
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, DECEMBER 2020 1

Empowering the Human as the Fitness Function
in Search-Based Model-Driven Engineering

Francisca Pérez, Jaime Font, Lorena Arcega, Carlos Cetina

Abstract—In Search-Based Software Engineering, more than 100 works have involved the human in the search process to obtain better
results. However, the case where the human completely replaces the fitness function remains neglected. There is a good reason for that;
no matter how intelligent the human is, humans cannot assess millions of candidate solutions as heuristics do. In this work, we study
the influence of using the Human as the Fitness Function (HaFF) on the quality of the results. To do that, we focus on Search-Based
Model-Driven Engineering (SBMDE) because inspecting models should require less human effort than inspecting code thanks to the
abstraction of models. Therefore, we analyze the impact of HaFF in a real-world industrial case study of feature location in models.
Furthermore, we also consider a reformulation operation (replacement) in the evaluation because a recent work reported that this
operation significantly reduces the number of iterations required in comparison to the widespread crossover and mutation operations.
The combination of HaFF and the reformulation operation (HaFF R) improves the results of the best baseline by 0.15% in recall and
14.26% in precision. Analyzing the results, we learned how to better leverage HaFF R, which increased the improvement with regard to
the best baseline to 1.15% in recall and 20.05% in precision. HaFF R significantly improves precision because humans are immune to
the main limitations of the baselines: vocabulary mismatch and tacit knowledge. A focus group confirmed the acceptance of HaFF. These
results are relevant for SBMDE because feature location is one of the main activities performed during maintenance and evolution. Our
results, and what we learned from them, can also motivate and help other researchers to explore the benefits of HaFF. In fact, we provide
a guideline that further discusses how to apply HaFF to other software engineering problems.

Index Terms—Model-Driven Engineering, Search-Based Software Engineering, Automatic Query Reformulations, Interactive SBSE

F

1 INTRODUCTION

In the last few years, great interest has emerged from
the application of search-based optimization to software
engineering, an area known as Search-Based Software En-
gineering (SBSE) [1], [2]. Only three key ingredients are
needed to apply SBSE: 1) a representation (encoding) of
the problem (e.g., using a bit string); 2) the definition of
the set of operations (e.g., mutation); and 3) the definition
of the fitness function (e.g., similarity to the input query).
Then, candidate solutions (which are encoded following
the representation chosen) are evolved (by applying the
operations) and are assessed (by the fitness function) in an
iterative process until a stop condition is met (e.g., a fixed
number of iterations). As a result, optimal (or near-optimal)
solutions to the problem are found.

Although SBSE is a means of efficiently exploring the
huge search space and the sheer number of potential solu-
tions, some contexts require the human’s subjective evalua-
tion to be included in the process in order to obtain the most
favorable solutions. This reflects a subfield for SBSE entitled
interactive SBSE (iSBSE). A recent survey on iSBSE [3]
acknowledges that any attempt to involve the human in
the search process with the aim of adapting the results to
their preferences can be viewed as iSBSE. This includes the
case where the human provides subjective evaluations (e.g.,
scores) of solutions to complement the fitness function [4],

• F. Pérez, J. Font, L. Arcega and C. Cetina are with the SVIT Research
Group of Universidad San Jorge, Zaragoza, Spain. E-mail: {mfperez, jfont,
larcega, ccetina}@usj.es. C.Cetina is also with University College London,
London, United Kingdom.

Manuscript received December X, 2020; revised .

[5], [6], [7], [8], [9], [10].
Nevertheless, the survey does not identify any work that

completely replaces the fitness function with the human, i.e.,
where the Human as the Fitness Function (HaFF) evaluates
the candidate solutions. On the one hand, HaFF could im-
prove the performance in terms of the solution quality. On
the other hand, in a complex process, human fatigue might
prevent the human from replacing the fitness function. All
in all, HaFF is still neglected in the context of iSBSE.

In this paper, we evaluate the influence of HaFF in
Search-Based Model-Driven Engineering (SBMDE) [11],
[12]. SBMDE arises from the relevance of Model-Driven
Engineering (MDE) and SBSE [11] to software engineering.
In SBMDE, the cornerstone artifacts are the software models,
which are much less bound to the underlying implemen-
tation and technology and raise the abstraction level using
terms that are much closer to the problem domain [13]. Since
software models are more abstract than code, the human
should not have to evaluate as much information in the
solutions, which should be more favorable for replacing the
fitness function with the human.

Among the SBMDE maintenance tasks, we focus on
Feature Location in Models (FLiM). Feature location can
be seen as one of the most frequent maintenance tasks
undertaken by developers [14], [15], [16], [17]. FLiM consists
in identifying the set of model elements (i.e., model frag-
ment) that is associated with a specific ’feature’. The term
’feature’ refers to a specific functionality or characteristic of
a product. Fig. 1 shows an example of FLiM. The left part of
the figure shows that FLiM takes a set of software models
as input to identify the model fragment that is relevant for

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, DECEMBER 2020 2

the feature to be located (model elements 1-3, highlighted in
gray in the figure).

The right part of Fig. 1 shows two puzzle pieces that
can fit the fitness function in FLiM. The piece in the upper-
right part of the figure shows the fitness that is the most
popular choice in FLiM [11]. In this piece, a software en-
gineer provides a feature description in natural language
that is used as input to the fitness function, which assesses
the model fragments of the population according to the
similarity to the input feature description. The piece in the
lower-right part of Fig. 1 shows the approach of our work
(HaFF), where the fitness function is completely replaced by
a software engineer who assesses the model fragments of
the population.

M
od
el
1

M
od
el
1

Model elements:

Models

input

1

2
3

4 5

6
7

output

Assessment

Human provides knowledge for the
fitness function (the most popular
choice in FLiM)

Passing of current from
one converter to
equipment assigned to its
peer for coverage in case
of overload or failure of
the first converter.

Feature description

input

Assessment of model fragments by
the fitness function (similarity to

the input feature description)

Human completely replaces the
fitness function (HaFF, this paper)

Assessment
of model fragments

by the Software Engineer

Feature Location in Models
(FLiM)

Model
Fragment
Population

Genetic
Operations

Software
Engineer

As a result, the set of relevant model elements
(i.e., model fragment) for the feature is identified

provides

Feature description

Fig. 1. Example of FLiM with two options for the fitness function

Despite the abstraction of software models, the most
popular FLiM approaches require an average of 347685
iterations [18] with a population of 100 model fragments
in software models of industrial dimensions (with more
than 1000 model elements in each model). Recently, Pérez et
al. [18] proposed that operations leverage the latent seman-
tics of software models instead of randomly generating new
candidate solutions as the widespread crossover and muta-
tion operations do. Specifically, they propose utilizing query
reformulation techniques (expansion [19], replacement [20],
reduction [21], and selection [22]) as genetic operations. They
show that replacement is the reformulation that best lever-
ages the latent semantics of software models. This results in
a reduction of iterations (on average from 347685 to 384) for
FLiM. These numbers seem far from the recommendations
of Takagi [23] for avoiding human fatigue, which are the
reduction of both the size of the population and the number
of iterations to 10 or 20. Nevertheless, in HaFF, since the
human will provide the most intelligent search possible, this
might have an effect on the required number of iterations.

To analyze the combination of HaFF with either the
widespread crossover and mutation operations (HaFF CM)
or the replacement reformulation operation (HaFF R), we
conducted experiments on a real-world industrial case
study of FLiM. The case study is from Construcciones y Auxil-
iar de Ferrocarriles (CAF) 1, who is a world-leading company
that uses software models to generate the firmware (C++) to

1. www.caf.net/en

control the trains that have been manufactured over years.
In the evaluation, 29 software engineers from the industrial
partner were involved in acting as the fitness function.

To assess the performance in terms of solution quality
(recall, precision, and F-measure), we compared the results
with the oracle provided by the industrial partner (which is
considered to be the ground truth). To put the performance
of HaFF in perspective and to study the impact on the
results, we set two baselines where the fitness function
analyzes the similarity between the model fragment and
the feature description. The first baseline uses crossover and
mutation operations (Baseline CM), and the second baseline
uses the replacement reformulation operation (Baseline R).

The results show that HaFF CM fails to beat the base-
lines. Nevertheless, HaFF R improves the results of the
best baseline (Baseline R) by 0.15% in recall and 14.26%
in precision. We also performed a statistical analysis to
provide quantitative evidence of the impact of the results
and to show that this impact is significant. The significant
improvement in precision comes from the immunity of
humans to previously reported limitations of the baselines:
vocabulary mismatch and tacit knowledge [24]. Further-
more, our analysis of the results also reveals that HaFF R
can be further improved (from 0.15% to 1.15% in recall, and
from 14.26% to 20.05% in precision) if a self-rated feature
familiarity assessment is used to determine when HaFF R
or Baseline R should be used.

To the best of our knowledge, this is the first interactive
SBMDE work that successfully harnesses HaFF at the indus-
trial scale. Our paper claims that HaFF R is beneficial in the
context of SBMDE, as this work shows in the case of FLiM.
Specifically, we claim that:

• HaFF R improves the results in the task of FLiM
compared to the baselines. In addition, we carried
out a focus group interview that confirmed the ac-
ceptance of HaFF. This is relevant for the SBMDE
community because feature location is an essential
task for software maintenance and evolution [14],
[15].

• HaFF R does not achieve the best solutions in all
cases. Therefore, HaFF R should not always be used.
We provide a recommendation on when to use
HaFF R. This recommendation boosts HaFF R per-
formance.

• The reformulation operation enables HaFF R to im-
prove the results of the best baseline. This operation
is not well-known within the SBMDE community
because: 1) its benefits were reported very recently;
and 2) crossover and mutation operations have been
the predominant choice since 1998 [11]. Our work
might motivate other SBMDE researchers to rethink
the operations of their approaches. If they move from
current random operations to smarter operations
(such as reformulation, or their own new operations),
they might be able to get the benefits of HaFF in other
software engineering tasks.

• HaFF is generic and can be applied to software
artifacts other than just model artifacts. We created
a guideline that does the following: further discusses
how to apply HaFF to other software engineering

www.caf.net/en

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, DECEMBER 2020 3

problems; describes who should play the role of
HaFF and how the solutions should be evaluated;
presents possibilities to escalate HaFF to more de-
manding problems where fatigue appears (hybridize
or collaborate); and provides recommendations for
types of problems that should be used to continue
exploring HaFF. We are aware that models are a more
favorable scenario than code for HaFF because of
their abstraction. However, other SBSE works target
other artifacts (such as requirements or release plans)
that might be suitable scenarios for HaFF. Our results
can also motivate other SBSE researchers to explore
the influence of HaFF with other artifacts.

The remainder of this paper is organized as follows.
Section 2 reviews the related work. Section 3 presents an
overview of FLiM. Section 4 describes the evaluation. The
results are reported in Section 5 and discussed in Section 6.
Section 7 presents the guideline for applying HaFF to
other software engineering problems. Section 8 describes the
threats to validity. Section 9 concludes the paper.

2 RELATED WORK

There is a recent survey [11] that includes SBMDE works
from 1998 to 2016. In addition, there is another recent
survey that includes iSBSE [3] works from 1999 to 2017.
We have updated both surveys to the present day and
identified the common works. Table 1 shows the resulting
works. The third column classifies the type of interaction,
the fourth column indicates when the interaction occurs
(before, during, or after the optimization process), and the
fifth column classifies the evaluation mechanism used (if
the type of interaction is evaluation). This classification
was performed following the classification for interactive
approaches presented in [3].

