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Abstract

Context: Traceability Links Recovery (TLR), Bug Localization (BL), and Feature Location (FL) are
amongst the most relevant tasks performed during software maintenance. However, most research in the
field targets code, while models have not received enough attention yet.

Objective: This paper presents our approach (FROM, Fragment Retrieval on Models) that uses an
Evolutionary Algorithm to retrieve the most relevant model fragments for three different types of input
queries: natural language requirements for TLR, bug descriptions for BL, and feature descriptions for FL.

Method: FROM uses an Evolutionary Algorithm that generates model fragments through genetic opera-
tions, and assesses the relevance of each model fragment with regard to the provided query through a fitness
configuration. We analyze the influence that four fitness configurations have over the results of FROM,
combining three objectives: Similitude, Understandability, and Timing. To analyze this, we use a real-world
case study from our industrial partner, which is a worldwide leader in train manufacturing. We record the
results in terms of recall, precision, and F-measure. Moreover, results are compared against those obtained
by a baseline, and a statistical analysis is performed to provide evidences of the significance of the results.

Results: The results show that FROM can be applied in our industrial case study. Also, the results show
that the configurations and the baseline have significant differences in performance for TLR, BL, and FL
tasks. Moreover, our results show that there is no single configuration that is powerful enough to obtain the
best results in all tasks.

Conclusions: The type of task performed (TLR, BL, and FL) during the retrieval of model fragments has
an actual impact on the results of the configurations of the Evolutionary Algorithm. Our findings suggest
which configuration offers better results as well as the objectives that do not contribute to improve the
results.

Keywords: Conceptual Models, Traceability Links Recovery, Bug Localization, Feature Location,
Evolutionary Algorithms

1. Introduction

*Corresponding author. Tel.: +34 976060100 Amongst the most common and relevant tasks in

Email addresses: mfperezQusj.es (Francisca Pérez), the Software Engineering field, especially when main-

rlapenausj.es (Raiil Lapena), jfontQusj.es (Jaime Font), taining software products, are Traceability Links Re-
ccetina@usj.es (Carlos Cetina) R ’ Y A

covery, Bug Localization, and Feature Location [1, 2,

3, 4]. To tackle these tasks, Information Retrieval

Preprint submitted to Information and Software Technology June 23, 2018



(IR) techniques, such as Latent Semantic Indexing
(LSI) [5, 6], have been used successfully [7, 8]. How-
ever, most research targets code [4, 3, 9], neglect-
ing other software artifacts such as models. Mod-
els raise the abstraction level using concepts that are
much less bound to the underlying implementation
and technology and are much closer to the problem
domain [10]. The practice of Model Driven Engineer-
ing has proved to increase efficiency and effectiveness
in software development [10].

To increase the automation level when Traceabil-
ity Links Recovery, Bug Localization and Feature
Location are performed over models, we propose
an approach named Fragment Retrieval on Models
(FROM). Our approach uses a Multi-Objective Evo-
lutionary Algorithm to retrieve the most relevant
model fragments for different types of queries (natu-
ral language requirements for Traceability Links Re-
covery, bug descriptions for Bug Localization, and
feature descriptions for Feature Location). To guide
the Evolutionary Algorithm, we use three fitness ob-
jectives: Model Similitude through Latent Seman-
tic Indexing (LSI) [5, 6], Model Understandability
through Model Size [11, 12], and Model Timing
through the Defect Principle [13, 14].

Moreover, we combine the three objectives into a
total of four configurations: (1) Similitude, (2) Simil-
itude + Understandability, (3) Similitude 4+ Timing,
and (4) Similitude + Understandability + Timing.
We analyze the impact of each configuration on the
results of the Evolutionary Algorithm for Traceabil-
ity Links Recovery, Bug Localization, and Feature
Location. In order to carry out this analysis, we use
the models, natural language requirements, bug de-
scriptions, and feature descriptions, all of them from
a real-world case study provided by our industrial
partner, Construcciones y Auxiliar de Ferrocarriles
(CAF)!, which is a worldwide leader in train manu-
facturing.

We record the results of the Evolutionary Algo-
rithm for each configuration and the baseline for each
type of query in terms of recall, precision, and F-
measure. Also, results are compared against those
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obtained by a baseline in order to put FROM in per-
spective of previous works. The baseline retrieves
model fragments using model comparisons among
models instead of using an evolutionary algorithm or
LSI. Our findings reveal that there is not a unique
configuration of objectives that retrieves the best re-
sults for all of queries. In other words, the usage of
different fitness objectives configurations is required
to optimize the results of the Evolutionary Algorithm
for either Traceability Links Recovery, Bug Localiza-
tion, or Feature Location. In addition, we provide
evidences of the significance of the results by means
of statistical analysis.

The rest of the paper is structured as follows: Sec-
tion 2 presents a motivating example. Section 3
presents our approach. Section 4 describes the evalu-
ation, the results, and the statistical analysis. Section
5 discusses the results. Section 6 presents the threats
to validity. Section 7 reviews the related work. Fi-
nally, Section 8 concludes the paper.

2. Motivating Example

Despite Model-Driven Development has not had
the expected widespread success so far, major play-
ers in the software engineering field (i.e., tool ven-
dors, researchers, and enterprise software developers)
foresee a broad adoption of model-driven techniques
because of scenarios that demand more abstract ap-
proaches than mere coding [10]. Fostering modeling
efforts brings benefits in industrial contexts in order
to improve productivity, while ensuring quality and
performance [10].

In a model-driven industrial context, companies
tend to have a myriad of products with large and
complex models behind. The models are created
and maintained over long periods of time by differ-
ent software engineers, and the engineers in charge of
the maintenance tasks (Traceability Links Recovery,
Bug Localization, and Feature Location) often lack
knowledge over the entirety of the product details.
Under these conditions, maintenance tasks consume
high amounts of time and effort, without guarantee-
ing good results. Our industrial partner reported per-
forming the maintenance tasks manually at least 25



times per week, costing them a total monthly amount
of working time ranging from 43.3 to 66.7 hours.

Figure 1 depicts a model example, taken from a
real-world train, specified using the Domain Specific
Language (DSL) that formalizes the train control
and management of the products manufactured by
our industrial partner. The DSL has the expressive-
ness required to describe both the interaction be-
tween the main pieces of installed equipment, and
the non-functional aspects related to regulation. It
will be used through the rest of the paper to present
a running example. For the sake of understandability
and legibility, and due to intellectual property rights
concerns, we present an equipment-focused simplified
subset of the DSL.

Specifically, the example of the figure presents a
converter assistance scenario where two pantographs
(High Voltage Equipment) collect energy from the
overhead wires, and send it to their respective cir-
cuit breakers (Contactors), which in turn send it to
their independent Voltage Converters. The convert-
ers then power their assigned Consumer Equipment:
the HVAC on the left (air conditioning system), and
the PA (public address system) and CCTV (televi-
sion system) on the right.
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Figure 1: Example of model and model fragment

The elements of Figure 1 highlighted in gray con-
form an example model fragment, including one cir-
cuit breaker that connects Converter 2 to a Consumer
Equipment assigned to Converter 1. This model frag-
ment is the realization of the ’converter assistance’
feature, which allows the passing of current from one
converter to equipment assigned to its peer for cover-
age in case of overload or failure of the first converter.

A model fragment (which always belongs to a par-
ent model) is encoded as a string of binary values
that contains as many positions as elements in the
parent model, where each position in the string has
two possible values: 0 in case the element does not
appear in the fragment, or 1 in case the element does
appear in the fragment. In Figure 1, elements Q,
R, and S conform the model fragment, so the cor-
responding values are set to ’1’ in its binary string
representation.

