
Software and Systems Modeling manuscript No.
(will be inserted by the editor)

Enhancing software model encoding for feature location approaches
based on machine learning techniques

Ana C. Marcén1,2, Francisca Pérez1, Óscar Pastor2, Carlos Cetina1

1 SVIT Research Group, Universidad San Jorge, Autov́ıa A-23 Zaragoza-Huesca Km.299, 50830, Zaragoza, Spain
e-mail: acmarcen@usj.es.com, mfperez@usj.es, ccetina@usj.es

2 Centro de Investigación en Métodos de Producción de Software, Universitat Politècnica de València, Camino de Vera S/N,
46022, Valencia, Spain
e-mail: opastor@pros.upv.es

Received: date / Accepted: date

Abstract Feature location is one of the main activ-
ities performed during software evolution. In our pre-
vious works, we proposed an approach for feature lo-
cation in models based on machine learning, providing
evidence that machine learning techniques can obtain
better results than other retrieval techniques for feature
location in models. However, to apply machine learning
techniques optimally, the design of an encoding is es-
sential to be able to identify the best realization of a
feature.

In this work, we present more thorough research about
software model encoding for feature location approaches
based on machine learning. As part of this study, we have
provided two new software model encodings and com-
pared them with the source encoding. The first proposed
encoding is an extension of the source encoding to take
advantage of not only the main concepts and relations
of a domain but also the properties of these concepts
and relations. The second proposed encoding is inspired
by the characteristics used in benchmark datasets for re-
search on Learning to Rank. Afterward, the new encod-
ings are used to compare three different machine learning
techniques (RankBoost, Feedforward Neural Network,
and Recurrent Neural Network). The study also consid-
ers whether a domain-independent encoding such as the
ones proposed in this work can outperform an encoding
that is specifically designed to exploit human experience
and domain knowledge. Furthermore, the results of the
best encoding and the best machine learning technique
were compared to two traditional approaches that have
been widely for feature location as well as for traceability
link recovery and bug localization.

The evaluation is based on two real-world case stud-
ies, one in the railway domain and the other in the in-
duction hob domain. An approach for feature location
in models evaluates these case studies with the different
encodings and machine learning techniques. The results
show that when using the second proposed encoding and

RankBoost, the approach outperforms the results of the
other encodings and machine learning techniques and
the results of the traditional approaches. Specifically,
the approach achieved the best results for all the per-
formance indicators, providing a mean precision value of
90.11%, a recall value of 86.20%, a F-measure value of
87.22%, and a MCC value of 0.87. The statistical anal-
ysis of the results shows that this approach significantly
improves the results and increases the magnitude of the
improvement. The promising results of this work can
serve as a starting point towards the use of machine
learning techniques in other engineering tasks with soft-
ware models, such as traceability or bug location.

Key words Software Models; Feature Location; Ma-
chine Learning; Learning to Rank; Neural Networks; En-
coding

1 Introduction

Feature location is known as the process of finding the
set of software artifacts that realize a specific function-
ality of a software system. Feature location is one of
the main activities performed during software evolution
[37] and up to 80% of a system’s lifetime is spent on
the maintenance and evolution of the system [54]. Due
to the importance of feature location, researchers have
proposed a number of approaches to improve develop-
ers’ effectiveness in locating features, which are largely
based on source code [79,25,5,19,34] and are less fre-
quently based on other artifacts, such as models [89,42,
92,93,63,28].

In our previous works [60,58,59], we proposed an ap-
proach for feature location in models based on machine
learning (FLiM-ML), providing evidence that machine

2 Marcén et al.

learning techniques can be applicable to feature loca-
tion in models. The FLiM-ML approach obtained better
results than an approach based on latent semantic in-
dexing, which is the most commonly used information
retrieval technique and which provided the best results
for feature location in models [72].

To do this, the design of an encoding is essential in
order to apply machine learning techniques optimally.
An encoding is the characterization or representation of
the object being observed so that this object can be
understood and used by machine learning techniques.
For example, in weather forecasting, the weather of a
day is characterized by means of several measures (e.g.,
minimum and maximum temperature, wind speed, or
relative humidity), which are used by machine learning
techniques to predict the weather for the next day. In
feature location in models, the models can have very dif-
ferent types of elements, structures, purposes, and they
can even belong to different domains. There is not an
evident or single way to characterized them.

Therefore, after demonstrating the success of the ma-
chine learning-based approach for feature location in
models, encoding became the main point of interest in
order to improve the results of the approach. The contri-
bution of this paper focuses on more thorough research
on encoding in order to provide other alternatives for
encoding model fragments and feature descriptions and
also to compare the results of the different encodings
using the FLiM-ML approach.

Currently, most works on feature location focus on lo-
cating features in source code using information retrieval
techniques, such as latent semantic indexing. However,
some recent works have presented approaches for feature
location in models instead of source code. Some of these
works have even taken one step further in feature lo-
cation in models, using machine learning techniques to
improve the results of traditional information retrieval
techniques [60].

We propose two new encodings, and we use the en-
coding proposed in [60] as baseline. The first one (ex-
tended encoding) is an extension of the source encoding
that takes advantage of the main concepts and relations
of a domain (as the source encoding does) and the prop-
erties of these concepts and relations. This provides more
details, which may benefit the machine learning process.
The second one (mapped encoding) is inspired by the
characteristics used in benchmark datasets for research
on Learning to Rank [76,75,74]. Although the artifacts
encoded in benchmark datasets are neither feature de-
scriptions nor model fragments, this proposed encoding
adapts the characteristics that have been tested and used
in other research communities for years to software mod-
els.

The evaluation of both the source encoding and the
two new encodings is based on two industrial case stud-
ies with 1800 test cases and 108 test cases, respectively.

The first case study was provided by CAF1, a worldwide
provider of railway solutions. The second one was pro-
vided by BSH2, one of the largest manufacturers of home
appliances in Europe. Although this work has evaluated
the encodings in two specific domains, the encodings are
designed to be general and independent of the domain so
that they can be applied in other domains. Moreover, for
the evaluation to be fair, the FLiM-ML approach was set
up to perform feature selection and to tune parameters
for each one of the evaluated encodings. Feature selec-
tion simplifies the classifiers and reduces overfitting, so
it is widely extended in mining and machine learning
applications [36]. Since parameter tuning is often more
important than the choice of a machine learning tech-
nique [50], the FLiM-ML approach is tuned to provide
the best performance of the classifier for each encoding.

Based on the case studies and taking into account
feature selection and parameter tuning, we first com-
pared the results of the approach using the source en-
coding and the two new proposed encodings: the ex-
tended encoding and the mapped encoding. The results
show that the FLiM-ML approach achieved the best re-
sults using the mapped encoding. The statistical analysis
shows that there are no significant differences between
the results of the approach using the source encoding
and the extended encoding. In contrast, the statistical
analysis shows that the mapped encoding significantly
outperforms the baseline.

Second, we used the encodings to evaluate three dif-
ferent machine learning techniques. Specifically, we eval-
uated a Learning to Rank algorithm (RankBoost) and
two neural networks (a Feedforward Neural Network and
a Recurrent Neural Network). The results show that
the FLiM-ML approach achieved the best results using
RankBoost and the mapped encoding.

Third, we compared the previous results to two en-
codings designed by domain experts. The results provide
evidence that a domain-independent encoding, such as
the mapped encoding, can outperform the results ob-
tained using encodings that are specifically designed to
exploit human experience and domain knowledge.

Finally, the best results were compared with two tra-
ditional approaches, which have been widely applied for
feature location as well as for traceability link recovery
and bug localization [90]. The first one [84] is a Lin-
guistic Rule-Based (Linguistic-baseline) approach that is
based on parts-of-speech tagging and traceability rules.
The second one [22,55] is an Information Retrieval (IR-
baseline) approach that is based on latent semantic in-
dexing and singular value decomposition. The mapped
encoding with RankBoost outperforms the results of the
two approaches.

This work provides evidence that the results of the
machine learning techniques can be improved even more

1 https://www.caf.net/en
2 https://www.bsh-group.com/

https://www.caf.net/en
https://www.bsh-group.com/

Enhancing software model encoding for feature location approaches based on machine learning techniques 3

through the enhancement of the encoding. The success-
ful results of this work open the door to exploring the use
of machine learning techniques for other software prob-
lems in models, such as requirements traceability [49] or
bug location [2].

The remainder of this paper is structured as follows:
Section 2 provides background and motivation for fea-
ture location in models. Section 3 presents both the
source encoding and the two new proposed encodings.
Section 4 details the means used to evaluate our work
and the results of the evaluation. Section 5 analyzes the
statistical significance of the obtained results. Section 6
discusses our approach and the obtained results. Section
7 describes the threats to the validity of our work. Sec-
tion 8 introduces the existing works that are related to
our work. Finally, Section 9 concludes the paper.

2 Background and motivation

In model driven engineering, models are the main soft-
ware artifacts. Models raise the abstraction level using
concepts that are much less bound to the underlying im-
plementation and technology and are much closer to the
problem domain [12]. The practice of model driven en-
gineering has proven to increase efficiency and effective-
ness in software development [12]. In fact, in industrial
contexts, fostering modeling efforts brings benefits that
improve productivity, while ensuring quality and perfor-
mance [12].

Therefore, in a model-driven industrial context, com-
panies tend to have a myriad of products with large and
complex models behind them [71]. Since the software en-
gineers must spend great amounts of time and effort in
locating the model elements that must be maintained or
evolved, an approach that automatically retrieves model
fragments is greatly needed [71]. Machine learning is an
attractive solution for reducing maintenance costs and
exploiting resources. Companies that have been devel-
oping software systems for a long time have gathered
a large amount of knowledge and experience (e.g., fea-
tures that they manually locate) and machine learning
techniques are the key to exploiting these resources by
automating retrieval and reducing costs.

In fact, machine learning techniques can be an ad-
vantage for the exploitation not only of the material re-
sources, but also of human resources. For example, if a
newly hired engineer has to develop the door control for a
train, he will have to start the development from scratch.
As a newcomer, he does not know the company’s models.
Therefore, this job will require a strong effort due to his
lack of experience. Following the SCRUM methodology,
a large working set (Epic) can be divided into specific
tasks (Stories). Door control development can be broken
down into: (1) finding a model fragment similar to the
one you want to develop and (2) modifying it based on
new requirements. Since the company’s models are un-
known to the engineer, locating or identifying a similar

fragment will be like looking for a needle in a haystack.
A machine learning-based approach, like FLiM-ML, can
automatically locate the model fragments for the engi-
neer. This allows that the engineer focuses on modify-
ing an existing fragment, rather than creating it from
scratch. Therefore, a job, that seemed impossible for a
new developer, can be tackled based on the exploitation
of previous resources through machine learning.

The following section presents a detailed descrip-
tion of the feature location problem in models and an
overview of the problem regarding machine learning.

2.1 Feature location in models

Feature location is known as the process of finding the
set of software artifacts that realizes a specific function-
ality of a software system. The term ’feature’ refers to
a specific functionality of a product. In feature location
in models, this functionality is realized by a model frag-
ment. A model fragment is composed of one or more
elements of the product model, which may or may not
be connected with each other. The elements of a model
fragment may or may not be associated with the func-
tionality. Therefore, the goal is to identify the model
fragment that contains the model elements that are as-
sociated with a specific functionality.

Fig. 1 depicts an example that is taken from a real-
world train. Fig. 1 (left) shows the inputs for feature lo-
cation, a feature description, and a product model. The
feature descriptions used in this work are defined us-
ing natural language and the product models are MOF
compliant models that were created with a domain spe-
cific language for trains called Train Control and Man-
agement Language (TCML3). TCML includes both the
structural and the behavioral design. In fact, the whole
source code, that controls all the equipment of a train,
is obtained from this domain specific language. It has
the expressiveness required to describe the interaction
between the main pieces of a train and to specify non-
functional aspects that are related to regulation.

In the example of Fig. 1, the description corresponds
to a “car door state signaling” feature. The model has
two separate buttons that control the state of the doors
installed in the cabin and the cars of a train. When the
buttons are pushed, the state of the doors is modified
and the LED of the buttons changes to indicate whether
the doors are open, closed, or blocked. To open Door1, a
special permission is necessary to access the cabin of the
train. Therefore, the composition, the cabin, the cars,
the doors, the buttons, and the connections among them
are the model elements. The access, the state, the pushed
condition of the buttons, and the LED are the element
properties.

3 Learn more of TCML at:
https://youtu.be/Ypcl2evEQB8

4 Marcén et al.

Fig. 1 Example of a TCML model and model fragment

Fig. 1 (right) shows an example of a model fragment,
which is obtained as output from locating the “car door
state signaling” feature. This model fragment is shaded
in gray with dashed lines and contains the model ele-
ments that are relevant for the described feature. In this
example, the model fragment includes the three doors
that are installed in the cars, the state of these doors,
the button that controls these doors, the LED that indi-
cates the state of the doors, and the connections between
the doors and the button. The occurrences of these el-
ements are used to encode the model fragment into a
vector. For example, the number of doors in the model
fragment (three) is the value for the position C3 in the
vector and the number of buttons (one) is the value for
the position C4 in the vector.

Although the example in Fig. 1 makes manual feature
location in models look easy, it becomes very complex
in the models of our industrial partner. The real mod-
els of our industrial partner CAF have more than 650
model elements, and each element has about 15 prop-
erties. This example shows a door control scenario with
only 23 model elements and 9 properties in order to help
better understand the feature location problem in mod-
els. However, it does not reflect the complexity of the
problem.

Suppose we ask the domain expert to manually locate
the model elements that correspond to the 10 features
of our case study provided by CAF. To locate one of
these features, the domain expert evaluates the model el-
ements of the 20 models. Since each model has about 650
model elements, at least 13,000 model elements should
be evaluated. To assess a model element, it is reason-
able to consider its properties. In the case study, each
element has about 15 properties, so about 195,000 prop-
erties of model elements should be considered. Assuming
that a domain expert only needs 1 second to consider a
property of a model element, the domain expert needs
approximately 2.256 days to manually locate each fea-
ture. Therefore, it would take 22.56 days to locate the
10 features.

This number does not consider the experience of the
engineers. A newly hired engineer can take up to a year
to fully master the architecture of the models. Also, even
if the engineers had experience, the domain experts usu-
ally do not know all models completely. The models can
be created by several different domain experts. Further-
more, they can forget the details of a model after de-
veloping it. The domain experts can forget models that
belong to trains manufactured over two decades. Time
because of the learning effect, no existing documenta-

Enhancing software model encoding for feature location approaches based on machine learning techniques 5

tion, or locating several features simultaneously are not
accounted here, but these could also be source of errors
that take time to fix.

Thus, feature location in real-world models is not a
trivial task. The 10 feature descriptions used in this work
correspond to tramway models. However, the need to
locate features is also present in other CAF models of
similar complexity such as subway models, or in more
complex models such as suburban and high-speed mod-
els.

2.2 Feature location in models based on machine
learning

Several different model fragments can be generated from
the elements of a model. Therefore, in order to know
which model fragment is the best realization of a feature,
each model fragment has to be evaluated with regard to
the feature description. Different techniques can be used
to evaluate the model fragments regarding the feature
description. However, machine learning techniques take
advantage of the model fragments and feature descrip-
tions that have been evaluated previously. For exam-
ple, an engineer of our industrial partner identified the
model fragment shown in Fig. 1 as the best realization
of the “car door state signaling” feature. Therefore, a
machine learning technique can use this model fragment
and the description of that feature to learn rules such
as “if the feature description contains the term door, the
model fragment has to contain at least one door of the
model”. These learned rules can be applied to evaluate
other model fragments for other features.

However, to understand the model fragments and the
feature descriptions, the machine learning techniques re-
quire the inputs to be in a specific format. Most of the
machine learning techniques are designed to process fea-
ture vectors as inputs [10]. Feature vectors are known
to be the ordered enumeration of characteristics that
describe the object being observed [16]. In feature lo-
cation in models, the object being observed is a model
fragment regarding a feature description. Therefore, to
understand the model fragment in Fig. 1, the machine
learning technique requires that the model fragment and
the feature description be encoded into a feature vector.

Each feature vector consists of feature-value pairs.
However, the concept of feature could be confused in this
specific context because it has two meanings. On the one
hand, in feature location, a feature is a prominent or dis-
tinctive user-visible aspect, quality, or characteristic of a
software system [51,44]. On the other hand, in machine
learning, a feature is an individually measurable charac-
teristic of the object being observed [16]. To avoid misun-
derstandings, in this article, the term feature regarding
feature vectors is replaced by the term characteristic.
Therefore, each feature vector consists of characteristic-
value pairs, where each characteristic helps to describe

the object being observed. For example, taking into ac-
count the model fragment in Fig. 1 and the “car door
state signaling” feature, a characteristic of the feature
vector could be the number of doors in the model frag-
ment. If the value of this characteristic is 0, the model
fragment is not the best realization of the feature be-
cause the feature needs at least one door. In contrast, if
the value of this characteristic is 1, the model fragment
could be the best realization of the feature. Nevertheless,
we would need other characteristics to determine if this
model fragment is the best realization of the feature or
other model fragments are better.

In summary, the encoding enables the feature de-
scriptions and model fragments to be represented as fea-
ture vectors, which can be understood and manipulated
by machine learning techniques. In other words, the fea-
ture descriptions and model fragments, which could not
be used by machine learning techniques, are encoded into
feature vectors to be exploited by these techniques. The
feature vectors are used to train a classifier, and the clas-
sifier is used to determine if a certain model fragment is
a better realization of a feature than other fragments.
Therefore, the first step in locating features in models
using machine learning techniques is the encoding.

3 Encodings

In this section, we present three ontology-based encod-
ings to turn the feature descriptions and model frag-
ments into feature vectors. It is noteworthy that all the
encodings use a combination of the natural language
processing techniques defined in [48] to homogenize the
terms in feature descriptions and model fragments. The
first encoding was presented in our previous work [60]
and is used as the baseline here. The other two encod-
ings have been designed taking into account the whole
domain ontology and the characteristics used in bench-
mark datasets, respectively.