First, we compared the two surveys [3], [11] to obtain
the common works between 1999 and 2016 (see the two
works in the upper part of Table 1). Both Ghannem et al. [6]
and Amal et al. [9] address model refactoring. Ghannem et
al. [6] combine structural similarity and designers’ ratings of
refactorings to evaluate the refactorings. In the approach of
Amal et al. [9], the software engineers manually evaluate the
suggested refactorings, and an Artificial Neural Network
uses these training examples to evaluate the refactoring
solutions for the remaining iterations. Both approaches in-
volve humans in the evaluation of the solutions; however,
neither of them completely replaces the fitness function with
the human as our work does.

Second, we used the queries presented in the surveys [3],
[11] to obtain the research works starting from 2016 and
2017 until August 2020, respectively. Then, we identified the
common works (see the 22 works in the middle part of the
table). Most of the works (54.55%) involve the human in the
selection of solutions. The next most common type of inter-
action is modification (31.82%). We focus on the evaluation
type. Only 27.27% of the works involve the human in the
evaluation. Martinez et al. [25], [26] leverage the user feed-
back to evaluate user interfaces obtained from a Software
Product Line. Kessentini et al. [27] propose an approach
for metamodel/model co-evolution where developers can
approve, modify, or reject the recommended edit operations.

TABLE 1
Human interaction of related SBMDE works

Interactive SBMDE Work Year
Human Interaction

Industrial
ScaleType of

interaction
When it
occurs

Evaluation
mechanism

Ghannem et al. [6] 2013 Evaluation During Scores 7
Amal et al. [9] 2014 Evaluation During Fitness value 7

Lin et al. [31] 2016 Selection After - 7

Yue et al. [32] 2016 Selection,
modification Before - 7

Van Rooijen
and Hamann [33] 2016 Selection After - 7

Lu et al. [34] 2016 Selection Before - 7
Debreceni [35] 2016 Comparison After - 3
Batot and
Sahraoui [36] 2016 Modification After - 7

Fleck et al. [37] 2016 Selection,
modification After - 7

Martı́nez et al. [25] 2017 Evaluation During HaFF CM 7
Gómez-Abajo et al. [38] 2017 Modification After - 7
Calinescu et al. [39] 2017 Selection After - 7

Kessentini et al. [27] 2018 Modification,
evaluation During Reward and

penalization 7

Martı́nez et al. [26] 2018 Evaluation During Scores 7
Marculescu et al. [28] 2018 Evaluation During Weights 3
Kolchin [40] 2018 Selection After - 7
Jakubovski
Filho et al. [41] 2019 Selection Before - 7

Bindewald et al. [29] 2019 Evaluation During Scores 7
Procter et al. [42] 2019 Selection After - 7
Le Calvar et al. [43] 2019 Selection After - 7

Zubcoff et al. [30] 2019 Modification,
evaluation After Rankings 7

Alkhazi et al. [44] 2020 Selection After - 7
Alkhazi et al. [45] 2020 Selection After - 7
Silva et al. [46] 2020 Modification Before - 7

Arcega et al. [47] 2015 Selection After - 3
Font et al. [48] 2016 Selection After - 3
Font et al. [49] 2017 Selection After - 3
Marcén et al. [50] 2017 Selection After - 3
Balları́n et al. [51] 2018 Selection After - 3
Pérez et al. [24] 2018 Selection After - 3
Pérez et al. [52] 2019 Selection After - 3
Pérez et al. [18] 2020 Selection After - 3

Our work 2020 Evaluation During HaFF CM & HaFF R 3

Marculescu et al. [28] allow domain specialists to change
the relative importance of the objectives of a fitness func-
tion for software testing. Bindewald et al. [29] incorporate
decision-maker preferences (scores) into a multi-objective
approach for product line architecture design. Zubcoff et al.
[30] propose a pareto-based approach to assist requirement
engineers to evaluate and prioritize requirements. Only
Martinez et al. [25] completely replace the fitness function
with the human. Nevertheless, there are major differences
between their work and our work. Their work does not
provide evidence to support that the human is beneficial
because their work does not compare the human with a
non-human fitness function. What their work does is to
make a comparison between the human (combined with
crossover and mutation operations) and Random Search.
Their results show that the human improves the global
score mean by only 0.5 points. Random Search achieves
4.20 and 3.95 in two experiments, while the human achieves
4.65 and 4.40 in the same experiments. The results do not
seem to argue in favor of involving the human. In addition,
their work is evaluated in the context of an academic case
study. Conversely, our work shows that the combination of
HaFF and the reformulation operation is beneficial at the
industrial scale.

Furthermore, we completed the related work section
with our previous works that deal with FLiM (see the eight
works in the bottom part of the table). These works focus on
the influence of different factors on FLiM: run-time model
traces [47], Formal Concept Analysis (FCA) [48], search
strategies [49], learning to rank [50], synthetic problems [51],
fitness function [24], feature description collaboration [52],

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, DECEMBER 2020 4

and genetic operations [18]. None of these works leverage
the use of the human as the fitness function as our work
does. Nevertheless, these works evaluate different fitness
functions to calculate the similarity between the feature de-
scription and each model fragment: Latent Semantic Index-
ing (LSI) [53], FCA, learning to rank, understandability [54],
timing [55], and combinations of these [24]. Considering all
of the works, LSI is the fitness function that achieves the
best results and, consequently, is the one that we have used
in the baselines of this work.

3 BACKGROUND

This section presents the main ideas of genetic operations
and the model fragment population that are relevant for the
baselines and HaFF. It also presents the LSI technique that
the baselines use for the fitness function. Finally, this section
presents the Natural Language Processing that is applied for
the reformulation operation and the fitness function of the
baselines.

3.1 Model Fragment Population
The top-left part of Fig. 2 shows an example of a model
of the industrial partner. The model is specified using
the Domain-Specific Language (DSL) that formalizes the
control and management of the trains. The DSL conforms
to MOF (the OMG metalanguage for defining modeling
languages that is widely used in the modeling community).
The DSL has expressiveness to generate the C++ code that
controls and manages the trains of the industrial partner2.
We present a simplified equipment-focused subset of the
DSL (due to intellectual property rights concerns), and we
do not show the terms that are included in the relationships
for the sake of legibility.

Specifically, the example in the figure presents a con-
verter assistance scenario where a High Voltage Equip-
ment device (Pantograph) collects energy from the overhead
wires and sends it to its Voltage Converter (Converter). The
converter then powers its assigned Consumer Equipment:
the HVAC (air conditioning system). There is also a battery
that powers the PA (public address system).

To encode model fragments as individuals, each element
from the model is assigned to a position in a binary string
(see gray numbers next to each element). Then, the binary
string is used to indicate the presence or absence of that par-
ticular model element in the model fragment. For example,
Model Fragment 0 (MF0) can be seen in the bottom-left part
of Fig. 2. The bits corresponding to the elements present
in the model fragment are set to 1 (bits 1-5), while the bits
corresponding to model elements that are not present in the
model fragment are set to 0 (bits 6-11). The binary string is
the most commonly used encoding for this type of problem
[18], [49].

To create the initial population, different techniques may
be applied, such as the creation of random model fragments
or the use of seed model fragments as the starting point that
are mutated until the initial population is completed. Using
seed model fragments reduces the search effort needed to
find optimal solutions, as used in this work. The top-right
part of Fig. 2 shows a model fragment population.

2. Learn more at https://youtu.be/Ypcl2evEQB8.

3.2 Genetic Operations

Below, we outline the most common operations used in the
literature for FLiM [18]. The mask crossover operation takes
two individuals as parents and combines them to generate
two new individuals that inherit part of the genes from one
of the parents and the rest from the other. The middle part
of Fig. 2 shows the application of the mask crossover oper-
ation to MF0 (in red) and MF1 (in blue). To combine the
individuals, a random mask is generated indicating which
genes will be inherited from the first parent and which genes
will be inherited from the second parent (the random mask
generated indicates that genes 1-4 and 7-10 will be selected
fromMF0 and genes 5,6, and 11 will be selected fromMF1).
MF10 shows one of the results of the combination; each of
the genes is colored based on the parent that it is inherited
from. To generate the second individual, the opposite mask
will be used (like the one used to obtain MF11).

Then, the random mutation operation is applied to the
new individuals where each of the genes has a probability of
mutating to the opposite state (i.e., a model element present
in the individual is removed or a model element not present
in the individual is added). In Fig. 2, the random mutation
is applied toMF10, and gene 7 is turned from 1 to 0 (MF12).

The above genetic operations rely on randomness. In
contrast, the replacement reformulation operation [18] is
based on textual reformulation techniques [20] and brings
semantic information to the genetic operations. The opera-
tion is based on the Domain Specificity (DS) of each term,
which is calculated as DS(t) = 1

|MF |
∑

mf∈MF DS(t,mf).
TheDS(t,mf) compares the relative frequency of each term
present in the model fragment that is used as parent for
the new individual with the relative frequency across the
model fragments of the population. Then, the terms with
the highest domain specificity value are selected, and the
model fragment is evolved to include those terms (the bits
associated to those terms are set to 1 and the rest of the bits
that correspond to the old terms are set to 0). The middle-
right part of Fig. 2 shows an example of application of
the operation. In this case, MF0 has been reformulated to
include the terms ’batteri’3, ’convert’, and ’failur’, resulting
in the model fragment depicted in the bottom-right corner of
Fig. 2. After the genetic operations are applied, the resulting
model fragments are ready to be evaluated by the fitness
function.

3.3 Fitness Function of the Baselines

The baselines use LSI [53] to calculate the similarity be-
tween the feature description and each model fragment of
the population. LSI has been used in software engineering
tasks such as feature location in source code [15], and it
has obtained the best results for feature location tasks.
LSI is also the most common fitness used for feature lo-
cation in models [24], [48], [49], [51], [52]. LSI constructs
vector representations of the feature description and the
text that is present in the model fragments and builds a
term-by-document co-occurrence matrix that formalizes the
textual similarity between the feature description and each
of the model fragments. The matrix is then decomposed

3. Batteri is the root of battery, see Section 3.4.

https://youtu.be/Ypcl2evEQB8

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, DECEMBER 2020 5

Converter

HVAC

Model Fragment Population

…

Pantograph

HVAC MF2. F=0.81

Converter

MF1. F=0.93HVAC

Battery
Failure

Overload

Converter

MFn. F=0.71HVAC

Failure
Overload

MF0

1 2 3 4 5 6 7 8 9 10 11

1 1 1 1 1 0 0 0 0 0 0

1 Pantograph

PA

Converter

HVAC

Battery

Failure
Overload

3

2

4

5

6

7
8

9

10

11

Model

Mask
Crossover

MF10

1 2 3 4 5 6 7 8 9 10 11

0 0 1 1 1 0 1 1 1 0 0

Mask Crossover and Random Mutation

MF0

1 2 3 4 5 6 7 8 9 10 11

1 1 1 1 1 0 0 0 0 0 0

1 2 3 4 5 6 7 8 9 10 11

0 0 1 1 1 1 1 1 1 0 0 MF1

1 2 3 4 5 6 7 8 9 10 11

1 1 1 1 1 1 0 0 0 0 0 MF11

1 2 3 4 5 6 7 8 9 10 11
Random

Mask

1 2 3 4 5 6 7 8 9 10 11
Opposite

Mask

MF12

1 2 3 4 5 6 7 8 9 10 11

0 0 1 1 1 0 0 1 1 0 0

1 2 3 4 5 6 7 8 9 10 11

0 1 1 1 1 1 0 0 0 0 1 MF13

Random Muta�onRandom Muta�on

Replacement
Reformula�on

Selected terms
to replace

ba�eri, convert,

failur

Reformulation
of the model

fragment

Model Fragment and Encoding

In
p

u
t

G
en

e�
c

O
p

er
a�

o
n

s
O

u
tp

u
t

MF12

HVAC

BatteryConverter
MF13

HVAC

Converter

PA

Battery
Failure

Overload

Converter

MF14

model
elements:

Fig. 2. Example of Model Fragment Encoding and Genetic Operations

following Singular Value Decomposition [56], which results
in a vector representing the latent semantic of each indi-
vidual. Then, the cosine similarity between the vector of
the feature description and the vector of each individual
from the population is calculated and used as the fitness
value of the individual. The cosine similarity will be a
value ranging from -1 (no similarity) to 1 (the same vector,
maximum similarity). The fitness function is as follows:
similarity(i1) = cos (θ) = A·B

||A||·||B|| where i1 is an indi-
vidual, A is the vector representing the latent semantic of
i1, B is the vector representing the latent semantics of the
feature description, and the angle formed by the vectors A
and B is θ.

