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Abstract. Video games pose different challenges during development
and maintenance than classic software. For example, common and wide-
spread assets, that are typically created as part of video game develop-
ment are Non-Player Characters (NPCs). NPCs contribute to different
aspects such as storytelling and user experience, and they are typically
controlled by the CPU. We theorize that a reproduction of the actions
of NPCs within the game (i.e., simulations) holds key information for
Game Software Engineering (GSE) tasks such as Traceability Link Re-
covery (TLR). This paper presents our approach for supporting TLR in
GSE by leveraging video game simulations. Simulation data from NPCs
is used to reduce the search space. Since the reduced search space might
still be too large for manual inspection, an evolutionary TLR procedure
evolves a population of code fragments. As a result, a ranking of code
fragments that map the requirement to the code is obtained. We evaluate
our approach in Kromaia, a commercial video game released on PC and
PlayStation 4. We compare our approach against a baseline that does not
incorporate simulations by means of a statistical analysis. Our approach
reduces the search space by 99.21% on average, and significantly outper-
forms the baseline with large differences in all performance indicators. A
focus group with professional developers has confirmed the acceptance
of our approach. Our work provides a new direction in TLR, which is an
essential task in not only GSE but also in classic software engineering.

Keywords: Traceability Links Recovery · Video Games · Search-Based
Software Engineering · Topic Modeling.

1 Introduction

Video games are complex products where art and software are combined during
the development process to conform the final product. Due to their nature and
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the software artifacts that compose them, video games present challenges that
differ from those of classic software, leading to important differences between
Game Software Engineering and Classic Software Engineering [10,1]. Our hy-
pothesis is that it is possible to leverage the particularities and specific domain
assets of video games to provide semi-automated support and solutions for Game
Software Engineering tasks.

To that extent, we have set our sight on one of the most common and wide-
spread assets of video games: non-player characters (NPCs). NPCs are non-
playable entities and elements (typically controlled by the CPU) that are created
as part of the video game development process. Some examples of NPCs in video
games are: the generals of the enemy troops in a Real-Time Strategy (RTS), or
the rival drivers in a racing game.

It is important to note that NPCs are not created with the intention of
performing Game Software Engineering (GSE) tasks on the game. Nonethe-
less, NPCs often have pre-programmed behaviors to allow for CPU control. We
theorize that it is possible to observe NPC behaviors within the game (i.e., sim-
ulations) to reproduce and even generate knowledge that enables automated
support and solutions for GSE tasks (e.g., testing the implementation of a spe-
cific requirement, or the solution to a known bug in the game). Specifically,
we put the focus on Traceability Link Recovery (TLR). TLR is a software en-
gineering task that deals with automated identification and comprehension of
dependencies and relationships between software artifacts [20]. Establishing and
maintaining traceability links has proven to be a time-consuming, error-prone,
and labor-intensive task [20].

In this paper, we propose a novel approach that leverages the information
provided by NPC simulations to provide semi-automated support for TLR be-
tween the main artifacts of GSE: the requirements and the code of a video game.
To do this, the NPC’s scenarios are reproduced to obtain simulation data, which
is then used to reduce the search space to a subset of code that represents the
scenario (and in turn contains the requirement). Since the reduced search space
might still be too large for manual inspection, an evolutionary TLR procedure
along with the requirement evolves a population of code fragments. The output
is a ranking of code fragments that serve as candidate solutions towards the
mapping of the requirement to the code.

We evaluate the performance of our approach considering an industrial case
study, which belongs to a commercial video game, Kromaia. Kromaia is a video
game about flying and shooting with a spaceship in a three-dimensional space. It
was released on PC, PlayStation and has been translated to eight different lan-
guages. In addition, we compare our results with those of a baseline that does
not incorporate simulations within the TLR process by means of a statistical
analysis and an effect size measure. Finally, we carried out a focus group inter-
view with the aim of acquiring qualitative data and feedback about the obtained
results. Hence, the contributions of this paper are threefold:

– We investigate the use of NPC simulations within the TLR process in an in-
dustrial case study. To the best of our knowledge, this is the first effort in the
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literature. This is relevant because TLR is an essential software maintenance
and evolution task [4].

