, and
Christina von Flach G. Chavez. 2018. Recovering the product line architecture
of the apo-games. In Proceeedings of the 22nd International Systems and Software
Product Line Conference - Volume 1, SPLC 2018, Gothenburg, Sweden, September
10-14, 2018, Thorsten Berger, Paulo Borba, Goetz Botterweck, Tomi Méannisto,
David Benavides, Sarah Nadi, Timo Kehrer, Rick Rabiser, Christoph Elsner, and
Mukelabai Mukelabai (Eds.). ACM, 289-293. https://doi.org/10.1145/3233027.
3236398

Jialin Liu, Sam Snodgrass, Ahmed Khalifa, Sebastian Risi, Georgios N. Yannakakis,
and Julian Togelius. 2020. Deep learning for procedural content generation.
Neural Computing and Applications 33, 1 (oct 2020), 19-37. https://doi.org/10.
1007/s00521-020-05383-8

Jabier Martinez, Xhevahire Térnava, and Tewfik Ziadi. 2018. Software Product
Line Extraction from Variability-Rich Systems: The Robocode Case Study. In
Proceedings of the 22nd International Systems and Software Product Line Conference
- Volume 1 (Gothenburg, Sweden) (SPLC ’18). Association for Computing Machin-
ery, New York, NY, USA, 132-142. https://doi.org/10.1145/3233027.3233038
Daniel L Moody. 2003. The method evaluation model: a theoretical model for
validating information systems design methods. ECIS 2003 proceedings (2003),
79.

Rodrigo André Ferreira Moreira, Wesley KG Assuncéo, Jabier Martinez, and Ed-
uardo Figueiredo. 2022. Open-source software product line extraction processes:
the ArgoUML-SPL and Phaser cases. Empirical Software Engineering 27, 4 (2022).
Jose Ignacio Panach, Sergio Espaiia, Oscar Dieste, Oscar Pastor, and Natalia
Juristo. 2015. In search of evidence for model-driven development claims: An
experiment on quality, effort, productivity and satisfaction. Information and
Software Technology (2015).

Luca Pascarella, Fabio Palomba, Massimiliano Di Penta, and Alberto Bacchelli.
2018. How is video game development different from software development
in open source?. In Proceedings of the 15th International Conference on Mining
Software Repositories, MSR 2018, Gothenburg, Sweden, May 28-29, 2018, Andy
Zaidman, Yasutaka Kamei, and Emily Hill (Eds.). ACM, 392-402. https://doi.org/
10.1145/3196398.3196418

Klaus Pohl and Andreas Metzger. 2018. Software Product Lines. Springer Interna-
tional Publishing, Cham, 185-201. https://doi.org/10.1007/978-3-319-73897-0_11
Martin Sierra, Maria Constanza Pabdn, Luisa Rincén, Andrés Adolfo Navarro
Newball, and Diego Linares. 2019. A Comparative Analysis of Game Engines
to Develop Core Assets for a Software Product Line of Mini-Games. In Reuse in
the Big Data Era - 18th International Conference on Software and Systems Reuse,
ICSR 2019, Cincinnati, OH, USA, June 26-28, 2019, Proceedings (Lecture Notes in
Computer Science, Vol. 11602), Xin Peng, Apostolos Ampatzoglou, and Tanmay
Bhowmik (Eds.). Springer, 64-74. https://doi.org/10.1007/978-3-030-22888-0_5
SlashData. 2019. Global developer population report 2019. https://sdata.me/
GlobalDevPop19. [Online; accessed 21-November-2021].

Adam James Summerville, Sam Snodgrass, Matthew J. Guzdial, Christoffer
Holmgérd, Amy K. Hoover, Aaron Isaksen, Andy Nealen, and Julian Togelius.
2018. Procedural Content Generation via Machine Learning (PCGML). IEEE
Transactions on Games 10 (2018), 257-270.

Unity Technologies. 2005. Unity Real-Time Development Platform | 3D, 2D VR &
AR Engine. https://unity.com. [Online; accessed 21-November-2021].

Julian Togelius, Georgios N. Yannakakis, Kenneth O. Stanley, and Cameron
Browne. 2011. Search-Based Procedural Content Generation: A Taxonomy and
Survey. IEEE Transactions on Computational Intelligence and Al in Games 3, 3
(2011), 172-186. https://doi.org/10.1109/TCIAIG.2011.2148116

Sira Vegas, Cecilia Apa, and Natalia Juristo. 2015. Crossover designs in software
engineering experiments: Benefits and perils. IEEE Transactions on Software
Engineering 42, 2 (2015), 120-135.

Brady T West, Kathleen B Welch, and Andrzej T Galecki. 2014. Linear mixed
models: a practical guide using statistical software. Chapman and Hall/CRC.
Claes Wohlin, Per Runeson, Martin Host, Magnus C Ohlsson, Bjorn Regnell, and
Anders Wesslén. 2012. Experimentation in software engineering. Springer Science
& Business Media.

Meng Zhu and Alf Inge Wang. 2020. Model-driven Game Development: A
Literature Review. ACM Comput. Surv. 52, 6 (2020), 123:1-123:32. https://doi.
org/10.1145/3365000

https://doi.org/10.1109/TSE.2011.120
https://doi.org/10.1109/TSE.2011.120
https://doi.org/10.1142/S0218213019300011
https://doi.org/10.1016/j.infsof.2019.106235
https://doi.org/10.1155/2017/9626710
https://doi.org/10.1109/ASEW52652.2021.00025
https://doi.org/10.1109/ASEW52652.2021.00025
https://www.cryengine.com
https://doi.org/10.1145/3336294.3342361
https://doi.org/10.1007/978-3-030-49435-3_22
https://doi.org/10.1007/978-3-030-49435-3_22
https://doi.org/10.1016/j.infsof.2020.106444
https://doi.org/10.1016/j.infsof.2020.106444
https://www.unrealengine.com
https://doi.org/10.1145/2422956.2422957
https://doi.org/10.1145/2422956.2422957
https://doi.org/10.1145/3233027.3236403
https://doi.org/10.1145/3233027.3236403
https://doi.org/10.1145/3267183.3267187
https://doi.org/10.1145/3233027.3236398
https://doi.org/10.1145/3233027.3236398
https://doi.org/10.1007/s00521-020-05383-8
https://doi.org/10.1007/s00521-020-05383-8
https://doi.org/10.1145/3233027.3233038
https://doi.org/10.1145/3196398.3196418
https://doi.org/10.1145/3196398.3196418
https://doi.org/10.1007/978-3-319-73897-0_11
https://doi.org/10.1007/978-3-030-22888-0_5
https://sdata.me/GlobalDevPop19
https://sdata.me/GlobalDevPop19
https://unity.com
https://doi.org/10.1109/TCIAIG.2011.2148116
https://doi.org/10.1145/3365000
https://doi.org/10.1145/3365000

	Abstract
	1 Introduction
	2 Background
	3 Experiment design
	3.1 Objectives
	3.2 Variables
	3.3 Design
	3.4 Research questions and hypotheses
	3.5 Participants
	3.6 Experimental objects
	3.7 Experimental procedure
	3.8 Analysis procedure

	4 Results
	4.1 Changes in the dependent variables

	5 Discussion
	6 Threats to validity
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