3.1 The Source Encoding

This encoding is based on the main concepts and rela-
tions of a domain ontology. In this encoding, the feature
descriptions are encoded taking into account the con-
cepts of the ontology. Specifically, the feature vector that
is created from a feature description contains as many
characteristics as concepts in the ontology. The value of
each characteristic is computed as the frequency of a
concept in the feature description.

The first row of Fig. 2 shows an example of an ontol-
ogy, feature description, and model fragment. The sec-
ond row shows the source encoding for the feature de-
scription and the model fragment. The domain ontology
contains six concepts, which are tagged with the letter
C and a number. Since there are six concepts, the fea-
ture description is encoded using six characteristic-value

6 Marcén et al.

Fig. 2 Example of the encoding of a feature description and a model fragment based on the source encoding, the extended
encoding, and the mapped encoding

pairs. The characteristics correspond to the tags of the
concepts (e.g., Door is mapped as C3), and their values
correspond to the frequency of the concept in the feature
description (e.g., C3 has a value of 2 because the word
Door appears twice in the feature description).

In contrast, the model fragments are encoded taking
into account not only the concepts of the ontology but
also its relations, which are tagged with the letter R and
a number. Specifically, the feature vector created from
a model fragment contains as many characteristics as
concepts and relations in the ontology. The value of each
characteristic is computed as the frequency of a concept
or relation in the model fragment.

Taking into account the second row of Fig. 2, the
feature vector is encoded using not only the six concepts

of the domain ontology but also the six relations of this
ontology. Therefore, its feature vector contains twelve
characteristic-value pairs. In this example, the charac-
teristic C3 has a value of 3 because the model fragment
contains three elements of Door type and the character-
istic R5 has a value of 0 because the model fragment does
not contain any relation of Cabin-Control Panel type.

3.2 The Extended Encoding

This second encoding is based on the main concepts,
properties, and relations of a domain ontology. In other
words, this encoding is an extension of the source encod-
ing taking into account the whole ontology. The source
encoding provides a lower number of characteristics,

Enhancing software model encoding for feature location approaches based on machine learning techniques 7

which usually leads to better learning performance (e.g.,
higher learning accuracy for classification), lower com-
putational cost, and better classifier interpretability [69,
94]. However, taking into account only the concepts and
relations of the ontology may not allow the differentia-
tion between the elements of the same type in the model
fragments. For example, in the model fragment of Fig.
2, there are four elements of Door type so a reasonable
question could be why the Door1 element is not part of
the model fragment. The difference between the Door1
element and the other elements of Door type can lie in
their properties. For this reason, this extended encoding
is proposed to include more details in feature vectors
about both the feature descriptions and the model frag-
ments.

The concepts and relations of the ontology are the
same as in the previous encoding, but, in this case, the
feature vectors generated also contain the characteristic-
value pairs for the properties of the ontology. The value
of each characteristic is computed as the frequency of
the property in the feature description or the model frag-
ment, respectively.

The third row of Fig. 2 shows an example of this
encoding, where a feature description and a model frag-
ment are encoded based on the extended ontology. This
encoding is based on six concepts, four properties, and
six relations. The properties are tagged using the letter
P and a number. For example, the characteristic P4 has
a value of 1 in the encoded feature description because
the word LED appears once in the feature description.
In the encoded model fragment, P4 has a value of 1 be-
cause it contains one element of type Button with the
LED property.

3.3 The Mapped Encoding

While the source encoding provides a starting point
to bridge machine learning and models, the extended
encoding focuses on providing more details than the
source encoding. However, the more concepts, proper-
ties, and relations there are in an ontology, the more
characteristic-value pairs there are in a feature vector.
Although this favors the level of detail, a high num-
ber of characteristics may lead to worse results in most
cases [69,94]. To reduce this threat, the mapped encod-
ing focuses on reducing the number of characteristics
taking into account the characteristics used in bench-
mark datasets like [76].

These characteristics are widely used in the research
community to encode raw data such as text and url. The
mapped encoding adapts the sum of term frequency and
the mean of term frequency characteristics taking into
account the frequency of the concepts, the properties,
and the relations instead of the frequency of the terms.
Furthermore, instead of a single text, the mapped en-
coding must encode two artifacts, a feature description

and a model fragment. To do this, the mapped encoding
takes into account the difference between the frequencies
in the feature description and in the model fragment.

The sum of term frequency characteristic was
adapted using the following equation:

1

1 + |Number of I in FD−Number of I in MF|
where I are concepts, properties, or relations;

FD is a feature description;

MF is a model fragment

(1)

Three characteristics of the mapped encoding are
based on this equation. The first one compares the to-
tal number of concepts in the feature description to the
total number of concepts in the model fragment. The
second one compares the total number of properties in
the feature description to the total number of properties
in the model fragment. The third one compares the to-
tal number of relations in the feature description to the
total number of relations in the model fragment.

The fourth row of Fig. 2 shows an example of the
characteristics in the mapped encoding. The first three
characteristics compare the feature description and the
model fragment regarding the total number of concepts,
the total number of properties, and the total number
of relations. In this example, the Door concept appears
twice and the Button concept appears once in the feature
description, so the number of concepts in the feature de-
scription is equal to 3. The Door concept appears three
times in the model fragment (i.e., Door1, Door2, and
Door3) and the Button concept appears once, so the
number of concepts in the model fragment is equal to
4. Through Equation (1), the first characteristic is com-
puted as 1/1 − |3 − 4| which is equal to 0.5. Similarly,
the second characteristic takes into account the proper-
ties instead of the concepts and the third characteristic
takes into account the relations.

The mean of term frequency characteristic was
adapted using the following equation:

∑n
i=1

1

1 +

∣∣∣∣frequency of
Ii in FD

− frequency of
Ii in MF

∣∣∣∣
n

where I are concepts, properties, or relations;

FD is a feature description;

MF is a model fragment

(2)

Three characteristics of the mapped encoding are
based on this equation. The first one compares the fre-
quency of each concept in the feature description to the
frequency of the corresponding concept in the model
fragment. The second one compares the frequency of
each property in the feature description to the frequency

8 Marcén et al.

of the corresponding property in the model fragment.
The third one compares the frequency of each relation
in the feature description to the frequency of the corre-
sponding relation in the model fragment.

In the fourth row of Fig. 2, the last three charac-
teristics of the mapped encoding compare the feature
description and the model fragment regarding the fre-
quency of each concept, property, and relation. In this
example, the Composition concept does not appear in
the feature description or in the model fragment, so the
frequency of the Composition concept is computed as
1/(1 + |0− 0|) which is equal to 1. Similarly, the Cabin,
Car, and Control Panel concepts do not appear in the
feature description or in the model fragment, so the fre-
quency of these concepts is equal to 1. The Door concept
appears twice in the feature description and three times
in the model fragment (i.e., Door1, Door2, and Door3),
so the frequency of the Door concept is computed as
1/(1 + |2−3|) which is equal to 0.5. The Button concept
appears once in the feature description and once in the
model fragment, so the frequency of the Button concept
is computed as 1/(1 + |1 − 1|) which is equal to 1. Fol-
lowing Equation (2), the mean of these values is equal
to 0.92, which is the value of the fourth characteristic in
the mapped encoding. Similarly, the fifth characteristic
takes into account the properties instead of the concepts
and the sixth characteristic takes into account the rela-
tions.

Therefore, the mapped encoding is composed of six
characteristics. Three characteristics respectively com-
pare the total number of concepts, properties, and rela-
tions in feature descriptions and model fragments. Three
characteristics respectively compare the frequency of
each concept, property, or relation in the feature descrip-
tion and the model fragment.

4 Evaluation

The goal of this evaluation is to provide answers to the
following research questions for feature location in mod-
els.

RQ1: Which of the three encodings yields the best classi-
fication performance when combined with the Rank-
Boost classification technique?

RQ2: Taking into account the three encodings, which ma-
chine learning technique obtains the best results?

RQ3: Taking into account the encoding and the machine
learning technique that obtained the best results in
the previous questions, can a domain-independent
encoding provide better results than an encoding de-
signed by a domain expert exploiting both human
experience and domain knowledge?

RQ4: Is a machine learning-based approach better than
more traditional approaches (linguistic rule-based
and information-retrieval)?

This section presents the evaluation that was per-
formed to answer the RQs. It includes the following:
the experimental setup, a description of the case stud-
ies where we applied the evaluation, the FLiM-ML ap-
proach, the machine learning techniques, the implemen-
tation details, and the obtained results.

4.1 Experimental Setup

To provide answers to the RQs, the experiment consisted
of configuring the FLiM-ML approach using a specific
encoding and a machine learning technique. Then, we
compared the quality of the results in terms of precision,
recall, F-measure, and Matthews Correlation Coefficient
(MCC) [65].

Specifically, the experiment applied the FLiM-ML
approach with each possible combination between four
encodings and three machine learning techniques. The
first three encodings were the ones proposed in this
work: the source encoding (Sou), the extended encoding
(Ext), and the mapped encoding (Map). The fourth
encoding was designed by domain experts who were not
involved in the research: the human encoding (Hum).
Each human encoding was specifically designed for a case
study, so a human encoding of a case study is different
from the encodings of other case studies.

The first machine learning, RankBoost (Rank), be-
longs to the family of machine learning techniques that
automatically address ranking tasks. RankBoost was
previously selected taking into account its efficiency and
effectiveness to test the source encoding [60]. The last
two machine learning techniques are deep learning tech-
niques: Feedforward Neural Network (FNN) and Re-
current Neural Network (RNN). They have been suc-
cessfully applied to retrieval problems in recent works
[35].

The FLiM-ML approach evaluates the different test
cases by combining an encoding with a machine learning
technique. For example, SouRank evaluates all the test
cases through the FLiM-ML approach using the source
encoding and the RankBoost technique. All the possible
combinations of the four encodings and the three ma-
chine learning techniques were used by the FLiM-ML
approach to test all the test cases.

Fig. 3 shows an overview of the process that was
followed to evaluate the approach using each combina-
tion of an encoding and a machine learning technique.
Fig. 3 (left) shows the inputs, which are extracted from
the documentation provided by our industrial partners:
knowledge base, ontology, feature descriptions, product
models, and approved solutions. Each test case is com-
prised of a feature description, a set of model fragments,
the ontology, and the knowledge base. Then, each test
case was run 30 times. As suggested by [4], given the
stochastic nature of the FLiM-ML approach, several rep-
etitions are needed to obtain reliable results. Finally, the

Enhancing software model encoding for feature location approaches based on machine learning techniques 9

results of the test cases were evaluated and compared to
the oracle. The oracle is composed of the approved so-
lutions, which are the model fragments that correctly
realize a feature description of the case study.

For each execution of the FLiM-ML approach, the
approach generates a ranking of model fragments. Each
model fragment realizes the feature to a greater or lesser
extent. Then, we take the best model fragment of the
ranking and compare it against the oracle, which is the
ground truth. In our case, each solution that is output
by the approach is a model fragment composed of a sub-
set of the model elements that are part of the product
model. Since the granularity is at the level of model el-
ements, the presence or absence of each model element
is considered to be a classification. Therefore, for each
test case, a confusion matrix distinguishing between the
predicted values and the real values is calculated. Then,
some performance measurements are calculated from the
values in the confusion matrix. Specifically, we create
a report that includes four performance measurements
(precision, recall, F-measure, and MCC) for each test
case that is tested through the FLiM-ML approach.

Precision values can range between 0% (i.e., no single
model element from the solution is present in the oracle)
and 100% (i.e., all the model elements from the solution
are present in the oracle). A value of 100% precision and
100% recall implies that both the solution and the fea-
ture realization from the oracle are the same. Recall val-
ues can range between 0% (i.e., no single model element
from the realization of the feature description obtained
from the oracle is present in the model fragment of the
solution) and 100% (i.e., all the model elements from
the oracle are present in the solution). MCC values can
range between −1 (i.e., there is no correlation between
the prediction and the solution) to 1 (i.e., the prediction
is perfect). Moreover, a MCC value of 0 corresponds to
a random prediction.

4.2 Case Studies

The case studies where we applied our approach were
provided by CAF, which is a worldwide provider of rail-
way solutions, and BSH, which is one of the largest man-
ufacturers of home appliances in Europe. CAF trains can
be found all over the world and in different forms (reg-
ular trains, subway, light rail, monorail, etc.). A train
unit is furnished with multiple pieces of equipment in its
vehicles and cabins. These pieces of equipment are often
designed and manufactured by different providers, and
their target is to carry out specific tasks for the train.
Some examples of these devices are: the traction equip-
ment, the compressors that feed the brakes, the panto-
graph that harvests power from the overhead wires, and
the circuit breaker that isolates or connects the elec-
trical circuits of the train. The control software of the
train unit is in charge of making all the equipments co-

operate to achieve the train functionality while guaran-
teeing compliance with the specific regulations of each
country. The following video illustrates the CAF models:
http://youtube.com/watch?v=Ypcl2evEQB8

BSH is a leading manufacturer of home appliances in
Europe. Its induction division has been producing induc-
tion hobs (sold under the brands of Bosch and Siemens)
for the last 15 years. The firmware that controls the in-
duction hobs is specified by means of a domain-specific
language (IHDSL4). The different configurations of the
induction hobs are managed following a model-based
software product line (SPL) approach that uses common
variability language [39] to configure their models. The
firmware of their products is generated from the IHDSL
models.

Each one of the companies provides the necessary
documentation to perform the experiment described in
Fig. 3. The documentation provided by CAF was used
to evaluate the encodings and the machine learning tech-
niques reporting the results for CAF. The documenta-
tion provided by BSH was used to evaluate the same
encodings and the machine learning techniques report-
ing the results for BSH. The documentation of both case
studies was managed independently; when the CAF doc-
umentation was used for training, the BSH documenta-
tion was not used for testing, or vice versa.

The documentation provided for both cases studies
was organized into a set of test cases and the oracle. Each
test case is composed of a feature description, a set of
model fragments, a knowledge base, and an ontology. A
detailed description of each is provided below:

– The feature descriptions describe a feature of a
train control system or an induction hob using natu-
ral language. All the feature descriptions are located
in all the model fragment sets of the case study.

– The sets of model fragments are composed
of model fragments selected from product models.
Specifically, our industrial partners provided several
product models, whose size is so big that would take
months of work to evaluate all the model fragments
for each product model. For example, a CAF model
has about 650 elements. If we take into account
all the possible combinations of these elements (i.e.,
C(n, k) combinations of size k from a set of n distinct
elements), we will obtain 650 model fragments with
a single element (i.e., C(650, 1)), 21,0925 model frag-
ments with two elements (i.e., C(650, 2)), and we will
continue until to find a model fragment with all the
model elements (i.e., C(650, 650)). In total, it would
be possible to find 4672x10196 different model frag-
ments in the CAF model.
Therefore, instead of evaluating all the model frag-
ments of a product model, we randomly selected
the model fragments for our evaluation and grouped
them into representative sets. These sets are related

4 Learn more of IHDSL at: https://youtu.be/nS2sybEv6j0

http://youtube.com/watch?v=Ypcl2evEQB8

10 Marcén et al.

Fig. 3 Experimental Setup

Ontology

Knowledge

Base

Documentation From

Industrial Partner

Oracle

Test Case

FLiM-ML

Machine Learning

Technique

Calculation of

Measurements
FLiM-ML Report

Feature

Description

Product

Models

Approved

Solutions

Set of model

fragments

Linguistic

Rule-Based

Calculation of

Measurements
Linguistic Report

IR

SVD

Calculation of

Measurements
IR Report

BASELINES

to the different location challenges that are usually
tackled by our industrial partners. Our evaluation
considered nine different location challenges, which
are associated in [6] to three different measurements:
density, multiplicity, and dispersion.
Density measures the percentage of model elements
that are contained by the model fragment. This mea-
surement is associated with three location challenges.
The first one is the search for a small model frag-
ment in a large product model. The second one is
the search for a large model fragment in a small prod-
uct model. The third one is the search for a model
fragment in a product model without considering the
size of the model fragment to be located. These loca-
tion challenges were evaluated through a set of model
fragments with small density values (between 0% and
50%), a set of model fragments with large density
values (between 50% and 100%), and a set of model
fragments with all kinds of density values, respec-
tively.
Multiplicity measures the number of times the model
fragment appears in the product model. This mea-
surement is also associated with three location chal-
lenges. The first one is the search for a model frag-
ment that appears only once in a product model. The
second one is the search for a model fragment that
appears several times in a product model. The third
one is the search for a model fragment in a product
model, without considering the number of times the
model fragment appears. These location challenges

were evaluated through a set of model fragments with
multiplicity values equal to 1, a set of model frag-
ments with multiplicity values greater than 1, and a
set of model fragments with all kinds of multiplicity
values, respectively.
Finally, dispersion measures the ratio of connected
elements in the model fragment. This measurement
is associated with the last three location challenges.
The first one is the search for a model fragment whose
elements are connected with each other. The second
one is the search for a model fragment whose ele-
ments are not connected. The third one is the search
for a model fragment in a product model without
considering the connections among the elements in
the model fragment. These location challenges were
evaluated through a set of model fragments with
small dispersion values (between 0 and 0.5), a set
of model fragments with large dispersion values (be-
tween 0.5 and 1), and a set of model fragments with
all kinds of dispersion values, respectively.
Therefore, for each product model, the selected
model fragments are grouped into nine sets of model
fragments to evaluate the different location chal-
lenges.

– The knowledge base is a collection of retrieved
model fragments that are related to feature descrip-
tions and scores. Companies that have been develop-
ing software systems for a long time have gathered a
large amount of knowledge and experience. In fact,
engineers and modelers usually collect the model

Enhancing software model encoding for feature location approaches based on machine learning techniques 11

fragments that they manually retrieve to maintain
the software systems. Moreover, the quality of the
retrieved model fragment depends on the experience
of the engineer, the complexity of the description,
the complexity of the product model, and the time
required. Sometimes, manual searches can be un-
successful or incomplete. For this reason, a domain
expert usually assigns scores to indicate how good
the model fragments are. Scores are numerical values
that are greater than 0 and indicate the degree of
similarity between the model fragment and feature
description. Then, the model fragments are stored
in a knowledge base with their scores and the corre-
spondent feature descriptions.

