
A Comparative Analysis of Energy Consumption Between Visual
Scripting models and C++ in Unreal Engine:

Raising Awareness on the importance of Green MDD
Javier Verón
jveron@usj.es

SVIT Research Group, Universidad
San Jorge

Villanueva de Gállego, Spain

Carlos Pérez
cperez@usj.es

SVIT Research Group, Universidad
San Jorge

Villanueva de Gállego, Spain

Coral Calero
Alarcos Research Group, University of

Castilla-La Mancha
Ciudad Real, Spain

MªÁngeles Moraga
Alarcos Research Group, University of

Castilla-La Mancha
Ciudad Real, Spain

Francisca Pérez
SVIT Research Group, Universidad

San Jorge
Villanueva de Gállego, Spain

Carlos Cetina
SVIT Research Group, Universidad

San Jorge
Villanueva de Gállego, Spain

ABSTRACT
Video game engines are used in most modern video games because
they simplify and speed up development. In addition, some of the
most popular engines, such as Unreal Engine 5 (UE5), also integrate
visual scripting tools. Visual scripting in UE5, through Blueprints, is
a model-driven development approach that replaces text code, like
C++, with a visual language of interconnected nodes representing
functions and data flows, forming a flowchart-like logic diagram.
This approach simplifies game development by abstracting complex
code into intuitive, visual models, enabling creators to construct and
iterate game components without extensive programming knowl-
edge. Although Blueprint models usually decrease the complexity
of implementing components, thus accelerating the development,
they might lead to less energy-efficient runtime performance than
C++. In this work, we evaluate the energy consumption of three
relevant video game components (health system management, in-
puts processing, and collections operations for an inventory), each
implemented with Blueprint models and C++. The results show
that the energy consumption per frame when using C++ is up to
48% lower than when using Blueprint models. The combination
of artistic and technical profiles in video game developments has
favoured the adoption of Blueprint models. However, there is a lack
of works analyzing the energy consumption. Until this work, there
was no evidence that the success of models for developing video
games, like the one under study in this work, was accompanied by
a cost in energy consumption for certain situations. Given the huge
popularity of video games, this cost in energy might reach up to
the equivalent of the energy consumption of 28 million European
households.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MODELS ’24, September 22–27, 2024, Linz, Austria
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0504-5/24/09
https://doi.org/10.1145/3640310.3674099

CCS CONCEPTS
• Software and its engineering → General programming lan-
guages; Visual languages.

KEYWORDS
Energy consumption, Video Games, Green software, Green Video
Games, Software sustainability, Game Engines, Unreal Engine, Soft-
ware Models, Visual Scripting, Blueprints, C++, Game Software
Engineering
ACM Reference Format:
Javier Verón, Carlos Pérez, Coral Calero, MªÁngelesMoraga, Francisca Pérez,
and Carlos Cetina. 2024. A Comparative Analysis of Energy Consumption
Between Visual Scripting models and C++ in Unreal Engine: Raising Aware-
ness on the importance of Green MDD. In ACM/IEEE 27th International
Conference on Model Driven Engineering Languages and Systems (MODELS
’24), September 22–27, 2024, Linz, Austria.ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3640310.3674099

1 INTRODUCTION
Video game engines integrate many different assets for the devel-
opment of video games, like a graphics engine or a physics engine,
as well as many tools that wrap around them to accelerate develop-
ment. The video game engine enables developers to create different
games in a much more agile way, without having to repeat or code
low-level elements whose design from scratch would be very costly
and incompatible with the pace of development of these products.
Although there are companies that develop their video game en-
gines, it is more common to use an already existing engine from
the market. Unreal Engine [19] is one of the most popular choices
among developers.

One essential component of video game engines is software mod-
els. Developers have the option to create video game content either
through direct coding (e.g., C++) or by utilizing the software models
provided by the engines. While coding offers developers greater
control over the content, software models provide a higher level
of abstraction, distancing themselves from the underlying imple-
mentation and technology. This enables developers to work with
concepts more closely related to the problem domain. Consequently,
developers are freed from the intricate details of common low-level

https://orcid.org/0000-0003-2516-2105
https://doi.org/10.1145/3640310.3674099
https://doi.org/10.1145/3640310.3674099


MODELS ’24, September 22–27, 2024, Linz, Austria Verón et al.

implementations like those of physics and graphics, allowing them
to focus on the content of the game. In 2014, Unreal Engine included
its own domain-specific modeling language called Blueprints. Ten
years after the launch, the adoption of Blueprints by developers is
majority [9, 29, 30].

The gaming industry is steadily gaining prominence in the realm
of computer-based activities. The evolution of recent video games
is marked by, among other things, enhanced graphical realism and
an increase in the number of interactions and players, needing
more powerful equipment capable of managing this complexity
without compromising user experience. This gain in computational
complexity usually implies that the energy consumption and the
environmental footprint of video games are also increasing.

An approximate estimation of the global video game energy con-
sumption can be made by multiplying the number of worldwide
video game players (3.38 billion according to [6]) times the average
consumption per player. This later amount is obtained by multi-
plying the average hours a gamer plays per year (440 hours [8])
times an estimation of the power required by a representative video
game, which we obtain from our measurements of the average
power (358.6 W) required when playing Baldur’s Gate III without
PC background processes. To produce a more conservative estima-
tion, we do not include console or mobile gamers in this estimation,
only PC gamers are considered, which account for 43% of the total
players [5]. As a conclusion, we have estimated the energy con-
sumption of video games per year to be at least 230 TWhworldwide.
This estimation assumes that all gamers played the same game. This
figure is equivalent to the annual energy consumption of approxi-
mately 59 million European households (3900 kWh is the average
annual amount of electricity purchased by an EU member residen-
tial electric-utility customer [1]). That means that improvements in
video game software have enormous potential for energy savings.
However, perhaps due to its relative youth, the video game sector
has not yet developed the same level of environmental awareness
as other computing technology sectors.

This work constitutes the first approach to evaluate the difference
in energy consumption between using Blueprint models and using
a more traditional coding approach in C++ for a video game. For
enhancing result reliability, we employed the validated framework
FEETINGS [24] for the measurement and analysis of the energy
consumption, following the validated procedure included in the
framework (GSMP) and employing the technological infrastructure
that facilitates the capture and analysis of software energy con-
sumption, which are accepted by the green computing research
community [7, 14, 15].

We studied three components of video games in two different
versions (using Blueprint models for one version and C++ code for
the other one) to measure and evaluate their energy consumption.
These three components are health system management, input
processing, and collections operations for an inventory. Industry
professionals have confirmed them as relevant in video games.
Both versions of each component have also been developed by one
company and then revised by other industry professionals.

The results show that C++ can have up to 48% less energy con-
sumption than Blueprint models for the execution of some com-
ponents. Software models (such as Blueprints) are proving to be
a success in the gaming domain, but this success is accompanied

by an unidentified energy consumption problem that this work
reveals.

This work has the potential to encourage video game engine
developers to improve the generation of code from models from a
greener perspective. Furthermore, these results might also encour-
age a new branch of research on green model-driven video game
development. Finally, this work raises awareness on the adoption of
models being accompanied by green challenges, and this phenom-
enon is not only limited to the success of models in video games,
but can also take place in more traditional software domains.

The paper is structured as follows: in Section 2 we provide a
concise summary of video game engines, focusing on Unreal Engine
5 and how Blueprint models are integrated to foster video game
development. In Section 3 we discuss how the energy consumption
measurement approach is planned and performed following ac-
cepted practices by the green research community. In Section 4 we
introduce the Research Questions and explain the implementation
details. In Section 5 we analyze and discuss the results. The threats
to the validity of the experiment are discussed in Section 6. In Sec-
tion 7 we outline previous related work on the subject. Lastly, we
present our summarized conclusions and future work in Section 8.