Although it may appear easy to locate the ’con-
verter assistance’ feature in the model, it becomes
very complex in the models of our industrial part-
ner where each train unit is specified through several
thousand elements. According to our industrial part-
ner, software engineers who belonged to the original
team of modelers and who work on a monthly basis
with the product involved in the example, are able to
locate the feature in around 26 minutes. Another en-
gineer, not related to the project but with knowledge
of the products in the company, spent 34 minutes on
the same task. Finally, two newcomer modelers spent
around 40 minutes of combined work until they ful-
filled the task, but they did so in a non-accurate man-
ner. Considering these numbers, an approach that
automatically retrieves model fragments is strongly
needed.

3. Approach

The goal of the presented approach, FROM (Frag-
ment Retrieval On Models), is to use an Evolutionary
Algorithm to retrieve model fragments for Traceabil-
ity Links Recovery, Bug Localization, and Feature
Location. In addition, we use different combinations
of fitness objectives as fitness function for the Evo-
lutionary Algorithm in FROM in order to establish



which combination of objectives guides FROM to the
best results.

Figure 2 shows an overview of FROM. The top part
of the figure highlights the inputs (the three possi-
ble types of Natural Language (NL) queries and the
models where the model fragment must be retrieved),
the middle part shows the steps of the Evolutionary
Algorithm (including the Fitness Objectives within
the Fitness Function), and the bottom part presents
the four Fitness Objective Configurations considered
through this work.

Queries: (1) Traceability Link Recovery (2) Bug Location (3) Feature Location

Models
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Figure 2: Overview of the approach and configurations

3.1. Queries

In FROM, we consider Traceability Links Recov-
ery, Bug Localization, and Feature Location.

1) Traceability Links Recovery: The function-
ality of software products refers to what tasks a prod-
uct should be able to carry out, and also to how those

tasks should be carried out. It is described through
specifications, which usually take the shape of NL
requirements documents. The objective of Traceabil-
ity Links Recovery among requirements and models
is to establish the model fragment that implements
a particular NL requirement. For Traceability Links
Recovery, the input query is a NL requirement, for
which the model fragment must be retrieved. For ex-
ample, a functional requirement of our case study is:
"The PLC will inhibit the connection with the pan-
tograph whenever the lowering button in the active
cabin is pushed, as long as the pantograph is in closed
state and more than five seconds have passed after the
closing of the circuit breaker, being the doors off’.

2) Bug Localization: When errors manifest in
the expected functionality of a product, software en-
gineers create bug report documents or incidence
tickets, which adopt the form of NL descriptions of
the errors. The objective of Bug Localization is to
identify the model fragment that causes a particular
error in a product model in order to fix it. For Bug
Localization, the input query is one of the error de-
scriptions. For example, a bug description taken from
our case study is: ’'In case of failure of the second con-
verter, the third converter is expected to deviate 50%
of its power to the HVAC within 2 seconds, but the
converter assistance scenario does not activate’.

3) Feature Location: The term ’feature’ refers
to a particular characteristic that a product may in-
clude. The presence or absence of a characteristic
in a product, in that sense, entails the existence of
different product configurations. Feature Location
is concerned with identifying software artifacts (in
our case, model fragments) associated with such spe-
cific characteristics. For Feature Location, the input
query is the description of a feature in NL. For exam-
ple, a feature taken from our case study is: ’Enabled
Cabin Detection: the system will automatically de-
termine the cabin in use through the presence of a
key in the control desk, and will automatically set it
as the Enabled Cabin from which the train will be
controlled’.

3.2. Evolutionary Algorithm

Our approach relies on a Multi-Objective Evolu-
tionary Algorithm (MOEA) [15] that iterates over



model fragments, modifying them using genetic op-
erations. In a previous work [16], domain experts
were requested to limit the search space by choos-
ing a subset of the models, or by providing restric-
tions of elements that do not have to appear in the
solutions. However, the search space was still very
large (a model of 500 elements can yield around 10%°
potential fragments). Evolutionary algorithms have
obtained good results by addressing similar problems
with large search spaces, so we have chosen to use an
evolutionary algorithm. The output of the approach
is a model fragment ranking for the input Traceability
Links Recovery, Bug Localization, or Feature Loca-
tion query. The MOEA runs in three steps:

1) Initialization: The first step of our approach
is to, from the product models, generate a popula-
tion of model fragments that serves as input for the
genetic algorithm. In order to generate the popula-
tion of model fragments, parts of the models are ex-
tracted randomly and added to a collection of model
fragments.

In order to generate a random model fragment, we
designed algorithm 1 (see Appendix A). The algo-
rithm first selects a random initial model element E.
Then, using E, a new model fragment F is created.
In addition, a second element N, neighbor to E, is
taken. A wvalid neighbor N is an element that is di-
rectly connected to E. In case there is more than one
possible neighbor element, one of the possible neigh-
bors is randomly chosen. Then, a random number of
iterations are performed.

Notice that, due to the neighbor selection process,
the algorithm returns a model fragment built with
a subset of elements from the parent model which
are contiguously connected. This algorithm only pro-
duces fragments that are part of the original model,
it does not create new elements, and the resulting
model fragments keeps the conformance to the meta-
model.

2) Genetic Operations: The second step of our
approach is to generate a set of model fragments
that could realize the provided Traceability Links Re-
covery, Bug Localization, or Feature Location query.
The generation of new model fragments, based on
existing ones, is done by applying a set of two ge-
netic operators adapted to work over model frag-

ments: crossover, and mutation. Both are further
described in the following paragraphs.

The crossover operation [17] enables the cre-
ation of a new individual by combining the genetic
material from two parent model fragments. The
crossover operation takes the model fragment from
the first parent and the model from the second par-
ent, and generates a new individual that contains ele-
ments from both parents through model comparisons.
If the comparison finds the first model fragment in the
second model, the operation creates a new individual
with the model fragment taken from the first parent
but referencing the product model from the second
parent. Otherwise, the crossover returns the first par-
ent unchanged. This operation broadens the search
space to different models. The model fragments from
the first parent and the new individual will be the
same but, since parent and child can reference dif-
ferent models, they will often mutate differently and
provide different individuals in further generations.
The algorithm of this operation is outlined in Algo-
rithm 2 (available in Appendix A).

The upper part of Figure 3 shows an example of the
application of the crossover operation. First, we se-
lect the two parents to which the operator is applied.
Then, the model fragment inside the first parent is
compared with the second parent. Since the compar-
ison is able to find the model fragment in the second
parent, the process creates a new individual with the
model fragment, referencing the second parent.

The mutation operator [18] is used to imitate
the mutations that randomly occur in nature when
new individuals are born. That is, new individuals
hold small differences with their parents that could
make them adapt better (or worse) to their living
environment. Following this idea, the mutation op-
erator applied to model fragments takes as input a
model fragment and mutates it into a new one, which
is returned as output. As the approach is looking for
fragments of a product model that realize a particu-
lar feature, the new modified fragment must remain
a part of the product model. Therefore, the modifi-
cations that can be done to the model fragment must
be driven by the product model.