– The ontology is composed of the main concepts,
properties, and relations of a domain; therefore, if a
relevant concept, property, or relation is not present
in the ontology, it will not be considered by the en-
codings and the results may not be as good. Also,
if the ontology contains unnecessary concepts, prop-
erties, or relations, the number of characteristics in
the encodings would be greater and a large number
of features in machine learning leads to overfitting.
Therefore, it is important to keep in mind both the
completeness and the size of the ontology.

In addition to the test cases, our partners also pro-
vided us with the approved solution to have an oracle. In
other words, the oracle is composed of the model frag-
ments that are the correct solutions for the feature de-
scriptions. After evaluating each test case, the result of
the FLiM-ML approach is compared with the correspon-
dent correct solution that is available in the oracle.

Table 1 summarizes the case studies for both domains
(the railway domain and the induction hob domain).

The CAF case study includes 1800 test cases, which
are composed of a feature description, a set of model
fragments, a knowledge base, and an ontology. The
case study contains 10 different feature descriptions,
each one of which has about 25 words and describes
a feature of a train control system. Specifically, there
are 180 different sets of model fragments, which come
from tackling the 9 different location challenges in 20
different product models. All the feature descriptions
are located in all the sets of the model fragment.
Each test case also contains a knowledge base, which
has 1339 samples. Each of these samples contains a
feature description with about 25 words, a model
fragment with about 15 elements, and a score be-
tween 0 and 4. The knowledge base is balanced to
have a similar number of samples with low and high
scores. The test cases contain a domain ontology,
which has a total of 103 elements that represent con-
cepts, properties, and relations.
In addition to the test cases, CAF provided an oracle
with 10 model fragments. These model fragments are

the correct solution for the 10 feature descriptions in
the test cases.

The BSH case study includes 108 test cases, which
are composed of a feature description, a set of model
fragments, a knowledge base, and an ontology. The
case study contains 6 different feature descriptions,
each one of which has about 10 words and describes
a feature of an induction hob. Specifically, there are
180 different sets of model fragments, which come
from tackling the 9 different location challenges in 2
different product models. All the feature descriptions
are located in all the sets of model fragments.
Each test case also contains a knowledge base, which
has 758 samples. Each of these samples contains a
feature description with about 10 words, a model
fragment with about 8 elements, and a score between
0 and 4. The test cases contain a domain ontology,
which has a total of 13 elements that represent con-
cepts, properties, and relations.
In addition to the test cases, BSH provided an oracle
with 6 model fragments. These model fragments are
the correct solution for the 6 feature descriptions in
the test cases.

4.2.1 The Human Encodings
The human encodings were also provided by our indus-
trial partners, one for the railway domain and one for
the induction hob domain. The domain experts who de-
signed the human encodings knew that these encodings
would be used to perform feature location in their mod-
els. Therefore, the encodings had to tackle not only the
model fragments but also the feature descriptions. The
experts were also informed about the machine learning
techniques to be used for the feature location, and we
even suggested that they could propose more than one
encoding.

Each encoding was designed by a domain expert who
was not involved in the research. In order to mitigate the
dependence on a single domain expert, a second expert
who also was not involved in the research extended the
encoding. However, there were no significant differences
between the results obtained using the initial encodings
and the results obtained using the extended ones. Specif-
ically, the results described in this work correspond to
the extended encodings, which are a bit better (about
1% better) than those obtained from the initial encod-
ings.

The domain experts took about two hours to identify
the characteristics for each encoding. Some of the identi-
fied characteristics were very similar or even equal to the
ones proposed in our encodings. For example, in the in-
duction hob domain, one of the identified characteristics
was the number of inductors. This characteristic is also
considered in the source encoding and in the extended
encoding. However, none of the domain experts identi-
fied or proposed characteristics that were similar to the
ones in the mapped encoding. Once the characteristics

12 Marcén et al.

Table 1 Summary of the two case studies provided by our industrial partners: CAF and BSH

CAF Case Study BSH Case Study

Test Cases 1800 Test Cases 108 Test Cases

Feature Descriptions 10 Feature Descriptions with about 25 words 6 Feature Descriptions with about 10 words

Sets of Model Frag-
ments

180 Sets of Model Fragments from 20 product
models

18 Sets of Model Fragments from 2 product
models

Knowledge Base 1339 samples with:

– A Feature Description (about 25 words)
– A Model Fragment (about 15 elements)
– A score (between 0 and 4)

758 samples with:

– A Feature Description (about 10 words)
– A Model Fragment (about 8 elements)
– A score (between 0 and 4)

Ontology 103 elements between concepts, properties,
and relations

13 elements between concepts, properties,
and relations

Oracle 10 model fragments 6 model fragments

were identified, the feature descriptions and the model
fragments were encoded automatically as in the rest of
the encodings. No one manually counted the occurrences
of a term or an element.

In the case of the railway domain, the human encod-
ing contains a total of twelve characteristics. These char-
acteristics were based on the category of the elements
(i.e., equipment, property, order). To encode the feature
descriptions, the human encoding took into account five
characteristics: the number of the terms related to equip-
ments, the presence or absence of terms related to rules,
the number of the terms related to properties, the num-
ber of the terms related to orders, and the presence or
absence of terms related to conditions. To encode the
model fragments, the human encoding took into account
seven characteristics: the number of equipment-type ele-
ments, the presence or absence of rule-type elements, the
number of property-type elements, the number of order-
type elements, the presence or absence of condition-type
elements, the number of trigger-type elements, and the
number of action-type elements.

Note that the human encoding for the railway do-
main has a different perspective than the rest of the en-
codings. While the others use the main concepts of the
domain (i.e., pantograph, circuit breaker, door, cabin),
this human encoding uses the category of the elements
(i.e., equipment, property, order). This encoding also
contains some characteristics based on the number of
terms or elements and other characteristics based on
Boolean values to indicate the presence or absence of
specific terms or elements.

In the case of the induction hob domain, the human
encoding contains a total of six characteristics. To en-
code the feature descriptions, this encoding took into
account three characteristics: the number of the term
inductor, the number of the term inverter, and the num-
ber of the term power manager. To encode the model

fragments, this encoding also considered three character-
istics: the number of Inductor-type elements, the num-
ber of Inverter-type elements, and the number of Power
manager-type elements.

4.3 FLiM-ML Approach

The FLiM-ML approach was presented in [58,59] and
was used to evaluate the source encoding in [60]. In this
work, the FLiM-ML approach is used to evaluate the
test cases using different encodings and machine learn-
ing techniques. Fig. 4 shows an overview of the FLiM-
ML approach, whose objective is to provide a ranking of
model fragments. The top model fragment in the rank-
ing is the best realization found for a feature description.
To do this, the approach has two phases: training and
testing.

In the training phase, a classifier is trained to learn
how well each model fragment realizes a specific feature
description. To do this, the input consists of a knowledge
base and an ontology. The knowledge base is composed
of samples, each of which relates a feature description
and a model fragment according to a score. The ontology
is composed of concepts, properties, and relations of a
domain.

The training phase consists of four steps:

1. Encoding: An ontology is used to encode the sam-
ples of the knowledge base into feature vectors. Since
both feature descriptions and model fragments are
based on natural language, the terms used in the
ontology do not always align with the terms in the
feature description and with the terms in the model
fragments. For this reason, before encoding, the fea-
ture descriptions and the model fragments are pro-
cessed by a combination of natural language process-
ing techniques defined in [48], which consists of tok-
enizing, lowercasing, removal of duplicate keywords,

Enhancing software model encoding for feature location approaches based on machine learning techniques 13

Fig. 4 Overview of the FLiM-ML approach

Control

Panel
C5

Feature

Description

Legend

Model Fragment Model Elements Element Property

Model

Fragment

Step 5 - EncodingStep 1 - Encoding

Step 2 - Feature

Selection

Step 3 - Tuning

Classifier

Testing Set
Feature Vectors

Training Set
Feature Vectors

Mask
Tuned

Parameters

Knowledge Base

Feature

Description

The system turns

on the LED of the

button that closes

the doors of one

side of the train if

all the doors of

the correspondent

side are closed or

convicted.

Score

3.8 / 4

Model Fragment

Composition

Access
State

Cabin

Door1

Button1

Pushed
Led

State

Door2

State

Door3

State

Door4

Button1

Pushed
Led

Car1 Car2 Car3

Ontology

R1

R2

R6

CompositionC1

CabinC6 CarC2

DoorC3

AccessP1

StateP2

R5

ButtonC4

PushedP3

R3R4

LedP4

Model Fragment Ranking

3.6

Composition

Access
State

Cabin

Door1

Button1

Pushed
Led

State

Door2

State

Door3

State

Door4

Button1

Pushed
Led

Car1 Car2 Car3

3

Composition

Access
State

Cabin

Door1

Button1

Pushed
Led

State

Door2

State

Door3

State

Door4

Button1

Pushed
Led

Car1 Car2 Car3

...

T
R
A
I
N

I
N

G
 P

H
A
S
E

T
E
S
T
I
N

G
 P

H
A
S
E

Step 4 - Training

syntactical analysis, lemmatization, and stopword re-
moval. Then, all the samples of the knowledge base
are encoded into feature vectors and these feature
vectors are the training dataset.

2. Feature selection: A mask is applied to select only
the most relevant characteristics in the feature vec-
tors, which reduces the time cost and the redundant
information [9,13]. In a mask, each characteristic of

the feature vectors has a binary value (discard or se-
lect). For example, the characteristic C1 may be 0 in
a mask and 1 in another one. In the first mask, the
characteristic C1 would be discarded, so the feature
vectors would be simplified removing this character-
istic. In the second mask, the characteristic C1 would
be selected, so all the feature vectors must have this
characteristic. A set of different masks is generated,

14 Marcén et al.

evolved, and tested by means of an evolutionary algo-
rithm as in [60]. As a result, the mask which obtains
the best results is applied to select the characteris-
tics.

3. Tuning: This determines what parameters must be
used to obtain the best performance of the ma-
chine learning technique. The parameter tuning in
the FLiM-ML approach is automatically performed
based on the machine learning technique used.

4. Training with a machine learning technique: The
training set is used to train the classifier, which learns
a rule-set through the comparison of the feature vec-
tors of the training set [82]. However, before using
this classifier in the testing phase, it is worth analyz-
ing the performance of the classifier through cross-
validation. Cross-validation is a statistical method
of evaluating and comparing machine learning tech-
niques by dividing data into two segments: one is
used to train a classifier, and the other is used to
validate the classifier [78]. Moreover, to reduce vari-
ability, multiple rounds of cross-validation are per-
formed using different partitions, and the results are
averaged over the rounds [83].
The results of the cross-validation provide the per-
formance of the classifier. If this performance is not
considered suitable, it is necessary to perform an-
other training iteration. In this iteration, some arti-
facts of the training phase (e.g., the encoding, the
ontology, the knowledge base, or the machine learn-
ing technique) must be modified in order to improve
the classifier. Otherwise, if the performance is consid-
ered suitable by the engineers, the classifier obtains
the go-ahead, so the classifier trained with the whole
knowledge base is used in the testing phase. Once
the classifier has been generated, the training phase
is not repeated again. The same classifier is used to
evaluate all the test cases in the testing phase. There-
fore, the classifier is considered both as an artifact
(output of Step 4 in the training phase) and a step
(responsible for testing the test cases in the testing
phase). For this reason, Fig. 4 shows the classifier in
a black, rounded rectangle to point out its double
meaning.

In the testing phase, the classifier is used to rank
the set of model fragments according to a feature de-
scription described in natural language. To do this, the
input consists of the set of model fragments, the feature
description, and an ontology. Each model fragment real-
izes the feature description to a greater or lesser extent.

The testing phase consists of two steps:

5. Encoding: An ontology is used to encode each model
fragment and the feature description. To be fair, both
the characteristics of the encoding and the ontology
must be the same for the training phase and the test-
ing phase. As a result, each model fragment and the

feature description are encoded as a feature vector in
the testing set.

6. Classifier: The classifier is responsible for automati-
cally assigning a score to each feature vector in the
testing dataset. Specifically, the classifier contains
the set of rules, which are identified or learned during
the training process. To assign the scores, these rules
are based on different mathematical procedures that
differ for each machine learning technique. Therefore,
each feature vector in the testing dataset is tested by
the classifier applying the rule-set. As a result, a score
is assigned to each feature vector. Since each feature
vector is the representation of a model fragment, we
can relate each model fragment to the score assigned
by the classifier to its correspondent feature vector.
The higher the score, the closer the model fragment
is to the feature description. Therefore, this model
fragment would be a better realization of the feature
description than any other model fragment with a
lower score. Taking into account the scores, the model
fragments can be ordered in a ranking where the top
positions are occupied by the model fragments that
have the highest relevance to the feature description.
This ranking is the final result of the FLiM-ML ap-
proach.

4.4 Machine Learning techniques

In the evaluation, we used three different machine learn-
ing techniques to see how the machine learning technique
affects the quality of the result. Since our previous work
focused on RankBoost, using it in this work seemed to be
the natural step for our ongoing research. Nevertheless,
the recent success of deep learning techniques in search
problems [35,19,20] has encouraged us to also evaluate
those techniques in comparison with RankBoost.

4.4.1 RankBoost
RankBoost [31] belongs to the family of Learning to
Rank algorithms and is well known for its efficiency and
effectiveness in different domains [14,15]. RankBoost can
benefit from a small knowledge base together with a
small number of characteristics in the encoding to re-
duce the overfitting problem [95,88].

To apply RankBoost, the tuning was performed as
in [45]. First, a grid search is built to determine the val-
ues of the parameters. Then, the FLiM-ML approach
uniformly samples each of the parameters in their range
and evaluates all the combinations of the sampled values.
The RankBoost algorithm receives as input the number
of iterations that the algorithm will perform and the
threshold corresponding to the number of candidates to
be considered in the weak rankers [67]. Moreover, the
metric to be optimized on the training set is often re-
ported.

Enhancing software model encoding for feature location approaches based on machine learning techniques 15

Table 2 shows the values obtained from feature se-
lection and the specific values tuned for each encoding-
technique pair. Specifically, the grid search was used to
determine the number of iterations and the threshold
value. In contrast, the selected metric was the default
metric of the RankLib library [21] that was used to im-
plement RankBoost. The values considered for the num-
ber of iterations were in the range [100,500]. The values
considered for the threshold were in the range [2,10].

4.4.2 Feedforward Neural Network
Feedforward Neural Networks (FNNs) represent a tradi-
tional neural network structure and lay the foundation
for many other structures [40]. Data flow always moves
one in direction, from input layer to hidden layer, then
to output layer; it never goes backward. A FNN can have
more than one hidden layer. However, it has been proven
that FNNs with monotonically increasing differentiable
functions can approximate any continuous function with
one layer provided that the hidden layer has enough hid-
den neurons [43]. For this reason, the network architec-
ture of the FNN implemented for the evaluation is a
dense layer that is followed by the final softmax layer.

For each encoding and case study, we performed a hy-
perparameter optimization based on the random search
optimization provided by the Deep Learning for Java li-
brary. The Deep Learning for Java library also provided
a grid search for optimization. However, the number of
parameters for tuning in neural networks is higher than
in RankBoost. While RankBoost has two parameters for
tuning, Neural Networks have at least four parameters
for tuning. Therefore, to improve the efficiency of the
tuning as suggested in [8], we decided to use random
search to tune the neural networks.

Table 3 shows the values obtained from feature selec-
tion and the specific values tuned for each encoding and
case study. The parameters tuned were the initial learn-
ing rate, the weight initialization, the layer size, and the
activation function. The values considered for the initial
learning rate were in the range [0.0001, 0.1]. The values
considered for the weight initialization were normal [46],
Glorot normal [33], and sigmoid uniform, which is a ver-
sion of Glorot uniform for sigmoid activation functions
[33]. The values considered for the layer size were in the
range [128, 256]. Finally, the values considered for the
activation function were the logistic sigmoid function,
hardsigmoid function, tanh function, hardtanh function,
Rectified Linear Unit (ReLU) function, and Randomized
Rectified Linear Unit (RReLU). More details about the
parameters, such as the default values or the formulas,
are available in the library guide [26].

4.4.3 Recurrent Neural Network
Since the number of parameters in a fully connected
FNN can grow extremely large as the width and depth
of the network increase, researchers have proposed other
neural network structures, such as Recurrent Neural

Networks (RNNs). While FNNs have no feedback con-
nections to previous layers, RNNs have these feedback
connections to model the temporal characteristics of the
problem being learned [27]. RNNs are usually used for
sequential data, so this technique may not be the most
appropriate for the models of our case study. However,
the recent success of RNNs in search problems [35] has
encouraged us to evaluate this technique in comparison
with other machine learning techniques that, a priori,
are more appropriate for our case study (e.g., RankBoost
and FNNs). Specifically, the RNN implemented for the
evaluation contains a Long Short Term Memory (LSTM)
layer followed by the final softmax layer.

Table 4 shows the values obtained from feature selec-
tion and the specific values tuned for each encoding and
case study. The initial learning rate, the weight initial-
ization, the layer size, and the activation function were
the parameters tuned through the random search op-
timization, which is provided by the Deep Learning for
Java library. The initial learning rate was assigned taking
into account values in the range [0.0001, 0.1]. The values
considered for the weight initialization were normal [46],
Glorot normal [33], and sigmoid uniform [33]. The values
considered for the layer size were in the range [128, 256].
Finally, the values considered for the activation function
were the logistic sigmoid function, hardsigmoid function,
tanh function, hardtanh function, Rectified Linear Unit
(ReLU) function, and Randomized Rectified Linear Unit
(RReLU). More details about the parameters, such as
the default values or the formulas, are available in the
library guide [26].