2 BACKGROUND
A game engine is a tool in the field of video game development,
encapsulating a suite of integrated technologies and tools that
streamline the production of games. It not only expedites the devel-
opment process, but also enhances the quality and performance of
the final product, thereby playing a crucial role in the evolution and
proliferation of video games as a popular form of entertainment
and artistic expression.

Game engines are specifically designed to enable and stream-
line the creation of video games, providing a layer of software
components that are reusable across different video games, thus
significantly reducing the time and resources required to develop
a new game from scratch. These engines can be equipped with a
wide array of functionalities including, but not limited to, rendering
graphics (2D and 3D), simulating physics, managing memory and
assets, and facilitating audio output, networking capabilities for
multiplayer games, artificial intelligence for non-player character
behavior, and tools for animation and environmental effects.

Additionally, many game engines offer more advanced features
such as multi-platform building, which makes them an appeal-
ing choice if it is the case of a video game or project targeted for
multiple platforms. With this feature, game engines allow game
developers to focus on the design and gameplay aspects of the
game rather than the intricacies of platform-specific development
of these components.

Most game developers use game engines, (60% as of 2022 [11])
and there are multiple industry-scale engines. One of the most
popular game engines among video game developers is Unreal En-
gine [11]. Video game developers have used Unreal Engine since
its launch in 1998 until the current version of Unreal Engine 5
(UE5). Nowadays, UE5 is the preferred choice for high budget de-
velopments. In fact, nearly 80 of the most highly anticipated games
released in 2023 are powered by Unreal Engine [16].



A Comparative Analysis of Energy Consumption Between Visual Scripting models and C++ in Unreal Engine:
Raising Awareness on the importance of Green MDD MODELS ’24, September 22–27, 2024, Linz, Austria

It is important to take into account that UE5 is not only one of
the most used game engines among video games developers, but
also millions of users play to video games powered by UE5: the
video game Fortnite has more than 235 million users per month [2],
and it is only one of the many games developed with this engine.
Furthermore, the adoption of UE5 includes a wide range of appli-
cations beyond traditional gaming, including film and television,
architecture, automotive, or manufacturing, and simulation [17],
although their main focus is video game development.

Figure 1: Blueprint models in UE5: Interactive Spotlight Con-
trol via Trigger

2.1 Unreal Engine 5 Blueprints
The software model of UE5 (a domain-specific modeling language)
utilizes a node-based language called Blueprints, as depicted in
Figure 1, where functions and actions are represented as intercon-
nected nodes. It’s crucial to distinguish between the concept of
software model and that of a 3D model (or mesh). 3D models are
commonly employed in the fields of video games and computer
graphics to denote the visual representation of three-dimensional
shapes.

Blueprints stands out as a feature that democratizes the game de-
velopment process, allowing programmers and designers to create
complex game logic and interactions without the need for tradi-
tional code-based programming.

In the development of video games, a seamless fusion of artistry
and programming expertise is essential, resulting in a product
that reflects the collaborative endeavor of development teams con-
formed by diverse profiles. According to a recent industry sur-
vey [33], these teams are formed by software developers (24%),
game designers (23%), artists (15%), UI designers (8%), and QA engi-
neers (5%). The diversity within these teams fosters a predilection
for utilizing software models. Software models offer a higher level
of abstraction than coding, thus facilitating greater involvement
from members less focused on technical aspects. This strategy not
only democratizes the development process but also enriches the
creative input across various roles.

The Blueprint in Figure 1 is designed to control input and visibil-
ity of a spot light, based on the player’s overlapping with a trigger
area. When the character controlled by the player enters the trigger
area, input is enabled, allowing them to interact with the spot light
by pressing the the specified key ’F’. When the key is pressed, the
visibility of the spot light is toggled, meaning it will turn on or off.

Exiting the trigger area disables the input, preventing the player
from toggling the visibility of the spot light until they re-enter the
trigger area.

This logic implementation approach significantly lowers the en-
try barrier for game development, enabling individuals with limited
coding knowledge to contribute effectively to the development pro-
cess instead of needing to learn how to program in C++, which
is the alternative and more traditional option for logic implemen-
tation in UE5. Moreover, Blueprints facilitate rapid prototyping
and iteration, as changes can be made and tested in real time, thus
accelerating the development cycle and encouraging experimental
gameplay designs.

Blueprints need to be compiled into UnrealScript VM bytecode
which will run on a virtual machine when used in-game [18]. The
difference in the logic of the game between C++ code and Blueprint
models might not be noticeable in terms of behavioural results;
however, the impact difference in terms of energy consumption
between using C++ or Blueprint models has not been explored so
far.

3 STUDYING THE ENERGY CONSUMPTION OF
SOFTWARE

If we want to rigorously study the environmental impact of soft-
ware, it is essential to know its energy consumption while in oper-
ation as precisely as possible.

Two kinds of approaches serve this purpose: The first one uses
specialized software tools capable of estimating hardware energy
consumption during software execution, such as PowerAPI [20]
or Joulemeter [23]. These tools do not directly measure energy
consumption but instead derive estimates from a model fed with
parameters collected by the software during execution. Despite their
ease of use and ability to yield valuable results across various levels
of detail, their reliance on estimation implies that result accuracy
eventually depends on the model approximations.

Alternatively, the other approaches involve employing measur-
ing equipment linked to a suitably instrumented computer to di-
rectly record energy consumption during software execution. This
approach offers the advantage of delivering genuine energy con-
sumption data, whose quality only depends on equipment quality
and measurement protocol. Nonetheless, it requires computer in-
strumentation for testing and may prove to be more expensive and
difficult to implement.

Merely possessing a physical device to measure computer en-
ergy consumption during software operation is not adequate to
ensure conclusive results. A comprehensive process is imperative
to ensure study rigor and consistency, thereby rendering obtained
conclusions to be scientifically relevant.

In this paper, we have employed the Framework for Energy Ef-
ficiency Testing to Improve Environmental Goals of the Software
(FEETINGS) [24]. This framework is accepted by the green comput-
ing community [7, 14, 15] and offers the following assets:

• A standardized terminology for measuring software energy
consumption.

• A green softwaremeasurement process (GSMP), accessible as
an electronic guide (https://alarcos.esi.uclm.es/FEETINGS/),

https://alarcos.esi.uclm.es/FEETINGS/


MODELS ’24, September 22–27, 2024, Linz, Austria Verón et al.

designed to systematically support the necessary tasks for
measuring software energy consumption.

• A technological infrastructure that facilitates the capture
and analysis of software energy consumption. This infras-
tructure includes an Energy Efficiency Tester (EET), serving
as a measuring instrument, and a software tool (ELLIOT)
designed for visualizing and analyze the energy consump-
tion results captured by the EET automatically. The EET, a
hardware-based device, has been utilized instead of software
estimators to provide more realistic and accurate energy con-
sumption values. It captures consumption data directly from
the power supply of the PC, offering a sampling frequency
of 100 Hz. The EET measures the consumption of the en-
tire PC, referred to as the Device Under Test (DUT), as well
as various components of the PC, including the processor,
graphics card, hard disk, and monitor.