In particular, the mutation operator can perform
two distinct modifications: addition of elements to



the model fragment, or removal of elements from the
model fragment. To that extent, one of the two oper-
ations is firstly chosen. If the operation ’addition’ is
chosen (see the bottom-left part of Figure 3), an ele-
ment of the fragment with connections to model ele-
ments that are not included in the fragment is chosen
in order to add one of these non-included model ele-
ments to the fragment. For instance, the Converter
1 element of the fragment has a connection with the
HVAC model element, not included in the original
model fragment. As result of the addition operation,
a modified model fragment that includes the HVAC
model element is obtained. If the operation 'removal’
is chosen (see the bottom-right part of Figure 3), an
element of the model fragment that is connected with
only one other element of the model fragment is cho-
sen to be removed from the model fragment. For
instance, a modified model fragment that does not
include the Pantograph 1 model element is obtained
as a result of the removal operation. The algorithm
of this operation is outlined in Algorithm 3 (available
in Appendix A).

3) Fitness Function: The third step of the ap-
proach assesses each of the produced candidate model
fragments, ranking them according to a fitness func-
tion. Our approach presents fitness functions based
on combinations of three distinct fitness objectives,
detailed in the following section.

3.3. Fitness Objectives

In this section, details are provided for each objec-
tive.

1) Model Fragment Similitude: To assess the
relevance of each model fragment with relation to the
provided query, we apply methods based on Informa-
tion Retrieval (IR) techniques. In particular, we ap-
ply Latent Semantic Indexing (LSI) [5, 6] to analyze
the relationships between the model fragments in the
population and the query.

However, results retrieved by LSI depend greatly
on the style on which the Natural Language (NL) of
the input is written. It is often regarded as beneficial
to preprocess the inputs of LSI through Natural Lan-
guage Processing (NLP) techniques [19] to improve
LSI results. A frequent practice to achieve said pre-
processing is to use a combination of Parts-of-Speech
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Figure 3: Genetic operations example

(POS) tagging, removal of stopwords, and stemming,
as presented in [20].

In our approach, we adopt said practice to process
the NL from the model fragments and the queries.
The NL texts of both the model fragments and the
queries are preprocessed through the following steps:
(1) our approach searches for domain terms provided
by the software engineers in the text, saving them; (2)
POS tagging is applied to the text, and the POS tags
of the words are analyzed and filtered by their syntac-
tic role, keeping only the nouns, as suggested by [20];
and (3) the remaining POS Tags are stemmed, and



refined with a set of stopwords, also provided by the
software engineers. The stemmed POS Tags from
Step 3 plus the saved domain terms from Step 1 build
the text of the processed elements used as input for
LSI.

Once the NL texts from both the model fragments
and the query are processed, it is possible to apply
the LSI technique. LSI constructs vector representa-
tions of a query and a corpus of text documents by
encoding them as a term-by-document co-occurrence
matrix. That is, a matrix where each row corresponds
to terms and each column corresponds to documents,
followed by the query in the last column. Each cell of
the matrix holds the number of occurrences of a term
inside a document or the query. In our approach,
terms are all the individual words from the processed
NL of model fragments and the query, the documents
are the NL representations of model fragments, and
the query is the provided Traceability Links Recov-
ery, Bug Localization, or Feature Location query. To
generate the documents, the model fragments are pro-
cessed to extract the terms that correspond to the
elements that conforms them. The words obtained
this way for a particular model fragment conform its
corresponding document.

Once the matrix is built, it is normalized and de-
composed into a set of vectors using a matrix fac-
torization technique called Singular Value Decompo-
sition (SVD) [5]. SVD is a form of factor analysis,
or more properly the mathematical generalization of
which factor analysis is a special case. In SVD, a
rectangular matrix is decomposed into the product
of three other matrices. One component matrix de-
scribes the original row entities as vectors of derived
orthogonal factor values, another describes the origi-
nal column entities in the same way, and the third is
a diagonal matrix containing scaling values such that
when the three components are matrix-multiplied,
the original matrix is reconstructed. In SVD, a 'k’
value of dimensions is chosen as a tuning parame-
ter, reducing the matrices accordingly. According to
recent research, keeping a ’k’ value of around 300
(or the maximum, if there are less than 300 dimen-
sions) will usually provide the best possible results
with moderate-sized document collections [21]. How-
ever, as stated by [22] and [23], the 'k’ value should

be studied and tuned for each approach individually
in order to optimize the results. In their work, Khati-
wada et al. [24] determine the 'k’ parameter through a
brute force strategy, generating several 'k’ values and
evaluating the performance of each of their datasets
for every 'k’ value. The tuning of the 'k’ parame-
ter for our work, however, is out of the scope of this
paper, and as such we acknowledge it as future work.

Using SVD, one vector that represents the latent
semantics of the NL texts is obtained for each doc-
ument and for the query. Finally, the similarities
between each document and the query are calculated
as the cosine between both of their vectors, obtaining
values between -1 and 1.

The top part of Figure 4 shows an example of
co-occurrence matrix, taken from our approach (for
space reasons, columns and rows are shown in a com-
pact way). Each document column is a NL represen-
tation of one of the model fragments in the popula-
tion. The query column is the provided input Trace-
ability Links Recovery, Bug Localization, or Feature
Location query. Each term row is one of the words
extracted from the NL texts of model fragments and
the provided Traceability Links Recovery, Bug Local-
ization, or Feature Location query. Each cell shows
the number of occurrences of each of the terms in the
model fragments. The bottom left part of Figure 4
shows the result of applying the SVD technique to
the matrix. The vector labeled with 'Q’ represents
the query, while the ones labeled as '"MF’ represent
document model fragments. Bottom right part of
Figure 4 shows the scores of each model fragment,
calculated by computing the cosine between their as-
sociated vector and the query vector.

2) Model Fragment Understandability.
There are several metrics that measure different
factors in models, such as their underlying complex-
ity or their understandability by humans [11]. The
findings published in [12] prove that there is a strong
correlation between the size of a particular model
and its understandability by a human modeler,
therefore impacting the performance of the modeler
when working with it. When presented with several
models for an industrial solution, smaller models
always entail better modeler performance results.

To measure the size of a model fragment, three
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Figure 4: LSI example

metrics are defined in [12] and described in Appendix
B: U1) Counting the number of elements in a model,
U2) Weight factors per model element, and U3)
Weight factors per model element per diagram type.

In [12], the author analyzes the results of apply-
ing the three metrics to a set of models, finding that
the three metrics are extremely correlated, with none
yielding significantly better results over the other
two. Since it is easier to implement and compute,
it is strongly suggested to use U1l. Therefore, we use
U1 as the metric of choice for our Understandability
Fitness Objective.

3) Model Fragment Timing. The Defect Prin-
ciple, or Defect Localization Principle, states that
the most recent modifications to a project are the
most relevant for certain Information Retrieval pur-
poses [25, 13, 14]. Through the Defect Principle,
modification timespans can be considered and intro-
duced as a Fitness Objective for Traceability Links
Recovery, Bug Localization, and Feature Location.

Through this work, we carry out Traceability Links
Recovery, Bug Localization, and Feature Location on
models. Therefore, our aim is to retrieve the most rel-
evant model fragments for a particular Traceability
Links Recovery, Bug Localization, or Feature Loca-
tion query. Model fragments are formed by model
elements, and each model element has an associated
modification time. When we apply the Defect Princi-
ple to model fragments, we have to decide how to as-
sign a modification time to the model fragment from

the modification time information on its model ele-
ments. There are four possible measurements of the
modification timespans for the Defect Principle:

(1) Most recent model modifications: this mea-
surement captures the modification timespan of
the most recently modified model element.

Oldest model modifications: this measure-
ment captures the modification timespan of the
least recently modified model element.

(2)

The mean of the modification timespan of
the modified model elements: the value of
the measurement is the mean value of the mod-
ification timespans of the model elements.