For instance, since the feature description shown in the
top-right part of Fig. 1 shares more terms with MF1 (from
the top part of Fig. 2) than with MF2, they get different
similarity values (0.93 for MF1 and 0.81 for MF2).

3.4 Natural Language Processing

Both the reformulation operation and LSI benefit from the
application of Natural Language Processing (NLP) to ho-
mogenize the inputs (the feature description and the model
fragments), as is common practice when dealing with natu-
ral language [57]. We selected the following NLP techniques
to homogenize the text of the inputs since they obtained the
best results in a previous work [58].

First, the text is tokenized into words, and different
tokenizers are applied based on the type of text being pro-
cessed (e.g., white space, camelCase, or underscore). Second,
the Parts-Of-Speech (POS) tagging technique is applied to
identify the grammatical role of each word, allowing some
categories that do not contain relevant information (e.g.,
prepositions) to be filtered out. Third, stemming techniques
are applied to reduce the words to their root, enabling an
easier comparison of terms from the same family. Fourth, the
Domain Term Extraction and Stopword Removal techniques
are applied to automatically filter terms in or out. It is worth

mentioning that, in the context of HaFF, model fragments
are shown to humans without this processing in order to
favor comprehensibility.

For example, after applying NLP, the feature description
shown in the top-right part of Fig. 1 will result in the fol-
lowing set of tokens: ’pass’, 2x’current’, 2x’convert’, ’assign’,
’peer’, ’coverag’, ’case’, ’overload’, ’failur’, and ’first’. The
text has been tokenized using white space, prepositions and
conjunctions have been removed as part of the POS tagging,
’equipment’ has been removed as part of the stopwords
removal, and the resulting tokens have been stemmed.

4 EVALUATION

This section presents the evaluation of our work: the re-
search questions that our work tackles, the evaluation pro-
cess, the measures, baselines, and statistical analysis that we
use to answer the research questions.

4.1 Research questions
We aim to answer the following research questions:

RQ1: What is the performance in terms of the solution
quality using the widespread crossover and mutation operations
(randomly generating new candidate solutions) in the baseline
and in HaFF?

RQ2: What is the performance in terms of the solution quality
using the reformulation operation (leveraging the latent semantics
that models hold) in the baseline and in HaFF?

RQ3: How much is the performance influenced in terms of the
solution quality using HaFF compared to the baselines?

4.2 Planning and execution
Fig. 3 presents an overview of the process that is planned to
answer each research question. The upper part of the figure
shows the data set from the industrial case study, which was
provided by our industrial partner CAF. CAF uses software
models to generate the firmware to control the trains that

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, DECEMBER 2020 6

have been manufactured over years. The middle part of
the figure shows statistics of the case study. The product
family is made up of 23 models of trains where each model
includes, on average, more than 1200 model elements and
about 15 properties that serve to differentiate among them.

From industrial case study

Statistical Analysis

Statistical significance

Effect size

Product
model1
Product
model1Product model1

Pr
od

uc
t F

am
ily

Fe
at

ur
e

1

Research
Question 3

Model fragment

Calculation of Confusion Matrix

Measurements Report

Oracle

Approved Feature
Realization

Baseline_CM HaFF_CM Baseline_R

input

Feature
Description

Feature
Seed

Research Question 1 Research Question 2

HaFF_R

Baseline_CM HaFF_CM Baseline_R HaFF_R

Initialization from feature seed ✓ ✓ ✓ ✓
Mask crossover operation ✓ ✓ ✕ ✕
Random mutation operation ✓ ✓ ✕ ✕
Replacement reformulation op. ✕ ✕ ✓ ✓
LSI fitness ✓ ✕ ✓ ✕
Human as the fitness function ✕ ✓ ✕ ✓

Variants for FLiM:

Statistics of the case study:

Product models 23
Model elements per model +1200
Properties per element ≈15
Features to be located 58

Engineers involved 29
Seconds per feature Baselines 80

HaFF 1500

Fig. 3. Overview of the evaluation process to answer each research
question

The data set also includes 58 feature descriptions in
natural language and 58 feature seeds provided by the
industrial partner as well as the approved feature realization
(i.e., the model fragment that corresponds to each feature)
that will be considered to be the ground truth (oracle). The
oracle was randomly extracted from documented examples
from the company. They were solutions accepted by the
company that have been present in their software for years.
The following inclusion and exclusion criteria were defined
during the creation of the oracle and the selection of features
by the industrial partner. In order to include an approved
feature realization in the oracle, it must be included in the
product models provided for the evaluation. If a feature is
randomly selected more than once, it must be excluded to
avoid duplicates. The model fragments that correspond to
each feature have between 6 and 19 model elements (an
average of 13.29 and a median of 13.50).

Our previous works [52], [59] discussed the complexity
of the problem for FLiM. Font et al. [59] stated that the
search space can be huge when searching in model artifacts
(magnitudes of around 10150 for models of 500 elements).
In [52], Pérez et al. estimated that the time that a group

of domain experts needs to manually locate 121 features
in a industrial family of software models is 30.17 years.
Since the product family in this work is made up of 23
models of trains where each model includes, on average,
more than 1200 model elements and about 15 properties,
an engineer needs 4.79 days to manually locate each feature
(also assuming that only 1 second is needed to consider a
property of a model element). Therefore, we use a Single-
Objective Evolutionary Algorithm (SOEA) as a means of
efficiently exploring the huge search space. The objective of
the algorithm is to find the model fragment that best realizes
the feature being located. The lower part of Fig. 3 shows the
two baselines and the two HaFF variants for FLiM that are
used to answer the research questions. All of the variants
include initialization of the model fragment population
from feature seed. The options for the genetic operations
are mask crossover operation plus random mutation operation,
or the replacement reformulation operation. The options for the
fitness are LSI or completely replacing the fitness function
with the human.

To replace the fitness function with the human, 29 soft-
ware engineers were randomly selected from 42 software
engineers who work for the industrial partner. The selected
engineers have been developing software from 1 to 15 years
(with a mean of 6.90 years) for an average of 4.41 hours per
day.

To avoid the learning effect in the two HaFF variants, we
chose a crossover design where the engineers are divided
into two groups (G1 and G2) through randomization [60]. In
HaFF CM, G1 locates Features 1-28 and G2 locates Features
29-58. In HaFF R, the group order is exchanged, so G2
locates Features 1-28 and G1 locates Features 29-58.

In each iteration of HaFF, the engineer acts as the fitness
function by evaluating each individual (i.e., model frag-
ment) using a seven-point Likert scale: from 7 (the model
fragment that best realizes the feature being located) to 1
(the worst model fragment). In this way, it is possible to
quantify how much each model fragment realizes the fea-
ture being located at a specific iteration. For instance, if there
is a model fragment in the 7th iteration that contains many
model elements that realize the feature being located but
misses a few model elements, it will be evaluated with a 5. In
contrast, if there is a model fragment in the 7th iteration that
does not include any relevant model elements for the feature
being located, it will be evaluated with a 1. We selected a
seven-point scale rather than a broad rating to reduce the
fatigue of the engineers, as recommended in [23]. Once the
model fragments of a specific iteration are evaluated by the
engineer, each model fragment has a probability of being
selected as parent for the new individuals that are created
using the genetic operations. Those model fragments with
high fitness values will have higher probabilities. As an
example, if the engineer provides similar high fitness values
to two model fragments (e.g., 5), they will have higher
probabilities of being parents than other model fragments
that are evaluated with lower fitness values (e.g., 2).

With regard to the time that each engineer spends on
the evaluation, we chose a slot of two hours since it is the
median duration of software engineering experiments [61].
Hence, each engineer participates in the location of four fea-
tures in total (two features that are randomly assigned [60]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, DECEMBER 2020 7

per HaFF variant). This decision was made taking into
account that the rating of an individual could last an average
of 15 seconds. Thus, the time that each engineer spends on
the evaluation of individuals to locate the four features is
100 minutes: 10 (individuals for subjective evaluation) x 10
(iterations) = 100 (ratings/feature) * 15 (seconds/rating) =
1500 (seconds/feature) * 4 (2 features to be located per HaFF
variant) = 6000 seconds (100 minutes). The remaining 20
minutes are to provide a tutorial before the evaluation is
started and to add a margin that ensures the completion
of the evaluation. To verify the experiment design, we
conducted a pilot study [62] with one engineer, who did
not take part in the final evaluation. We verified that the
evaluation had a correct parametrization.

Answering RQ1: To assess the performance in terms of
solution quality of the widespread crossover and mutation
operations in the baseline and in HaFF, we use the variants
of Column 2 (identified as Baseline CM) and Column 3
(identified as HaFF CM) of the table that is shown in the
lower part of Fig. 3. To answer this question, we executed
1798 independent runs of the evolutionary algorithm: 58
(features) x 1 (Baseline CM) x 30 repetitions (as suggested
by Arcuri and Fraser [63]) + 58 (features) x 1 (HaFF CM).

As a result of each independent run, a ranking of model
fragments is obtained in descending order based on the fit-
ness score. The first model fragment of the ranking (i.e., the
model fragment with the highest fitness value) is compared
against the oracle, which is considered to be the ground
truth. Once the comparison is performed, a confusion matrix
is calculated.

The confusion matrix is a table that is often calculated to
describe the performance of a classification model on a set of
data (the best solution) for which the true values are known
(from the oracle). Since the solution is a model fragment in
our case, the granularity is at the level of model elements.
Hence, the presence or absence of each model element is
considered as a classification. The confusion matrix holds
the results of the comparison between the model fragment
from the oracle and the model fragment from the solution
using four categories. These are: 1) True Positive (TP), model
elements that are present in the model fragments of both
the solution and the oracle; 2) False Positive (FP), model
elements that are present in the solution but absent in the or-
acle; 3) True Negative (TN), model elements that are absent
in both the solution and the oracle; and 4) False Negative
(FN), model elements that are absent in the solution but
present in the oracle.

From the results in the four categories of the matrix, it
is possible to extract a report with measurements that eval-
uate the performance in terms of solution quality. Specifi-
cally, we derive three performance measurements that are
widely accepted in the software engineering research com-
munity [64], [65], [66]: recall, precision, and F-measure.
Recall

(
TP

TP+FN

)
measures the number of elements of the

oracle that are correctly retrieved by the proposed solution.
Precision

(
TP

TP+FP

)
measures the number of elements from

the solution that are correct according to the oracle. F-
measure

(
2 ∗ Precision∗Recall

Precision+Recall

)
corresponds to the harmonic

mean of precision and recall. Recall and precision values can

range from 0% to 100%. A value of 100% in both precision
and recall means that the solution and the oracle are the
same.

Afterwards, all of the data resulting from the perfor-
mance measures was analyzed using statistical methods
following the guidelines in [67]. The goal of our statistical
analysis is to provide formal and quantitative evidence that
the difference in performance between Baseline CM and
HaFF CM is significant and that there is an impact on the
comparison metrics (i.e., the differences were not obtained
by mere chance).