4.5 Baselines

In addition to evaluating the encodings taking into ac-
count three different machine learning techniques, we
compared the results obtained with the traditional ap-
proaches for feature location (see Fig. 3). We compared
the best results of the FLiM-ML approach with the re-
sults of a Linguistic Rule-based (Linguistic) approach
[84] and with the results of an Information Retrieval
(IR) approach based on Latent Semantic Indexing [22,
55]. These two approaches are used successfully not only
in feature location but also in other software tasks that
require the location of model fragments. In fact, they
are the best approaches for requirements traceability in
models according to the classification in Winkler et al.
[90].

16 Marcén et al.

Table 2 RankBoost setup for the FLiM-ML approach depending on the encoding and the case study

Feature Selection Hyperparameters

Total number of
characteristics

Number of selected
characteristics

Number of
iterations

Threshold Metric

CAF

SouRank 65 60 100 8 ERR10

ExtRank 103 88 100 10 ERR10

MapRank 6 6 100 8 ERR10

HumRank 12 12 100 10 ERR10

BSH

SouRank 13 11 100 4 ERR10

ExtRank 21 19 100 10 ERR10

MapRank 6 6 100 8 ERR10

HumRank 6 4 100 10 ERR10

Table 3 FNN setup for the FLiM-ML approach depending on the encoding and the case study

Feature Selection
Hyperparameters

Dense layer parameters

Total num-
ber of char-
acteristics

Number of se-
lected charac-
teristics

Initial
learning
rate

Weight
initializa-
tion

Layer
Size

Activation
Function

CAF

SouFNN 65 64 0.0254
Glorot
normal

214 ReLU

ExtFNN 103 88 0.0303 Normal 256 ReLU

MapFNN 6 5 0.0760 Normal 256 Hardtanh

HumFNN 12 10 0.0397 Normal 152 Hardsigmoid

BSH

SouFNN 13 11 0.0882 Normal 206 ReLU

ExtFNN 21 19 0.0019
Glorot
normal

211 Hardsigmoid

MapFNN 6 4 0.0041 Normal 202 Sigmoid

HumFNN 6 6 0.0603
Glorot
normal

199 ReLU

4.5.1 Linguistic-baseline: Linguistic Rule-Based Base-
line

Spanoudakis et al. [84] propose automatically gener-
ating the traces between requirements and models. To do
this, they present a linguistic rule-based approach with
the following two stages:

– Stage 1) A Parts-of-Speech tagging technique [52] is
applied on the requirements that are defined using
natural language.

– Stage 2) The traceability links between the require-
ments and the models are generated through the
Requirement-To-Object-Model (RTOM) rules.

In [84], there are two different types of traceability
rules: RTOM for traceability relations between require-
ments and model elements, and inter-requirement rules

for traceability relations between different parts of a re-
quirement statement. The RTOM rules are specified by
investigating grammatical patterns in requirements. Fig.
5 shows an example of a RTOM rule for each case study.

The rule for the CAF case study in Fig. 5 at-
tempts to match a syntactic expression that consists
of a noun (<x1/{NN1, NN2}>), the verb to be in the
present form (<x2/{VBZ, VBR}>), and an adjective
(<x3/{JJ}>) with an attribute in the model. The
matching succeeds if: (a) the name of the attribute con-
tains the adjective and the name of the class that de-
fines the attribute contains the noun; or (b) the name
of the attribute contains the adjective and the name
of the class that defines the attribute contains the sin-
gular form of the noun. Therefore, in Fig. 6, the se-
quence of terms <NN1>door</NN1> <VBZ>is</VBZ>

Enhancing software model encoding for feature location approaches based on machine learning techniques 17

Table 4 RNN setup for the FLiM-ML approach depending on the encoding and the case study

Feature Selection
Hyperparameters

LSTN layer parameters

Total num-
ber of char-
acteristics

Number of se-
lected charac-
teristics

Initial
learning
rate

Weight
initializa-
tion

Layer
Size

Activation
Function

CAF

SouRNN 65 63 0.0567
Glorot
normal

215 Sigmoid

ExtRNN 103 93 0.0907
Glorot
normal

192 Tanh

MapRNN 6 6 0.0110
Glorot
normal

153 Sigmoid

HumRNN 12 10 0.0633
Glorot
normal

182 Sigmoid

BSH

SouRNN 13 12 0.3333 Normal 256 ReLU

ExtRNN 21 19 0.0413 Normal 165 ReLU

MapRNN 6 4 0.0792 Normal 241 HardTanH

HumRNN 6 4 0.0445
Glorot
normal

247 ReLU

Fig. 5 Example of a requirement-to-object-model rule for each case study

RTOM_RULE Rule-CAF:

EXISTS

SEQUENCE(<x1/{NN1, NN2}>,<x2/{VBZ, VBR}>,<x3/{JJ}>) in Requirement;

<x4/CLASS>, <x5/ATTRIBUTE> in Model

SUCH THAT

ATTRIBUTE_OF(<x5>,<x4>) and CONTAINS(NAME(<x5>), <x3>) and (CONTAINS(NAME(<x4>), <x1>) or

CONTAINS(NAME(<x4>), SINGULAR_FORM<x1>)

ACTION GENERATE

OVERLAPS(Requirement, <x5>)

RTOM_RULE_END

RTOM_RULE Rule-BSH:

EXISTS

SEQUENCE(<x1/{NN1, NN2}>,<x2/{VBN}>,<x3/{PRT}>,<x4/{CD}>,<x5/{JJ}>,<x6/{NN1, NN2, NNS})

in Requirement;

<x7/CLASS>, <x8/CLASS> in Model

 SUCH THAT

ASSOCIATION_OF(<x7>,<x8>) and CONTAINS(NAME(<x7>),<x1>))

and CONTAINS(NAME(<x8>), SINGULAR_FORM<x6>)

ACTION GENERATE

OVERLAPS(Requirement,<x7>), OVERLAPS(Requirement,<x8>)

RTOM_RULE_END

<JJ>closed</JJ> in the requirement and the at-
tribute Closed of the class Door satisfy the conditions of
the rule. As a consequence, an Overlap relation is created
between them.

The rule for the BSH case study in Fig. 5 at-
tempts to match a syntactic expression with two classes
that are associated in the model. The syntactic expres-
sion consists of a noun (<x1/{NN1, NN2}>), a verb
(<x2/{VBN}>) followed by “to” (<x3/{TO}>), a car-
dinal number (<x4/{CD}>), an adjective (<x5/{JJ}>),
and a noun that can be singular or plural (<x6/{JJ}>).
The matching succeeds if: the name of a class contains
the first noun, the name of the other class contains the

singular form of the second noun, and both classes are
associated in the model. For example, for the require-
ment “Inductor connected to two internal inverters an”,
this rule will create Overlap relations between the re-
quirement and the classes Inductor and Inverter.

Furthermore, Fig. 6 shows how a RTOM rule is ap-
plied to obtain a grammatical pattern between a re-
quirement and a model. To do this, the example in
this figure is based on the rule for the CAF case study
(see Fig. 5). The pattern to find in the requirement
is composed of a noun followed by a verb and an
adjective. When this pattern is found, the sequence
of terms (e.g., <NN1>door</NN1> <VBZ>is</VBZ>

18 Marcén et al.

<JJ>closed</JJ>) is linked to the model. Specifically,
it is linked to a class whose name must be the noun
(i.e., Door) and its attribute must be the adjective (i.e.,
Closed).

The authors in [84] propose 26 rules for two domains:
a software-intensive TV system created by Philips, and
a university course management system. Some of these
rules are RTOM (i.e., trace relations between require-
ments and model elements) and some of them are inter-
requirement (i.e., traceability relations between different
parts of a requirement statement). However, only the to-
tal number of rules is specified in their work. Given the
two types of rules and the two domains, we estimated
that six RTOM rules and six inter-requirement rules
were defined at least for each domain. Since our approach
focuses on feature location in models, only RTOM rules
are tackled in this work. Therefore, based on the guides
and the examples of rules that are provided by [84], a
domain expert who was not involved in the research gen-
erated the initial set of RTOM rules. The initial sets (one
for each domain) had a least six rules as the reference
work.

Nevertheless, our work has two main differences with
respect to the work in [84]. First, the query is a fea-
ture description instead of a requirement. Second, the
domains are different from the ones evaluated in [84].
Due to these differences, we considered that the num-
ber of rules could not be enough to achieve good results
in our work. To mitigate this problem, a second expert
who was not involved in the research extended the sets
of rules. Thus, we not only ensured the suitability of
the rule sets for our evaluation, but also mitigate the
dependence on a single domain expert. In the end, the
extended set for the CAF domain contains nine RTOM
rules and the extended set for the BSH domain contains
eight rules.

4.5.2 IR-baseline: Information Retrieval Baseline
Information Retrieval (IR) [30,57,81] is a sub-field of
computer science that deals with the automated stor-
age and retrieval of documents. IR techniques have been
successfully used to retrieve traceability links between
different kinds of software artifacts in different contexts
[56,70,1,61,23]. In [22] and [55], De Lucia et al. use
Latent Semantic Indexing (LSI) to recover traceability
links between requirements and different kinds of soft-
ware artifacts, including models in the form of use-case
diagrams, among others. We use LSI to recover trace-
ability links between requirements and models as one of
the approaches for our evaluation.

Latent Semantic Indexing (LSI) [47] is an automatic
mathematical/statistical technique that analyzes rela-
tionships between queries and documents (bodies of
text). LSI constructs vector representations of both a
user query and a corpus of text documents by encoding
them as a term-by-document co-occurrence matrix and
analyzes the relationships between those vectors to get a

similarity ranking between the query and the documents
(see Fig. 7).

In feature location, the query corresponds to the fea-
ture description and each document is a natural language
representation of a model element that is extracted using
the technique in [66]. The top of Fig. 7 shows an example
of a term-by-document co-occurrence matrix, with values
associated with our real case. Each row in the matrix
(keywords) represents each of the words that compose
the query and the documents (e.g., pantograph or door).
Each column in the matrix represents a document, and
the final column represents the query. Each cell in the
matrix contains the frequency with which the term (key-
word) of its row appears in the document denoted by its
column. For instance, in Fig. 7, the term ‘pantograph’
appears twice in the document of the second model ele-
ment (ME2) and once in the query.

Vector representations of the documents and the
query are then obtained by normalizing and decompos-
ing the term-by-document co-occurrence matrix using a
matrix factorization technique called Singular Value De-
composition [47]. The bottom of Fig. 7 shows a three-
dimensional graph of the Singular Value Decomposition
technique. For legibility reasons, only a small set of the
columns is represented. To measure the degree of similar-
ity between vectors, the cosine between the query vector
and the document vectors is calculated. Cosine values
that are closer to 1 denote a higher degree of similarity,
and cosine values that are closer to -1 denote a lower
degree of similarity. Similarity increases as vectors point
in the same general direction (as more terms are shared
between documents). With this measurement, the model
elements are ordered according to their degree of simi-
larity to the feature description (see Fig. 7, bottom left).

From the ranking, of all the model elements, only
those model elements that have a degree of similarity
greater than x must be taken into account. A good
heuristic that is widely used is x = 0.7. This value corre-
sponds to a 45◦ angle between the corresponding vectors.
Even though the selection of the threshold is an issue un-
der study, the heuristic chosen for this work has yielded
good results in other similar works [62,80].

Following this principle, the elements with a degree
of similarity equal to or greater than x = 0.7 are taken
to conform a model fragment, which is a candidate for
realizing the feature. In the example provided in Fig. 7,
ME2 and MEN are model elements that conform part of
the model fragment that is obtained by this baseline for
the feature because their cosine values are greater than
the 0.7 threshold. The model fragment generated in this
manner is the final output of the IR-baseline.

4.6 Implementation details

We used the Eclipse Modeling Framework to manipulate
the models and to manage the model fragments. Rank-
Boost was implemented using the RankLib library [21].

Enhancing software model encoding for feature location approaches based on machine learning techniques 19

Fig. 6 Example of a grammatical pattern for RTOM rules

FEATURE DESCRIPTION

Pushed

Lighted

<<set>> Set PushedPL

<<set>> Set Turn OnPL

<<set>> Set Turn OffPL

Button

Enabled

<<get>> Get EnablePL

<<set>> Set EnabledPL

Equipment

On

Off

<<set>> Set Turn OnPL

<<Set>> Set Turn OffPL

Train

MODEL

Blocked

Closed

Open

<<set>> Set BlockPL

<<set>> Set ClosePL

<<set>> Set OpenPL

Door

Active

<<set>> Set ActivePL

Desk

installed

<AT>The<vAT> <NN1>system<vNN1> <VVI>checks<vVVI> <DD2>that<vDD2> <AT>the<vAT>

<NN1>cabin<vNN1> <NN1>door<vNN1> <VBZ>is<vVBZ> <JJ>closed<vJJ> <CC>or<vCC> <JJ>blocked<vJJ>.

Fig. 7 Example of Latent Semantic Indexing

The neural networks were developed and tuned through
the Deep Learning for Java library [86]. Finally, the
classifiers were validated through the k-fold validation
method [38] with a k value equal to 4. Moreover, the
folds were selected in a stratified manner so that each
partition contains roughly the same proportions of each
score value.

To replicate the results, this work describes the pa-
rameters for each one of the machine learning tech-
niques in Tables 2,3, and 4. The implementation for
the approach is available at http://bitbucket.org/

svitusj/flame/src/master/FLiM_ML/. The implemen-
tation for the four encodings (source encoding, extended

encoding, mapped encoding, and human encoding) is
also available at the same location within the implemen-
tation of the approach. We have also made the classifiers
and a test case available at the same url. Therefore, our
public online repository contains the source code of the
machine learning approach, the source code of the four
encodings, the classifiers for all the trainings, and one
of the test cases. Furthermore, the implementation for
the Information Retrieval approach and the Linguistic
rule-based approach is also available in the same repos-
itory under the names of TLR-LSI and TLR-Linguistic,
respectively.

http://bitbucket.org/svitusj/flame/src/master/FLiM_ML/
http://bitbucket.org/svitusj/flame/src/master/FLiM_ML/

20 Marcén et al.

4.7 Results

In Table 5, we outline the results of the FLiM-ML ap-
proach for each possible combination of encoding and
machine learning technique. The different combinations
are named using acronyms. The first three letters of
the acronyms indicates the encoding used: source en-
coding (Sou), extended encoding (Ext), mapped en-
coding (Map), or human encoding (Hum). The rest of
the acronym indicate the machine learning technique
used: RankBoost (Rank), Feedforward Neural Network
(FNN), or Recurrent Neural Network (RNN). Each row
shows the Precision, Recall, F-measure, and MCC val-
ues obtained applying the approach for all the possible
combinations.

RQ1 involves the results of the FLiM-ML approach
when it uses the source encoding, the extended encoding,
and the mapped encoding with RankBoost as the ma-
chine learning technique (i.e., SouRank, ExtRank, and
MapRank). In response to RQ1, the mapped encoding
outperforms the results of the other encodings, even the
source encoding, when the FLiM-ML approach applies
RankBoost. Table 5 shows that the mapped encoding
achieves the best results for all the performance indi-
cators in the two case studies. In CAF, FLiM-ML pro-
vides a mean precision value of 90.11%, a recall value of
86.20%, a F-measure value of 87.22%, and a MCC value
of 0.87. In BSH, FLiM-ML provides a mean precision
value of 71.60%, a recall value of 71.30%, a F-measure
value of 71.42%, and a MCC value of 0.69.

RQ2 involves the results of the FLiM-ML approach
when it uses the source encoding, the extended en-
coding, and the mapped encoding with RankBoost,
FNN, and RNN as the machine learning techniques
(i.e., SouRank, ExtRank, MapRank, SouFNN, ExtFNN,
MapFNN, SouRNN, ExtFNN, and MapRNN). In re-
sponse to RQ2, the FLiM-ML approach obtains the
best results using the mapped encoding and RankBoost.
MapRank outperforms the results of the other machine
learning techniques regardless of the encoding used. For
FNN, the best results are achieved by ExtFNN in the
CAF case study and by SouFNN in the BSH case study.
For RNN, the best results are achieved by MapRNN
in the CAF case study and by SouRNN in the BSH
case study. However, Table 5 shows that neither FNN
nor RNN outperform the results of MapRank. MapRank
achieves the best results for all the performance indica-
tors in the two case studies.

RQ3 involves the results of the FLiM-ML approach
when it uses the human encodings and with RankBoost,
FNN, and RNN as the machine learning techniques
(i.e., HumRank, HumFNN, and HumRNN). These re-
sults are compared to the combination of encoding and
machine learning, which obtained the best results in RQ1
and RQ2 (i.e., MapRank). In response to RQ3, the
FLiM-ML approach obtains the best results using the
mapped encoding and RankBoost. Therefore, a domain-

independent encoding such as MapRank can outper-
form the results of a domain-dependent encoding such as
the human encodings. Taking into account the results,
the human encoding for the CAF case study achieves
the best precision values when the machine learning
technique is RNN (HumRNN) and the best recall, F-
measure, and MCC values when the machine learning
technique is RankBoost (HumRank). In contrast, the
human encoding for the BSH case study achieves the
best values for all the performance indicators when the
machine learning technique is RankBoost (HumRank).
Table 5 shows that the human encodings do not outper-
form the MapRank, which obtains the best results for
all the performance indicators in the two case studies.

Table 6 shows the results, which are aggregated for
each of the baselines and for our approach. Our approach
uses the combination of encoding and machine learning
technique, which obtains the best results for RQ1, RQ2,
and RQ3 (i.e., MapRank). Each row shows the Precision,
Recall, F-measure, and MCC obtained by each approach
for each case study.

In response to RQ4, MapRank achieves the best
results for all the performance indicators, providing a
mean precision value of 90.11%, a recall value of 86.20%,
a combined F-measure value of 87.22%, and a MCC
value of 0.87 for the CAF case study. For the BSH case
study, the approach provides a mean precision value of
71.60%, a recall value of 71.30%, a combined F-measure
value of 71.42%, and a MCC value of 0.69. In contrast,
the baselines have the worst results in all the measure-
ments: the Linguistic-baseline obtains up to 39.94% pre-
cision, 51,70% recall, 42.74% F-measure, and 0,42 MCC;
and the IR-baseline achieves up to 31.40% precision,
56.17% recall, 33.90% F-measure, and 0.32 MCC.