The sum of the modification timespan of
the modified model elements: the value of
the measurement is the sum of the modification
timespans of the model elements.

Software engineers from our industrial partner,
when faced with different model fragments, declared
that those they had modified more recently were more
familiar to them, thus easier to understand and work
with. Therefore, we chose measurement (1) as the
way to evaluate our Model Timing Fitness Objective.

The time difference is based on the number of days
and can therefore be very large when the model frag-
ment was modified a long time ago. To normalize
the time difference, mathematical solutions such as
square root or logarithm can be used. We used square
roots because it has achieved good results in other
works that use time differences [13].

Figure 5 shows an example of timespan for each
model element of the model fragment highlighted in
gray. For example, the Circuit Breaker 1 has been
modified 89 days ago. Since the most recent model
modification is 17 days (from the Conwvert! model
element), the value of the model fragment is 17 days
that means a square root of 4.123.

3.4. Fitness Objectives Configurations

To compare how the distinct objective configura-
tions affect FROM for the different types of queries,
we have designed a total four possible objective con-
figurations (shown in the bottom part of Figure 2):
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C1: Similitude.

C2: Similitude 4+ Understandability.

C3: Similitude + Timing.

C4: Similitude + Understandability + Timing.

It is worth mentioning that creating configurations
without the Similitude measurement is possible, but
meaningless. Such configurations would produce the
smallest and/or most recently modified model frag-
ments in the case study, regardless on whether they
had anything to do with the introduced query, ren-
dering them useless.

4. Evaluation

This section presents the evaluation of our ap-
proach.

4.1. Research Questions

There are several aspects that we want to evalu-
ate with regard to how the different configurations
affect FROM for the different types of queries. In
order to address the evaluation of these aspects, we
formulated the following research questions:

RQi: How does the performance of the different
objective configurations compare to the performance
of the baseline for different query types?

RQ3: Is the difference in performance between the
objective configurations and the baseline significant?
RQ3: Does the type of query have an impact on the
performance of the different objective configurations?

4.2. Baseline

In order to put the performance of FROM in per-
spective and to relate our work to previous works, we
compare it to a baseline for fragment retrieval in mod-
els. Traditionally, fragment retrieval in models has
been performed through model comparisons among
models [26, 27, 28, 29, 30, 31]. These works clas-
sify the elements based on their similarity and iden-
tify the dissimilar elements as the model fragments.
The predominant technology of choice to implement
their approaches is EMF Model Compare, which re-
lies on Model Matching to perform the comparisons.
Hence, the baseline is our implementation of the algo-
rithms to retrieve fragments presented in [28], which
also uses EMF Model Compare to perform the model
comparisons as the previous works.

4.8. Experimental Setup

FROM and the baseline are executed taking as in-
put the query and the models provided by our in-
dustrial partner. Our industrial partner provided us
with: 103 natural language requirements, 121 fea-
ture descriptions and 42 bug descriptions of their rail-
way solutions. The models of 23 trains are specified
through an average of 8250 model elements.

We executed 30 independent runs for each query
and approach (the four configurations of FROM and
the baseline) for FROM (as suggested by [32]), i.e.,
103 (natural language requirements) x 5 (approaches)
x 30 repetitions + 121 (feature descriptions) x 5 (ap-
proaches) x 30 repetitions + 42 (bug descriptions) x
5 (approaches) x 30 repetitions = 39900 independent
runs.

Once the four configurations of FROM and the
baseline are executed, we obtain as result a ranking
of model fragments. Next, we take the best solution
of the ranking (the model fragment at position 1)
to compare it with an oracle, which is the ground
truth. Once the comparison is performed, a confusion
matrix is calculated.



A confusion matrix is a table often used to describe
the performance of a classification model on a set of
test data (the best solutions) for which the true values
are known (from the oracle). In our case, each solu-
tion obtained is a model fragment composed of a sub-
set of the model elements that are part of the product
model. Since the granularity is at the level of model
elements, each model element presence or absence is
considered as a classification. The confusion matrix
distinguishes between the predicted values and the
real values classifying them into four categories:

e True Positive (TP): values that are predicted as
true (in the solution) and are true in the real
scenario (the oracle).

False Positive (FP): values that are predicted as
true (in the solution) but are false in the real
scenario (the oracle).

True Negative (TN): values that are predicted
as false (in the solution) and are false in the real
scenario (the oracle).

False Negative (FN): values that are predicted
as false (in the solution) but are true in the real
scenario (the oracle).

Then, some performance measurements are derived
from the values in the confusion matrix. In partic-
ular, we create a report including three performance
measurements: recall, precision, and F-measure for
the baseline and configurations for each type of query.

Recall measures the number of elements of the so-
lution that are correctly retrieved by the proposed
solution and is defined as follows:

TP

Recall = m

Precision measures the number of elements from
the solution that are correct according to the ground
truth (the oracle) and is defined as follows:

TP

Precision = ————
recision TP+ PP

F-measure corresponds to the harmonic mean of
precision and recall and is defined as follows:
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Precision * Recall

F— =2x
fmeasure Precision + Recall

Recall values can range between 0% (no single
model element obtained from the oracle is present in
any of the model fragments of the solution) to 100%
(all the model elements from the oracle are present
in the solution). Precision values can range between
0% (no single model fragment from the solution is
present in the oracle) to 100% (all the model frag-
ments from the solution are present in the oracle). A
value of 100% precision and 100% recall implies that
both the solution and the oracle are the same.

At this point, it is important to highlight that
the fitness objective Configuration 1 (Similitude) is
a Single-Objective Evolutionary Algorithm (SOEA),
whereas the other three configurations are MOEA.
For this reason, other common MOEA measures such
as hypervolume [33] are not necessarily suitable for
comparing solutions by MOEAs with solutions by
SOEAs as the work in [34] shows.

Therefore, in order to compare the results, we first
take the best solution of Configuration 1 for its single-
objective (similitude with the query). Second, we
take the best solution of each of the other configura-
tions with regard to the objective of Configuration 1
(similitude with the query) as described in [34].

4.4. Oracle Preparation

The oracle was provided by our industrial partner,
since the model fragments that realize each of the
103 requirements, 121 features and 42 bugs were al-
ready documented. It is also worth noting that the
oracle has not been created for this evaluation, and
that many of the provided model fragments were cre-
ated by engineers who are currently not working in
the company. We checked both that there were no
queries without model fragments, and that the model
fragments were in the models provided for the evalu-
ation.



4.5. Implementation Details

FROM? is based on NSGA-II [35], one of the most
frequently used Multi-Objective Evolutionary Algo-
rithms. Given a population of model fragments where
each model fragment has up to three fitness values
(see Subsection 3.4), NSGA-II orders these model
fragments by means of non-dominated sorting. A
model fragment is non-dominated when there is no
other model fragment that improves any fitness value
without worsening other fitness value. As a result,
NSGA-II finds pareto-optimal model fragments.

The rest of the settings such as population size,
crossover probability, and mutation probability are
detailed in Table 1. For those settings, we have
chosen values that are commonly used in the liter-
ature [36]. The values are 100, 0.9, and 0.1, respec-
tively.