– We experimentally demonstrate that NPC simulations reduced the search
space (by 99.21% on average). This enables our approach to significantly
outperform the traceability results of the baseline with large differences in
all performance indicators (by 23.23% in recall, 18.34% in precision, and
22.87% in F-measure).

– We provide evidence that software engineers prefer the results of our ap-
proach using simulations over the results of the baseline even though they
have not used simulations for TLR before. In fact, software engineers val-
ued very positively both the use and the usefulness of simulations to find
requirements in other video game genres and more complex problems (e.g.,
fighting games).

In the remainder of the paper, Section 2 presents the background for our
work. Section 3 presents our approach, and Section 4 describes the evaluation.
Section 5 presents the results, and Section 6 discusses the outcomes of our work.
Section 7 presents the threats to the validity. Section 8 reviews the related work.
Finally, Section 9 concludes the paper.

2 Background

The case study we use to evaluate TLR with NPCs is the commercial video game
Kromaia. Kromaia is a commercial video game programmed in C++, where the
human player (i.e., the user) moves a spaceship in a three-dimensional space
and fights different enemy elements through a collection of levels. In each level,
the player must make the spaceship fly from an initial point to a destination
point multiple times without being destroyed. The spaces where this action is
carried out include: a scene or architecture with asteroids to avoid while flying,
different improvements for the player’s spaceship, and NPCs acting as enemies
of the player (which will try to destroy the player’s spaceship and have to be
fought with projectiles that the player’s spaceship can fire).

Video games can be defined as a series of requirements that define the mul-
tiple mechanics, dynamics, and situations in the gameplay. An example of a
requirement of this nature in Kromaia is “When the human unit is damaged
its armor level decreases and the interface shows the information”. Developers
often need to trace these requirements to fix errors or change some behaviors.

Kromaia, like most video games, has a significant amount of source code:
a total of 145915 lines. Traceability between requirements and lines of code in
a case like Kromaia would require approximately one hour per requirement. A
game like Kromaia usually needs to trace five or more requirements every day.
Thus, tracing the regular number of requirements in a regular working week
would take 25 hours of work, which is impossible for a small studio to bear.
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3 Our approach

Fig. 1 shows an overview of our approach. Our approach starts from a require-
ment that needs to be traced to the code of the game. Software engineers build
a scenario for simulation that contains the requirement and use NPCs to repro-
duce the scenario. The simulation gathers data, registering the code that was
executed to fulfill the scenario. The simulation data is used to filter the entirety
of the code of the game, thus reducing the search space to a subset of code that
represents the simulated scenario, which in turn contains the requirement. For
the requirement “When the human unit is damaged its armor level decreases
and the interface shows the information”, a scenario must be built with a single
NPC that damages the human unit. This action decreases the armor level and
triggers the logic to display the change in the armor level information on the
graphical user interface. The logic meeting this requirement is executed and reg-
istered. Thus, this registered code constitutes the reduced search space instead
of the entire source code.

Simulation data
NPC 

scenario
1. NPCs 

simulation

Filtered and 
processed code

2. Natural Language Processing
Requirement

Code fragments 
ranking

Code Code filtering Filtered code

3. Evolutionary TLR Processed 
requirement

Our approach

Fig. 1. Approach overview

Since the code search space for the scenario can still be too large for manual
inspection, the filtered code is then processed via Natural Language Processing
(NLP) techniques. Afterwards, the filtered and processed code is fed into an evo-
lutionary TLR procedure along with the requirement, which is also processed
via NLP techniques. The evolutionary TLR procedure generates, evaluates, and
evolves a population of code fragments, converging into a ranking of code frag-
ments that constitutes the final output of the approach. Each code fragment
serves as a candidate solution towards the traceability of the requirement.

The ranking of code fragments is sorted according to the parameters of the
TLR fitness function, which is used within the evolutionary TLR procedure.
Video game software engineers can use the ranking as a starting point to deter-
mine and document the traceability, validating or enhancing the top solutions
according to their knowledge of the video game.

3.1 NPC-based simulations

Non-player characters (NPCs) are video game entities that simulate human play-
ers when performing specific actions in the game through various artificial intel-
ligence algorithms created by the developers. NPCs are developed and included
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in a game and accompany the player during the game, antagonize the player, or
simply populate the world recreated in the video game.