5 Statistical Analysis

To properly compare the different encodings and ma-
chine learning techniques, the data resulting from the
empirical analysis was analyzed using statistical meth-
ods.

5.1 Statistical Significance

A statistical test must be run to assess whether there
is enough empirical evidence to claim that there is a
difference between two configurations (e.g., A is better
than B). To achieve this, two hypotheses are defined:
the null hypothesis H0, and the alternative hypothesis
H1. The null hypothesis H0 is typically defined to state
that there is no difference between the configurations,
whereas the alternative hypothesis H1 states that the
configurations differ. In such a case, a statistical test
aims to verify whether the null hypothesis H0 should be
rejected.

Enhancing software model encoding for feature location approaches based on machine learning techniques 21

Table 5 Mean Values and Standard Deviations for Precision, Recall, F-Measure, and Matthews Correlation Coefficient
(MCC) for the FLiM-ML approach using the source (Sou), extended (Ext), mapped (Map), and human (Human) encodings
with RankBoost (Rank), Feedforward Neural Network (FNN), and Recurrent Neural Network (RNN) for the two case studies
(CAF and BSH)

Precision Recall F-measure MCC

CAF

SouRank 10.95 ± 17.58 55.98 ± 33.39 14.50 ± 18.10 0.03

ExtRank 10.65 ± 17.15 55.52 ± 33.43 14.22 ± 17.85 0.02

MapRank 90.11 ± 26.39 86.20 ± 30.17 87.22 ± 28.60 0.87

HumRank 24.23 ± 34.52 69.45 ± 28.27 28.53 ± 33.68 0.22

SouFNN 12.17 ± 19.64 26.59 ± 28.09 12.39 ± 16.94 0.04

ExtFNN 42.04 ± 42.03 41.80 ± 43.38 40.34 ± 42.59 0.35

MapFNN 30.25 ± 36.23 28.12 ± 35.58 28.14 ± 35.35 0.22

HumFNN 18.39 ± 28.92 28.85 ± 32.52 17.08 ± 26.85 0.11

SouRNN 10.71 ± 18.00 21.26 ± 25.03 10.90 ± 15.57 0.02

ExtRNN 13.12 ± 18.49 18.36 ± 21.97 12.83 ± 16.77 0.05

MapRNN 13.29 ± 21.97 36.51 ± 31.88 14.62 ± 20.60 0.05

HumRNN 28.89 ± 35.77 25.59 ± 35.34 25.49 ± 34.43 0.20

BSH

SouRank 11.72 ± 18.91 10.63 ± 18.71 11.05 ± 18.74 -0.22

ExtRank 11.07 ± 16.74 9.36 ± 15.83 9.97 ± 16.07 -0.25

MapRank 71.60 ± 42.89 71.30 ± 43.10 71.42 ± 43.00 0.69

HumRank 12.41 ± 24.18 10.65 ± 21.58 11.32 ± 22.46 -0.12

SouFNN 19.24 ± 28.00 18.84 ± 28.84 18.75 ± 27.90 0.02

ExtFNN 16.34 ± 33.08 13.23 ± 29.00 14.10 ± 29.70 0.05

MapFNN 8.75 ± 15.04 7.87 ± 15.89 7.97 ± 14.41 -0.14

HumFNN 8.52 ± 23.41 7.63 ± 20.85 7.83 ± 21.20 0.00

SouRNN 16.23 ± 34.74 15.06 ± 33.42 15.31 ± 33.42 0.10

ExtRNN 15.83 ± 29.59 13.41 ± 28.22 14.10 ± 28.05 0.08

MapRNN 8.63 ± 17.53 6.41 ± 13.38 7.13 ± 14.59 -0.12

HumRNN 12.30 ± 23.31 9.26 ± 17.11 10.16 ± 18.46 -0.07

Table 6 Mean Values and Standard Deviations for Precision, Recall, F-Measure, and Matthews Correlation Coefficient (MCC)
for the FLiM-ML approach using the mapped encoding and RankBoost (MapRank), the IR-baseline, and the Linguistic-baseline
for the two case studies (CAF and BSH)

Precision Recall F-measure MCC

CAF

MapRank 90.11 ± 26.39 86.20 ± 30.17 87.22 ± 28.60 0.87

Linguistic-baseline 39.15 ± 17.11 51.70 ± 20.91 42.74 ± 17.12 0.42

IR-baseline 21.22 ± 26.95 56.17 ± 40.44 25.27 ± 25.30 0.24

BSH

MapRank 71.60 ± 42.89 71.30 ± 43.10 71.42 ± 43.00 0.69

Linguistic-baseline 39.94 ± 21.66 46.53 ± 23.11 41.92 ± 22.24 0.41

IR-baseline 31.40 ± 34.57 55.65 ± 30.03 33.90 ± 28.21 0.32

Statistical tests provide a probability value, p −
V alue. The p − V alue obtains values between 0 and 1.

The lower the p − V alue of a test, the more likely that
the null hypothesis is false. It is accepted by the research

22 Marcén et al.

community that a p − V alue under 0.05 is statistically
significant [3], so the hypothesis H0 is considered false.

The test carried out depends on the properties of the
data. Since our data does not follow a normal distri-
bution in general, our analysis required the use of non-
parametric techniques [73]. There are several tests for
analyzing this kind of data; however, the Quade test is
the most powerful one when working with real data [32].
In addition, according to Conover [18], the Quade test is
the one that has shown the best results for a low number
of configurations.

In our case, we want to compare the results for the en-
codings and machine learning techniques regarding RQs.
Therefore, we have eight different hypotheses, two for
each RQ. The null H0 hypothesis states that there is no
difference between the results of the different encodings
and techniques. For RQ1, there is no difference between
the results of the source encoding, the extended encod-
ing, and the mapped encoding when the approach ap-
plies RankBoost (i.e., no difference between SouRank,
ExtRank, and MapRank). For RQ2, there is no differ-
ence between the results of RankBoost, FNN, and RNN
when the approach uses the best encoding for these tech-
niques (i.e., no difference between MapRank, ExtFNN,
MapRNNin the CAF case study and no difference be-
tween MapRank, SouFNN, and SouRNNin the BSH case
study). For RQ3, there is no difference between the re-
sults of the best combination of encoding and machine
learning in RQ1 and RQ2 and the results of the human
encodings (i.e., no difference between MapRank, Hum-
Rank, HumFNN, and HumRNN). For RQ4, there is no
difference between the results of the best combination
of encoding and machine learning in RQ1, RQ2, RQ3
and the results of the baselines (i.e., no difference be-
tween MapRank, Linguistic-baseline, and IR-baseline).
In contrast, the alternative hypothesis H1 states that
the results of these cases differ.

Table 7 shows the Quade test statistics and p −
V alues for precision, recall, F-measure, and MCC. Since
the p − V alues are smaller than 0.05, we rejected the
null hypothesis for RQ1, RQ2, and RQ3. Consequently,
we can state that there are differences among the results
for RQ1, RQ2, and RQ3.

For RQ4, most p−V alues are smaller than 0.05, but
the p − V alue of the recall for the BSH case study is
higher than 0.05. Therefore, we can state that there are
differences among the results of MapRank and the base-
lines in the CAF case study. In the BSH case study, we
can state that there are differences among the results of
MapRank and the baselines for the precision, F-measure,
and MCC, but there are no differences for recall.

Nevertheless, with the Quade test, we cannot answer
the following question: Which of the configurations gives
the best performance? In this case, the performance of
each configuration should be individually compared with
all the other alternatives. To do this, we performed an
additional post hoc analysis. This kind of analysis per-

forms a pair-wise comparison among the results, deter-
mining whether there are statistically significant differ-
ences among the results for each RQ.

Table 8 shows the p−V alues of Holm’s post hoc anal-
ysis according to the RQs. Almost all the p − V alues
shown in this table are smaller than 0.05, except for
the following comparisons: SouRank vs ExtRank for the
two case studies, HumRank vs HumRNN for the two
case studies, Linguistic-baseline vs IR-baseline for the
two case studies, and MapRank vs Linguistic-baseline
for BSH, and MapRank vs IR-baseline for BSH. These
comparisons have at least one indicator, which is higher
than 0.05. Therefore, the rest of the comparisons have
significant differences for all the performance measure-
ments.

5.2 Effect Size

Statistically significant differences can be obtained even
if they are so small as to be of no practical value [3]. It is
then important to assess whether an encoding-technique
pair is statistically better than another and to assess the
magnitude of the improvement. Effect size measures are
needed to analyze this.

For a non-parametric effect size measure, we used
Vargha and Delaney’s Â12 [87]. Â12 measures the proba-
bility that running one configuration yields higher values
than running another configuration. If the two configu-
rations are equivalent, then Â12 will be 0.5.

For example, Â12 = 0.7 means that we would obtain
better results in 70% of the runs with the first pair of
configurations that have been compared, and Â12 = 0.3
means that we would obtain better results in 70% of the
runs with the second pair of configurations that have
been compared. Thus, we have an Â12 value for every
comparison.

Table 9 shows the values of the effect size statistics.
In RQ1, the Â12 values indicate that the source encoding
and the extended encoding are equivalent, whereas the
mapped encoding shows pronounced superiority when it
is compared to the source encoding MapRank obtains
better results than the source encoding in at least the
following percentages of runs: 93% for precision, 77% for
recall, 93% for F-measure, and 94% for MCC.

In RQ2, the Â12 values indicate that MapRank is
superior to ExtFNN and MapRNN for the CAF case
study. MapRank obtains better results than ExtFNN
and MapRNN in at least the following percentages of
runs: 79% for precision, 76% for recall, 78% for F-
measure, and 79% for MCC. In addition, MapRank
is also superior to SouFNN and SouRNNfor the BSH
case study. It obtains better results than SouFNN and
SouRNN in at least the following percentages of runs:
78% for precision, 77% for recall, 78% for F-measure,
and 79% for MCC.

Enhancing software model encoding for feature location approaches based on machine learning techniques 23

Table 7 Quade test statistics and p− V alues

Precision Recall F-Measure MCC

CAF

RQ1
p-Value < 2.20 × 10−16 < 2.20 × 10−16 < 2.20 × 10−16 < 2.20 × 10−16

Statistic 2852.3 816.83 2667.8 2503.2

RQ2
p-Value < 2.20 × 10−16 < 2.20 × 10−16 < 2.20 × 10−16 < 2.20 × 10−16

Statistic 999.52 754.27 923.32 1163

RQ3
p-Value < 2.20 × 10−16 < 2.20 × 10−16 < 2.20 × 10−16 < 2.20 × 10−16

Statistic 873.8 1398.1 911.98 814.75

RQ4
p-Value 1.18 × 10−9 1.3 × 10−4 4.31 × 10−11 4.74 × 10−11

Statistic 34.88 11.13 44.57 44.14

BSH

RQ1
p-Value < 2.20 × 10−16 < 2.20 × 10−16 < 2.20 × 10−16 < 2.20 × 10−16

Statistic 95.67 101.49 102.83 92.90

RQ2
p-Value < 2.20 × 10−16 < 2.20 × 10−16 < 2.20 × 10−16 < 2.20 × 10−16

Statistic 66.29 63.54 66.87 69.34

RQ3
p-Value < 2.20 × 10−16 < 2.20 × 10−16 < 2.20 × 10−16 < 2.20 × 10−16

Statistic 76.09 84.59 83.92 96.87

RQ4
p-Value 0.030 0.19 7.3 × 10−3 0.038

Statistic 4.55 1.86 7.12 4.14

In RQ3, the Â12 values indicate that MapRank is
superior to the human encodings regardless of the ma-
chine learning technique applied. For the CAF case
study, MapRank obtains better results than HumRank
HumFNN and HumRNN in at least the following per-
centages of runs: 86% for precision, 70% for recall, 85%
for F-measure, and 86% for MCC. For the BSH case
study, MapRank obtains better results than HumRank
HumFNN and HumRNN in at least the following per-
centages of runs: 79% for precision, 80% for recall, 80%
for F-measure, and 85% for MCC.

In RQ4, the Â12 values indicate that MapRank is
superior to the baselines. Taking into account the re-
sults for the two studies, MapRank obtains better results
than Linguistic-baseline in at least the following percent-
ages of runs: 77% for precision, 77% for recall, 77% for
F-measure, and 76% for MCC. Furthermore, MapRank
obtains better results than IR-baseline in at least the
following percentages of runs: 72% for precision, 71% for
recall, 77% for F-measure, and 76% for MCC. Therefore,
MapRank obtains better results than Linguistic-baseline
and IR-baseline in at least 71% of the runs for precision,
recall, F-measure, and MCC.

6 Discussion

The results reveal that by using the mapped encoding
and RankBoost, our approach outperforms the results
obtained with the other encodings and machine learning
techniques. In fact, by using the mapped encoding and
RankBoost, the approach can obtain better results than

by using the encoding that is specifically designed to
exploit human experience and domain knowledge.

In this section, we discuss the results of this work
in comparison to the results obtained in our previous
work [60], what prerequisites are needed by the encod-
ings, and what properties are leveraged by each encoding
to improve the results.

6.1 Comparison with previous results

The results obtained in this work are different from the
results obtained in our previous work [60] using the same
encoding (source encoding) and the same machine learn-
ing technique (RankBoost). However, the case study, the
problem to solve, and the documentation are different.
The case study in our previous work consisted of 29 test
cases, where the models had about 2000 elements and
the requirements had about 50 words. The case study
used in this work consists of 1800 test cases, where the
models have about 650 elements and the feature descrip-
tions have about 25 words.

In addition to the differences between the case stud-
ies, the problem to solve is also different. The previous
work focused on traceability link recovery between re-
quirements and models. In contrast, this work focuses
on feature location. Since the problem to solve in this
work is different, we also needed different documentation
from our industrial partner. Instead of requirements, we
needed feature descriptions. Requirements are written
before development, are client influenced, and are for
contracts. In contrast, features are written when prod-
ucts already exist, are internal, and are for reuse. There-

24 Marcén et al.

Table 8 Holm’s Post Hoc p− V alues

Precision Recall F-Measure MCC

CAF

RQ1

SouRank vs ExtRank 0.27 0.68 0.19 0.65

SouRank vs MapRank < 2.0 × 10−16 < 2.0 × 10−16 < 2.0 × 10−16 < 2.0 × 10−16

ExtRank vs MapRank < 2.0 × 10−16 < 2.0 × 10−16 < 2.0 × 10−16 < 2.0 × 10−16

RQ2

MapRank vs ExtFNN < 2.0 × 10−16 < 2.0 × 10−16 < 2.0 × 10−16 < 2.0 × 10−16

MapRank vs MapRNN < 2.0 × 10−16 < 2.0 × 10−16 < 2.0 × 10−16 < 2.0 × 10−16

ExtFNN vs MapRNN < 2.0 × 10−16 6.6 × 10−3 < 2.0 × 10−16 < 2.0 × 10−16

RQ3

MapRank vs HumRank < 2.0 × 10−16 < 2.0 × 10−16 < 2.0 × 10−16 < 2.0 × 10−16

MapRank vs HumFNN < 2.0 × 10−16 < 2.0 × 10−16 < 2.0 × 10−16 < 2.0 × 10−16

MapRank vs HumRNN < 2.0 × 10−16 < 2.0 × 10−16 < 2.0 × 10−16 < 2.0 × 10−16

HumRank vs HumFNN 2.3 × 10−7 < 2.0 × 10−16 < 2.0 × 10−16 3.7 × 10−13

HumRank vs HumRNN 6.3 × 10−5 < 2.0 × 10−16 9.8 × 10−7 0.6

HumFNN vs HumRNN < 2.0 × 10−16 1.8 × 10−5 1.9 × 10−12 2.6 × 10−14

RQ4

MapRank vs Linguistic-baseline 4.5 × 10−8 5 × 10−7 4.5 × 10−8 4.5 × 10−8

MapRank vs IR-baseline 7.7 × 10−8 1.2 × 10−3 4.5 × 10−8 7.7 × 10−8

Linguistic-baseline vs IR-baseline 1.2 × 10−3 0.46 1.2 × 10−3 8.4 × 10−4

BSH

RQ1

SouRank vs ExtRank 0.89 0.95 0.95 0.23

SouRank vs MapRank < 2.0 × 10−16 < 2.0 × 10−16 < 2.0 × 10−16 < 2.0 × 10−16

ExtRank vs MapRank < 2.0 × 10−16 < 2.0 × 10−16 < 2.0 × 10−16 < 2.0 × 10−16

RQ2

MapRank vs SouFNN < 2.0 × 10−16 2.9 × 10−16 < 2.0 × 10−16 < 2.0 × 10−16

MapRank vs SouRNN 4.3 × 10−16 8.7 × 10−16 < 2.0 × 10−16 1.8 × 10−13

SouFNN vs SouRNN 0.015 0.009 0.015 0.008

RQ3

MapRank vs HumRank < 2.0 × 10−16 < 2.0 × 10−16 < 2.0 × 10−16 < 2.0 × 10−16

MapRank vs HumFNN < 2.0 × 10−16 < 2.0 × 10−16 < 2.0 × 10−16 < 2.0 × 10−16

MapRank vs HumRNN < 2.0 × 10−16 < 2.0 × 10−16 < 2.0 × 10−16 < 2.0 × 10−16

HumRank vs HumFNN 3.8 × 10−4 6.5 × 10−4 9.4 × 10−4 1.3 × 10−9

HumRank vs HumRNN 0.83 0.85 0.88 6.5 × 10−3

HumFNN vs HumRNN 3.3 × 10−3 3.0 × 10−3 3.4 × 10−3 3.0 × 10−4

RQ4

MapRank vs Linguistic-baseline 0.029 0.048 0.048 0.061

MapRank vs IR-baseline 0.038 0.17 0.038 0.061

Linguistic-baseline vs IR-baseline 0.44 0.8 0.44 0.61

fore, requirements and features are written in a different
phase of the development, in a different style, and with
a different goal in mind.