Monitor Falkon Q2702S 27” 2K
Motherboard Asus Prime B460-Plus
Processor i7 10700
RAM 4 modules of 32GB DDR4 Kingston 2666MHz CL16
Graphics card Zotac Gaming GForce RTX 3060 12 GB GDDR6
Hard Disk Hard Disk & Kingston SSD A400 – 480GB SATA
Power supply Energy PS901SX 900W
O.S. Windows 11 Pro

Table 1: DUT specifications

The GSMP process comprises seven phases, covering all the
essential steps for conducting a comprehensive analysis of software
energy consumption during software execution:

(1) Scope definition. The main goal of this phase is to obtain a
complete specification of the requirements for the evaluation
of energy efficiency, including the precise definition of the
software to be analyzed and the development of the different
test cases to be run. The test cases for our work are explained
in detail in Section 4.1.
Our study aims to compare the energy consumption of three
components representative of real video games, implemented
with two different approaches (Blueprint models and C++
code). It is worth emphasizing that our objective is to find out
if there is any significant difference in energy consumption,
not to discover what this difference is exactly, as this will
always depend on the environment in which the applications
are run.

(2) Measurement environment setting. This phase includes
activities such as the selection of the measurement equip-
ment to be used, with the detail of its technical specifications;
the decision of the physical magnitudes to be measured, and
the verification that there are no background processes that
may contaminate the desired results.
The measurement environment used in this work is the of-
fered one in the FEETINGS framework, which includes: the
EET device, the ELLIOT software, and the DUT. The DUT is
a desktop computer utilized for executing the test cases and
conducting time and power measurements. In our experi-
ment, the DUT had the specifications outlined in Table 1.

In green software research, accepted metrics include the en-
ergy use of the processor, the hard disk drive (HDD), and the
total energy consumption of the device [7]. However, assess-
ing the energy use of the graphics card becomes essential
for video games, given its intensive utilization in gaming.
To take care of the possible contamination of background
processes necessarily running in the operative system, the
final power measurements are acquired by subtracting the
baseline power required (measured before launching each ap-
plication under study) from the measurements taken during
the experiment (measured while executing each application).

(3) Measurement environment preparation. This stage in-
cludes the elimination of services or processes running in
the background of the DUT, the setting of the sample size
(since measurements must be repeated to guarantee the rep-
resentativeness of the results), and the configuration of the
testbed.
The EET replaces the original power source of the DUT
where the software runs with its own power supply. This
way, the power required and the execution time aremeasured
and recorded. To guarantee the reliability of the analysis and
the statistical results obtained, all the test cases executions
were recorded 30 times. Also, in our study, the duration of
the execution and recording was 30 seconds in all of the test
cases at a sampling frequency of 100 Hz and the execution
of every test case did not require any actions performed
by a human, as the actions of each test case are performed
automatically.

(4) Performing the measurements. Measurements are per-
formed in the sequence defined in the previous phase, and
all the raw data are collected and recorded.

(5) Test case data analysis. It covers the analysis of the previ-
ous data, checking for incorrect values and eliminating them
from the dataset, and performing the statistical analysis of
the data.
A measurement is considered invalid if it is recorded from
a wrong execution, identified by its inconsistency with the
results from the other executions; or if it qualifies as an
outlier, where one or more values are significantly higher or
lower than those from other executions. This processing is
computed by ELLIOT, which also calculates the statistics of
the values obtained.

(6) Software entity data analysis. It includes the calculation
of the energy consumed by the execution of the software by
subtracting the appropriate baseline consumption, and the
analysis and interpretation of the results, to make sure they
address the research questions that were put forward at the
beginning of the research.
In this work, the analysis and interpretation of the data are
presented in Section 4.2 and Section 5.

(7) Reporting the results. Finally, phase 7 deals with appro-
priate reporting of the exercise, to ensure that the gained
knowledge is available and both the measurement process
and results can be replicated by other researchers.



A Comparative Analysis of Energy Consumption Between Visual Scripting models and C++ in Unreal Engine:
Raising Awareness on the importance of Green MDD MODELS ’24, September 22–27, 2024, Linz, Austria

4 EVALUATION
This section includes the research questions that we aim to answer,
the implementation details, and the results obtained.

This study aims to examine the impact on the energy consump-
tion of two different approaches for implementing logic in a video
game (i.e. Blueprint models and C++), but video games integrate
many complex components to create immersive and interactive
experiences. If we evaluated the consumption of a complete video
game, we would not be able to isolate specific components, as
video game scenes often combine many of these at once. These
components encompass graphics rendering, physics engines, au-
dio processing, health system management, input processing, and
inventory1 management, among many others.

Some of these components, like graphics rendering, physics,
and audio processing, are already managed by game engines them-
selves, such as UE5. However, some other components need to be
implemented by the game developers. This is the case of health
system management, input processing, and inventory operations.
These components are also three of the most common components
in video games, which makes them representative cases for the
implementation comparison in this work.

Figure 2: Inventory system in the video game The Witcher®
3: Wild Hunt

An example of the usage of an inventory system is shown in
Figure 2. The inventory screen in this Figure displays items which
the players can use on their character. On the left side, materials
for different interactions like crafting and making and modifying
equipment are displayed. The center shows the weapons of the
character, like swords and a crossbow, along with some number
consumable objects and other fighting elements like bombs. The
right side showcases the current armor of the character and other
equipment, as well as the health status. Between the center and the
right side, there is a representation of the character with the cur-
rently equipped weapons and armor. The inventory helps players
to manage resources and gear within the game.

An example of the usage of a health system and input processing
is shown in Figure 3. This Figure shows the main character, con-
trolled by the player, in a natural setting. The red bar at the top left
1Inventories are collections of game elements that the player can manage. This results
in the need of implementing different operations, including search operations and
memory management.

is the health bar, indicating the life energy of the character. When
this bar empties, the character can no longer continue and the game
is restarted from a previously saved point. The player moves and
orders the character through this virtual world using various inputs
from a keyboard or a controller, as indicated by the buttons on the
bottom right of the screen. These would correspond to buttons on
a game controller for actions like moving, attacking, or dodging.
Both Figure 2 and Figure 3 are taken from the industrial case The
Witcher® 3: Wild Hunt, a blockbuster video game which had sold
more than 50 million units by the first quarter of 2023 [13].

We aim to compare the energy consumption of video games with
a different logic implementation approach: one using Blueprint
models and the other one using C++ programming. In order to
tackle this, we formulated the following Research Questions:

RQ1 Does implementing a health systemmanagement component
for a video game with Blueprint models entail more energy
consumption at run time than with C++?

RQ2 Does implementing an input processing component for a
video game with Blueprint models entail more energy con-
sumption at run time than with C++?

RQ3 Does implementing an inventory search component for a
video game with Blueprint models entail more energy con-
sumption at run time than with C++?

Answering each of the Research Questions will lead us to com-
pare the energy consumption difference between the two different
logic implementations of each of the three components, allowing us
to conclude if there is a difference in energy consumption between
using Blueprint models and using C++ programming or not.

4.1 Implementation Details
For this study, we need six test cases that allow us to compare the
measurements taken from both logic implementation approaches
under study, i.e., we had to implement three components in two
different versions each: one version using Blueprint models and
the other version using C++ code. The components implemented
are the following: health system management, input processing,

Figure 3: Health bar at the top left of the image and main
character moving with the input of the player in the centre
of the image in the video game The Witcher® 3: Wild Hunt



MODELS ’24, September 22–27, 2024, Linz, Austria Verón et al.

and inventory operations. The outcome of implementing each com-
ponent in both versions is a total of six test cases (three of them
implemented with Blueprint models and the other three in C++).