To do this, the results are compared through the run of
a statistical test to assess whether there is enough empir-
ical evidence to claim that there is a difference between
Baseline CM and HaFF CM. The statistical test uses the
value of a performance measure per feature in Baseline CM
and HaFF CM. Since Baseline CM is run 30 repetitions per
feature, there are 30 values of the performance measure
per feature. Hence, the mean value of the 30 repetitions
is calculated to obtain a single performance measure value
per feature in the baseline. Two hypotheses are defined: 1)
the null hypothesis, H0, is typically defined to state that
there is no difference when Baseline CM and HaFF CM
are compared; and 2) the alternative hypothesis, H1, states
that there is a difference. A statistical test aims to verify
whether H0 should be rejected. The statistical tests provide
a probability value, p-value. The lower the p-value of a
test, the more likely that the null hypothesis H0 (defined to
state that there is no difference between Baseline CM and
HaFF CM) is false. It is accepted that a p-value under 0.05
is statistically significant [67], and so H0 can be considered
false.

The test to be used depends on the properties of the
data. Since our data does not follow a normal distribution,
our analysis requires the use of non-parametric techniques.
There are several tests for analyzing this kind of data;
however, the Quade test is the most powerful when working
with real data [68]. Moreover, the Quade test has shown bet-
ter results than the others when the number of algorithms is
low [69].

Answering RQ2: To assess the performance in terms of
solution quality of the reformulation operation in the base-
line and in HaFF, we use the variants of Column 4 (identified
as Baseline R) and Column 5 (identified as HaFF R) of the
table that is shown in the lower part of Fig. 3. To answer
this question, we executed 1798 independent runs of the
evolutionary algorithm: 58 (features) x 1 (Baseline R) x 30
repetitions (as suggested by Arcuri and Fraser [63]) + 58
(features) x 1 (HaFF R).

As described for answering RQ1, the model fragment
with the highest fitness value that is obtained from each
independent run is compared against the oracle to calculate
the confusion matrix, which is used to extract the report of
performance measures (recall, precision and F-measure) per
feature in Baseline R and HaFF R. Then, the Quade test is
run to provide formal and quantitative evidence to assess
whether the difference in performance is significant.

Answering RQ3: To assess how much the quality of
the solution is influenced using HaFF compared to the
baselines, the magnitude of the improvement should be
assessed through effect size measures. For a non-parametric

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, DECEMBER 2020 8

effect size measure, we used two non-parametric effect size
measures: Vargha and Delaney’s Â12 [70], [71] and Cliff’s
delta [72].

Â12 measures the probability that running HaFF yields
higher values than running the baseline. If HaFF and the
baseline are equivalent, then Â12 will be 0.5. For instance,
Â12 = 0.65 between Baseline CM and HaFF CM means
that Baseline CM would obtain better results in 65% of the
runs, whereas Â12 = 0.25 means that HaFF CM would
obtain better results in 75% of the runs.

Cliff’s delta is an ordinal statistic that describes the
frequency with which an observation from one group is
higher than an observation from another group compared
to the reverse situation. It can be interpreted as the degree
to which two distributions overlap with values ranging
from -1 to 1. For example, when comparing Baseline CM
and HaFF CM: a value of 0 means there is no difference;
a value of −1 means that all samples in Baseline CM are
lower than all samples in HaFF CM; a value of 1 means
the opposite (all samples in Baseline CM are higher than
all samples in HaFF CM). Moreover, threshold values were
defined [73] for the interpretation of Cliff’s delta effect
size (|d| < 0.147 → ”negligible”; |d| < 0.33 → ”small”;
|d| < 0.474 → ”medium”, |d| ≥ 0.474 → ”large”). We
recorded an Â12 and a Cliff’s delta value for each pair-
wise comparison in recall, precision and F-measure between
Baseline CM and HaFF CM, and between Baseline R and
HaFF R.

4.3 Implementation details

For a fair comparison between each baseline and each
HaFF variant, we chose the parameters shown in Table 2 to
calibrate the evolutionary algorithm and the fitness. These
parameters (such as population size and number of parents)
correspond to those settings that are commonly used in the
literature [18], [23], [24], [49], [74], [75].

TABLE 2
Parameter settings

Parameter description Value
Evolutionary algorithm
Baselines Size: Population Size 100
HaFF Size: Population Size 10
Crossover and mutation µ: Number of Parents 2

λ: Number of offspring from µ parents 2
pcrossover : Crossover probability 0.9
pmutation: Mutation probability 0.1

Replacement reformulation Number of relevant documents 5

Fitness
LSI k: Number of dimensions 100
HaFF Iterations 10

Individuals for subjective evaluation 10

To determine the stop condition in the two baselines,
we ran some prior tests to determine the convergence time.
During the tests, we allocated 30 minutes as the fixed
amount of wall clock time to locate one feature. According
to the tests, the time needed to converge was below 60
seconds for locating each feature. Therefore, we established
the stop condition in 80 seconds (adding a margin to ensure
convergence as recommended in [18]), ensuring that the
baselines run enough time to obtain the best solutions in

our work. During this time, Baseline CM does an average
of 34985 iterations and Baseline R does an average of 398
iterations. To determine the stop condition in the two HaFF
variants, we allocated a fixed number of iterations (10) as
recommended in [23] to avoid engineers’ fatigue. Although
the number of iterations in HaFF seem to be minimal
compared to the baselines, the engineers will provide the
most intelligent search possible, which might have an effect
on the required number of iterations to locate a similar (or
better) solution. The execution of the two baselines was
performed using a Mac Pro computer with an Intel Xeon
E5-2697 V2 processor (clock speeds 2.7 GHz and 12 cores)
and 64 GB of RAM. The computer was running macOS
Catalina (10.15.6) as the hosting Operative System. Since the
engineers’ evaluation time of the individuals is extremely
long from the perspective of a computer [23], the execution
of HaFF was performed using Lenovo E330 laptops, with
an Intel Core i5-3210M processor (clock speeds 2.5GHz and
2 cores) with 16GB RAM and Windows 10 64-bit as the
hosting Operative System.

The implementation of the evolutionary algorithm,
which includes the genetic operations (mask crossover op-
eration, random mutation operation, and the replacement
reformulation operation) as well as the LSI fitness were
downloaded from the repository of [18] that is publicly
available [76]. This implementation uses the Eclipse Mod-
eling Framework [77] to manipulate the models and the
Java(TM) SE Runtime Environment (build 1.8.0 77). The
NLP techniques are implemented using OpenNLP [78] for
the POS-Tagger, and the English (Porter2) stemming al-
gorithm [79] for the stemming algorithm (originally cre-
ated using snowball and then compiled to Java). Since
the software models of the data set belong to trains that
are currently operating and under maintenance contracts
or will be released in the near future, this information is
limited by confidentiality agreements with the industrial
partner. Nevertheless, a screenshot of the industrial part-
ner’s modeling tool is available. The screenshot shows the
evaluation of model fragments during an iteration of HaFF
Moreover, for purposes of replicability, the csv files used as
input in the statistical analysis as well as the R scripts that
were implemented to analyze the results are available at:
https://bitbucket.org/svitusj/haff-vs-baselines-fl-sbmde.

5 RESULTS

5.1 Research Question 1
Fig. 4 shows the box plots with the distribution of the results
of the performance values (in terms of recall, precision,
and F-measure) that are obtained in both Baseline CM
and HaFF CM, which use the widespread crossover and
mutation operations. In addition, the upper part of Table 3
shows the mean values and standard deviations of the ob-
tained results. In terms of recall, precision, and F-measure,
Baseline CM outperforms HaFF CM, providing an average
value of 56.35%, 52.29% and 51.68%, respectively.

The lower part of Table 3 shows the p-values of the
Quade test that are obtained as a result of comparing
Baseline CM with HaFF CM. Since the p-values are smaller
than the 0.05 statistical significance threshold for all per-
formance indicators, the hypothesis H0 can be considered

https://bitbucket.org/svitusj/haff-vs-baselines-fl-sbmde

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, DECEMBER 2020 9

●
●●●

Recall Precision F−measure

0
20

40
60

80
10

0
Baseline_CM HaFF_CM

Fig. 4. Performance values for Baseline CM and HaFF CM

false. Hence, there are significant differences between Base-
line CM and HaFF CM for recall, precision and F-measure.

TABLE 3
Results using the widespread genetic operations

Performance measures Baseline CM HaFF CM

Recall ± (σ) 56.35 ± 13.76 26.96 ± 14.14
Precision ± (σ) 52.29± 16.50 32.47 ± 17.33
F-measure ± (σ) 51.68 ± 10.91 25.22 ± 11.97

Statistical significance (p-value)

Recall:� 2.2x10−16 Precision: 3.573x10−7 F-measure:� 2.2x10−16

RQ1 answer. The results reveal that Baseline CM
(56.35% in recall, 52.29% in precision, and 51.68% in F-
measure) outperforms HaFF CM in all performance mea-
sures. Moreover, we can state that there are significant
differences between Baseline CM and HaFF CM for all
performance measures.

5.2 Research Question 2

Fig. 5 shows the box plots with the performance results in
terms of recall, precision and F-measure of Baseline R and
HaFF R, which use the reformulation operation. The upper
part of Table 4 shows the mean values and standard devia-
tions of recall, precision and F-measure. In all performance
measures, HaFF R outperforms Baseline R. HaFF R obtains
an average value of 96.01% in recall, 82.34% in precision, and
88.34% in F-measure.

●●●●●

Recall Precision F−measure

30
40

50
60

70
80

90

Baseline_R HaFF_R

10
0

Fig. 5. Performance values for Baseline R and HaFF R

The lower part of Table 4 shows the p-values of the
Quade test that are obtained as a result of comparing Base-
line R with HaFF R. The p-value is greater than the 0.05 sta-
tistical significance threshold for recall, whereas the p-values
for precision and F-measure are lower than 0.05. Therefore,
the hypothesis H0 can be considered true for recall, so

there is no difference between Baseline R and HaFF R in
recall. In contrast, there are significant differences between
Baseline R and HaFF R for precision and F-measure.

TABLE 4
Results using the reformulation operation

Performance measures Baseline R HaFF R

Recall ± (σ) 95.86 ± 2.38 96.01 ± 3.30
Precision ± (σ) 68.08 ± 11.92 82.34 ± 11.39
F-measure ± (σ) 79.03 ± 8.30 88.34 ± 7.80

Statistical significance (p-value)

Recall: 0.2719 Precision: 9.478x10−10 F-measure: 2.595x10−9

RQ2 answer. The results reveal that HaFF R (96.01%
in recall, 82.34% in precision and 88.34% in F-measure)
outperforms Baseline R in all performance measures. Ac-
cording to the classification provided by Hayes et al. [80],
which classifies the results as acceptable, good, or excellent
depending on recall and precision values, the results of
HaFF R are excellent for all 58 features (since all recall
values are greater than 80% and all precision values are
greater than 50%). In addition, we can state that there are
significant differences between Baseline R and HaFF R in
precision and F-measure.

5.3 Research Question 3
Table 5 shows the effect size statistics (Â12 and Cliff’s delta)
between pair-wise comparisons of a baseline and HaFF. The
upper part of the table shows the values obtained between
Baseline CM and HaFF CM, whereas the lower part shows
the values obtained between Baseline R and HaFF R.

Between Baseline CM and HaFF CM, the Â12 value
shows that Baseline CM obtains better results than
HaFF CM in 92.84% of the runs for recall, in 79.71% of the
runs for precision, and in 94.87% of the runs for F-measure.
The magnitude of improvement using Baseline CM instead
of HaFF CM can be interpreted as being large according to
the magnitude scales [73] of the Cliff’s Delta values.