Nonetheless, NPCs and their simulation capabilities are embedded within the
architecture of the game. Our rationale is that leveraging NPC-based simulations
can support software engineering tasks in the game. Specifically, we aim to re-
produce particular requirements with these simulations and capture the code
executed to fulfill these requirements. This approach intends to identify code
fragments associated with each requirement, thus reducing the search space.

To achieve this, the developers of the game set a scenario within the game,
using its architecture and NPCs. The NPCs perform the actions defined in each
requirement, substituting the human player when necessary. We register the ex-
ecuted code, creating filtered code documents for the requirements that must be
traced. The filtered code documents are used as the search space for an evolu-
tionary algorithm that performs the traceability procedure on the requirements.

3.2 Natural Language Processing

We process the input requirements and the filtered code through Natural Lan-
guage Processing (NLP) techniques. This processing step serves as a means of
unifying the language of the software artifacts, which facilitates the TLR pro-
cess. The techniques in use are syntactical analysis, root reduction, and human
NLP. Fig. 2 shows the used NLP techniques on a requirement in our approach.

1 Syntactical Analysis: SA techniques analyze the specific roles of each word
in a sentence, determining their grammatical function. These techniques fil-
ter words that fulfill specific grammatical roles in a requirement, discarding
those that do not have semantic value (such as articles or adverbs).

2 Root Reduction: The technique known as lemmatizing reduces words to
their semantic roots (lemmas), thus avoiding verb tenses, noun plurals, and
several other word forms that can negatively interfere with the TLR process.

3 Human NLP: Human NLP is often carried out through domain term ex-
traction or stopword removal. Our approach searches the requirements for
domain terms provided by software engineers and adds the domain terms
found to the processed artifact. On the other hand, stopwords are filtered
out after root reduction, using a list of stopwords that is also provided by
the software engineers.

Requirement

When the human unit is damaged
its armor level decreases and the
interface shows the information.

Syntactical 
Analysis

Processed Requirement

human unit armor level interface
damage decrease show

Domain Terms 
Extraction

POS Tagged Tokens

Nouns & adjectives: human unit
armor level interface information
Verbs: damaged decreases shows

Root-reduced Tokens

Noun clauses: human unit armor
level interface information
Verbs: damage decrease show

Root 
Reduction

Stopwords Removal

Fig. 2. Natural Language Processing Techniques
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3.3 Evolutionary TLR

Fig. 3 shows an overview of the Evolutionary Algorithm that generates, evalu-
ates, and evolves a population of code fragments, converging into a ranking of
potential solutions towards the input requirement. The algorithm takes both the
filtered and processed code, and the processed requirement as input, and iterates
over a population of code fragments, modifying them using genetic operations
until a final ranking is produced as output. More precisely, the algorithm runs
in three steps:

Step 1 - Code fragment initialization

Initial code fragment population

Step 2 - Fitness assessment
Topic Modeling

Code
fragment ranking

Evaluated code 
fragment population

Stop condition met?

Yes

No

Filtered and 
processed code

Processed 
requirement

CF1F = 0.7

New code 
fragment population Step 3 - Genetic manipulation

Selection Crossover Mutation

CF2F = 0.1

CFnF = 0.4

CF1F = 0.7

…
CFnF = 0.4

CF2F = 0.1

…

Fig. 3. Evolutionary algorithm

1. Initialization: The algorithm generates a population of code fragments that
serves as input for the algorithm. To generate the population, parts of the
code documents are extracted randomly and then added to a collection of
code fragments, which are linked to the code documents they belong to.

2. Fitness function: This step assesses each of the candidate code fragments
produced, ranking them according to a fitness function. Our approach uses
Topic Modeling as fitness function because it obtained the best results when
performing Feature Location, a similar Information Retrieval task to the one
at hand [22].
To do this, we utilize Latent Dirichlet Allocation (LDA) [7] since it is one
of the most popular topic modeling methods [17]. LDA is an unsupervised
probabilistic technique for estimating a topic distribution over a text corpus
made up of a set of documents, where each document is a set of terms. As a
result, a probability distribution is obtained for each document, indicating
the likelihood that it expresses each topic. In addition, a probability distri-
bution is obtained for each topic identified by LDA, indicating the likelihood
of a term from the corpus being assigned to the topic.
LDA inputs include: the documents (D), the number of topics (K), and a
set of hyper-parameters. The hyper-parameters of any LDA implementation
are: k, which is the number of topics that should be extracted from the data;
α, which influences the topic distributions per document. A lower α value
results in fewer topics per document; and β, which affects the distribution
of terms per topic. A lower β value results in fewer terms per topic, which
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in turn implies an increase in the number of topics needed to describe a
particular document.