Currently, there are no publicly available video games with two
versions which are identical in every way except for the implemen-
tation approach used (Blueprint models or C++ code). Therefore,
the implementations were performed in collaboration with a pro-
fessional video game development company. The components were
implemented by the company using the latest version (5.3.2) of
Unreal Engine, which in turn used the version 17.6.5 of Microsoft
Visual Studio Community 2022. Each version of each component
was implemented by the professional developers in the company
and then reviewed by other professional developers unaffiliated to
the company, who agreed on the way to develop it.

The six applications were compiled in release mode with default
shipping settings for Windows, since it is the way that would reach
end users and a video game is expected to be run a much higher
number of times by all end users than by developers. Also, the
six applications built in UE5 are not running only the component
under study. The applications require a minimum scenario for the
execution of the components to be as similar as possible to how
these components would appear in an industrial case. Theminimum
scenarios have other components working; like a physics system,
or graphics rendering; in order to conform a complete application
built with UE5. All of these components, except for the one under
study, are similar between the applications containing each of the
two versions of the components under study.

Figure 4 shows a screenshot of each one of the three different
scenarios, each containing one of the components under study.
Some of the additional components can be seen in this Figure, such
as a character (grey humanoid) and an environment (sky and floor).

For the implementation of the health system management com-
ponent, displayed in the left image of Figure 4, the character en-
ters a damaging zone and its health gets decreased in time. In the
Blueprint models version, the variables for the maximum and cur-
rent health points are assigned and set in a Blueprint class named
AC_HealManager. Then, another Blueprint class named Damage-
Zone reduces the current health in AC_HealManager over time
when the character is situated in the set damaging area. In the
C++ version, the same logic design is followed in the C++ classes:
UHealManager sets the maximum and current health andADamage-
Zone reduces the current health stored in UHealManager over time
when the character is situated in the set damaging area. Snippets
of both implementations approaches are shown in Figure 5 for this
component.

For the implementation of the input processing component, dis-
played in the center image of Figure 4, the character moves when
an input associated with the movement is pressed in a keyboard
or a controller. The reading of the values of the inputs is imple-
mented in both versions with the input system Enhanced Input of
UE5, as usually done in commercial video games. In the Blueprints
version, the association between the inputs values and the move-
ment of the character is controlled in a Blueprints class named
BP_CustomPlayer. In the C++ version, the movement of the player
is controlled in the C++ class AcustomPlayer, which binds the input
actions with the functions that make the player move. Snippets of

both implementations approaches are shown in Figure 6 for this
component.

For the implementation of the inventory operations component,
displayed in the right image of Figure 4, both versions first load
an inventory with 157 items. Then, an item is searched in that in-
ventory periodically. In the Blueprints version, every item in the
inventory is an instance of a Blueprints class named BP_ItemData
and the search in the inventory is performed by using the UE5 Blue-
print node Find, which searches for a specific item in a Blueprint
Map with a provided key and returns the item if it is found. In the
C++ version, the items are instances of a struct named FDataItem
and the search in the inventory is performed in the C++ class UIn-
ventoryManager by calling the function Find of the Unreal Engine
5 class TMap, which returns a pointer to the value of the element
if the map contains the key. Snippets of both implementations
approaches are shown in Figure 7 for this component.

All Blueprints have been compiled with the default compiler
All six applications; i.e., the applications containing the two ver-

sions of each of the three components, implemented with Blueprint
models and C++ code; are available at the following URL for repli-
cation purposes, along with the source code of the Unreal Engine
5.3.2 projects: https://zenodo.org/records/12570903

4.2 Results

TestCase HDD GraphicsCard Processor DUT
Health system (Blueprints) 1.73 100.68 31.14 324.38
Health system (C++) 1.73 100.85 30.86 330.62

Power diff 0.03% 0.17% -0.93% 1.89%
Input processing (Blueprints) 1.66 101.59 45.88 370.87
Input processing (C++) 1.75 102.32 45.75 376.07

Power diff 4.81% 0.71% -0.27% 1.38%
Inventory ops. (Blueprints) 1.77 101.30 45.33 375.04
Inventory ops. (C++) 1.73 100.70 45.44 374.53

Power diff -2.19% -0.60% 0.24% -0.14%
Table 2: Power required (W) for the execution of the applica-
tions for 30 seconds and power difference comparison (C++ -
Blueprints)

Table 2 shows the power required for executing the six appli-
cations for 30 seconds each. These results show that differences
are minimal between the usage of Blueprint models and C++ code
for all three components. The power required by the hard disk
is between one and two orders of magnitude lower than that of
the graphics card and processor, and the difference between both
implementation approaches in the graphics card and the processor
is under 1%. These results entail that, if we measure the power used
over time (i.e. W.s), the answers to RQ1, RQ2, and RQ3 are similar:
Implementing in Unreal Engine 5 any of the three tasks under test
using Blueprint models results in similar energy consumption at
runtime than implementing them with C++.

When measuring traditional software, only its energy consump-
tion onW.s is measured [7]. However, we argue that to have a better
understanding of energy consumption in video games, frame rate
needs to be taken in consideration. As video games are real-time ap-
plications which require continuous visual feedback for the player,
refresh rate in this type of applications is key. This refresh rate is

https://zenodo.org/records/12570903


A Comparative Analysis of Energy Consumption Between Visual Scripting models and C++ in Unreal Engine:
Raising Awareness on the importance of Green MDD MODELS ’24, September 22–27, 2024, Linz, Austria

Health system management Input processing Inventory operations

Figure 4: The three components implemented in UE5: health system management, input processing, and inventory operations.

Figure 5: C++ and Blueprint models snippet where the char-
acter receives a decrease in current health when damaged.

usually reflected in the frame rate or frames per second (FPS) in this
context. FPS represent the amount of frames (i.e. images) that the
application is able to render per second, with the consequent logic
for updating the game world that is being rendered. The more FPS,
the more fluid the gameplay will be, improving the user experience
and the quality of the gameplay. Frame rate is so important that
platforms owners like Sony or Nintendo will only allow developers
to publish their games on their platforms (e.g., PlayStation 5 or
Switch) if they achieve a minimum frame rate at any given time of
the gameplay.

To take into account the FPS, we additionally measured the time
in milliseconds that frames required in average during the execu-
tions of the applications described in Section 4.1. The results of this
additional measurement, which are displayed in Table 3, show that
the C++ implementation of the Health system component takes a
5.81% less time to render a frame, which means that the Blueprint
models implementation of this component can achieve an average
of 5.81% less FPS. The C++ implementation of the Input process-
ing component, in contrast, takes a 1.73% more time to render a

Figure 6: C++ and Blueprint models snippet where the input
is processed for moving the character.

frame, which means that the Blueprints models implementation
of this component can achieve an average of 1.73% more FPS. Fi-
nally, the inventory operations component is the component where
the biggest difference between both implementation approaches
is found: The C++ implementation of the inventory operations
component takes 47.73% less time to render a frame, which means
that the Blueprints models implementation of this component can
achieve an average of 47.73% less FPS.

Test Case C++ (ms) Blueprints (ms) Time diff.
Health system 0.78 0.82 -5.81%
Input processing 1.07 1.05 1.73%
Inventory ops. 0.66 0.98 -47.73%

Table 3: Average time required (ms) for the rendering of a
frame of the applications and time difference comparison
(C++ - Blueprints)



MODELS ’24, September 22–27, 2024, Linz, Austria Verón et al.

Figure 7: C++ and Blueprint models snippet where an item is
searched in the inventory.

We showed in Table 2 the measurement of the power consump-
tion of each implementation approach of each component in 30
seconds of execution, and in Table 3 the average time required for
rendering a frame. With these measurements, we can compute the
power consumption values per average frame. These values are
displayed in mW for each version of each component are displayed
in Table 4.