TABLE 5
Effect size measures for comparing the baselines with HaFF

Recall Precision F-measure

Baseline CM vs HaFF CM

Â12 0.9284 0.7971 0.9487
Cliff’s Delta 0.8567 (large) 0.5942 (large) 0.8974 (large)

Baseline R vs HaFF R

Â12 0.4307 0.1938 0.2033
Cliff’s Delta -0.1385 (negligible) -0.6124 (large) -0.5933 (large)

Between Baseline R and HaFF R, the Â12 values are
0.4307 for recall, 0.1938 for precision, and 0.2033 for F-
measure, implying that HaFF R obtains better results than
Baseline R in 56.93% of the runs for recall, 80.62% of the
runs for precision, and 79.67% of the runs for F-measure.
The magnitude of improvement using HaFF R instead of
Baseline R can be interpreted as being negligible for recall
and being large for precision and F-measure according to
the magnitude scales [73] of the Cliff’s Delta values.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, DECEMBER 2020 10

RQ3 answer. From the results, we can conclude how
much the performance in terms of solution quality is in-
fluenced using HaFF compared to the baseline when the
genetic operations are either the widespread crossover and
mutation operations or the reformulation operation. Using
the widespread genetic operations, the magnitude of im-
provement using Baseline CM instead of HaFF CM can
be interpreted as being large in F-measure according to
the magnitude scales [73] of the Cliff’s Delta values. In
contrast, using the reformulation operation, the magnitude
of improvement using HaFF R instead of Baseline R can
be interpreted as being large in F-measure according to the
Cliff’s Delta magnitude scales [73].

6 DISCUSSION

We analyzed the results in order to understand what hu-
mans bring to the table that leads HaFF R to better precision
results. First of all, humans are not sensitive to vocabulary
mismatch, while baselines’ fitness are. Vocabulary mismatch
occurs when different terms are used to refer to the same
concept. NLP unifies terms using a predefined dictionary,
but in-house cases remain an issue. For example, both PLC
and COSMOS refer to an on-board programmable controller.
PLC is the generic term that is widely used to refer to
this kind of controller, whereas COSMOS is an in-house
term that is used exclusively by the industrial partner for
historical reasons (COSMOS was the codename of its first
PLC). Another example is circuit breaker and HSBC. Both
terms refer to an on-off switch. Circuit breaker is a generic
term, whereas HSBC is the name of a popular brand of
circuit breakers. The brand name became the class name for
the industrial partner.

Baselines fail to establish the similarity between feature
descriptions and model fragments when cases such as those
above come into play. Nevertheless, we did not identify
a single case where humans fail because of vocabulary
mismatch. For example, in the best evaluated solutions by
human, both PLC and COSMOS appear. In the solutions
of the baselines, only PLC appears because the baselines
cannot establish that COSMOS is the in-house alias that was
informally given to PLC. When we asked humans about the
above examples, they acknowledge that they identify them
as synonyms without even thinking. Actually, they did not
recall that these examples were documented anywhere since
they are self-evident for anyone that works at the company.

Tacit knowledge is another factor where humans excel
in comparison to baselines’ fitness. Tacit knowledge is the
knowledge that is difficult to transmit by means of writ-
ing it down or verbalizing it [81]. When humans produce
feature descriptions, they unconsciously omit part of the
description which is implicit for them. For example, humans
use the term doors in feature descriptions, but they do not
clarify the number of doors, whether the doors belong to
one side or another of the train, or if the doors refer to cabin
doors, car doors, or both. When we asked humans about
this behavior, they argue that they do not omit information
intentionally. Solutions by the baseline include all of the
model elements that are related to doors. In contrast, the
best evaluated solutions by human only include model
elements that are related to the necessary doors.

Tacit knowledge hampers the performance of baselines.
Baselines completely rely on the input feature descrip-
tions. Incomplete feature descriptions prevent baselines
from achieving better results. Conversely, the performance
of humans does not suffer from tacit knowledge. For ex-
ample, when humans read, as part of a feature description,
that all doors have to open at every station, they claim that it
is obvious that doors refer to car doors (not cabin doors) on
the side of the station (not on the side of the tracks).

We also identified cases where HaFF R is not recom-
mendable. One might think that since the human is immune
to vocabulary mismatch and tacit knowledge (because of
their experience at the company), the human will always
beat the baselines’ fitness, but this is not the case. Humans
argue that there are features that they are not familiar with
despite the length of their experience time at the company.
This was argued even by humans that reported the highest
experience time values. For example, there are humans
who have the maximum experience time working with the
features of the braking system of the train (15 years), but
they are not familiar with the features of the consumer
equipment of the trains. These experienced humans obtain
worse results locating features related to the consumer
equipment of the trains (such as the air conditioning) than
other humans who have less experience time (2 years) but
who are familiar with those features.

We delved deeper in order to better understand this
phenomenon, and we asked them to rate their familiarity
for each feature by means of a Likert scale ranging from
7 (the highest self-rated familiarity) to 1 (the lowest self-
rated familiarity). The self-rated familiarity is supplied by
the human before the feature is located in the software
models. Hence, the self-rated familiarity relies on the hu-
man’s experience in the development or maintenance of the
feature being located. It turns out that when the human is
not familiar with the particular feature to be located (values
from 1 to 3), the HaFF R results are worse than the results
of the best baseline for the same feature.

In light of the above, we recalculated the performance
indicators of HaFF R considering only those cases where
the feature was rated with a familiarity value greater than
3. HaFF R increased the difference to the best baseline from
0.15% to 1.15% in recall, and from 14.26% to 20.05% in pre-
cision. Therefore, to better leverage HaFF R, it is important
to correctly identify when each human should use HaFF R
or Baseline R for each case.

After delving deeper, we learned the following: 1) what
made the human stronger than the baselines; 2) taking
into account self-rated familiarity instead of experience time
increased the difference to the best baseline; 3) the baselines
still hold (good results) when the human is not familiar
with the feature being located; and 4) how to use self-
rated familiarity in order to decide when to use HaFF R
or Baseline R. Self-rated familiarity is not optimal, but it is
near-optimal. We found only two cases where HaFF R with
familiarity values greater than 3 performed worse than the
best baselines. Further research is still required to evaluate
the self-rated familiarity, the scale, and the threshold in other
domains and tasks. Identifying when a HaFF or non-HaFF
approach should be used is relevant because in industrial
domains where software has been developed for decades,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, DECEMBER 2020 11

such as the one of the industrial partner, no single human
knows all of the features of the company.

We also analyzed the results to understand why the
reformulation operation made HaFF R beneficial, while
crossover and mutation (HaFF CM) failed. The reformula-
tion operation produced significantly better candidate so-
lutions than crossover and mutation. After all, crossover
and mutation rely on randomness to produce new solutions
while the reformulation operation relies on domain speci-
ficity. Although the random operations of HaFF CM use
the model fragments that engineers rated with high fitness
values as parents, the operations randomly add/remove
elements to produce new model fragments. In contrast, the
idea of domain specificity of the reformulation operation of
HaFF R yields better quality results because the elements
that are added/removed to produce new model fragments
take into account the domain specificity of the terms of the
model fragments, which engineers rated with high fitness
values. What we know is that, in the case of FLiM, HaFF
requires smart operations that offer the human better so-
lutions than the ones produced by the random nature of
crossover and mutation. What we do not know is if the
reformulation operation can enable HaFF in the context of
other software engineering tasks, or if other tasks require
new smart operations.

Furthermore, we ran a focus group to acquire feedback
from the 29 software engineers from our industrial partner
who were involved in HaFF acting as the fitness function.
Specifically, the focus group was composed of the following
open questions: (1) What do you think about the results of
each approach (HaFF and baselines)? (2) How did you feel
locating features in models with HaFF? and (3) How do you
imagine the use of HaFF for more complex problems?

The engineers stated that the results of HaFF were supe-
rior to the results of the baselines. They acknowledge that
the solutions of the baselines included mistakes that were
easily avoided when they guided the search themselves.
The engineers described the phenomena of vocabulary mis-
match and tacit knowledge using their own words.

Another aspect that the engineers highlighted as an ad-
vantage of HaFF over the baselines is that HaFF allows them
to be involved during the search process without having to
manually explore the entire software models. A few of the
engineers referred to the “cyberpart” of HaFF as a sherpa.
Engineers not only acknowledged this as being relevant to
the daily work maintaining features in models, but they also
found that the process of evaluating the solutions was fast
and easy using a predefined scale. The engineers mentioned
that they did not find the process long or exhausting during
the 10 iterations that should be performed per feature. In
fact, they found it interesting to see how the solutions were
improved iteration after iteration.

The engineers also mentioned that HaFF can be used
for more complex problems. To do this, they imagined that
HaFF would require more iterations to find good solutions,
and they proposed that more than one engineer participate
in the evaluation of solutions of the feature being located.
Thus, more iterations could be done without increasing the
required time per engineer.

7 A GUIDELINE FOR APPLYING HAFF TO OTHER
SOFTWARE ENGINEERING PROBLEMS

In the case of reformulating a software engineering problem
into a search problem (SBSE), there are three main ingredi-
ents (encoding, operations, and fitness), with fitness being
the most important one. In fact, many SBSE works resort to
binary encoding and use widespread crossover and muta-
tion operations (as is the case with most SBMDE works [18]).
However, fitness may require a great effort in order to create
the one that gives the desired results (e.g., it has taken
us many years to explore a multitude of techniques for
the fitness function in the problem of feature location in
models). Using the Human as the Fitness Function (HaFF)
may be an alternative for creating the fitness, and HaFF may
even perform better than the best fitnesses created to date
for the problem at hand. To help researchers who want to
explore HaFF in other software engineering problems, we
propose the following guideline.

The first step (HaFF-preparation) is to rethink the op-
erations in order to reach a number of required iterations
that is compatible with using the Human as the Fitness
Function (i.e., Takagi’s recommendations [23]). This step can
be achieved before using the human as fitness function.
Instead, this step can be achieved by using an existing
classic fitness or an optimal fitness (presented below). This
is described as follows:

P.1) Rethinking the operations. Many SBSE works use
operations that rely on randomness to produce new
candidate solutions. These operations may require
a number of iterations so large that it is impossible
for the human to evaluate all of the solutions. In
HaFF, the operations become the most important
ingredient. The success of HaFF may depend on
the operations. This means that we must consider
operations beyond the widespread crossover or mu-
tation (e.g., looking at the operations catalog of this
recent survey [82]), or we must even design new
operations that explore the search space more intel-
ligently (e.g., taking as inspiration how new model
fragment reformulation operations were designed
[18]).

P.2) Bootstrapping HaFF. In some software engineering
problems, there may be a previous SBSE approach,
as occurs in the case of feature location in models.
That approach can be used as a starting point to
rethink the operations for HaFF. However, applying
HaFF to a new problem does not always require a
classic SBSE approach (non-HaFF) beforehand. One
may think that a classic fitness is at least necessary.
However, creating the classic fitness can be difficult.
There may be an alternative for those problems
where it is possible to use (or create) an oracle. An
oracle (or golden set) is a set of problems and the
solutions to those problems. If there is an oracle, it
may be possible to design an inexpensive optimal

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, DECEMBER 2020 12

fitness that is similar to the following equation:

fitness(m) =

n∑
i=0

g(i)

n

g(i) =

{
1 if value(m, i) = value(o, i)

−1 otherwise
(1)

where: m = any given individual
n = size of the individual
o = solution from the oracle.