Table 1: Parameter settings

Parameter description Value
Size: Population Size 100
w: Number of Parents 2
A: Number of offspring from p parents 2
r: Solutions replaced at population size 2
Perossover: Crossover probability 0.9
Pmautation: Mutation probability 0.1

In general, there are two atomic performance mea-
sures for evolutionary algorithms: one regarding so-
lution quality and one regarding algorithm speed or
search effort. In this paper, we focus on the solution
quality (i.e., obtaining a solution that is more similar
to the one from the oracle in terms of precision and
recall). After running some prior tests for each fitness
configuration to determine the time to converge (and
adding a margin to ensure convergence), we allocated
a fixed amount of wall clock time (80 seconds) to stop
the execution. During that time, our algorithm is
capable of executing an average of 7307 generations
(with an standard deviation of 1500 generations). We
performed the execution of FROM using an array of
computers with processors ranging from 4 to 8 cores,
clock speeds between 2.2 GHz and 4GHz, and 4-16

?https://bitbucket.org/svitusj/from
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GB of RAM. All of them were running Windows 10
Pro N 64 bits as the hosting Operative System and
the Java(TM) SE Runtime Environment (build 1.8.0
73-b02).

We have used the Eclipse Modeling Framework to
manipulate the models and the Common Variabil-
ity Language (CVL) [37] to manage the model frag-
ments. The NLP techniques used to process the lan-
guage have been implemented using OpenNLP [38]
for the POS Tagger (accounting for an 88% preci-
sion [39]) and the English (Porter 2) [40] stemming
algorithm. LSI has been implemented using the Ef-
ficient Java Matrix Library [41]. The genetic opera-
tions are built upon the Watchmaker Framework for
Evolutionary Computation [42].

The available implementation presented in FROM
is limited by confidentiality agreements in force with
our industrial partner, since the approach is currently
in use, and the trains of the case study are currently
operating and under maintenance contracts.

4.6. Research Question 1

To answer how is the performance of the configu-
rations and the baseline, this subsection presents the
results of performance. Figure 6 shows the charts
with the recall and precision results for the configu-
rations and the baseline (rows of the figure) and the
type of query (columns in the figure). A dot in the
graphs represents the average result of recall and pre-
cision for the 30 repetitions.

RQ; answer. Table 2 shows the mean values of
recall, precision and F-measure of the graphs for the
four configurations and the baseline (rows) in Trace-
ability Links Recovery, Feature Location and Bug Lo-
calization (columns). In Traceability Links Recovery,
Configuration 1 obtains the best results in recall and
precision, providing and average value of 54.33% in
recall and 59.93% in precision. In Feature Location,
Configuration 2 obtains the best results in recall and
precision, providing and average value of 73.29% in
recall and 70.60% in precision. In Bug Localization,
Configuration 4 obtains the best results in recall and
precision, providing and average value of 84.91% in
recall and 79.94% in precision.
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Figure 6: Mean Recall and Precision values for FROM
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Table 2: Mean Values and Standard Deviations for Recall,
Precision and F-Measure

Recall + (o)

TLR FL BL
Configuration 1 54.33+14.23 70.95£13.59 35.95+14.49
Configuration 2 35.21+17.05 73.29+13.65 39.47+14.73
Configuration 3 38.72+22.14 25.04+15.06 83.09+11.28
Configuration 4 29.07£19.66 27.85+15.05 84.91+11.85
Baseline 36.14+15.55 58.20+15.66 24.87+17.81

Precision £ (o)

TLR FL BL
Configuration 1 59.931+16.94 67.68+13.43 28.124+15.45
Configuration 2 33.69+13.69 70.60£14.08 30.54+14.91
Configuration 3 33.93+20.85 27.97+15.22 72.77£11.19
Configuration 4 29.10£17.84 32.81£17.37 79.94+10.19
Baseline 30.99+16.25 41.90+16.16 20.13+18.61

F-measure + (o)

TLR FL BL
Configuration 1 54.87+11.61 67.87+9.82 27.55+12.13
Configuration 2 30.624+12.49 70.67£10.78 30.51+12.43
Configuration 3 30.27+18.24 21.50+12.17 76.62+7.13
Configuration 4 23.51+16.50 25.38+12.52 81.59+8.15
Baseline 29.39+12.94 45.98+13.44 15.094+12.36

4.7. Research Question 2

To answer whether there are significant differences
in performance among the different configurations of
our FROM approach and the baseline in Traceability
Links Recovery, Feature Location, and Bug Localiza-
tion, the results should be properly compared. To do
this, all of the data resulting from the empirical anal-
ysis was analyzed using statistical methods following
the guidelines in [43]. The goals of our statistical
analysis are: (1) to provide formal and quantitative
evidence (statistical significance) that the configura-
tions and the baseline do in fact have an impact on
the comparison metrics (i.e., that the differences in
the results were not obtained by mere chance); and
(2) to show that those differences are significant in
practice (effect size).

To enable statistical analysis, all configurations
should be run a large enough number of times (inde-
pendently) to collect information on the probability
distribution for each type of query. A statistical test
should then be run to assess whether there is enough
empirical evidence to claim that there is a difference
between the two configurations. In order to do this,

two hypotheses are defined: (1) the null hypothesis
Hj is typically defined to state that there is no differ-
ence among the configurations and the baseline, and
(2) the alternative hypothesis H; states that at least
one configuration differs from another. A statistical
test aims to verify whether Hy should be rejected.

The statistical tests provide a probability value,
p-value, which obtains values between 0 and 1. The
lower the p-value of a test, the more likely that Hy is
false. It is accepted by the research community that
a p-value under 0.05 is statistically significant [43],
and so Hy can be considered false.

The test to follow depends on the properties of
the data. Since our data does not follow a nor-
mal distribution, our analysis requires the use of
non-parametric techniques. There are several tests
for analyzing this kind of data; however, the Quade
test shows is more powerful when working with real
data [44]. In addition, according to Conover [45], the
Quade test has shown better results than the others
when the number of algorithms is low (no more than
4 or 5 algorithms).

RQ, answer. The p-Values and statistics of the
Quade test are shown in the upper part of Table 3.
Since the p-Values shown in this table are smaller
than 0.05 in all cases, we reject the null hypothesis.
Consequently, we can state that there are significant
differences in the configurations and the baseline of
Traceability Links Recovery, Feature Location and
Bug Localization for all the performance indicators
(recall and precision).

4.8. Research Question 3

To answer whether a configuration has a significant
impact in performance, the performance of the con-
figuration should be statistically compared against all
others. In order to do this, we perform an additional
post hoc analysis (pair-wise comparison among con-
figurations, also including the baseline). The mid-
dle part of Table 3 shows the p-Values of Holm’s
post hoc analysis for pair-wise comparison of con-
figurations and the baseline for the performance in-
dicators in Traceability Links Recovery, Feature Lo-
cation and Bug Localization. The majority of the
p-Values shown in this table are smaller than their
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Table 3: Results of the statistical analysis

Quade test statistic and p-Values

Traceability Links Recovery

Feature Location

Bug Localization

Recall Precision Recall Precision Recall Precision
p-value 50210710 «2.221071¢ <« 222710716 <« 22710716 <« 2221071 <« 22710716
Statistic 21.38 40.42 145.06 110.99 60.81 63.24

Holm’s post hoc p-Values
Traceability Links Recovery Feature Location Bug Localization