LDA outputs include: ϕ, which is the matrix that contains the term-topic
probability distribution; and θ, which is the matrix that contains the topic-
document probability distribution.

To assess the relevance of each code fragment with regard to the provided re-
quirement (i.e., query), we use LDA. Given the terms for the query Q and the
outputs of LDA (ϕ and θ), the conditional probability P of Q given a docu-

ment Di is computed as follows [5]: Sim(Q,Di) = P (Q|Di) =
∏
qk∈Q

P (qk|Di)

where qk is the kth processed term in the query, and Di is a document (i.e.,
a code fragment) of the population that is made up of a set of processed
terms.

Fig. 4 shows an example of the fitness assessment for each candidate code
fragment (i.e., individual) from the population. Given the processed terms of
the requirement (query) and each code fragment (represented as a column in
the matrix of the figure), the figure depicts how a value is assigned per term
in each code fragment of the population (values in the cells of the matrix) by
using the LDA outputs (the ϕ and θ matrices). For example, the conditional
probability for the processed term human given the code fragment CFn, that
is, P (human|CFn) = 0.39 (as can be seen in the shaded cell in the matrix of
Fig. 4). Using the values of the matrix, the fitness value is obtained for each
code fragment as shown in the vector of Fig. 4. The highest fitness value in
the vector of the figure is 0.41, which belongs to CF2.

Topic Modeling - output
𝞥

Term - Topic
probability
distribution

𝞱
Topic - Code

Fragment probability
distribution

Query – processed 
Requirement

human unit armor 
level interface

damage decrease 
show

0.38 0.3 0.72 … 0.39

0.12 0.87 0.5 … 0.32

0.67 0.7 0.14 … 0.21

0.02 0.58 0.29 … 0.7

… … … … …

0.25 0.62 0.02 … 0.01

CF1 CF2 CF3 … CFn

q1

q2

q3

q4

…

qt

P(human | CFn)

0.04 0.41 0.2 … 0.01

P(Q | CF2) =

Sim(Q | CF2) = Fitness(CF2)

Fitness assessment

Code fragment 
population

Requirement
When the human 

unit is damaged 

its armor level 

decreases and 

the interface 

shows the 
information

CF2
816 if ( GetCurrentArmourLevel() > 0 ) {

817  DecreaseArmourLevel();

818  return true;

819  }

CF1CF1
CF1

CF1

Fig. 4. Example of the fitness assessment of code fragments

3. Genetic manipulation: Finally, if the solution does not converge, this step
generates a new population of code fragments through genetic manipulation.
The generation of new code fragments, based on existing ones, is done by ap-
plying a set of three genetic operations (selection, crossover, and mutation),
which are taken from the literature [6]:



8 J. Verón et al.

The selection operation picks candidates from the population as input
for the rest of the operations. Candidates with high fitness values have
higher probabilities of being chosen as parents for the next generation. The
crossover operation enables the creation of a new individual by combining
genetic material from two parent code fragments. The mutation operation
imitates mutations that randomly occur in nature when new individuals are
born, by adding or removing code lines from the fragment.

Step 2 (fitness assessment) and Step 3 (genetic manipulation) are repeated
until the solution converges to a certain stop condition (e.g., number of itera-
tions). When this occurs, the evolutionary algorithm provides a code fragment
ranking, ordered according to the values determined by the fitness function.

Similarly to other works that retrieve text from an initial query using LDA
or other information retrieval techniques, the results depend on the quality of
the queries [5], which is typically improved through an iterative refinement pro-
cess [16]. Therefore, even when irrelevant code fragments are obtained in the
ranking, the results can be considered as a starting point for the iterative refine-
ment process. From there, software engineers can either manually modify the
proposed ones or modify the requirement to automatically obtain different code
fragments for the solution.