For all of these reasons, even though the encoding
and the machine learning technique are the same as in
our previous work, the results are clearly different. In
fact, an interesting research question for future work
could be to determine which of the three encodings pre-
sented in this work obtains the best results for traceabil-
ity link recovery.

6.2 Encoding prerequisites and properties

The encodings need some prerequisites to be applied,
but not all the encodings need the same prerequisites.
The source encoding needs an ontology that contains

the main concepts and relations of a domain. In contrast,
the extended encoding and the mapped encoding need a
more complete ontology that contains not only the main
concepts and relations, but also the main properties of
the concepts. The human encoding does not require an
ontology at all.

All the encodings are applied on feature descriptions
and model fragments. The feature descriptions must be
provided using natural language and the model frag-
ments must conform to MOF (the OMG metalanguage
for defining modeling languages). If feature descriptions
and model fragments do not satisfy these prerequisites,
the encodings could not be applied. However, if the miss-
ing prerequisite is the ontology, the human encoding
could be applied as long as it is a railway domain or
an induction hob domain with similar product models,

Enhancing software model encoding for feature location approaches based on machine learning techniques 25

Table 9 Â12 statistics

Precision Recall F-Measure MCC

CAF

RQ1

SouRank vs ExtRank 0.50 0.50 0.50 0.51

SouRank vs MapRank 0.07 0.23 0.07 0.06

ExtRank vs MapRank 0.06 0.23 0.07 0.05

RQ2

MapRank vs ExtFNN 0.79 0.76 0.78 0.79

MapRank vs MapRNN 0.93 0.85 0.93 0.94

ExtFNN vs MapRNN 0.65 0.50 0.63 0.66

RQ3

MapRank vs HumRank 0.86 0.70 0.85 0.86

MapRank vs HumFNN 0.91 0.87 0.91 0.91

MapRank vs HumRNN 0.87 0.86 0.87 0.87

HumRank vs HumFNN 0.61 0.82 0.66 0.59

HumRank vs HumRNN 0.53 0.83 0.58 0.52

HumFNN vs HumRNN 0.45 0.55 0.46 0.44

RQ4

MapRank vs Linguistic-baseline 1 0.93 1 0.99

MapRank vs IR-baseline 0.95 0.71 0.99 0.99

Linguistic-baseline vs IR-baseline 0.77 0.44 0.73 0.71

BSH

RQ1

SouRank vs ExtRank 0.51 0.51 0.51 0.54

SouRank vs MapRank 0.22 0.22 0.22 0.05

ExtRank vs MapRank 0.21 0.21 0.21 0.05

RQ2

MapRank vs SouFNN 0.78 0.77 0.78 0.87

MapRank vs SouRNN 0.79 0.80 0.80 0.79

SouFNN vs SouRNN 0.63 0.64 0.64 0.34

RQ3

MapRank vs HumRank 0.79 0.80 0.80 0.91

MapRank vs HumFNN 0.83 0.84 0.84 0.85

MapRank vs HumRNN 0.80 0.81 0.81 0.89

HumRank vs HumFNN 0.63 0.63 0.63 0.26

HumRank vs HumRNN 0.50 0.49 0.50 0.39

HumFNN vs HumRNN 0.37 0.38 0.38 0.63

RQ4

MapRank vs Linguistic-baseline 0.77 0.77 0.77 0.76

MapRank vs IR-baseline 0.72 0.71 0.77 0.76

Linguistic-baseline vs IR-baseline 0.70 0.38 0.66 0.63

or an ontology could be defined from the experience of
the company employees.

The success of the mapped encoding lies in the prop-
erties of the encodings (length, completeness, domain
independence). Even though we have all the necessary
artifacts to apply an encoding, the results may not be as
good as we expect because the design of each encoding
favors some properties over others. However, the mapped
encoding benefits from all of them.

Length refers to the number of characteristics used
to encode a model fragment and a feature description
into a feature vector. In our case studies, the source en-

coding, the extended encoding, and the mapped encod-
ing contain 65, 103, and 6 characteristics, respectively.
Moreover, the human encoding for the railway domain
and the human encoding for the induction hob domain
contain 12 and 8 characteristics, respectively.

A lower number of characteristics usually leads to
better learning performance, lower computational cost,
and better classifier interpretability [69,94]. For these
reasons, an encoding with a shorter length may obtain
better results than an encoding with a longer length.
The mapped encoding has the lowest length.

26 Marcén et al.

Completeness refers to the degree of having all the
necessary information or having nothing missing. The
completeness of the source encoding depends on the con-
cepts and relations of the ontology. The extended encod-
ing and the mapped encoding depend on the concepts,
properties, and relations of the ontology. The complete-
ness of the human encodings depends on human capacity
and experience to propose the characteristics.

The knowledge base is a large source of information
to learn how to locate features. However, the way this
source should be encoded depends on the encoding. The
encoding decides what terms must be counted in the fea-
ture description or what elements must be considered in
the model fragments. Missing information can lead to
poor learning performance. For this reason, an encoding
with higher completeness may obtain better results than
an encoding with lower completeness. The mapped end-
ing is based on all the concepts, relations, and properties
of a domain, so it has an advantage in comparison to the
source encoding, which is only based on concepts and
relations. Moreover, the completeness of the human en-
codings depends on human decisions. If domain experts
do not consider that a concept (e.g., pantograph) is rel-
evant, it will not be included in the human encoding. In
contrast, for the mapped encoding, if the concept is in
the ontology, it will always be included. This can lead to
less completeness in the human encodings in comparison
to the mapped encoding.

Domain independence refers to the extent to
which encoding can be generalized to other domains.
The source encoding, the extended encoding, and the
mapped encodings are domain independent, so they can
be applied in other domains provided that there is an
ontology. In contrast, the human encoding is specifically
designed for a certain domain, so it cannot be applied to
other domains.

The domain independence could be negative or pos-
itive depending on the perspective. On the one hand, a
domain-dependent encoding can exploit human knowl-
edge and domain knowledge providing higher complete-
ness of the encoding. However, this encoding must be
done for each domain, so there is an additional cost
related to its design for each specific domain. On the
other hand, a domain-independent encoding can be gen-
eralized to other domains, so other domains may ben-
efit from the same encoding. Nevertheless, the domain
knowledge that is included through the encoding may
not be as complete as in a domain-dependent encoding.

For example, the human encoding, which is a
domain-dependent encoding, takes into account the Or-
ders elements. In the models of our case study, an Order
is a model element that describes an action of another
model element. For the model fragment in Fig. 2, an Or-
der of a Door element may change the door state from
open to closed. However, the Orders are not included as
part of the ontology, so the encodings based on the on-
tology (the source encoding, the extended encoding, and

the mapped encoding) miss this kind of domain knowl-
edge. Nevertheless, these encodings only need an ontol-
ogy to be applied in other domains.

For these reasons, RQ3 compares a domain-
independent encoding (the mapped encoding) with a
domain-dependent encoding (the human encoding). By
means of this comparison, we want to determine if a
domain-independent encoding (that misses part of the
domain knowledge) can provide better results than a
domain-dependent encoding that exploits not only the
domain knowledge but also the human experience. In
our case, the human encoding was designed by two do-
main experts who have wide experience in the domain,
but the results should be replicated in other domains
before assuring their generalization.

6.3 Nature of the feature descriptions and the model
fragments

Both feature descriptions and model fragments use natu-
ral language, but they use natural language in a different
way. While the feature descriptions are completely based
on natural language, the model fragments are based on
a meta-model. Therefore, although the model fragments
use natural language to define the names of the elements,
these elements follow the meta-model structure. This
difference in the nature of the feature descriptions and
the model fragments causes different ratios between the
terms in the feature description and the elements in the
model fragments.

For example, in Fig. 2, the concept Button appears
once in the feature description and there is one element
with the name Button in the model fragment. In this
example, there is a one-to-one ratio for the concept But-
ton. However, since natural language is used to describe
the feature, the feature may be described in a different
way by other domain experts. For example, the feature
description could be described as follows: The state of
the doors on one side of the train is controlled by a but-
ton. The system turns on the LED of this button if all
the doors of the correspondent side are closed or blocked.
In this case, the concept Button is repeated twice in the
feature description, but it does not mean that there are
two buttons in the model fragment. In fact, the num-
ber of elements in the model fragment is equal, so there
would be a two-to-one ratio for the concept Button.

In our work, the only encoding that considers this
dependency between the characteristics is the mapped
encoding. The source encoding, extended encoding, and
human encodings encode the feature descriptions and
the model fragments separately. For this reason, we did
not consider machine learning techniques such as Näıve
Bayes, whose main assumption is the conditional inde-
pendence of the characteristics (i.e., all characteristics
are independent given the value of the class variable).
Even if Näıve Bayes also shows good performance when

Enhancing software model encoding for feature location approaches based on machine learning techniques 27

Fig. 8 Example comparing the results of IR-baseline, Linguistic baseline, and FLiM-ML

Legend

Model Fragment Model Elements Element Property

Feature Descrip on

The pantograph is isolated if the insulation wrench is

actuated and the associated circuit breaker is closed.

Oracle

Synchroniza�on Rule

Circuit Breaker 1

Closed

Pantograph 1

Isolated

Isola�on Wrench 1

Actuated

Condi�on

FLiM-ML (MapRank)

Synchroniza�on Rule

Circuit Breaker 1

Closed

Pantograph 1

Isolated

Isola�on Wrench 1

Actuated

Condi�on

Linguis c-baseline

Synchroniza�on Rule

Circuit Breaker 1

Pantograph 1

Isolated

Isola�on Wrench 1

Inhibi�on Rule

Circuit Breaker 2

Circuit Breaker 3
Pantograph2

Isolated

IR-baseline

Circuit Breaker 1

Pantograph 1

Isolated

Circuit Breaker 2

Pantograph2

Isolated

Up

Closed

Down

Middle

there are dependencies between characteristics, the per-
formance can decrease when there is a strong correla-
tion between two or more characteristics, such as in the
source encoding, the extended encoding, and the human
encodings.

In fact, the good results of the mapped encoding
come in part from RankBoost. RankBoost is able to do
well on data sets of varying sizes [31]. It can benefit from
a small training dataset together with a small number
of characteristics in the encoding to reduce the overfit-
ting problem [95,88]. Our training datasets for the CAF
and the BSH case studies are composed of 1339 and 758
feature vectors, respectively. This fact and the reduced
number of characteristics in the mapped encoding result
in the good results of RankBoost. However, the neural
networks usually require larger training datasets. For ex-
ample, for a similar research problem in [35], the train-
ing dataset is composed of 45% of the 769,366 artifacts,
so it contains about 423,151 feature vectors. Therefore,
while RankBoost benefits from the size of the training
datasets in our studies, these datasets are not enough
for the neural networks.

Therefore, a theoretical evaluation on the evolution
of performance metrics by the number of feature vectors
in training set would be useful to determine the applica-
bility of a machine learning technique over others. How-
ever, this evaluation is not as straightforward as might
suppose at first glance. The number of feature vectors
is very important for the training. However, the content
of the feature vectors also influences the training. Train-
ing with large model fragments and trying to locate a
small model fragment is not the same as the opposite.

According to [7], the content of the feature vectors (i.e.
the model fragments) could also influence the training
and ultimately affects the results of Rankboost and the
neural networks.

6.4 Traditional Approaches

The tacit knowledge and the vocabulary mismatch prob-
lems have a special impact on the approaches that
are based on textual similarity. The tacit knowledge is
caused by the lack of written information in the feature
descriptions. Often, when feature descriptions are writ-
ten, part of the domain knowledge related to the features
is not embodied in their descriptions. Since it is assumed
that all the domain experts known this information, it
is never formalized in writing.

The vocabulary mismatch is caused by the use of
different terms to reference the same concept. In indus-
trial environments, sometimes the feature descriptions
and the models are created and manipulated by different
engineers. Therefore, the same concept can be referred
to using a name in the feature description and a different
name in the model.

Both Linguistic-baseline and IR-baseline base, to a
large extent, on the textual similarity. IR-baseline com-
pares the text in the feature descriptions and the text
in the models according to the co-occurrences of terms
in them. Linguistic-baseline compares the text in the
feature descriptions with the elements in the models ac-
cording to grammatical patterns. In both cases, the lack
of terms that is caused by the tacit knowledge makes it

28 Marcén et al.

impossible to locate the elements from the models that
are relevant to the feature descriptions.

In contrast, the vocabulary mismatch problem can
be minimized using natural language processing to ho-
mogenize the terms in feature descriptions and model
fragments. However, the in-house terms that are used in
a specific domain or company are not known synonyms.
For this reason, this problem can have an impact on re-
sults, even if the natural language processing methods
are applied.

In contrast to Linguistic-baseline and IR-baseline,
FLiM-ML is not based on textual similarity. FLiM-ML
depends on the learning from the manually located fea-
tures. Moreover, although the text of the feature descrip-
tions and the model fragments is used by the encodings,
the encodings also consider the structure of the model
fragment (i.e., relation between elements). For these rea-
sons, FLiM-ML is less sensitive to the tacit knowledge
and the vocabulary mismatch problems, providing bet-
ter results than Linguistic-baseline and the IR-baseline.

Fig. 8 shows an illustrative example to compares the
results of the three approaches: IR-baseline (bottom-
left), Linguistic-baseline (bottom-middle), and FLiM-
ML (bottom-right). The top-left part of Fig. 8 shows
the oracle, which is the correct model fragment for the
feature description in the figure. Comparing the three
results to the oracle, we can see that the IR-baseline
and the Linguistic-baseline retrieved several model el-
ements of types: Pantograph and Circuit Breaker. This
leads us to suppose that baselines have difficulties to dif-
ferentiating between two elements of the same type (e.g.,
between two pantographs). In the example, the feature
description does not provide explicit details that allow
differentiating between the pantograph to be located and
the rest of the pantographs. For this reason, an approach
that is not based only on textual similarity, like FLiM-
ML, can obtain better precision results. FLiM-ML learns
how to differentiate the model elements of the same type
thanks to the training using the manually located fea-
tures.

In addition, the results in Fig. 8 also show that
the IR-baseline did not retrieve the model element
of type Synchronization Rule, but the Linguistic-
baseline retrieved it. The term Synchronization Rule

does not appear in the feature description, so the
IR-baseline cannot use this term for the textual
similitude. However, the Linguistic-baseline can iden-
tify a syntactic pattern in the feature descrip-
tion (e.g., <NN>Pantograph</NN> <VBZ>is</VBZ>
<JJ>isolated</JJ> <IN>if</IN>) that matches
an element in the model (e.g., Synchronization Rule).
Therefore, although the name of the model element is
not explicit in the feature description, the Linguistic
baseline can locate it.

Nevertheless, neither the IR-baseline, nor the Lin-
guistic baseline perfectly located the model fragment
in the example. The difference between two model el-
ements of the same type is not explicitly in the feature
description. In addition, the meaning of “associated cir-
cuit breaker” is also not included in the feature descrip-
tion. This kind of details is the tacit knowledge which
is problematic for the approaches only based on textual
similitude.

According to the previous results and discussion, a
machine learning-based approach can be better than the
traditional approaches as the Linguistic-baseline or the
IR-baseline. Nevertheless, a machine learning-based ap-
proach, as FLiM-ML, is not the best solution for all the
cases. Providing the necessary documentation to suc-
cessfully apply a machine learning-based is sometimes
difficult or not possible. In these cases, a traditional ap-
proach, that demands less input documentation to be
applicable and does not require training, can be the best
solution. For this reason, although the machine learning-
based approach can achieve better results than tradi-
tional approaches, we should consider the trade-off be-
tween performance and ease of use to answer RQ4.

7 Threats to Validity

In this section, we use the classification of threats to
validity of [91] to acknowledge the limitations of our ap-
proach. Table 10 shows the threats that are applicable
to our evaluation. In Table 10, each type of threat is or-
ganized into two groups: avoided (the risk of the threat
has been removed) and reduced (the risk of the threat
has been minimized). The last column of Table 10 shows
how the threats have been dealt with.

Enhancing software model encoding for feature location approaches based on machine learning techniques 29

Table 10: Threats to Validity

Type of
threat

Status Threat Due to How we have dealt with it

Conclusion
Validity

Avoided Fishing Researchers may influ-
ence the result by looking
for a specific outcome.

We use all the test cases for all the combi-
nations of encoding and machine learning
technique run; none of the test cases were
removed for any reason whatsoever.

Reliability of
the treatment
implementa-
tion

The implementation is
not similar for differ-
ent people applying the
treatment or for different
occasions.

We applied the same approach regardless
of the encoding or the machine learning
technique used.

Reduced Reliability of
measures

When you measure a phe-
nomenon twice, the out-
come should be the same.

We used four measures: precision, recall,
F-measure, and MCC, which are widely
accepted in the software engineering re-
search community. As suggested by [4],
several repetitions were performed to ob-
tain reliable results. Each test case was run
30 times.

Lower statisti-
cal power

Sample size is not
enough.

We used 1800 different test cases and sta-
tistically analyzing the results.

Random het-
erogeneity of
subjects

Subjects are randomly
selected and they are too
heterogeneous.

We selected different model fragments and
grouped them taking into account their
heterogeneity with regard to the measure-
ments: density, dispersion, and multiplic-
ity.

Internal
Validity

Avoided Resentful
demoralization

Subjects receiving less
desirable treatments may
give up and not perform
as well as they generally
do.

We tuned the parameters to maximize the
performance of all the techniques and to
perform a fair evaluation.

Selection The outcomes can be af-
fected by how the sub-
jects are selected.

We used balanced knowledge bases, which
contain samples with high and low scores.

Reduced Instrumentation Effect caused by the arti-
facts used for experiment
execution.

We validated the ontology with different
domain experts to check that the ontol-
ogy was well designed so that it did not
negatively affect the experiment.

External
Validity

Avoided Interaction of
selection and
treatment

This is the effect of not
having the experimental
setting or material
representative of
industrial practice.