TestCase HDD GraphicsCard Processor DUT
Health system (Blueprints) 0.04 2.53 0.78 8.16
Health system (C++) 0.04 2.39 0.73 7.84

Power diff -6.03% -5.88% -7.05% -4.06%
Input processing (Blueprints) 0.05 3.28 1.48 11.96
Input processing (C++) 0.06 3.35 1.50 12.31

Power diff 6.22% 2.19% 1.21% 2.84%
Inventory ops. (Blueprints) 0.05 3.02 1.35 11.19
Inventory ops. (C++) 0.04 2.03 0.92 7.56

Power diff -50.96% -48.62% -47.38% -47.94%
Table 4: Power required (mW) per frame on average for
the applications and power difference comparison (C++ -
Blueprints)

Therefore, the actual answers to the Research Questions are the
following:

Answering RQ1 Yes, implementing a health system manage-
ment component for a video game with Blueprint models
entails more energy consumption at run time than with
C++. Specifically, implementing this component with C++
requires 5.88% less graphics card consumption and 7.05% less
processor consumption than with Blueprint models.

Answering RQ2 No, implementing an input processing com-
ponent for a video game with Blueprint models does not
entail more energy consumption at run time than with C++.
Specifically, implementing this component with C++ re-
quires 2.19% more graphics card consumption and 1.21%
more processor consumption than with Blueprint models.

Answering RQ3 Yes, implementing an inventory search com-
ponent for a video game with Blueprint models entails no-
ticeably more energy consumption at run time than with
C++. Specifically, implementing this component with C++
requires 48.62% less graphics card consumption and 47.38%
less processor consumption than with Blueprint models.

5 DISCUSSION
To understand why there are differences in energy consumption, we
analyzed the open information about the UE5 implementation. UE5
has a lot of documentation about the blueprint model classes and
about the C++ classes. All the C++ and Blueprints classes used to
implement the components in this paper have their documentation
online. However, the analysis of what is publicly available does not
provide any explanation to justify the energy differences.

Our intuition is that the differences in power consumption are
caused during the compilation of the Blueprint model to code. This
compilation is outlined in the Unreal Engine 5 documentation [18].
In other words, the documentation describes the main steps of
the compilation but does not provide the actual transformation
between Blueprint models and code. We expect that, as works like
this one raise awareness about the energy consumption of video
games, video game engine developers start paying attention to
which parts of the model transformation are influencing the energy
consumption. Possibly, opening the model transformation will also
help the game engine developers community and the research
community to advance on improving the energy consumption.

It is also necessary that the documentation informs developers
about the energy consumption implications carried by using differ-
ent Blueprint concepts (nodes such as Find Element in the Array
class) for the implementation. For that purpose, it is essential to
keep researching to understand the differences in the consumption
of Blueprint classes and the interactions among them. Currently,
there is nothing similar in the official documentation because of
the current lack of awareness about the energy consumption of
video games.

Currently, Unity is the other most used video game engine cur-
rently in the video game industry [11]. Unity stands out because it
offers a versatile performance range tailored to various platforms,
making the development of mobile and XR games more appealing
compared to Unreal Engine. Unity relies on C# as programming lan-
guage for video game developers, but Unity seems to be following
Unreal Engine steps in the adoption of Model-Driven Development
(MDD). In 2017, the company Ludiq released Bolt: a domain-specific
modeling language for Unity via the Unity Store. In 2020, Unity
Technologies (the developers of Unity) acquired Bolt and, a year
later, in 2021, Unity released its official Unity Visual Scripting lan-
guage based on Bolt. Nowadays, Unity Visual Scripting is an integral
part of Unity.

Our work reveals that the success of Blueprint models for de-
veloping video games with Unreal Engine comes with a penalty
in energy consumption. This suggests that Unity Visual Scripting
might also require attention. We have consulted the Unity Visual
Scripting documentation and found no public information on the
transformation of Unity Visual Scripting to code, similar to the lack
of public information on the transformation of Blueprint models.



A Comparative Analysis of Energy Consumption Between Visual Scripting models and C++ in Unreal Engine:
Raising Awareness on the importance of Green MDD MODELS ’24, September 22–27, 2024, Linz, Austria

In fact, the transformations of video game software models to
code should represent an opportunity to achieve the green perspec-
tive. Model-to-code transformations can embed green best practices
to ensure their utilization by construction rather than solely depend-
ing on the developer’s skill. Advances in green practices could be
embedded into new versions of transformations, facilitating adop-
tion by the developer community. To achieve this, it is necessary
to raise awareness of the energy consumption of video games.

With the present work, we intend not only to raise awareness
of the lack of research on energy consumption in MDD for video
games but also to encourage and ease other researchers to perform
experiments on other engines, like Unity. We release our implemen-
tations not only for replication purposes but also for extensibility.
We expect other researchers to leverage the design of the compo-
nents in this work and the rationale on the importance of FPS to
better understand energy consumption in video games.

6 THREATS TO VALIDITY
We use the classification of threats to validity of Wohlin et al. [32].

Construct validity:This aspect of validity reflects "the degree to
which the independent and the dependent variables are accurately
measured by the measurement instruments used in the experiment”.

Dependent variables: The power required for executing the differ-
ent test cases is taken as the dependent variable. It was measured
using the Efficient Energy Tester, validated as a dependable device
for assessing the energy efficiency of software execution [7]. Addi-
tionally, each execution was repeated 30 times, and all applications
containing the components under study were executed on the same
physical machine, operating system, and configuration.

Independent variables: The independent variables are the use
of Blueprint models or C++ to implement the different behaviors
within Unreal Engine 5 and the three behaviors selected as repre-
sentative of a typical game which consumption is to be assessed.

Internal Validity: As we try to determine if there is a causal
relation between implementation approach (Blueprint models or
C++) and energy consumption, it is important to check if the factor
being investigated might be influenced by unaccounted variables.

Due to the nature of the experiments, all of the variables were
controlled, thereby minimizing potential threats to internal validity.
Specifically, the test cases are the same and run the same compo-
nents in both approaches. It is worth noting that the repetition
of the experiments 30 times during the same time also helped to
minimize any possible bias. In addition, subtracting the baseline
power in the measurements and removing invalid measurements
(wrong executions or outliers) also helped to ensure that the dataset
was valid for analyzing and answering the Research Questions.

External Validity: This aspect of validity focuses on the extent
to which findings can be generalized and are relevant to other cases.
Enhanced external validity indicates a greater ability to apply the
results of an empirical study to real-world software engineering
practices.

To minimize the risk of the Blueprints and C++ implementations
not being comparable, the components have been implemented in
collaboration by a professional video game development company
specialized in development with Unreal Engine who are equally

experienced with both C++ and Blueprints. Furthermore, the repre-
sentativeness of the components as relevant components of video
games that are present in the vast majority of video games being
marketed today has been validated by this same company and two
more additional professionals in the industry.

Another threat to the external validity is the fact that the mea-
surements are obtained for a specific computer (the DUT being
used). We mitigated this threat by employing a pre-validated pro-
cedure and measuring tool, enhancing result reliability. Even if
consumption data were to vary across devices, our results indi-
cate that the percentage variances between those values would be
similar to those obtained in this case.

In addition to the classification of Wohlin et al. [32], it is im-
portant to remember that many components run simultaneously
for a video game to function correctly. Although the three com-
ponents under study were selected by a professional video game
development company as frequently used, they may not be the most
relevant in terms of power usage. Further studies with industrial
case studies will be required to shed more light on this in the future.