4 Evaluation

4.1 Research Questions

From our work, several research questions arise:

RQ1 Does the inclusion of simulations influence the traceability search space in
Game Software Engineering?

RQ2 What is the performance in terms of solution quality of the traceability results
in Game Software Engineering for our approach using simulations and a
state-of-the-art technique?

RQ3 Are the differences in performance between our approach using simulations
and the baseline significant?

RQ4 How much do the simulations influence the quality of the solution compared
to the baseline?

4.2 Experimental Setup

The inputs to build the test cases are the requirements and the code. These test
cases are then employed to perform TLR in both our approach and the baseline.
The baseline is similar to our approach and it also uses topic modeling as a
fitness function (as described in Section 3.3), but, unlike our approach, it does
not integrate simulations into the TLR process and it does not reduce the search
space. Finally, a measurements report is obtained after comparing the approved
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traceability that is provided as input (used as oracle) with the results of the
baseline and our approach.

The case study that we used in the evaluation is Kromaia, a commercial video
game which code has been provided by our industrial partner, Kraken Empire3.
Kromaia is made up of 145915 lines of code. In total, 18 requirements with their
corresponding oracles and simulation scenarios were provided by the company.
The provided requirements were selected and provided by the developers, who
considered those requirements as being a representative collection in terms of
maintenance. The approved traceability for each requirement (i.e., oracle) is the
set of code lines (i.e., code fragment) that correspond to the full coverage for a
requirement in the traceability search space. The code fragment that corresponds
to each requirement has between 1 and 43 code lines.

As a result of comparing the approved traceability with the results of the
baseline and our approach, a measurements report is obtained to answer each
research question as follows.

Answering RQ1: To determine whether the inclusion of simulations in-
fluences the traceability search space in GSE, the evaluation starts by taking
the inputs of the case study (requirements, code, and simulation scenarios and
approved traceability) to obtain the set of methods that are called during the
simulations scenarios for each test case. This set of methods will conform the
traceability search space for each test case. Afterwards, it is possible to assess
whether the size of the traceability search space has been reduced, and if so, by
how much.

In addition, the traceability search space is compared to the approved trace-
ability to determine whether the traceability search space limits the quality of
the solution by excluding code lines that are in the approved traceability.

Answering RQ2: To determine the performance in terms of solution quality
for each test case in our approach and the baseline, we compare the code fragment
that achieves the highest fitness score in our approach and in the baseline against
its respective oracle (i.e., ground truth ) to calculate a confusion matrix.

A confusion matrix is a table that is often used to describe the performance
of a classification model, comparing a set of test data (the solutions provided by
the approach) against a set of known true values (the solutions from the oracle).
In our case, the solutions obtained by the approach are code fragments, which
are composed of a subset of code lines that are part of the original code. Since
the granularity is at the level of code lines, the presence or absence of each code
line is considered as a classification. The confusion matrix distinguishes between
the predicted values (i.e., solution of the approach) and the real values (i.e.,
solution of the oracle), classifying them into four categories: (1) True Positive
(TP), values that are predicted as true and are true in the real scenario; (2)
False Positive (FP), values that are predicted as true but are false in the real
scenario; (3) True Negative (TN), values that are predicted as false and are false
in the real scenario; and (4) False Negative (FN), values that are predicted as
false but are true in the real scenario.

3 https://www.krakenempire.com/

https://www.krakenempire.com/
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From the values in the confusion matrix, it is possible to derive a series of
performance measurements. Specifically, we report three performance measure-
ments that are widely accepted by the software engineering community [25]: re-
call, precision, and F-measure. Recall ( TP

TP+FN ) measures the number of elements
of the solution that are correctly retrieved by the proposed solution (how many
code lines from the oracle are present in the retrieved code fragment). Precision
( TP
TP+FP ) measures the number of elements from the solution that are correct

according to the ground truth, i.e., the oracle (how many code lines from the
retrieved fragment appear in the oracle). Finally, F-measure (2∗ Precision∗Recall

Precision+Recall )
corresponds to the harmonic mean of precision and recall.

For each requirement in both the baseline and the approach, we executed 30
independent runs (as suggested by Arcuri and Fraser [3]): 18 (requirements) x 2
(baseline and approach) x 30 repetitions, for a total of 1080 independent runs.