The fitness is the result of adding the g(i) values
for all of the genes present in the individual (from
0 to n) and dividing the sum by the size of the
individual. The g(i) is 1 if the gene value is the same
in the individual and in the oracle (value(m, i) =
value(o, i)) or -1, otherwise. Our previous work [59]
shows this optimal fitness applied to the feature
location problem in models; however, it is possible
to adapt the idea to other problems. It is important
to note that this optimal fitness is useful only for
rethinking the operations, but it cannot be applied
in the wild since not all solutions are known for all
problems.

P.3) When are the operations good enough for HaFF?
Following Takagi’s recommendations to avoid hu-
man fatigue, solutions should be found for popu-
lation sizes and number of iterations of 10 or 20.
When using a classic fitness, it should be taken
into account that the human will provide the most
intelligent search possible. Therefore, even though
the combination of the operations and the classic
fitness requires a larger number of iterations, the
final combination of operations with the human
may require a smaller number of iterations that
is compatible with Takagi’s recommendations. This
was the case of our experiments. When using an
optimal fitness to rethink the operations for HaFF,
we recommend following the recommendations as
much as possible. Despite his/her intelligence, the
human will not provide better solutions than the
optimal fitness.

The second step (HaFF-execution) is where the actual
human plays the role of the fitness function. Human fatigue
might arise in this step. Points E.3 and E.4 can avoid human
fatigue, but, in some cases, we should go back to the first
step to further rethink the operations. This is described as
follows:

E.1) Who should play the role of HaFF? Intuition tells
us that years of experience can make a difference in
HaFF. It seems like a safe bet that the humans who
have more experience with the problem at hand are
the ones who should play the role of HaFF. Our
work shows that the length of experience time is
not always the best criterion. Humans who have
more experience time but are unfamiliar with parts
of the system guide the search worse than humans
who have less experience time but are more familiar
with. In our case, self-rated familiarity leads to

better results than experience time. For this reason,
we discourage using experience time as a criterion
for choosing humans by default. Other criteria than
experience time should be considered (e.g., self-
rated familiarity), or other criterion specific to the
problem should be explored.

E.2) How should humans evaluate the solutions? HaFF
is underexplored in software engineering problems.
Our work shows that the use of a Likert scale has
been successful in a problem like ours. Our recom-
mendation is to use the scale as a starting point
and adjust it to a coarser or finer grain technique
depending on the needs of the problem.

E.3) Human collaboration in HaFF. Even though hu-
mans do not collaborate with each other in our
experiments, it may make sense in other software
engineering problems for several humans to col-
laborate in HaFF in order to share the burden of
evaluating the solutions. This collaboration could
lead to a higher number of iterations or a higher
population size. In other words, for some kind of
problems a single human may fail at HaFF, but the
collaboration of a set of humans could led to success
for the same problems.

E.4) Hybridizing HaFF. For problems in which fatigue
appears, a hybrid approach could be explored in
which a classical fitness is executed a number of
iterations (e.g., 1000) between each evaluation per-
formed by the human. In our case, the human
guides the search better than the baseline because
the human is immune to the baseline problems
(vocabulary mismatch and tacit knowledge). Our
solution is pure HaFF because we did not reach
human fatigue in our experiments.

The third step (HaFF-simulation) covers the case where
HaFF has produced so much data that the human could
be replaced by a machine-learning counterpart. This is de-
scribed as follows:

S.1) Leveraging HaFF to achieve a Simulated Human as
a Fitness Function (SHaFF). There are approaches
that use machine learning to simulate the human
and use that simulation in the fitness function.
Depending on the problem, simulating the human
with machine learning may require many examples
for training that are not available from the begin-
ning. Addressing a problem with HaFF can help
to generate the examples as HaFF is used. In some
problems, HaFF can be used until enough examples
are available to train a simulation of the human for
that problem.

Alternatively, HaFF can also play the role of a sanity
check (HaFF-sanity check) when a sophisticated classic
fitness is created. This is described as follows:

SC.1) HaFF as a form of sanity-check. The search-based
community might consider the use of HaFF to check
that sophisticated fitness functions perform better
than a humble human guiding the search within
Takagi’s recommendations. Since a classic search
approach is designed without HaFF in mind, the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, DECEMBER 2020 13

classic fitness is expected to outperform the human.
This could be tested by making a comparison of
the search approach with a variant of the search
approach where the human replaces the classic fit-
ness, and the variant is executed within Takagi’s
recommendations.

To conclude, not all software engineering problems are
equal, which can be reflected in the effort that it may take to
evaluate a solution by a human. In the case of model-based
software development problems, the effort should be less
than in software development problems using source code
(or the extreme case of binary code). Given the initial phase
in which the research of HaFF applied to software problems
is currently, it seems reasonable to continue its exploration
in other problems with a high level of abstraction where
less human effort is required to evaluate solutions. Next, we
provide a few examples that might help give a more precise
picture on the detection of opportunities for using HaFF.

In the context of Search-based Bug Location in the mod-
els of induction hobs from BSH (including Bosch, Siemens,
and Gaggenau brands among others), we highlighted how
the interaction of humans in the evaluation of solutions
could influence the quality of the results [83]. In this domain,
the software that controls the induction hobs is responsible
for reconfiguring them in the event of context changes.
As an example, the software turns inductors on or off in
response to pot movements on the surface of induction
plates. On the one hand, research showed that humans
were beneficial when evaluating model fragments that high-
lighted elements of the model that could be relevant for the
location of a bug. On the other hand, human interaction was
detrimental to the process when evaluating reconfiguration
strings that could lead to the bug. In both cases, the humans
evaluated only the results of the ranking produced by the
search.

Having identified how humans are beneficial in evaluat-
ing solutions, one might wonder if there is an opportunity
to use HaFF. It is true that the number of results evaluated
during the search was much higher than Takagi’s recom-
mendations to avoid fatigue, however, the operations used
to explore the search space were based on the randomness
of crossover and mutation, which suggests that there is
room to reduce the number of results to evaluate. The
combination of 1) we know how to present the solutions to
humans to be beneficial, and 2) there are too many solutions
because of random operations might be a pattern to detect
the opportunity to use HaFF (or hybrid HaFF) using the
guideline of this section.

In the context of Procedural Content Generation in the
Kromaia video game (PlayStation 4 and Steam), we show
how a search-based approach could generate Non-Playable
Characters (NPCs), specifically the final enemies that appear
at the end of each phase of the video game [84]. This work
did not address the artistic part of the NPCs, rather, it
addressed the part of the software models that describes
their architecture and behavior. The part of software en-
gineering that addresses game development is known as
Game Software Engineering (GSE) [85].

GSE can be an opportunity to use HaFF. The main
enemy of HaFF is the fatigue of humans when evaluating

solutions. However, in GSE humans may consider playing
video games as entertainment, rather than a burden. It is
true that the perception of entertainment may depend on
factors such as the diversity or difficulty of the content, but
GSE has the potential to use HaFF. Furthermore, it is not
uncommon for a blockbuster video game to be played by
millions of players, which may also be an opportunity to
recruit enough players to achieve human collaboration in
HaFF (see E.3 of the guideline).

8 THREATS TO VALIDITY

To acknowledge the threats to the validity of our work, we
use the classification suggested by De Oliveira et al. [86].

1) Conclusion Validity threats. To address the lack of
statistical tests, we employed standard statistical analysis
following accepted guidelines [63]. The not accounting for
random variation threat was addressed by considering 30
independent runs for each feature description in the base-
lines. In HaFF, it is not possible to consider 30 independent
runs per feature since the human’s availability is a limited
resource and the results of additional runs for the same
feature would be influenced by the learning effect. For the
lack of a good descriptive analysis threat, we have analyzed
the confusion matrix obtained using recall, precision, and
F-measure measurements; however, other measurements
could be applied. In addition, some works argue that the
use of the Vargha and Delaney Â12 measurement can be
misrepresentative [63] and that the data should be pre-
transformed before applying it. We did not find any use
cases for data pre-transformation that applied to our case
study. Nevertheless, we also used Cliff’s delta as an effect
size measure.

2) Internal Validity threats. We mitigated the learning
effect threat using a crossover design for the evaluation. In
addition, the engineers who participated in the evaluation
were not involved in the oracle provided by the industrial
partner. With regard to the information exchange threat, the
engineers were not able to exchange information during
the evaluation. The understandability threat was mitigated
by providing a tutorial before the evaluation started. The
fatigue effect was mitigated by: 1) setting the number of
iterations and the number of individuals of the algorithm
per feature to 10 as recommended in the literature [23];
and 2) establishing a total time of two hours for the whole
evaluation (including the tutorial) since this time is the me-
dian duration of software engineering experiments [61]. We
mitigated the researcher bias threat [87] by not participating
in the selection of the engineers. The imbalanced group of
subjects threat was mitigated by randomly assigning each
engineer to a group and to the features to be located. With
regard to the poor parameter settings threat, we mitigated it by
using values that have been tested in similar algorithms for
FLiM [18]. Default values are good enough to measure the
performance of location techniques as suggested by Arcuri
and Fraser [63]. To address the threat of the lack of real problem
instances, the evaluation of this work was applied to an
industrial case study.

3) Construct Validity threats. To address the lack of
assessing the validity of cost measures threat, we performed
our evaluation using three measures (recall, precision, and

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, DECEMBER 2020 14

F-measure), which are widely accepted in the software engi-
neering research community [64]. Moreover, we performed
a fair comparison between the baselines and HaFF.

4) External Validity threats. To mitigate the threat of
the lack of a clear object selection strategy, the evaluation uses
an industrial case study, whose instances are collected from
real-world problems. To mitigate the generalization threat,
HaFF is generic and is not only applicable to feature location
and the domain of the industrial partner, but it is also
applicable to other domains and to other software engineer-
ing tasks. Nevertheless, HaFF should be applied to other
domains and tasks before assuring its generalization.

9 CONCLUSION

In this work, we study the influence of using the Human as
the Fitness Function (HaFF) on the quality of the results.
To do this, we focus on SBMDE since models (the fun-
damental artifacts of SBMDE) should be a more favorable
scenario than code for HaFF because of their higher level of
abstraction. Furthermore, Pérez et al. [18] recently reported
that, in the context of feature location in models, reformu-
lation operations significantly reduce the required iterations
in comparison to the widespread crossover and mutation
operations. Our results show that HaFF leads to significantly
better precision than the best baseline because humans are
immune to the main limitations of the baselines: vocabulary
mismatch and tacit knowledge. HaFF achieved better results
only when HaFF was combined with the replacement refor-
mulation operation (HaFF R). We learned that a self-rated
feature familiarity assessment helps to boost the quality of
the results. In addition, a focus group interview confirms
the engineers’ acceptance of HaFF. Our results can moti-
vate other researchers to evaluate HaFF in more software
engineering tasks and other software artifacts. We provide a
guideline that further discusses how to apply HaFF to other
software engineering problems and provides recommenda-
tions for types of problems that should be used to continue
exploring HaFF. For future work, we are planning to explore
the potential benefits of HaFF for bug location.

ACKNOWLEDGMENTS

This work was supported in part by the Ministry of Econ-
omy and Competitiveness (MINECO) through the Spanish
National R+D+i Plan and ERDF funds under the Project
ALPS under Grant RTI2018-096411-B-I00, and in part by the
Gobierno de Aragón (Spain) (Research Group S05 20D).

REFERENCES

[1] M. Harman and B. F. Jones, “Search-based software engineering,”
Inf. Softw. Technol., vol. 43, no. 14, pp. 833–839, 2001.

[2] M. Harman, Y. Jia, and Y. Zhang, “Achievements, open problems
and challenges for search based software testing,” in 8th IEEE
International Conference on Software Testing, Verification and Valida-
tion, ICST 2015, Graz, Austria, April 13-17, 2015. IEEE Computer
Society, 2015, pp. 1–12.