We used the most recent version of the
Eclipse Modeling Framework to perform
the implementation.

Reduced We dealt with this threat in two ways, by
(1) using formats that are frequently lever-
aged to specify all kinds of different soft-
ware (e.g., MOF) and (2) designing and
developing the approach independently of
the domain. Nevertheless, the experiment
and its results should be replicated in more
domains before assuring their generaliza-
tion.

30 Marcén et al.

Construct
validity

Avoided Interaction
of different
treatments

There is no way to con-
clude whether the effect
is due to any of the treat-
ments or to a combina-
tion of treatments.

We separated the research into encod-
ings and machine learning techniques us-
ing RQs. Specifically, for RQ1, we used
the same machine learning technique, so
only the encodings are involved in answer-
ing RQ1. For RQ2, we used the best en-
coding for each technique, so only the ma-
chine learning techniques were involved in
answering RQ2. For RQ3, we used the
same encoding, so only the machine learn-
ing techniques were involved in answering
RQ3. In no case were the encodings eval-
uated at the same time as the machine
learning techniques, so there was no inter-
action between them.

8 Related Work

There are a number of approaches that can improve
developers’ effectiveness in locating features, which are
largely based upon source code [25,17,19,34,80,77]. For
feature location in source code, textual analysis is usu-
ally performed using three main techniques: pattern
matching, information retrieval, and natural language
processing [25,17]. Pattern matching algorithms are usu-
ally used to locate a pattern (also called strings) in
a source code through utilities such as the grep5 tool.
These utilities are mostly based on simplistic string pat-
tern detection (e.g., LIKE in SQL). Information retrieval
techniques, such as latent semantic indexing [24], latent
dirichlet allocation [11], and vector space model [81], are
statistical methods that are used to locate a feature tak-
ing into account the textual similarity between source
code documents and a query provided by a user. Nat-
ural language processing approaches can also exploit a
query, but they analyze the parts of speech of the words
used in source code [25].

Most of the approaches for feature location in source
code are based on machine learning techniques. The
work in [19] explores the use of a particular deep learn-
ing model, document vectors, for feature location. In
[34], a novel deep neural network that embeds code
snippets and natural language descriptions into a high-
dimensional vector space is proposed. The work in [80]
investigates the results of using an agglomerative hi-
erarchical clustering algorithm to identify code-topics.
In [77], the high dimensionality of the feature space is
reduced by applying latent dirichlet allocation, and K-
means clustering is used to cluster the related compo-
nents of the software system.

However, all these works focus on feature location in
source code. Since our work focuses on feature location
in models, the models are the main software artifacts.
Models raise the abstraction level using concepts that are

5 https://www.gnu.org/software/grep/manual/grep.html

much less bound to the underlying implementation and
technology and are much closer to the problem domain
[12]. There are only a few approaches that can locate
features based upon other artifacts such as models [48,
29,92,93,89,42,64].

Some of these approaches are also based on informa-
tion retrieval techniques and natural language processing
techniques. Lapeña et al. [48] analyze the impact of the
natural language processing techniques when they are
used to process feature descriptions and software arti-
facts for feature location in models. In [29], the approach
combines genetic algorithms and information retrieval
techniques to locate the features in models.

Other works focus on comparisons among the mod-
els for feature location in models. In [92], the feature is
located by automatically comparing the models to find
the common and the variable elements. The approach
proposed by Zhang et al. [92] is refined in [93] in order
to reduce the manual effort required in the formaliza-
tion of the feature realizations when new product models
are included in a product line. Wille et al. [89] propose
an approach to identify the variability between models,
which is based on an exchangeable metric for different
attributes of the models. Holthusen et al. [42] present
an improved approach for family mining that compares
blocks to determine the similarity between models. Mar-
tinez et al. [64] compare a set of model variants and iden-
tify commonality and variability in the form of what is
referred to as features.

All these approaches are based on the location of fea-
tures through different methods: information retrieval,
natural language processing, and comparisons of the
models. In contrast, our approach is based on machine
learning techniques, which allows resources such as the
manually located features that companies have gathered
to be exploited.

Moreover, there are some approaches that are based
on evolutionary algorithms [29,28]. Since the search
spaces (product models) are so large, it is impossible

Enhancing software model encoding for feature location approaches based on machine learning techniques 31

to thoroughly explore the space for possibilities. There-
fore, these approaches benefit from the evolutionary al-
gorithms to efficiently explore the possibilities (model
fragments). To guide the evolutionary algorithms, these
approaches use information retrieval techniques such as
latent semantic indexing. Thus, the information retrieval
techniques determine which model fragment is the best
realization of a feature.

In our work, we do not tackle the exploration of the
search spaces (product models); we only focus on deter-
mining which model fragment is the best realization of
a feature. To do this, instead of using information re-
trieval techniques, we use machine learning techniques.
This work focuses specifically on the identification of a
software model encoding for feature location approaches.

In order to find the recent works related to soft-
ware model encodings, we conducted a limited infor-
mal search of the literature. The query that was used to
look for related works was: What are the characteristics
usually used to encode software models in model driven
engineering? The search string used was the following:
”machine learning” AND (”software model” OR ”model
driven development” OR ”model driven engineering”)
AND (”encoding” OR ”feature vector” OR ”model em-
bedding”). The inclusion criterion was (IC1) papers that
describe the characteristics used. The exclusion criterion
was (EC1) papers that do not understand the term model
as an abstraction, e.g., the papers where the term model
means a reference used as an example to copy, follow, or
imitate. The search was run in December 2020 on Scopus
and ArXiv taking into account the title, keywords, and
abstract of the articles. We also completed the search
taking into account the works manually found, which
satisfy the inclusion and exclusion criteria. The works
selected from the set of papers retrieved by the search
were classified based on the type of characteristics used
in the encoding:

– Characteristics based on the shape of the model
elements (e.g., the number of connecting lines, the
rectangle size, or the alignment of a shape: vertical
or horizontal).

– Characteristics based on the type of the model
elements (e.g., the number of associations, aggre-
gations, compositions, and generalizations in a class
diagram).

8.1 Shape of the model elements

Our search string and search criteria found only one pa-
per by Ho-Quang et al. [41]. They propose 23 image-
characteristics and investigate the use of these charac-
teristics for the purpose of classifying Unified Modeling
Language (UML) class diagram images. They consider
that an automated system with the ability to classify
UML class diagram images would be very beneficial for
building a corpus of UML models. To do this, their paper

specifically aims at providing suitable characteristics and
classification algorithms to decide which images should
be considered as UML class diagrams and which images
should be left out.

The first difference between this work and ours is the
type of artifact that is encoded. While they encode im-
ages of UML class diagrams, we encode model fragments
that conform to MOF and feature descriptions that are
described using natural language. The second difference
between the two works is the goal. They provide a set
of suitable characteristics to identify what images corre-
spond to a UML class diagram; we provide a suitable set
of characteristics to locate features in models. Moreover,
the two encodings proposed in our work contain charac-
teristics that are based on the type of the model ele-
ments instead of being based on the shape of the model
elements as in [41].

8.2 Type of model element

Narawita and Vidanage [68] propose a system to obtain
elements of use cases and class diagrams. The purpose
of their research focuses on the automation of UML di-
agrams from the analyzed requirement text using nat-
ural language processing. To do this, they encode the
use cases and the class diagrams using characteristics
such as associations between use cases and actors (for
the uses cases) or associations between classes, aggre-
gations, compositions, and generalizations (for the class
diagrams).

Stikkolorum et al. [85] describe an exploratory study
on the application of machine learning for the grading of
UML class diagrams. They encoded the diagrams select-
ing a set of characteristics that are based on the class di-
agrams’ actual values (e.g., class name, attribute name,
or multiplicity value) and the UML element type them-
selves (e.g., class, operation, or association).

Our work differs from [68] and [85] because the en-
coded artifacts are model fragments and feature descrip-
tions instead of use cases and class diagrams. In addi-
tion, the characteristics of encoding used in these works
focus on use cases and class diagrams (e.g., associations
between use cases and actors or associations between
classes), so these characteristics cannot be used to en-
code other kinds of software models. In contrast, the two
encodings proposed in our work depend on an ontology,
but they do not depend on the kind of model.

Marcén et al. [60] propose an evolutionary ontologi-
cal encoding approach to enable machine learning tech-
niques to be used to perform software engineering tasks
in models. In that work, the encoding is based on an on-
tology and is used to encode model fragments and fea-
ture descriptions. The encoding proposed in [60] is the
source encoding for this work. In fact, [60] is our previ-
ous work, which is the starting point of the research and
the enhancement of software model encoding.

32 Marcén et al.

All the works found in the systematic search of the
literature are oriented towards encoding the models as
feature vectors. None of them takes into account the pos-
sibility of model embedding. The proposed encodings in
this work can be considered as input to model embedding
in the task of feature location. In addition, word embed-
ding is used to represent words in a continuous and mul-
tidimensional vector space, so that it is easy to calculate
the semantic similarity between words by calculating the
vector distance [53]. Similarly, the text in the feature de-
scriptions and model fragments can be embedded using
word embedding techniques. These techniques can even
be adapted to tackle the particularities of the models
(e.g., structural or behavioral details). These are lines of
research that can be explored as future work.

9 Conclusion and future work

In our previous works, we have proposed an approach
for feature location in models based on machine learning,
providing evidence that machine learning techniques can
obtain better results than other retrieval techniques for
feature location in models. In feature location in mod-
els, the encoding is essential to be able to obtain good
results using machine learning techniques. In this paper,
we have proposed two new software model encodings and
compared them to the source encoding.

The evaluation was based on two real-world case
studies, where the best results were achieved by the ap-
proach using the mapped encoding and RankBoost. In
fact, the approach using the mapped encoding and Rank-
Boost achieves better results than the two traditional
approaches in at least 72% of the cases for precision,
in at least 71% of the cases for recall, in at least 77%
of the cases for F-measure, and in at least 76% of the
cases for MCC. Since the mapped encoding is domain in-
dependent, it can be used in other software engineering
tasks that also perform searches in model fragments, e.g.,
traceability link recovery or bug location. As our system-
atic literature search shows, there are scarcely any works
about software model encodings and they depend on the
type of software model (e.g., UML class diagrams). Our
encoding can open the door for more researchers to ex-
plore whether machine learning can improve other engi-
neering tasks with software models.

In fact, the promising results of this work lead to in-
teresting research questions for the future, such as the
following: Can we achieve similar results in other do-
mains? ; Can we locate features in a domain using a dif-
ferent domain for training? ; Can the neural networks
outperform the RankBoost results with a larger knowl-
edge base? ; Can we obtain better results if we adapt more
characteristics from benchmark datasets for research on
Learning to Rank? ; Can we embed the models instead of
encoding them? ; Can a (domain) model created out of
the feature descriptions be a successful solution for fea-
ture location in models?. Therefore, in order to answer

some of these research questions and to test the external
validity of the results of this work, the next steps are
clear: 1) other knowledge bases with different sizes must
be tested; 2) the encodings must be enhanced through
other characteristics or perspectives; 3) other case stud-
ies must be tested in other domains.

Acknowledgements This work has been developed with
the financial support of the Spanish State Research
Agency and the Generalitat Valenciana under the projects
DataME TIN2016-80811-P, ALPS RTI2018-096411-B-I00,
ACIF/2018/171, and PROMETEO/2018/176 and co-
financed with ERDF.

References

1. Antoniol, G., Canfora, G., Casazza, G., De Lucia, A.,
Merlo, E.: Recovering Traceability Links between Code
and Documentation. IEEE Transactions on Software En-
gineering 28(10), 970–983 (2002)

2. Arcega, L., Font, J., Haugen, Ø., Cetina, C.: An Ap-
proach for Bug Localization in Models using two Levels:
Model and Metamodel. Software & Systems Modeling
pp. 1–26 (2019)

3. Arcuri, A., Briand, L.: A Hitchhiker’s Guide to Statisti-
cal Tests for Assessing Randomized Algorithms in Soft-
ware Engineering. Software Testing, Verification and Re-
liability 24(3), 219–250 (2014)

4. Arcuri, A., Fraser, G.: Parameter Tuning or Default
Values? An Empirical Investigation in Search-Based
Software Engineering. Empirical Software Engineering
18(3), 594–623 (2013)

5. B Le, T.D., Lo, D., Le Goues, C., Grunske, L.: A
learning-to-rank based fault localization approach using
likely invariants. In: Proceedings of the 25th Interna-
tional Symposium on Software Testing and Analysis, pp.
177–188. ACM, New York, USA (2016)

6. Ballaŕın, M., Marcén, A.C., Pelechano, V., Cetina, C.:
Measures to report the Location Problem of Model Frag-
ment Location. In: Proceedings of the 21th ACM/IEEE
International Conference on Model Driven Engineering
Languages and Systems, pp. 189–199. ACM, New York,
USA (2018)

7. Ballaŕın, M., Marcén, A.C., Pelechano, V., Cetina, C.:
On the influence of model fragment properties on a ma-
chine learning-based approach for feature location. In-
formation and Software Technology 129, 106,430 (2021)

8. Bergstra, J., Bengio, Y.: Random search for hyper-
parameter optimization. Journal of Machine Learning
Research 13(Feb), 281–305 (2012)

9. Beyranvand, P., Kucuktezcan, C.F., Cataltepe, Z., Genc,
V.M.I.: A Novel Feature Selection Method for the Dy-
namic Security Assessment of Power Systems Based on
Multi-Layer Perceptrons. International Journal of In-
telligent Systems and Applications in Engineering 6(1),
53–58 (2018)

10. Bianchini, M., Maggini, M., Jain, L.C. (eds.): Handbook
on Neural Information Processing, Intelligent Systems
Reference Library, vol. 49, 1 edn. Springer, Verlag Berlin
Heidelberg (2013)

Enhancing software model encoding for feature location approaches based on machine learning techniques 33

11. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet al-
location. Journal of machine Learning research 3(Jan),
993–1022 (2003)

12. Brambilla, M., Cabot, J., Wimmer, M.: Model-driven
software engineering in practice. Synthesis lectures on
software engineering 3(1), 1–207 (2017)

13. Cai, J., Luo, J., Wang, S., Yang, S.: Feature selection in
machine learning: A new perspective. Neurocomputing
300, 70–79 (2018)

14. Canuto, S.D., Belém, F.M., Almeida, J.M., Gonçalves,
M.A.: A Comparative Study of Learning-to-Rank Tech-
niques for Tag Recommendation. Journal of Information
and Data Management 4(3), 453 (2013)

15. Cao, Z., Tian, Y., Le, T.D.B., Lo, D.: Rule-Based Specifi-
cation Mining Leveraging Learning to Rank. Automated
Software Engineering 25(3), 501–530 (2018)

16. Chandrashekar, G., Sahin, F.: A Survey on Feature Se-
lection Methods. Computers & Electrical Engineering
40(1), 16–28 (2014)

17. Chochlov, M., English, M., Buckley, J.: A historical, tex-
tual analysis approach to feature location. Information
and Software Technology 88, 110–126 (2017)

18. Conover, W.: Practical Nonparametric Statistics, 3rd
edn Wiley. New York pp. 250–257 (1999)

19. Corley, C.S., Damevski, K., Kraft, N.A.: Exploring the
Use of Deep Learning for Feature Location. In: 2015
IEEE International Conference on Software Maintenance
and Evolution (ICSME), pp. 556–560. IEEE Computer
Society, Washington, USA (2015)

20. Cruz, D., Figueiredo, E., Martinez, J.: A Literature Re-
view and Comparison of Three Feature Location Tech-
niques using ArgoUML-SPL. In: Proceedings of the
13th International Workshop on Variability Modelling of
Software-Intensive Systems, p. 16. ACM (2019)

21. Dang, V.: The Lemur Project - Wiki - RankLib. http://
sourceforge.net/p/lemur/wiki/RankLib/ (2013). [On-
line; accessed April-2017]

22. De Lucia, A., Fasano, F., Oliveto, R., Tortora, G.: En-
hancing an Artefact Management System with Traceabil-
ity Recovery Features. In: Proceedings of the 20th IEEE
International Conference on Software Maintenance, pp.
306–315. IEEE (2004)

23. De Lucia, A., Fasano, F., Oliveto, R., Tortora, G.:
Can Information Retrieval Techniques effectively sup-
port Traceability Link Recovery? In: 14th IEEE Interna-
tional Conference on Program Comprehension, pp. 307–
316. IEEE (2006)

24. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer,
T.K., Harshman, R.: Indexing by latent semantic anal-
ysis. Journal of the American society for information
science 41(6), 391–407 (1990)

25. Dit, B., Revelle, M., Gethers, M., Poshyvanyk, D.: Fea-
ture location in source code: a taxonomy and survey.
Journal of Software: Evolution and Process 25(1), 53–
95 (2013)

26. DL4J: Deeplearning4j Suite Overview. https://

deeplearning4j.konduit.ai/. [Online; accessed 29-
July-2021]

27. Engelbrecht, A.P.: Computational Intelligence: An Intro-
duction, 2nd edn. Wiley Publishing, Chichester, England
(2007)

28. Font, J., Arcega, L., Haugen, Ø., Cetina, C.: Feature Lo-
cation in Model-Based Software Product Lines Through

a Genetic Algorithm. In: Proceedings of the 15th Inter-
national Conference on Software Reuse: Bridging with
Social-Awareness, pp. 39–54. Springer, Verlag Berlin Hei-
delberg (2016)

29. Font, J., Arcega, L., Haugen, Ø., Cetina, C.: Feature
location in models through a genetic algorithm driven
by information retrieval techniques. In: Proceedings of
the ACM/IEEE 19th International Conference on Model
Driven Engineering Languages and Systems, pp. 272–282
(2016)

30. Frakes, W.B., Baeza-Yates, R.: Information Retrieval:
Data Structures and Algorithms (1992)

31. Freund, Y., Iyer, R., Schapire, R.E., Singer, Y.: An Ef-
ficient Boosting Algorithm for Combining Preferences.
Journal of machine learning research 4(Nov), 933–969
(2003)