Recall Precision Recall Precision Recall Precision
C1lvs C2 2.721071° < 2210716 0.2 0.15 0.26 0.33
Clvs C3 2.7210708 < 2210716 < 210716 < 2210716 312101 3.1z10~ 1
Clvs C4 < 2z1071% <« 2210716 < 2z1071% <« 2210716 4171071 4121071
C1 vs Baseline  4.3210716 < 2210716 2210710 < 210716 0.002 0.025
C2vs C3 0.27 0.8 < 210716 < 2210716 9.4210~14 3.1210~ 1
C2 vs C4 0.02 0.03 < 210716 < 210716 41210~ 3.1210~ 14
C2 vs Baseline 0.73 0.26 2.4x1071° < 2210716 9.92107% 0.005
C3 vs C4 0.002 0.15 0.22 0.03 0.28 0.003
C3 vs Baseline 0.36 0.52 < 210716 9.6210712 3.1x10~ 14 5.4x10714
C4 vs Baseline 0.002 0.46 < 2210716 6.62107% 3.12x10~ 14 3.12107 14

12112 statistic for each pair

Traceability Links Recovery

Feature Location

Bug Localization

Recall Precision Recall Precision Recall Precision
Clvs C2 0.7982 0.8811 0.4456 0.4358 0.4563 0.4388
C1lvs C3 0.7105 0.8312 0.9868 0.9701 0.0006 0.0130
Clvs C4 0.8433 0.8893 0.9807 0.9381 0.0045 0.0028
C1 vs Baseline 0.8024 0.8873 0.7275 0.8867 0.7018 0.6590
C2 vs C3 0.4487 0.5212 0.9905 0.9736 0.0130 0.0040
C2 vs C4 0.6040 0.5932 0.9839 0.9473 0.0130 0.0005
C2 vs Baseline 0.4812 0.5554 0.7639 0.9066 0.7415 0.6910
C3 vs C4 0.6284 0.5613 0.4555 0.4198 0.4453 0.3226
C3 vs Baseline 0.5378 0.5277 0.0678 0.2653 0.9972 0.9858
C4 vs Baseline 0.3793 0.4627 0.0890 0.3474 0.9949 0.9977

corresponding significance threshold value (0.05), in-
dicating that the differences of performance between
the configurations are significant. However, some val-
ues are greater than the threshold, indicating that
the differences between those configurations are not
significant.

However, when comparing configurations with a
large enough number of runs, statistically significant
differences can be obtained even if they are so small
as to be of no practical value [43]. It is important
to assess, through effect size measures, if a configu-
ration is statistically better than another one, and if
so, the magnitude of the improvement.

For a non-parametric effect size measure, we use
Vargha and Delaney’s Ao [46, 47]. A5 measures
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the probability that running one configuration yields
higher values than running another configuration. If
the two configurations are equivalent, then Ay will
be 0.5. For example, A1, = 0.7 means that the first of
the pair of configurations would obtain better results
in 70% of the runs, and A;5 = 0.3 means that the sec-
ond of the pair of configurations would obtain better
results in 70% of the runs. We record an Alg value
for every pair of configurations as well as for every
configuration and the baseline in Traceability Links
Recovery, Feature Location and Bug Localization.
The lower part of Table 3 shows the values of
the effect size statistics between the configurations
and the baseline in Traceability Links Recovery, Fea-
ture Location and Bug Localization. In Traceabil-



ity Links Recovery, the largest differences were ob-
tained in comparisons that entail Configuration 1,
where the largest difference is obtained when com-
pared with Configuration 4 (0.8433 for recall and
0.8893 for precision). Therefore, Configuration 1 out-
performs Configuration 4 for recall and precision with
a pronounced superiority (84.33% of the times for re-
call and 88.93% of the times for precision). In Fea-
ture Location, Configuration 1 and Configuration 2
show a pronounced superiority over Configuration 3,
Configuration 4 and the baseline. The largest dif-
ference is obtained when comparing Configuration 2
with Configuration 3 (0.9905 for recall and 0.9736
for precision). In Bug Localization, Configuration 3
and Configuration 4 show a pronounced superior-
ity over Configuration 1 and Configuration 2. The
largest differences are obtained when comparing Con-
figuration 1 with Configuration 3 for recall (0.0006)
and when comparing Configuration 2 with Configu-
ration 4 for precision (0.0005).

RQ3 answer. From the results, we can conclude
that the configuration against the type of query has
an actual impact in performance.

5. Discussion

The results of our approach show that the configu-
ration of fitness objectives that provides the best re-
sult in Traceability Links Recovery, Bug Localization
and Feature Location is different for each of them. As
described in Section 4.5, the parameters of the evo-
lutionary algorithm in use have been chosen accord-
ing to the literature values. However, as suggested
by [32] and confirmed in [48], tuned parameters can
outperform default values, but are far from optimal in
individual problem instances. Since the objective of
this paper is to evaluate the different configurations,
we do not tune the values to improve the performance
of our algorithm.

By analyzing the impact on the results for Trace-
ability Links Recovery, Bug Localization and Feature
Location of the four configurations of fitness objec-
tives, our findings suggest that:

1 From the four configurations, there is not a
unique combination of objectives that retrieves
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the best results for all the types of queries.

2 Model Similitude, by itself, obtains the best re-
sults in the queries for Traceability Links Recov-
ery but it is not powerful enough to achieve the
best results in the queries for Feature Location
and Bug Location.

3 Model Understandability, which is a desirable
objective (since it allows for an easier com-
prehension of model fragments by software en-
gineers) cannot be systematically applied to
Traceability Links Recovery. The configurations
where it is applied (2 and 4) yield worse Trace-
ability Links Recovery results than those where
it is not applied.

4 Model Timing is only useful for Bug Localiza-
tion, not contributing to improve the results in
Traceability Links Recovery or Feature Location.

5 Requirements, bugs, and features can all be de-
scribed through NL, but are of different nature.
Different fitness configurations guide the Evo-
lutionary Algorithm better, depending on the
task (Traceability Links Recovery, Bug Local-
ization, Feature Location) that is being carried
out: Configuration 1 (Similitude) for Traceabil-
ity Links Recovery, Configuration 4 (Similitude
+ Understandability + Timing) for Bug Local-
ization, and Configuration 2 (Similitude + Un-
derstandability) for Feature Location.

The results of evaluating our approach show that
Traceability Link Recovery achieves the worst results.
We detected that this happens because when require-
ments are written, part of the domain knowledge re-
lated to the requirements is assumed to be known by
all the domain experts, so it is not formalized. For
example, given the requirement: At all stations, the
doors are automatically opened, the engineers under-
stand that the doors have to be opened in all the sta-
tions without being requested by a passenger. How-
ever, this requirement embodies tacit knowledge that
is obvious to the domain engineers: The train has
doors on both sides, but only the doors on the side
of the platform will be opened while the doors on the



side of the tracks will remain closed, and all the doors
of one side will be opened, except the driver’s door in
the cabin.

Tacit knowledge is not reflected in the text of the
requirements, since it is shared between the engineers
who write and read the requirements. As a result, the
models are built through both the text of the require-
ments, and the tacit knowledge of the engineers, lead-
ing to models that contain elements built according
to the text of the requirements, and elements built
through tacit knowledge.

However, since part of the knowledge is not re-
flected in the text of the requirement, the simili-
tude objective is negatively influenced. The simili-
tude objective establishes the similarity between the
query and the model fragment according to the co-
occurrences of terms between both. Configuration 1
(similitude objective only) achieves worse results for
Traceability Link Recovery than for Feature Loca-
tion. Feature descriptions are less vulnerable to the
tacit knowledge issue since they are written in a dif-
ferent style, in a different moment of the software life
cycle, and with a different goal in mind. Require-
ments play a key role in the contracts between our
industrial partner and their clients, but feature de-
scriptions are for internal use only.