7 RELATEDWORK
Projections suggest that by 2025, around 20% of global energy usage
will stem from information and communication technologies [3].
Consequently, the environmental footprint of this sector is signif-
icant and poised for further expansion in the foreseeable future.
One of the sectors within these technologies where growth has
been most evident in recent years is video games.

However, perhaps due to its relative youth, the video game sector
has not yet developed the same level of environmental awareness
as other computing technology sectors. In the case of computing
technologies in general, there are research efforts in the area of
green cloud computing [4], green mobile computing [28], green
software [25], and green data centers [31] among others.

The research discussed in the work of Gutierrez et al. [15] em-
phasizes two approaches to examining energy usage: Green-IN
and Green-BY. The former concentrates on enhancing energy effi-
ciency within a specific domain (such as video games), while the
latter focuses on utilizing a domain (like video games) to promote
sustainability across various contexts.

Within the subcategory of "green-BY", it is where the research
efforts are concentrated. For example, Johnson et al. [21] conducted
a systematic review to assess the effectiveness of gamification and
serious games in impacting domestic energy consumption.

Within the subcategory of "green-IN" computing, the focus has
mainly been on studies analyzing the impact of hardware improve-
ments on the environment. In recent years, the impact of proper
software use (green-IN software) on the environment has also been
recognized, and more effort is being devoted to its study [15].

However, there are hardly any studies that analyze the energy
consumption of video game software despite its importance. A
survey on "green video games", which is defined as the field of
Green Computing that deals with the particularities of video games,
is presented in the work of Pérez et al. [26]. Three main issues are
identified in the survey by Pérez et al. [26] related to Green Video
Games:



MODELS ’24, September 22–27, 2024, Linz, Austria Verón et al.

• Battery life: The surge of mobile devices as gaming platforms,
coupled with the heightened complexity and graphic quality
of applications, has underscored the constraints imposed by
battery life on the gaming experience. Consequently, several
studies are dedicated to enhancing the energy efficiency of
video games, driven less by environmental considerations
and more by the recognition of how reduced energy con-
sumption prolongs battery life and, consequently, enhances
the user experience.

• Balance between energy consumption and various factors like
application performance, user experience, and economic costs:
Several methods aimed at lowering energy usage in com-
puter applications, notably in video games, such as Dynamic
Voltage and Frequency Scaling (DVFS), may inadvertently
compromise performance or user satisfaction, while others
might affect economic considerations. Consequently, numer-
ous studies concentrate on assessing the optimal parameter
combination to achieve maximum energy savings with min-
imal deterioration in application performance, user experi-
ence, and acceptable costs.

• Modelling and measurement of energy consumption: Enhanc-
ing software energy efficiency requires a thorough under-
standing of the impact of each element on the overall energy
consumption. Research endeavors aimed at quantifying soft-
ware energy consumption under controlled circumstances
and modeling its behavior in the pursuit of more energy-
efficient versions of applications like video games.

The survey shows that there are studies on the energy consump-
tion of video game software focusing on algorithmic efficiency.
However, the survey does not identify any work that studies the
influence of software models (such as Blueprints) on energy con-
sumption as this work does.

The energy consumption of two of the most popular video
game engines (Unity and Unreal Engine) is studied in the work
of Pérez et al. [27], comparing their performance in three differ-
ent scenarios representative of typical video games. The authors
conclude that, since each of the engines outperforms the other in
energy efficiency depending on the scenario, there is interest in
finding the most energy-efficient video game engine technology.

Although the comparison focuses on the influence of game en-
gines, it does not consider the influence of video game engine
software models (Blueprints in Unreal Engine) on energy consump-
tion as this work does. Considering the influence of video game
software models on energy consumption is important because (1)
they are increasingly used in video game development, and (2) they
have higher energy consumption than their coding alternative, as
this work shows.

In the broad sense of sustainability, there is a first wave of work
that discusses the role that software models can play to achieve
sustainability. The Sustainability Evaluation ExperienceR (SEER)
framework [22] argues that software models are one of the main
enablers to achieve sustainability in the context of self-adaptive
systems. Gramelsberger et al. [12] propose a DSL model to describe
sustainability indicators (eg., consumption types, CO2 emissions, or
landscape usage). This DSL can be combined with ADLs to facilitate
informed sustainability decision-making throughout the lifecycle

of systems during their development. In the context of digital twins,
David and Bork [10] provide an initial taxonomy that focuses on the
technical dimension of sustainability. All of these works make the
case that themodeling community is relevant to tackle the challenge
of sustainability. Our work goes beyond in the sense of providing
the first quantitative evidence of the importance of green MDD. It
is true that software models can help to achieve sustainability, but
it is also true that the very software models can pose a challenge to
sustainability if energy consumption goes unnoticed.

An informal survey of the papers published in the MODELS
Conference Proceedings and in the SoSyM Journal with the terms
consumption OR energy OR green shows that the topic of energy con-
sumption has not received sufficient attention from the community.
As with video game models, models of other classical domains may
also influence energy consumption. This is especially relevant in the
era where low-code and no-code approaches are proliferating in in-
dustry as is the case of Microsoft Power Apps, Amazon Honeycode
(recently ended or hiatus), Outsystems, or Google AppSheet.

8 CONCLUSION
The video games industry has experienced a significant expansion
in user numbers and game sophistication in recent years. How-
ever, the environmental awareness in the video games industry,
particularly the efforts to reduce the energy consumption, is still
an under-explored field of research that requires more work on it,
as the magnitude of the energy consumed in this sector makes this
a relevant issue for the research community.

Unreal Engine 5 is one of the most used game engines in the
industry and powers some of the most played video games in the
present, which highlights its significance in this field. This engine
offers two different logic implementation approaches to developers:
Blueprint models and C++.

Thiswork explores how different these implementation approaches
are in terms of energy consumption. We selected three representa-
tive components to measure the differences in energy use between
both implementation approaches: health system management, in-
puts processing, and inventory operations. The power required for
the different implementation approaches has been measured in a
controlled environment for all of the components. We employed the
framework FEETINGS, which is accepted in the green computing
community. This framework provided us the systematic process
which we followed for the measurement and the technological in-
frastructure for capturing and analyzing the energy consumption.

When analyzing the power required per frame, we find that in
two out of the three components (health system management and
inventory operations) Blueprint models consume more energy per
frame than C++ code. The inventory operations component is par-
ticularly interesting, showing nearly 50% less energy consumption
per frame with the C++ implementation compared to Blueprint
models. In the one component where C++ code consumes more
power per frame (inputs processing), the difference is between 1%
and 3% for both the graphics card and the processor.

Furthermore, there are still relevant common video game com-
ponents to analyze in future works, such as networking, save and
load system, dialogue system, particle system, camera behaviour,
and AI path-finding navigation. Also, video game engines enable



A Comparative Analysis of Energy Consumption Between Visual Scripting models and C++ in Unreal Engine:
Raising Awareness on the importance of Green MDD MODELS ’24, September 22–27, 2024, Linz, Austria

deployment of video games across multiple target platforms (e.g.,
PC, mobile, VR, consoles), as it widens the audience reach for devel-
opers. This cross-platform development may reveal new insights
into how models influence energy consumption in different devices,
thus making the analysis of the same game components in different
platforms another goal for our future work.

This work reveals that the success of software models in the
video game domain comes with an energy cost. Due to the popu-
larity of video games, this energy cost can be very high, equivalent
to the consumption of millions of households. Another leading
engine in the video game industry, Unity, is following the MDD
(Model-Driven Development) steps of Unreal Engine, reinforcing
the importance of considering the green perspective in MDD for
video games. Moreover, the use of MDD outside the video game
domain could impact energy costs in other areas. This work could
prompt the video game industry and researchers to consider the
green perspective and trigger a new branch on research in green
MDD beyond video games.