32. Garćıa, S., Fernández, A., Luengo, J., Herrera, F.: Ad-
vanced Nonparametric Tests for Multiple Comparisons
in the Design of Experiments in Computational Intelli-
gence and Data Mining: Experimental Analysis of Power.
Information Sciences 180(10), 2044–2064 (2010)

33. Glorot, X., Bengio, Y.: Understanding the difficulty of
training deep feedforward neural networks. In: Proceed-
ings of the thirteenth international conference on arti-
ficial intelligence and statistics, pp. 249–256. JMLR.org
(2010)

34. Gu, X., Zhang, H., Kim, S.: Deep Code Search. In: 2018
IEEE/ACM 40th International Conference on Software
Engineering (ICSE), pp. 933–944. ACM, New York, USA
(2018)

35. Guo, J., Cheng, J., Cleland-Huang, J.: Semantically
Enhanced Software Traceability using Deep Learning
Techniques. In: Software Engineering (ICSE), 2017
IEEE/ACM 39th International Conference on, pp. 3–14.
IEEE, IEEE Press Piscataway, New Jersey, USA (2017)

36. Guyon, I., Elisseeff, A.: An introduction to variable and
feature selection. Journal of machine learning research
3(Mar), 1157–1182 (2003)

37. Haiduc, S., Bavota, G., Oliveto, R., De Lucia, A., Mar-
cus, A.: Automatic query performance assessment during
the retrieval of software artifacts. In: 2012 Proceedings
of the 27th IEEE/ACM International Conference on Au-
tomated Software Engineering, pp. 90–99. ACM, New
York, USA (2012)

38. Hastie, T., Tibshirani, R., Friedman, J.: The elements of
statistical learning: data mining, inference, and predic-
tion. Springer Science & Business Media (2009)

39. Haugen, Ø., Møller-Pedersen, B., Oldevik, J., Olsen,
G.K., Svendsen, A.: Adding standardized variability to
domain specific languages. In: 2008 12th International
Software Product Line Conference, pp. 139–148. IEEE
(2008)

40. Haykin, S.: Neural Networks: a Comprehensive Founda-
tion. Prentice Hall PTR, New Jersey, USA (1994)

41. Ho-Quang, T., Chaudron, M.R., Samúelsson, I., Hjalta-
son, J., Karasneh, B., Osman, H.: Automatic classifica-
tion of UML class diagrams from images. In: 2014 21st
Asia-Pacific Software Engineering Conference, vol. 1,
pp. 399–406. IEEE Computer Society, Washington, USA
(2014)

42. Holthusen, S., Wille, D., Legat, C., Beddig, S., Schaefer,
I., Vogel-Heuser, B.: Family Model Mining for Function

http://sourceforge.net/p/lemur/wiki/RankLib/
http://sourceforge.net/p/lemur/wiki/RankLib/
https://deeplearning4j.konduit.ai/
https://deeplearning4j.konduit.ai/

34 Marcén et al.

Block Diagrams in Automation Software. In: 18th Inter-
national Software Product Lines Conference, pp. 36–43.
ACM, New York, USA (2014)

43. Hornik, K., Stinchcombe, M., White, H.: Multilayer
Feedforward Networks are Universal Approximators.
Neural networks 2(5), 359–366 (1989)

44. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Pe-
terson, A.S.: Feature-Oriented Domain Analysis (FODA)
Feasibility Study. Tech. rep., DTIC Document (1990)

45. Kıraç, M.F., Aktemur, B., Sözer, H.: VISOR: A Fast Im-
age Processing Pipeline with Scaling and Translation In-
variance for Test Oracle Automation of Visual Output
Systems. Journal of Systems and Software 136, 266–277
(2018)

46. Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter,
S.: Self-normalizing Neural Networks. In: Advances in
neural information processing systems, pp. 971–980. Cur-
ran Associates Inc., USA (2017)

47. Landauer, T.K., Foltz, P.W., Laham, D.: An Introduc-
tion to Latent Semantic Analysis. Discourse Processes
25(2-3), 259–284 (1998)

48. Lapeña, R., Font, J., Pastor, Ó., Cetina, C.: Analyzing
the Impact of Natural Language Processing over Feature
Location in Models. ACM SIGPLAN Notices 52(12),
63–76 (2017)

49. Lapeña, R., Pérez, F., Cetina, C., Pastor, Ó.: Improving
Traceability Links Recovery in Process Models Through
an Ontological Expansion of Requirements. In: Inter-
national Conference on Advanced Information Systems
Engineering, pp. 261–275. Springer, Verlag Berlin Hei-
delberg (2019)

50. Lavesson, N., Davidsson, P.: Quantifying the impact of
learning algorithm parameter tuning. In: Proceedings,
The Twenty-First National Conference on Artificial In-
telligence and the Eighteenth Innovative Applications
of Artificial Intelligence Conference, July 16-20, 2006,
Boston, Massachusetts, USA, vol. 6, pp. 395–400. AAAI
Press, California, USA (2006)

51. Lee, K., Kang, K.C., Lee, J.: Concepts and Guidelines of
Feature Modeling for Product Line Software Engineer-
ing. In: International Conference on Software Reuse, pp.
62–77. Springer, Verlag Berlin Heidelberg (2002)

52. Leech, G., Garside, R., Bryant, M.: CLAWS4: the Tag-
ging of the British National Corpus. In: Proceedings
of the 15th Conference on Computational Linguistics -
Volume 1, pp. 622–628. Association for Computational
Linguistics (1994)

53. Li, C., Ji, L., Yan, J.: Acronym disambiguation using
word embedding. In: Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, pp. 4178–
4179 (2015)

54. Liu, D., Marcus, A., Poshyvanyk, D., Rajlich, V.: Fea-
ture location via information retrieval based filtering of
a single scenario execution trace. In: Proceedings of
the twenty-second IEEE/ACM international conference
on Automated software engineering, pp. 234–243. ACM,
New York, NY, USA (2007)

55. Lucia, A.D., Fasano, F., Oliveto, R., Tortora, G.: Re-
covering Traceability Links in Software Artifact Man-
agement Systems using Information Retrieval Meth-
ods. ACM Transactions on Software Engineering and
Methodology (TOSEM) 16(4), 13 (2007)

56. Lucia, D., et al.: Information Retrieval Models for Recov-
ering Traceability Links between Code and Documenta-
tion. In: Proceedings of the International Conference on
Software Maintenance, pp. 40–49. IEEE (2000)

57. Manning, C.D., Raghavan, P., Schütze, H., et al.: In-
troduction to Information Retrieval, vol. 1. Cambridge
University Press (2008)

58. Marcén, A.C., Font, J., Pastor, O., Cetina, C.: Towards
Feature Location in Models through a Learning to Rank
Approach. In: Proceedings of the 21st International Sys-
tems and Software Product Line Conference, SPLC 2017,
Volume B, Sevilla, Spain, September 25-29, 2017, pp. 57–
64. AC, New York, U (2017)

59. Marcén, A.C., Lapeña, R., Pastor, Ó., Cetina, C.: Trace-
ability link recovery between requirements and models
using an evolutionary algorithm guided by a learning
to rank algorithm: Train control and management case.
Journal of Systems and Software p. 110519 (2020)

60. Marcén, A.C., Pérez, F., Cetina, C.: Ontological Evolu-
tionary Encoding to Bridge Machine Learning and Con-
ceptual Models: Approach and Industrial Evaluation. In:
International Conference on Conceptual Modeling, pp.
491–505. Springer, New York, USA (2017)

61. Marcus, A., Maletic, J.I.: Recovering Documentation-
to-Source-Code Traceability Links using Latent Seman-
tic Indexing. In: Proceedings of the 25th International
Conference on Software Engineering, pp. 125–135. IEEE
(2003)

62. Marcus, A., Sergeyev, A., Rajlich, V., Maletic, J.: An
Information Retrieval Approach to Concept Location
in Source Code. In: Proceedings of the 11th Working
Conference on Reverse Engineering, pp. 214–223 (2004).
DOI 10.1109/WCRE.2004.10

63. Martinez, J., Ziadi, T., Bissyandé, T.F., Klein, J., Traon,
Y.L.: Bottom-up Adoption of Software Product Lines: a
Generic and Extensible Approach. In: Proceedings of
the 19th International Conference on Software Product
Lines, pp. 101–110. ACM, New York, USA (2015)

64. Martinez, J., Ziadi, T., Klein, J., Le Traon, Y.: Identify-
ing and visualising commonality and variability in model
variants. In: European Conference on Modelling Foun-
dations and Applications, pp. 117–131. Springer (2014)

65. Matthews, B.W.: Comparison of the predicted and
observed secondary structure of t4 phage lysozyme.
Biochimica et Biophysica Acta (BBA)-Protein Structure
405(2), 442–451 (1975)

66. Meziane, F., Athanasakis, N., Ananiadou, S.: Generating
Natural Language Specifications from UML Class Dia-
grams. Requirements Engineering 13(1), 1–18 (2008)

67. Moreira, C., Calado, P., Martins, B.: Learning to Rank
Experts in Academic Digital Libraries. In: 15th Por-
tuguese Conference on Artificial Intelligence, EPIA, Lis-
bon, Portugal (2011)

68. Narawita, C.R., Vidanage, K.: UML generator-an auto-
mated system for model driven development. In: 2016
Sixteenth International Conference on Advances in ICT
for Emerging Regions (ICTer), pp. 250–256. IEEE Com-
puter Society, Washington, USA (2016)

69. Nie, F., Zhu, W., Li, X.: Unsupervised Feature Selec-
tion with Structured Graph Optimization. In: Thirtieth
AAAI conference on artificial intelligence, pp. 1302–1308.
AAAI Press, California, USA (2016)

Enhancing software model encoding for feature location approaches based on machine learning techniques 35

70. Oliveto, R., Gethers, M., Poshyvanyk, D., De Lucia, A.:
On the Equivalence of Information Retrieval Methods
for Automated Traceability Link Recovery. In: 18th In-
ternational Conference on Program Comprehension, pp.
68–71. IEEE (2010)

71. Pérez, F., Lapeña, R., Font, J., Cetina, C.: Fragment
Retrieval on Models for Model Maintenance: Apply-
ing a Multi-objective Perspective to an Industrial Case
Study. Information and Software Technology 103, 188–
201 (2018)

72. Poshyvanyk, D., Gueheneuc, Y.G., Marcus, A., Antoniol,
G., Rajlich, V.: Feature location using probabilistic rank-
ing of methods based on execution scenarios and infor-
mation retrieval. IEEE Transactions on Software Engi-
neering 33(6), 420–432 (2007)

73. Potvin, C., Roff, D.A.: Distribution-free and robust sta-
tistical methods: viable alternatives to parametric statis-
tics. Ecology 74(6), 1617–1628 (1993)

74. Qin, T., Liu, T.Y.: Introducing LETOR 4.0
Datasets. Computing Research Repository (CoRR)
abs/1306.2597 (2013)

75. Qin, T., Liu, T.Y., Xu, J., Li, H.: LETOR: A Benchmark
Collection for Research on Learning to Rank for Infor-
mation Retrieval. Information Retrieval 13(4), 346–374
(2010)

76. Qin, T., Tao Qin, T.Y.L.: Microsoft Learning to
Rank Datasets. https://www.microsoft.com/en-us/

research/project/mslr/ (2010). [Online; accessed 23-
Jun-2019]

77. Rani, A.B., Kamal, A.N.B.: Text mining to concept min-
ing: Leads feature location in software system. In: 2018
IEEE International Conference on Computational Intel-
ligence and Computing Research (ICCIC), pp. 1–7. IEEE
(2018)

78. Refaeilzadeh, P., Tang, L., Liu, H.: Cross-Validation.
In: Encyclopedia of database systems, pp. 532–538.
Springer, Verlag Berlin Heidelberg (2009)

79. Rubin, J., Chechik, M.: A survey of feature location tech-
niques. In: Domain Engineering, pp. 29–58. Springer,
Verlag Berlin Heidelberg (2013)

80. Salman, H.E., Seriai, A., Dony, C.: Feature Location in
a Collection of Product Variants: Combining Informa-
tion Retrieval and Hierarchical Clustering. In: The 26th
International Conference on Software Engineering and
Knowledge Engineering, pp. 426–430 (2014)

81. Salton, G., McGill, M.J.: Introduction to Modern Infor-
mation Retrieval (1986)

82. Shabtai, A., Moskovitch, R., Elovici, Y., Glezer, C.: De-
tection of Malicious Code by Applying Machine Learning
Classifiers on Static Features: A State-of-the-Art Survey.
information security technical report 14(1), 16–29 (2009)

83. Song, Q., Jia, Z., Shepperd, M., Ying, S., Liu, J.: A Gen-
eral Software Defect-Proneness Prediction Framework.
IEEE Transactions on Software Engineering 37(3), 356–
370 (2011)

84. Spanoudakis, G., Zisman, A., Pérez-Minana, E., Krause,
P.: Rule-Based Generation of Requirements Traceability
Relations. Journal of Systems and Software 72(2), 105–
127 (2004)

85. Stikkolorum, D.R., Putten, P.V.D., Sperandio, C., Chau-
dron, M.: Towards automated grading of uml class dia-
grams with machine learning. In: BNAIC/BENELEARN
(2019)

86. Team, D., et al.: Deeplearning4j: Open-source Dis-
tributed Deep Learning for the JVM. Apache Software
Foundation License 2 (2016)

87. Vargha, A., Delaney, H.D.: A Critique and Improvement
of the CL Common Language Effect Size Statistics of
McGraw and Wong. Journal of Educational and Behav-
ioral Statistics 25(2), 101–132 (2000)

88. Wang, J., Zhao, P., Hoi, S.C., Jin, R.: Online Feature
Selection and its Applications. IEEE Transactions on
Knowledge and Data Engineering 26(3), 698–710 (2014)

89. Wille, D., Holthusen, S., Schulze, S., Schaefer, I.: Inter-
face Variability in Family Model Mining. In: 17th Inter-
national Software Product Line Conference, pp. 44–51.
ACM, New York, USA (2013)

90. Winkler, S., Pilgrim, J.: A Survey of Traceability in Re-
quirements Engineering and Model-Driven Development.
Software and Systems Modeling (SoSyM) 9(4), 529–565
(2010)

91. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Reg-
nell, B., Wesslén, A.: Experimentation in Software En-
gineering. Springer Science & Business Media, address
= Berlin/Heidelberg, Germany Berlin/Heidelberg, Ger-
many (2012)

92. Zhang, X., Haugen, Ø., Møller-Pedersen, B.: Model Com-
parison to Synthesize a Model-Driven Software Product
Line. In: Proceedings of the 15th International Confer-
ence on Software Product Lines, pp. 90–99. IEEE Com-
puter Society, Washington, USA (2011)

93. Zhang, X., Haugen, Ø., Møller-Pedersen, B.: Augmenting
Product Lines. In: 19th Asia-Pacific Software Engineer-
ing Conference, vol. 1, pp. 766–771. IEEE, New Jersey,
US (2012)

94. Zheng, L., Wang, H., Gao, S.: Sentimental Feature Se-
lection for Sentiment Analysis of Chinese Online Re-
views. Int. J. Machine Learning & Cybernetics 9(1),
75–84 (2018)

95. Zhou, Z.H., Feng, J.: Deep Forest: Towards an Alterna-
tive to Deep Neural Networks. In: Proceedings of the
Twenty-Sixth International Joint Conference on Artifi-
cial Intelligence, IJCAI 2017, Melbourne, Australia, Au-
gust 19-25, 2017, vol. 1, pp. 3553–3559. ijcai.org, Marina
del Rey, California (2017)

Ana C. Marcén received
the Ph.D. degree in computer
science from the Universitat
Politècnica de València. She is
currently an Associate Professor
with the SVIT Research Group,
Universidad San Jorge. She
publishes her research results
and participates in high qual-
ity international software engi-
neering conferences and jour-

nals, such as the Conceptual Modeling (MoDELS) con-
ference, the Information and Software Technology (IST)
journal, and the Journal of Systems and Software (JSS).
Her current research interests include model-driven de-
velopment, feature location, traceability link recovery,
and machine learning.

https://www.microsoft.com/en-us/research/project/mslr/
https://www.microsoft.com/en-us/research/project/mslr/

36 Marcén et al.

Francisca Pérez is Associate
Professor in the SVIT Research
Group (https://svit.usj.es) at
San Jorge University. She re-
ceived a PhD in Computer Sci-
ence from the Polytechnic Uni-
versity of Valencia. Her re-
search interests include Model-
Driven Development, Collab-
orative Information Retrieval,
Search-Based Software Engi-

neering, and Variability Modeling. She publishes her
research results and participates in high-level interna-
tional software engineering conferences and journals,
such as IEEE Transactions on Software Engineering
(TSE), the Automated Software Engineering (AUSE)
journal, the Information & Software Technology (IST)
journal, and the Journal of Systems and Software (JSS).
More about Pérez and her work is available online at
http://franciscaperez.com.

Óscar Pastor is currently a
Full Professor and the Direc-
tor of the PROS Research Cen-
ter, Universitat Politècnica de
València, Spain. With a strong
background in Conceptual Mod-
eling, Model-driven Develop-
ment and their practical appli-
cations in Information Systems
design and development, he is

currently leading a multidisci-
plinary project linking information systems and bioin-
formatics to designing and implementing tools for con-
ceptual modeling-based interpretation of the Human
Genome information.

Carlos Cetina received the
Ph.D. degree in computer sci-
ence from the Polytechnic Uni-
versity of Valencia. He is cur-
rently an Associate Professor
with Universidad San Jorge and
the Head of the SVIT Research
Group. His research interests in-
clude software product lines and
model-driven development. His
research results have reshaped

software development in world-leader industries from
heterogeneous domains ranging from induction hob
firmware to train control and management systems.
More information about his background can be found
at his website: http://carloscetina.com.

	Introduction
	Background and motivation
	Encodings
	Evaluation
	Statistical Analysis
	Discussion
	Threats to Validity
	Related Work
	Conclusion and future work