[3] A. Ramı́rez, J. R. Romero, and C. L. Simons, “A systematic review
of interaction in search-based software engineering,” IEEE Trans-
actions on Software Engineering, vol. 45, no. 8, pp. 760–781, 2019.

[4] A. A. Araújo, M. Paixao, I. Yeltsin, A. Dantas, and J. Souza,
“An architecture based on interactive optimization and machine
learning applied to the next release problem,” Automated Software
Engg., vol. 24, no. 3, p. 623–671, Sep. 2017.

[5] P. Tonella, A. Susi, and F. Palma, “Interactive requirements pri-
oritization using a genetic algorithm,” Inf. Softw. Technol., vol. 55,
no. 1, p. 173–187, Jan. 2013.

[6] A. Ghannem, G. El Boussaidi, and M. Kessentini, “Model refactor-
ing using interactive genetic algorithm,” in Search Based Software
Engineering, G. Ruhe and Y. Zhang, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 96–110.

[7] C. L. Simons, J. Smith, and P. White, “Interactive ant colony
optimization (iaco) for early lifecycle software design,” Swarm
Intelligence, vol. 8, no. 2, pp. 139–157, June 2014.

[8] L. Troiano, C. Birtolo, and R. Armenise, “A validation study
regarding a generative approach in choosing appropriate colors
for impaired users,” SpringerPlus, vol. 5, no. 1, p. 1090, July 2016.

[9] B. Amal, M. Kessentini, S. Bechikh, J. Dea, and L. B. Said, “On the
use of machine learning and search-based software engineering
for ill-defined fitness function: A case study on software refactor-
ing,” in Search-Based Software Engineering, C. Le Goues and S. Yoo,
Eds. Cham: Springer International Publishing, 2014, pp. 31–45.

[10] C. Birtolo, P. Pagano, and L. Troiano, “Evolving colors in user
interfaces by interactive genetic algorithm,” in 2009 World Congress
on Nature & Biologically Inspired Computing (NaBIC). IEEE, 2009,
pp. 349–355.

[11] I. Boussaı̈d, P. Siarry, and M. Ahmed-Nacer, “A survey on search-
based model-driven engineering,” Autom. Softw. Eng., vol. 24,
no. 2, pp. 233–294, 2017.

[12] M. Kessentini, P. Langer, and M. Wimmer, “Searching models,
modeling search: On the synergies of SBSE and MDE,” in 2013
1st International Workshop on Combining Modelling and Search-Based
Software Engineering (CMSBSE), May 2013, pp. 51–54.

[13] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software
Engineering in Practice, 1st ed. Morgan & Claypool Publishers,
2012.

[14] J. Krüger, T. Berger, and T. Leich, “Features and how to find them:
A survey of manual feature location,” in Software Engineering for
Variability Intensive Systems - Foundations and Applications. Taylor
& Francis Group, 2019, pp. 153–172.

[15] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature loca-
tion in source code: a taxonomy and survey,” Journal of Software:
Evolution and Process, vol. 25, no. 1, pp. 53–95, 2013.

[16] D. Poshyvanyk, Y.-G. Gueheneuc, A. Marcus, G. Antoniol, and
V. Rajlich, “Feature location using probabilistic ranking of meth-
ods based on execution scenarios and information retrieval,” IEEE
Transactions on Software Engineering, vol. 33, no. 6, pp. 420–432, Jun.
2007.

[17] J. Wang, X. Peng, Z. Xing, and W. Zhao, “An exploratory study of
feature location process: Distinct phases, recurring patterns, and
elementary actions,” in Proceedings of the 27th Conference on Software
Maintenance. IEEE, 2011, pp. 213–222.

[18] F. Pérez, T. Ziadi, and C. Cetina, “Utilizing automatic query
reformulations as genetic operations to improve feature location
in software models,” IEEE Transactions on Software Engineering,
June 2020. [Online]. Available: https://doi.org/10.1109/TSE.2020.
3000520

[19] G. Salton, The SMART Retrieval System—Experiments in Automatic
Document Processing. Upper Saddle River, NJ, USA: Prentice-Hall,
Inc., 1971.

[20] M. Gibiec, A. Czauderna, and J. Cleland-Huang, “Towards mining
replacement queries for hard-to-retrieve traces,” in Proceedings
of the IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’10. New York, NY, USA: ACM, 2010, pp.
245–254.

[21] S. Haiduc, G. Bavota, A. Marcus, R. Oliveto, A. De Lucia, and
T. Menzies, “Automatic query reformulations for text retrieval
in software engineering,” in Proceedings of the 2013 International
Conference on Software Engineering, ser. ICSE ’13, 2013, pp. 842–851.

[22] M. M. Rahman and C. K. Roy, “STRICT: information retrieval
based search term identification for concept location,” CoRR, vol.
abs/1807.04475, 2018.

[23] H. Takagi, “Interactive evolutionary computation: Fusion of the
capabilities of EC optimization and human evaluation,” Proceed-
ings of the IEEE, vol. 89, no. 9, pp. 1275–1296, September 2001.

[24] F. Pérez, R. Lapeña, J. Font, and C. Cetina, “Fragment retrieval
on models for model maintenance: Applying a multi-objective
perspective to an industrial case study,” Information & Software
Technology, vol. 103, pp. 188–201, 2018.

[25] J. Martinez, J.-S. Sottet, A. G. Frey, T. Ziadi, T. Bissyandé, J. Van-
derdonckt, J. Klein, and Y. Le Traon, Variability Management and

https://doi.org/10.1109/TSE.2020.3000520
https://doi.org/10.1109/TSE.2020.3000520

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, DECEMBER 2020 15

Assessment for User Interface Design. Cham: Springer International
Publishing, 2017, pp. 81–106.

[26] J. Martinez, J.-S. Sottet, A. G. Frey, T. F. Bissyandé, T. Ziadi,
J. Klein, P. Temple, M. Acher, and Y. le Traon, “Towards estimating
and predicting user perception on software product variants,” in
New Opportunities for Software Reuse, R. Capilla, B. Gallina, and
C. Cetina, Eds. Cham: Springer International Publishing, 2018,
pp. 23–40.

[27] W. Kessentini, M. Wimmer, and H. Sahraoui, “Integrating the
designer in-the-loop for metamodel/model co-evolution via inter-
active computational search,” in Proceedings of the 21th ACM/IEEE
International Conference on Model Driven Engineering Languages and
Systems, ser. MODELS ’18. New York, NY, USA: Association for
Computing Machinery, 2018, p. 101–111.

[28] B. Marculescu, R. Feldt, R. Torkar, and S. Poulding, “Transferring
interactive search-based software testing to industry,” Journal of
Systems and Software, vol. 142, pp. 156 – 170, 2018.

[29] C. V. Bindewald, W. M. Freire, A. M. M. M. Amaral, and T. E.
Colanzi, “Towards the support of user preferences in search-based
product line architecture design: An exploratory study,” in Pro-
ceedings of the XXXIII Brazilian Symposium on Software Engineering,
ser. SBES 2019. New York, NY, USA: Association for Computing
Machinery, 2019, p. 387–396.

[30] J. Zubcoff, I. Garrigós, S. Casteleyn, J.-N. Mazón, J.-A. Aguilar, and
F. Gomariz-Castillo, “Evaluating different i*-based approaches for
selecting functional requirements while balancing and optimizing
non-functional requirements: A controlled experiment,” Informa-
tion and Software Technology, vol. 106, pp. 68 – 84, 2019.

[31] Y. Lin, X. Peng, Y. Cai, D. Dig, D. Zheng, and W. Zhao, “Interactive
and guided architectural refactoring with search-based recommen-
dation,” in Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. FSE 2016.
New York, NY, USA: Association for Computing Machinery, 2016,
p. 535–546.

[32] T. Yue, S. Ali, H. Lu, and K. Nie, “Search-based decision ordering
to facilitate product line engineering of cyber-physical system,” in
2016 4th International Conference on Model-Driven Engineering and
Software Development (MODELSWARD), 2016, pp. 691–703.

[33] L. Van Rooijen and H. Hamann, “Requirements specification-
by-example using a multi-objective evolutionary algorithm,” in
2016 IEEE 24th International Requirements Engineering Conference
Workshops (REW), 2016, pp. 3–9.

[34] H. Lu, T. Yue, S. Ali, and L. Zhang, “Nonconformity resolving
recommendations for product line configuration,” in 2016 IEEE
International Conference on Software Testing, Verification and Valida-
tion (ICST), 2016, pp. 57–68.

[35] C. Debreceni, I. Ráth, D. Varró, X. De Carlos, X. Mendialdua,
and S. Trujillo, “Automated model merge by design space ex-
ploration,” in Fundamental Approaches to Software Engineering,
P. Stevens and A. Wasowski, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2016, pp. 104–121.

[36] E. Batot and H. Sahraoui, “A generic framework for model-set
selection for the unification of testing and learning mde tasks,” in
Proceedings of the ACM/IEEE 19th International Conference on Model
Driven Engineering Languages and Systems, ser. MODELS ’16. New
York, NY, USA: Association for Computing Machinery, 2016, p.
374–384.

[37] M. Fleck, J. Troya, and M. Wimmer, “Search-based model transfor-
mations,” J. Softw. Evol. Process, vol. 28, no. 12, p. 1081–1117, Dec.
2016.

[38] P. Gómez-Abajo, E. Guerra, and J. de Lara, “A domain-specific
language for model mutation and its application to the automated
generation of exercises,” Computer Languages, Systems & Structures,
vol. 49, pp. 152 – 173, 2017.

[39] R. Calinescu, M. Češka, S. Gerasimou, M. Kwiatkowska, and
N. Paoletti, “Designing robust software systems through paramet-
ric markov chain synthesis,” in 2017 IEEE International Conference
on Software Architecture (ICSA), 2017, pp. 131–140.

[40] A. Kolchin, “Interactive method for cumulative analysis of soft-
ware formal models behavior,” PROBLEMS IN PROGRAMMING,
no. 2-3, pp. 115–123, 2018.

[41] H. L. Jakubovski Filho, T. N. Ferreira, and S. R. Vergilio, “Pref-
erence based multi-objective algorithms applied to the variability
testing of software product lines,” Journal of Systems and Software,
vol. 151, pp. 194 – 209, 2019.

[42] S. Procter and L. Wrage, “Guided architecture trade space ex-
ploration: Fusing model based engineering design by shopping,”

in 2019 ACM/IEEE 22nd International Conference on Model Driven
Engineering Languages and Systems (MODELS), 2019, pp. 117–127.

[43] T. L. Calvar, F. Chhel, F. Jouault, and F. Saubion, “Toward a declar-
ative language to generate explorable sets of models,” ser. SAC
’19. New York, NY, USA: Association for Computing Machinery,
2019, p. 1837–1844.

[44] B. Alkhazi, C. Abid, M. Kessentini, D. Leroy, and M. Wimmer,
“Multi-criteria test cases selection for model transformations,”
Automated Software Engineering, pp. 1–28, 2020.

[45] B. Alkhazi, C. Abid, M. Kessentini, and M. Wimmer, “On the value
of quality attributes for refactoring atl model transformations: A
multi-objective approach,” Information and Software Technology, vol.
120, p. 106243, 2020.

[46] D. N. A. d. Silva, “Adaptation oriented test data generation for
adaptive systems,” in 2020 15th Iberian Conference on Information
Systems and Technologies (CISTI), 2020, pp. 1–7.

[47] L. Arcega, J. Font, Ø. Haugen, and C. Cetina, “Leveraging models
at run-time to retrieve information for feature location,” in Proceed-
ings of the 10th International Workshop on Models@run.time co-located
with the 18th International Conference on Model Driven Engineering
Languages and Systems (MoDELS 2015), Ottawa, Canada, September
29, 2015, 2015, pp. 51–60.