Model understandability does not pay off in the
particular case of Traceability Link Recovery. Config-
urations 2 and 4 (which include the understandability
objective) achieve worse results than Configuration 1
(similitude objective only). Model understandability
favors model fragments that involve a lower number
of model elements. In the face of (1) a model frag-
ment (that includes model elements related to the
tacit knowledge), and (2) a model fragment that is
a subset of the former (without the model elements
related to the tacit knowledge), the first model frag-
ment not only does not achieve a better result for
the similitude objective, but it is also penalized by
the understandability objective because of its higher
model elements count.

Also, our results confirm the relevance of the De-
fect Principle [13] in model fragment retrieval since
the configurations that include Model Timing (Con-
figuration 3 and 4) obtained the best results in Bug
Location. This is because the majority of bugs (about
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90%) provided by our industrial partner are related
to recent modifications. In contrast, Model Timing
negatively influenced the results in Traceability Links
Recovery and Feature Location. Given either a re-
quirement or a feature description, it is not safe to
assume than in most of the cases it is related to a
model fragment modified recently.

Vocabulary mismatch is a phenomena that occurs
when when distinct words are used to refer to the
same concept in both query and models. This hap-
pens most when the engineer in charge of defining
the query (requirement, feature description, or bug
description) has not been involved in the construc-
tion of the model, and when different engineers are
in charge of working with the queries and the models.

Even though we use Natural Language Processing
(NLP) to unify the language of the terms shared by
queries and models, vocabulary mismatch remains an
issue that must be taken into account: the in-house
terms are often not recognized as eligible synonyms,
and are therefore excluded from NLP, leading to vo-
cabulary mismatch. For example, the terms PLC
and system may be recognized as synonyms, but the
terms PLC and COSMOS? are definitely not known
to be synonyms, because COSMOS is an in-house
term that is used exclusively by our industrial part-
ner to refer to the term PLC. To minimize the vo-
cabulary mismatch issue, NLP should be extended in
order to include a list of in-house synonyms.

Finally, our approach takes as input a query to
provide a ranking of solutions that the engineer can
inspect instead of having to look for solutions man-
ually. This helps engineers since they do not have
to inspect large and complex models manually each
time that a software maintenance activity needs to be
carried out. The engineers can also consider the so-
lutions of the ranking as a starting point from where
solutions can be manually refined. Furthermore, af-
ter inspecting the solutions, the user may refine the
query and iterate the process to obtain different so-
lutions. Our findings are encouraging and indicate
that we should further research this field.

Shttp://www.cafpower.com/en/systems/
control-communication/tcms-system-cosmos



6. Threats to validity

We follow the guidelines suggested by De Oliveira
et al. [49] to identify the threats to the validity of our
work.

Conclusion validity threats: The first threat
of this type is not accounting for random variation.
To address this threat, we considered 30 independent
runs for each query and configuration. The second
threat is the lack of a formal hypothesis and statis-
tical tests. In this paper we employed standard sta-
tistical analysis following accepted guidelines [32] to
avoid this threat. The third threat is the lack of a
good descriptive analysis. In this work, we have used
the recall, precision and F-measure measurements
to analyze the confusion matrix obtained; however,
other measurements could be applied. Some works
argument that the use of the Vargha and Delaney
A5 measurement can be miss-representative [32] and
that data should be pre-transformed before apply-
ing it. We did not find any use cases for data pre-
transformation that applied to our case study.

Internal validity threats: The first identified
threat of this type is the poor parameter settings
threat. In this paper we used standard values for the
algorithms. As suggested by Arcuri and Fraser [32],
default values are good enough to measure the per-
formance of location techniques. These values have
been tested in similar algorithms for Feature Loca-
tion [50]. In addition, the tuning of the 'k’ value in
the application of SVD can affect the results of LSI,
and should be further studied [22, 23]. Nevertheless,
we plan to evaluate all the parameters of our algo-
rithm in a future work. The second threat is the
lack of real problem instances. The evaluation of this
paper was applied to an industrial case study.

Construct validity threats: The identified
threat is the lack of assessing the validity of cost mea-
sures threat. To address this threat we performed a
fair comparison among the configurations by allocat-
ing a fixed amount of wall clock time for each run
of the algorithm in order to set the same amount of
time to traverse the search space.

External validity threats: In order to mitigate
the lack of a clear object selection strategy, our ap-
proach uses an industrial case study, which instances
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are collected from real world problems.

Moreover, our approach has been designed to be
generic and applicable not only to the domain of our
industrial partner but also to other different domains:
the fitness function can be applied to any model con-
forming to MOF, and the text elements associated
to the models are extracted automatically by the ap-
proach using the reflective methods provided by the
Eclipse Modeling Framework. The requisites to apply
our approach are that the set of models conform to
MOF, and the query is provided in NL. However, our
approach should be applied to other domains before
assuring its generalization.

7. Related Work

Works related to this one comprehend Traceability
Links Recovery, Bug Localization, and Feature Lo-
cation. Through this section, some of these related
works are analyzed and compared with ours.

7.1. Traceability Links Recovery

There are several approaches to Traceability Links
Recovery, being NLP and LSI the most common. The
role of NLP in requirements engineering is vital to
the Software Engineering community [51]. NLP has
been applied to tackle Traceability Links Recovery
at several levels of abstraction and specific problems
and tasks in works like [52, 53] or [54]. In [55], NLP
is used to identify equivalence between requirements,
and a series of performance evaluation principles to
do so are defined. The authors conclude that the per-
formance of NLP is determined by the properties of
the studied dataset. They measure the properties as
a factor to adjust NLP, and apply their principles to
an industrial case study. The work presented in [56]
uses NLP to study how changes in requirements im-
pact other requirements. The authors analyze Trace-
ability Links Recovery between requirements, and use
NLP to determine how changes in requirements must
propagate. The work presented in [57] uses LSI and
analyst feedback to trace code to requirements. Fi-
nally, the authors of [58] consider the possible config-
urations of LSI when using the technique for Trace-
ability Links Recovery between requirements and test



cases, and state that LSI configurations depend on
the datasets. They look forward to automatically de-
termining said configuration.

Our work differs from [51, 52, 53, 54], since we do
not use NLP as a means of Traceability Links Re-
covery analysis. We do not evaluate its performance
nor the tweaking of NLP as [55] does. Instead, we
use NLP to unify the input for LSI. In addition, our
work also differs from [56], since we do not tackle
changes in requirements nor Traceability Links Re-
covery between requirements, but rather study Trace-
ability Links Recovery between requirements and a
set of evolving model fragments. Moreover, our work
also differs from [57] since we do not use feedback
from humans in the tracing process and we target
models instead of code. In contrast with [58], we
do not tackle LSI configurations or their impact on
Traceability Links Recovery, but rather analyze how
different fitness objectives configurations affect the
Evolutionary Algorithm when recovering traceability
links.

7.2. Bug Localization

In recent years, many Bug Localization approaches
have been proposed. Lukins et al. [59] used Latent
Dirichlet Allocation (LDA) for predicting the loca-
tion of a newly reported bug through source code
comments and identifiers as information resources.
Zhou et al. [60] proposed a revised Vector Space
Model (VSM) approach for improving the perfor-
mance of bug localization, based on the idea that
bugs are more likely to appear in larger files, also
using the similarity between the text of new bug re-
ports and previously fixed bugs. Thomas et al. [22]
evaluated the performance of combinations of IR-
based classifiers for bug location in code. Saha et
al. [61] presented BLUIR, which uses a TF-IDF model
baseline. They believe code constructs improve the
accuracy of bug localization, so the source code is
syntactically parsed into four document fields: class,
method, variable, and comment. The summary and
the description of a bug report are considered as
query fields. Textual similarities are computed for
each of the eight document-query pairs, and sum-
marized into a ranking. Kim et al. [62] propose a
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one-phase and a two-phase prediction models to rec-
ommend files to fix. In the one-phase model, they
create features from textual information and meta-
data, apply Naive Bayes to train the model using
fixed files as classification labels, and use said model
to assign source files to a bug report. In the two-
phase model, they apply their one-phase model to
classify a new bug report as ”predictable” or ”defi-
cient”, and then make predictions for ”predictable”
reports. These approaches target code, while our ap-
proach targets models to locate the bug realizations.
Moreover, these approaches rely on IR techniques
only, while ours uses an Evolutionary Algorithm that
generates possible solutions. In addition, we tackle
how different combinations of objectives affect the
results of our approach.