ACKNOWLEDGEMENTS
Partially supported by MINECO under the Project VARIATIVA
(PID2021-128695OB-I00), by UE under the Project OASSIS (PID2021-
122554OBC31/AEI/10.13039/ 501100011033/FEDER), by CECD (JCCM)
and FEDER funds under the Project EMMA (SBPLY/21/180501/000115),
byMCIN/AEI/ 10.13039/501100011033 and EuropeanUnionNextGen-
erationEU/ under the project SEEAT (PDC2022-133249-C31), and
by by MCIN/AEI/ 10.13039/501100011033 and European Union
NextGenerationEU/PRTR under the project PLAGEMIS (TED2021-
129245B-C22).

REFERENCES
[1] 2023. Electricity consumption per dwelling. https://www.odyssee-mure.

eu/publications/efficiency-by-sector/households/electricity-consumption-
dwelling.html. [Online; accessed 16-January-2024].

[2] activeplayer.io Game Statistics Authority. 2023. Fortnite Live Player Count and
Statistics. https://activeplayer.io/fortnite/. [Online; accessed 11-December-2023].

[3] Anders Andrae. 2019. Projecting the chiaroscuro of the electricity use of com-
munication and computing from 2018 to 2030. https://doi.org/10.13140/RG.2.2.
25103.02724

[4] Ankita Atrey, Nikita Jain, and N Ch Sriman Narayana Iyenger. 2013. A Study on
Green Cloud Computing. International Journal of Grid and Distributed Computing
6 (12 2013), 93–102. https://doi.org/10.14257/ijgdc.2013.6.6.08

[5] Newzoo International B.V. 2023. How consumers engage with video games
today. https://newzoo.com/resources/trend-reports/global-gamer-study-free-
report-2023?utm_campaign=2023-06-GGS-GGS%202023%20launch%20report&
utm_source=Press. [Online; accessed 16-January-2024].

[6] Newzoo International B.V. 2023. Newzoo’s Global Games Market Report 2023.
https://newzoo.com/resources/trend-reports/newzoo-global-games-market-
report-2023-free-version#:~:text=Highlights%20of%20the%20free%202023%
20Global%20Games%20Market%20Report%3A&text=The%20number%20of%
20players%20worldwide,year%20growth%20of%20%2B0.6%25.. [Online; accessed
16-January-2024].

[7] Coral Calero, Macario Polo, and Mª Ángeles Moraga. 2021. Investigating the
impact on execution time and energy consumption of developing with Spring.
Sustainable Computing: Informatics and Systems 32 (2021), 100603.

[8] Jessica Clement. 2023. Average weekly hours spent playing video
games in selected countries worldwide as of January 2021. https:
//www.statista.com/statistics/273829/average-game-hours-per-day-of-
video-gamers-in-selected-countries/. [Online; accessed 19-December-2023].

[9] Brian Crecente. 2023. Unreal Engine powers stylish stellar mystery The Invinci-
ble. https://www.unrealengine.com/en-US/developer-interviews/unreal-engine-
powers-stylish-stellar-mystery-the-invincible. [Online; accessed 26-March-
2024].

[10] Istvan David and Dominik Bork. 2023. Towards a taxonomy of digital twin
evolution for technical sustainability. In 2023 ACM/IEEE International Conference

on Model Driven Engineering Languages and Systems Companion (MODELS-C).
IEEE, 934–938.

[11] Eleonora Fanouraki. 2022. Did you know that 60% of game developers use
game engines? https://www.slashdata.co/blog/did-you-know-that-60-of-game-
developers-use-game-engines. [Online; accessed 05-December-2023].

[12] Gabriele Gramelsberger, Hendrik Kausch, JudithMichael, Frank Piller, Ferdinanda
Ponci, Aaron Praktiknjo, Bernhard Rumpe, Rega Sota, and Sandra Venghaus. 2023.
Enabling informed sustainability decisions: sustainability assessment in iterative
system modeling. In 2023 ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems Companion (MODELS-C). IEEE, 964–968.

[13] CD PROJEKT Group. 2023. Consolidated Report for Q1 2023. https:
//www.cdprojekt.com/en/investors/regulatory-announcements/consolidated-
report-for-q1-2023/. [Online; accessed 30-March-2024].

[14] Achim Guldner, Rabea Bender, Coral Calero, Giovanni S Fernando, Markus Funke,
Jens Gröger, Lorenz M Hilty, Julian Hörnschemeyer, Geerd-Dietger Hoffmann,
Dennis Junger, et al. 2024. Development and evaluation of a reference mea-
surement model for assessing the resource and energy efficiency of software
products and components—Green Software Measurement Model (GSMM). Future
Generation Computer Systems (2024).

[15] María Gutiérrez, Ma Ángeles Moraga, Félix García, and Coral Calero. 2023. Green-
IN Machine Learning at a Glance. Computer 56, 6 (2023), 35–43.

[16] Epic Games Inc. 2023. Real-time round-up: the state of interactive
3D. https://www.unrealengine.com/en-US/blog/real-time-round-up-the-state-
of-interactive-3d. [Online; accessed 11-December-2023].

[17] Epic Games Inc. 2024. About Epic Games. https://www.epicgames.com/site/en-
US/about. [Online; accessed 13-March-2024].

[18] Epic Games Inc. 2024. Blueprint Compiler Overview. https://dev.epicgames.
com/documentation/en-us/unreal-engine/compiler-overview-for-blueprints-
visual-scripting-in-unreal-engine?application_version=5.3. [Online; accessed
25-March-2024].

[19] Epic Games Inc. 2024. The most powerful real-time 3D creation tool - Unreal
Engine. https://www.unrealengine.com/. [Online; accessed 26-March-2024].

[20] University of Lille Inria. 2023. PowerAPI. https://powerapi.org/. [Online; accessed
27-May-2024].

[21] Daniel Johnson, Ella Horton, Rory Mulcahy, and Marcus Foth. 2017. Gamifica-
tion and serious games within the domain of domestic energy consumption: A
systematic review. Renewable and Sustainable Energy Reviews 73 (2017), 249–264.

[22] Jörg Kienzle, Gunter Mussbacher, Benoit Combemale, Lucy Bastin, Nelly Ben-
como, Jean-Michel Bruel, Christoph Becker, Stefanie Betz, Ruzanna Chitchyan,
Betty HC Cheng, et al. 2020. Toward model-driven sustainability evaluation.
Commun. ACM 63, 3 (2020), 80–91.

[23] Nupur Kothari and Arka Bhattacharya. 2009. Joulemeter: Virtual machine power
measurement and management. MSR Tech Report (2009).

[24] Javier Mancebo, Coral Calero, Félix García, Mª Ángeles Moraga, and Ignacio
García-Rodríguez de Guzmán. 2021. FEETINGS: Framework for energy efficiency
testing to improve environmental goal of the software. Sustainable Computing:
Informatics and Systems 30 (2021), 100558.