[48] J. Font, L. Arcega, O. Haugen, and C. Cetina, “Feature location
in models through a genetic algorithm driven by information
retrieval techniques,” in Proceedings of the ACM/IEEE 19th In-
ternational Conference on Model Driven Engineering Languages and
Systems, ser. MODELS ’16. ACM, 2016, pp. 272–282.

[49] J. Font, L. Arcega, Ø. Haugen, and C. Cetina, “Achieving feature
location in families of models through the use of search-based soft-
ware engineering,” IEEE Transactions on Evolutionary Computation,
vol. 22, no. 3, pp. 363–377, 2018.

[50] A. C. Marcén, J. Font, O. Pastor, and C. Cetina, “Towards feature
location in models through a learning to rank approach,” in
Proceedings of the 21st International Systems and Software Product Line
Conference - Volume B, ser. SPLC ’17, 2017, p. 57–64.

[51] M. Balları́n, A. C. Marcén, V. Pelechano, and C. Cetina, “Measures
to report the location problem of model fragment location,” in
Proceedings of the 21th ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems, MODELS 2018, Copen-
hagen, Denmark, October 14-19, 2018, 2018, pp. 189–199.

[52] F. Pérez, J. Font, L. Arcega, and C. Cetina, “Collaborative feature
location in models through automatic query expansion,” Auto-
mated Software Engineering, vol. 26, no. 1, pp. 161–202, 2019.

[53] T. Hofmann, “Probabilistic Latent Semantic Indexing,” in Pro-
ceedings of the 22nd Annual International ACM/SIGIR Conference on
Research and Development in Information Retrieval, 1999.

[54] H. Störrle, “On the Impact of Layout Quality to Understanding
UML Diagrams: Size Matters,” in Proceedings of 17th International
Conference on Model Driven Engineering Languages and Systems
(MoDELS 2014), 2014, pp. 518–534.

[55] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller, “Mining
Version Histories to Guide Software Changes,” in Proceedings of
the 26th International Conference on Software Engineering, ser. ICSE
’04, 2004, p. 563–572.

[56] T. K. Landauer, P. W. Foltz, and D. Laham, “An introduction to
latent semantic analysis,” Discourse processes, vol. 25, no. 2-3, pp.
259–284, 1998.

[57] A. Hulth, “Improved automatic keyword extraction given more
linguistic knowledge,” in Proceedings of the 2003 conference on
Empirical methods in natural language processing, 2003, pp. 216–223.

[58] R. Lapeña, J. Font, O. Pastor, and C. Cetina, “Analyzing the
impact of natural language processing over feature location in
models,” in GPCE 2017 - 16th International Conference on Generative
Programming: Concepts & Experience, 2017.

[59] J. Font, L. Arcega, Ø. Haugen, and C. Cetina, “Handling noncon-
forming individuals in search-based model-driven engineering:
nine generic strategies for feature location in the modeling space
of the meta-object facility,” Software and Systems Modeling, 2021.
[Online]. Available: https://doi.org/10.1007/s10270-021-00870-5

[60] H. J. Seltman, “Experimental design and analysis,” Online at: http:
//www.stat.cmu.edu/∼hseltman/309/Book/Book.pdf , 2012.

[61] D. I. K. Sjoeberg, J. E. Hannay, O. Hansen, V. B. Kampenes,
A. Karahasanovic, N. . Liborg, and A. C. Rekdal, “A survey of
controlled experiments in software engineering,” IEEE Transactions
on Software Engineering, vol. 31, no. 9, pp. 733–753, 2005.

[62] M. Asadi, S. Soltani, D. Gašević, and M. Hatala, “The effects of

https://doi.org/10.1007/s10270-021-00870-5
http://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf
http://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, DECEMBER 2020 16

visualization and interaction techniques on feature model config-
uration,” Empirical Software Engineering, pp. 1–38, 2014.

[63] A. Arcuri and G. Fraser, “Parameter tuning or default values?
an empirical investigation in search-based software engineering,”
Empirical Software Engineering, vol. 18, no. 3, pp. 594–623, 2013.

[64] G. Salton and M. J. McGill, Introduction to Modern Information
Retrieval. New York, NY, USA: McGraw-Hill, Inc., 1986.

[65] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic, “An infor-
mation retrieval approach to concept location in source code,” in
Proceedings of the 11th Working Conference on Reverse Engineering,
ser. WCRE ’04. Washington, DC, USA: IEEE Computer Society,
2004, pp. 214–223.

[66] D. Falessi, G. Cantone, and G. Canfora, “Empirical principles and
an industrial case study in retrieving equivalent requirements
via natural language processing techniques,” IEEE Transactions on
Software Engineering, vol. 39, no. 1, pp. 18–44, 2011.

[67] A. Arcuri and L. Briand, “A hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering,”
Softw. Test. Verif. Reliab., vol. 24, no. 3, pp. 219–250, May 2014.

[68] S. Garcı́a, A. Fernández, J. Luengo, and F. Herrera, “Advanced
nonparametric tests for multiple comparisons in the design of
experiments in computational intelligence and data mining: Ex-
perimental analysis of power,” Inf. Sci., vol. 180, no. 10, pp. 2044–
2064, May 2010.

[69] W. Conover, Practical nonparametric statistics, 3rd ed., ser. Wiley
series in probability and statistics. New York, NY [u.a.]: Wiley,
1999.

[70] A. Vargha and H. D. Delaney, “A critique and improvement of the
cl common language effect size statistics of mcgraw and wong,”
Journal of Educational and Behavioral Statistics, vol. 25, no. 2, pp.
101–132, 2000.

[71] R. J. Grissom and J. J. Kim, ”Effect sizes for research: A broad practical
approach. Mahwah, NJ: Earlbaum, 2005.

[72] N. Cliff, Ordinal methods for behavioral data analysis. Lawrence
Erlbaum Associates, Inc, 1996.

[73] J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek, “Appro-
priate statistics for ordinal level data: Should we really be using
t-test and cohen’sd for evaluating group differences on the nsse
and other surveys,” in annual meeting of the Florida Association of
Institutional Research, 2006, pp. 1–33.

[74] A. S. Sayyad, J. Ingram, T. Menzies, and H. Ammar, “Scalable
product line configuration: A straw to break the camel’s back,”
in Automated Software Engineering (ASE), 2013 IEEE/ACM 28th
International Conference on, Nov 2013, pp. 465–474.

[75] C. Carpineto and G. Romano, “A survey of automatic query
expansion in information retrieval,” ACM Comput. Surv., vol. 44,
no. 1, pp. 1:1–1:50, Jan. 2012.

[76] “Model fragment reformulation variants as genetic operations for
feature location in models,” https://bitbucket.org/svitusj/mfr,
2020.

[77] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF:
Eclipse Modeling Framework 2.0, 2nd ed. Addison-Wesley Profes-
sional, 2009.

[78] “Apache opennlp: Toolkit for the processing of natural language
text,” https://opennlp.apache.org/, 2019.

[79] “English (porter2) stemming algorithm,” http://snowball.
tartarus.org/algorithms/english/stemmer.html, 2019.

[80] J. H. Hayes, S. K. Sundaram, and A. Dekhtyar, “Advancing
candidate link generation for requirements tracing: The study of
methods,” IEEE Transactions on Software Engineering, vol. 32, pp.
4–19, 2006.

[81] H. Collins, Tacit and explicit knowledge. University of Chicago
Press, 2010.

[82] S. M. Lim, A. B. M. Sultan, M. N. Sulaiman, A. Mustapha, and K. Y.
Leong, “Crossover and mutation operators of genetic algorithms,”
International Journal of Machine Learning and Computing, vol. 7, no. 1,
pp. 9–12, 2017.

[83] L. Arcega, J. Font, Ø. Haugen, and C. Cetina, “Bug Localization in
Model-based Systems in the Wild,” ACM Transactions on Software
Engineering and Methodology, 2021.

[84] D. Blasco, J. Font, M. Zamorano, and C. Cetina, “An evolutionary
approach for generating software models: The case of kromaia in
game software engineering,” J. Syst. Softw., vol. 171, p. 110804,
2021.

[85] A. Ampatzoglou and I. Stamelos, “Software engineering research
for computer games: A systematic review,” Inf. Softw. Technol.,
vol. 52, no. 9, pp. 888–901, 2010.

[86] M. de Oliveira Barros and A. C. D. Neto, “Threats to validity in
search-based software engineering empirical studies,” RelaTe-DIA,
vol. 5, 01 2011.

[87] R. Feldt and A. Magazinius, “Validity threats in empirical soft-
ware engineering research-an initial survey.” in Proceedings of the
22nd International Conference on Software Engineering & Knowledge
Engineering (SEKE’2010), 2010, pp. 374–379.

Francisca Pérez is Associate Professor in the
SVIT Research Group (https://svit.usj.es) at San
Jorge University. She received a PhD in Com-
puter Science from the Polytechnic University of
Valencia. Her research interests include Model-
Driven Development, Collaborative Information
Retrieval, Search-Based Software Engineering,
and Variability Modeling. She publishes her re-
search results and participates in high-level
international software engineering conferences
and journals, such as IEEE Transactions on Soft-

ware Engineering (TSE), the Automated Software Engineering (AUSE)
journal, the Information & Software Technology (IST) journal, and the
Journal of Systems and Software (JSS). More about Pérez and her work
is available online at http://franciscaperez.com.

Jaime Font received the Ph.D. degree in com-
puter science from the University of Oslo, Oslo,
Norway. He is Assistant Professor with the
SVIT Research Group, Universidad San Jorge,
Zaragoza, Spain. His current research interests
include reverse engineering, evolutionary com-
putation, and variability modeling. He publishes
his research results and participates in high-level
international software engineering conferences
and journals, such as IEEE Transactions on
Evolutionary Computation (TEVC), and Software

and System Modeling (SoSyM) journal.

Lorena Arcega is Assistant Professor with the
SVIT Research Group, Universidad San Jorge,
Zaragoza, Spain. She received the Ph.D. de-
gree in computer science from the University of
Oslo, Oslo, Norway. Her current research inter-
ests include models at runtime, software main-
tenance and evolution, and variability modeling.
She publishes her research results and partic-
ipates in high-level international software engi-
neering conferences and journals, such as the
International Conference on Model Driven Engi-

neering Languages and Systems (MODELS), and Software and System
Modeling (SoSyM) journal.

Carlos Cetina is Associate Professor with San
Jorge University and the Head of the SVIT Re-
search Group. He received a PhD in computer
science from the Polytechnic University of Va-
lencia. His research focuses on software prod-
uct lines and model-driven development. His re-
search results have reshaped software devel-
opment in world-leading industries from hetero-
geneous domains ranging from induction hob
firmware to train control and management sys-
tems. More information about his background

can be found at his website: http://carloscetina.com.

https://bitbucket.org/svitusj/mfr
https://opennlp.apache.org/
http://snowball.tartarus.org/algorithms/english/stemmer.html
http://snowball.tartarus.org/algorithms/english/stemmer.html
https://svit.usj.es
http://franciscaperez.com
http://carloscetina.com

	Introduction
	Related work
	Background
	Model Fragment Population
	Genetic Operations
	Fitness Function of the Baselines
	Natural Language Processing

	Evaluation
	Research questions
	Planning and execution
	Implementation details

	Results
	Research Question 1
	Research Question 2
	Research Question 3

	Discussion
	A guideline for applying HaFF to other software engineering problems
	Threats to validity
	Conclusion
	References
	Biographies
	Francisca Pérez
	Jaime Font
	Lorena Arcega
	Carlos Cetina