Zamani et al [63] proposed an approach to rank
source code locations, based on textual similarity
with change requests and the use of time meta-data.
This approach gives better results than IR tech-
niques, however, it is applied at the source code level.
We use a Evolutionary Algorithm to address the lo-
cation of bugs in models. In our case, the Defect
principle is one of the three computed objectives, ac-
tivated depending on the configuration.

7.8. Feature Location

Approaches related to Feature Location compre-
hend feature and requirement location techniques.
Typechef [64] provides an infrastructure to locate
code associated to a given feature by analyzing #ifdef
directives. Trace analysis [65] is a technique that
indicates the executed code at run-time. Some ap-
proaches related to feature location use LSI to extract
code associated to a feature [7, 66]. These techniques
have been generally applied to search code. In con-
trast, our approach searches for model fragments.

Feature location approaches in product fami-
lies [67] center their efforts in finding the code
that implements a feature between different products
through FCA [68] and LSI. In our approach, we are
instead interested in locating the most relevant model
fragments for a feature. Other works [69] focus on
applying reverse engineering to source code to obtain
the variability model. In [70] the authors use propo-
sitional logic to describe the dependencies between



features. In [71] the authors combine Typechef and
propositional logic to extract conditions among fea-
tures. These works engage the variability of products,
but do tackle the most relevant model fragments for
the development of features.

In [72], Lapena et al. use POS Tagging along with
an adapted two-step LSI to obtain rankings of meth-
ods for the requirements of a new product in a prod-
uct family. In the presented work, we use a Multiple
Objective Evolutionary Algorithm (MOEA) to find
model fragments that can be used to implement a
particular feature, and analyze how distinct fitness
objective configurations affect the results instead.

Some works [73, 74, 75, 76, 77] focus on the loca-
tion of features over models by comparing the mod-
els with each other to formalize the variability among
them. The presented work differs from these works
in that the aim is not to formalize the variability, but
to locate model fragments relevant to the provided
feature descriptions.

Font et al. [17] use a Single Objective Evolution-
ary Algorithm (SOEA) to locate features among a
family of models. Their approach is refined in [18],
where the authors use a SOEA to find sets of suit-
able feature realizations. The authors cluster model
fragments based on their common attributes through
FCA, and then LSI ranks the candidates based on
the similarity with the feature description. The pre-
sented approach differs from [17] and [18] by leverag-
ing a MOEA, with a fitness function that combines
three fitness objectives to determine the fitness scores
of the evolving model fragments.

In (78], Font et al. performed a comparison be-
tween five different SOEAs (Evolutionary Algorithm,
Random Search, Steepest Ascent Hill Climbing with
Replacement, Iterated Local Search with Random
Restarts, and Hybrid between Evolutionary and Hill-
Climbing) for feature location in models, showing
that the best results where achieved by a hybrid be-
tween an evolutionary algorithm and a hill climb-
ing. Cetina et al. [79] explored a new direction: tak-
ing advantage of already long-living software systems
(designed with sustainability in mind) to address
the challenge of feature location. Specifically, they
used commonality and modifications fitness though
model retrospectives in order to promote model frag-

ments that suffered less modifications throughout
time. Through this work, we analyze the impact
that different configurations of objectives (four com-
binations of similitude, understandability and tim-
ing) have over the results depending on the main-
tenance task that is performed, which is something
that [17, 18, 78, 79] do not tackle.

8. Concluding Remarks

Traceability Links Recovery, Bug Localization,
and Feature Location are amongst the most com-
mon tasks in the Software Engineering field. How-
ever, their application to conceptual models has
not received enough attention yet. We propose
an approach, named Fragment Retrieval on Models
(FROM), that uses a Multi-Objective Evolutionary
Algorithm to retrieve the most relevant model frag-
ments for different types of queries (NL requirements
for Traceability Links Recovery, bug descriptions for
Bug Localization, and feature descriptions for Fea-
ture Location). Our approach is guided by four con-
figurations that combine three different fitness ob-
jectives: Model Similitude, Model Understandabil-
ity, and Model Timing. Through this work, we ana-
lyze the impact of each configuration on the results
of the Evolutionary Algorithm for Traceability Links
Recovery, Bug Localization, and Feature Location.

Our results show new findings that are relevant for
general fragment retrieval approaches since none of
the four configurations achieve the best results for
all the types of NL queries provided as input. Re-
quirements, bugs and features can be described using
NL but depending on the task that is being carried
out (Traceability Links Recovery, Bug Localization,
Feature Location) different fitness configurations are
better. For example, model fragment similitude ob-
tains the best results for Traceability Links Recovery
but it is not powerful enough to obtain the best re-
sults in Bug Localization, in which model timing is
useful to improve the results.

In future iterations of our work, we will perform
parameter tuning of the evolutionary algorithm and
the dimensions 'k’ value of LSI. We also plan to eval-
uate machine learning techniques, such as the ones of
the learning to Rank family [80], as fitness objectives
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that guide the retrieval of model fragments for model
maintenance tasks.
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Appendix A. Algorithms

Algorithm 1 Random Fragment Generation

e e e
A

E + randomElement(model)
F + newFragment(E)
N «+ neighbor(E)
random <— randomlInteger < modelSize
iterator < 0
while iterator < random do

P+ FE

E+ N

F + add(E)

N « neighbor(E) # P

if N = ¢ then

exit while
end if

: end while
. return fragment

Algorithm 2 Crossover Operation

=
=

M « firstParent

N < secondParent

F «+ fragment(firstParent)

if F € N then
I « individual (F, N)
return [

else
I « individual(F, M)
return [

end if
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Algorithm 3 Mutation Operation

1:
2
3
4:
5:
6
7
8
9

10:
11:

O <« operation

: I + individual
. if operation = addition then

E « additionCandidate Element(I)
N <« neighbor(E)
I« add(N)

: else

E < removalCandidate Element(I)
I + remove(FE)

end if

return /

Appendix B. Metrics to measure the size of a

Ul

U2

U3

model fragment

Counting the number of elements in a
model: To do this, [12] uses labels, shapes, and
lines. Shapes refer to the visual elements of the
models, lines refer to connectors, and labels refer
to descriptive independent text. This metric ne-
glects diagram differences, implying that all ele-
ments contribute the same amount of complexity
and information to the diagram.

Weight factors per model element: In [12],
the author uses the findings of [81] to classify
the elements in the models into three complexity
levels, assign weights accordingly, and comput-
ing the diagram size as the weighed number of
elements. This metric does not take in account
the inherent differences between diagrams.
Weight factors per model element per di-
agram type: The author of [12] computes
the information content of diagram elements (e)
as the binary logarithm of the set of elements
(E) a modeler may choose from: weight(e) =

log, (| E)-
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