[25] R. Pereira, M. Couto, F. Ribeiro, R. Rua, J. Cunha, J.P. Fernandes, and J. Saraiva.
2021. Ranking programming languages by energy efficiency. Science of Computer
Programming 205 (2021). https://doi.org/10.1016/j.scico.2021.102609

[26] Carlos Pérez, Ana C Marcén, Javier Verón, and Carlos Cetina. 2023. A survey on
green computing in video games: The dawn of Green Video Games. (Dec. 2023).
arXiv:2312.09053 [cs.SE]

[27] Carlos Pérez, Javier Verón, Félix García, M Ángeles Moraga, Coral Calero,
and Carlos Cetina. 2024. A comparative analysis of energy consumption be-
tween the widespread unreal and Unity video game engines. (Feb. 2024).
arXiv:2402.06346 [cs.SE]

[28] Clauirton Siebra, Paulo Costa, Rafael Marques, Andre L M Santos, and Fabio
Q B Silva. 2011. Towards a green mobile development and certification. In 2011
IEEE 7th International Conference on Wireless and Mobile Computing, Networking
and Communications (WiMob). 288–294. https://doi.org/10.1109/WiMOB.2011.
6085386

[29] Nikolai Baskin Sokolov. 2021. Unreal Engine 5: C++ vs Blueprints. https://
gamedev.gg/c-vs-blueprint-in-unreal-5/. [Online; accessed 26-March-2024].

[30] Jimmy Thang. 2019. Solo dev Gwen Frey explains how she developed puzzle game
Kine using only Blueprints. https://www.unrealengine.com/en-US/developer-
interviews/solo-dev-gwen-frey-explains-how-she-developed-puzzle-game-
kine-using-only-blueprints. [Online; accessed 26-March-2024].

[31] Lizhe Wang and Samee Khan. 2011. Review of performance metrics for green
data centers: A taxonomy study. The Journal of Supercomputing 63 (03 2011),
1–18. https://doi.org/10.1007/s11227-011-0704-3

[32] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Experimentation in Software Engineering. Springer Science
& Business Media.

[33] SlashData ©. 2022. State of the Developer Nation 23rd Edition.
https://docsend.com/view/4cmnvxa2xb5jd6hr?utm_source=SlashDataco&
utm_medium=FreeReports_SoN23. [Online; accessed 29-March-2024].

https://www.odyssee-mure.eu/publications/efficiency-by-sector/households/electricity-consumption-dwelling.html
https://www.odyssee-mure.eu/publications/efficiency-by-sector/households/electricity-consumption-dwelling.html
https://www.odyssee-mure.eu/publications/efficiency-by-sector/households/electricity-consumption-dwelling.html
https://activeplayer.io/fortnite/
https://doi.org/10.13140/RG.2.2.25103.02724
https://doi.org/10.13140/RG.2.2.25103.02724
https://doi.org/10.14257/ijgdc.2013.6.6.08
https://newzoo.com/resources/trend-reports/global-gamer-study-free-report-2023?utm_campaign=2023-06-GGS-GGS%202023%20launch%20report&utm_source=Press
https://newzoo.com/resources/trend-reports/global-gamer-study-free-report-2023?utm_campaign=2023-06-GGS-GGS%202023%20launch%20report&utm_source=Press
https://newzoo.com/resources/trend-reports/global-gamer-study-free-report-2023?utm_campaign=2023-06-GGS-GGS%202023%20launch%20report&utm_source=Press
https://newzoo.com/resources/trend-reports/newzoo-global-games-market-report-2023-free-version#:~:text=Highlights%20of%20the%20free%202023%20Global%20Games%20Market%20Report%3A&text=The%20number%20of%20players%20worldwide,year%20growth%20of%20%2B0.6%25.
https://newzoo.com/resources/trend-reports/newzoo-global-games-market-report-2023-free-version#:~:text=Highlights%20of%20the%20free%202023%20Global%20Games%20Market%20Report%3A&text=The%20number%20of%20players%20worldwide,year%20growth%20of%20%2B0.6%25.
https://newzoo.com/resources/trend-reports/newzoo-global-games-market-report-2023-free-version#:~:text=Highlights%20of%20the%20free%202023%20Global%20Games%20Market%20Report%3A&text=The%20number%20of%20players%20worldwide,year%20growth%20of%20%2B0.6%25.
https://newzoo.com/resources/trend-reports/newzoo-global-games-market-report-2023-free-version#:~:text=Highlights%20of%20the%20free%202023%20Global%20Games%20Market%20Report%3A&text=The%20number%20of%20players%20worldwide,year%20growth%20of%20%2B0.6%25.
https://www.statista.com/statistics/273829/average-game-hours-per-day-of-video-gamers-in-selected-countries/
https://www.statista.com/statistics/273829/average-game-hours-per-day-of-video-gamers-in-selected-countries/
https://www.statista.com/statistics/273829/average-game-hours-per-day-of-video-gamers-in-selected-countries/
https://www.unrealengine.com/en-US/developer-interviews/unreal-engine-powers-stylish-stellar-mystery-the-invincible
https://www.unrealengine.com/en-US/developer-interviews/unreal-engine-powers-stylish-stellar-mystery-the-invincible
https://www.slashdata.co/blog/did-you-know-that-60-of-game-developers-use-game-engines
https://www.slashdata.co/blog/did-you-know-that-60-of-game-developers-use-game-engines
https://www.cdprojekt.com/en/investors/regulatory-announcements/consolidated-report-for-q1-2023/
https://www.cdprojekt.com/en/investors/regulatory-announcements/consolidated-report-for-q1-2023/
https://www.cdprojekt.com/en/investors/regulatory-announcements/consolidated-report-for-q1-2023/
https://www.unrealengine.com/en-US/blog/real-time-round-up-the-state-of-interactive-3d
https://www.unrealengine.com/en-US/blog/real-time-round-up-the-state-of-interactive-3d
https://www.epicgames.com/site/en-US/about
https://www.epicgames.com/site/en-US/about
https://dev.epicgames.com/documentation/en-us/unreal-engine/compiler-overview-for-blueprints-visual-scripting-in-unreal-engine?application_version=5.3
https://dev.epicgames.com/documentation/en-us/unreal-engine/compiler-overview-for-blueprints-visual-scripting-in-unreal-engine?application_version=5.3
https://dev.epicgames.com/documentation/en-us/unreal-engine/compiler-overview-for-blueprints-visual-scripting-in-unreal-engine?application_version=5.3
https://www.unrealengine.com/
https://powerapi.org/
https://doi.org/10.1016/j.scico.2021.102609
https://arxiv.org/abs/2312.09053
https://arxiv.org/abs/2402.06346
https://doi.org/10.1109/WiMOB.2011.6085386
https://doi.org/10.1109/WiMOB.2011.6085386
https://gamedev.gg/c-vs-blueprint-in-unreal-5/
https://gamedev.gg/c-vs-blueprint-in-unreal-5/
https://www.unrealengine.com/en-US/developer-interviews/solo-dev-gwen-frey-explains-how-she-developed-puzzle-game-kine-using-only-blueprints
https://www.unrealengine.com/en-US/developer-interviews/solo-dev-gwen-frey-explains-how-she-developed-puzzle-game-kine-using-only-blueprints
https://www.unrealengine.com/en-US/developer-interviews/solo-dev-gwen-frey-explains-how-she-developed-puzzle-game-kine-using-only-blueprints
https://doi.org/10.1007/s11227-011-0704-3
https://docsend.com/view/4cmnvxa2xb5jd6hr?utm_source=SlashDataco&utm_medium=FreeReports_SoN23
https://docsend.com/view/4cmnvxa2xb5jd6hr?utm_source=SlashDataco&utm_medium=FreeReports_SoN23


MODELS ’24, September 22–27, 2024, Linz, Austria Verón et al.

accepted 14 June 2024


	Abstract
	1 Introduction
	2 Background
	2.1 Unreal Engine 5 Blueprints

	3 Studying the energy consumption of software
	4 Evaluation
	4.1 Implementation Details
	4.2 Results

	5 Discussion
	6 Threats to validity
	7 Related Work
	8 Conclusion
	References