Answering RQ3: To determine whether the differences in performance be-
tween our approach and the baseline are significant, the results must be properly
compared and analyzed using statistical methods. With the aim of providing for-
mal evidence that the differences do in fact have an impact on the performance
measurements, we follow the guidelines presented in [2]. The statistical test that
must be followed depends on the properties of the data, and it is accepted by the
research community that a p-value under 0.05 implies statistical significance [2].
For each performance measure a p-value is recorded.

Answering RQ4: To determine how much the performance is influenced by
using our approach compared to the baseline, it is important to assess whether
our approach is statistically better than the baseline, and if so, to measure by
how much. To do this, we use Cliff’s delta [11], which is an ordinal statistic that
describes the frequency with which an observation from one group is higher than
an observation from another group compared to the reverse situation. It can be
interpreted as the degree to which two distributions overlap, with values ranging
from -1 to 1. For instance, when comparing distributions of the treatment and
the control, a value of 0 means no difference between the two distributions, a
value of -1 means that all of the samples in the distribution of the treatment are
lower than all of the samples in the distribution of the control, and a value of
1 means the opposite. In addition, threshold values can be defined [24] for the
interpretation of Cliff’s delta effect size as negligible (|d| < 0.147), small (|d| <
0.33), medium (|d| < 0.474), and large (|d| ≥ 0.474). A Cliff’s delta value is
recorded for each pair-wise comparison between our approach and the baseline
for each performance measure.

4.3 Implementation details

For the development of our approach and the baseline, we used Eclipse with
Java. For the NLP operations used in both our approach and the baseline, we
used the OpenNLP Toolkit [14].

Topic Modeling was implemented using the Collapsed Gibbs Sampling (CGS)
for LDA because it requires less computational time [27], and it was previously
used for locating features in source code [5].
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Since the focus of this paper is not to tune the values to improve the per-
formance of our approach when applied to a specific problem, we used default
values from the literature [6,22,13]. As suggested by Arcuri and Fraser [3], de-
fault values are sufficient to measure the performance of search-based software
engineering algorithms.

For the evaluation, we used an Asus ROG Strix G15 G512LW-HN038 laptop
with an Intel(R) Core(TM) i7-10750H processor, 16GB RAM, an NVIDIA®
GeForce® RTX 2070 graphics card, and Windows 11 (64-bit). The oracle was
provided directly by the developers of the video game.

The CSV files used as input in the statistical analysis as well as an open-
source implementation of the approach are available here: https://github.
com/VeronLinks/simulations-ss-tlr

5 Results

5.1 Research Question 1

After obtaining the set of methods that are called during simulation scenarios
for each test case, the traceability search space has been reduced from 145915
code lines to an average of 1157 code lines. Afterwards, the traceability search
space is checked to determine whether any of the code lines that are included in
the oracle have been omitted. If no code line has been omitted, the quality of
the solution of our approach is not limited after reducing the search space.

RQ1 answer: The inclusion of simulations has been shown to significantly
reduce the search space for TLR in GSE by 99.21% on average. We have found
that the inclusion of simulations does not limit the quality of the solution.

5.2 Research Question 2

Table 1 shows the mean values and standard deviations of recall, precision, and
F-measure for our approach and the baseline. As the values show, our approach
outperforms the baseline in all performance measurements.

Table 1. Mean values and standard deviations for recall, precision, and the F-measure

Recall ± (σ) Precision ± (σ) F-measure ± (σ)

Our work 65.58 ± 24.32 76.36 ± 14.90 67.65 ± 15.43
Baseline 42.35 ± 25.71 58.02 ± 8.35 44.78 ± 16.84

RQ2 answer: The results reveal that our approach outperforms the baseline
in the three performance measurements. Hence, the inclusion of simulations im-
proves the quality of the traceability results in GSE when using a state-of-the-art
technique by 23.23% in recall, 18.34% in precision, and 22.87% in F-measure.

https://github.com/VeronLinks/simulations-ss-tlr
https://github.com/VeronLinks/simulations-ss-tlr
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5.3 Research Question 3

The p-values obtained for our approach are 0.0037 for recall, 9.4−6 for precision,
and 4.1−5 for F-measure.

RQ3 answer: Since the Quade test p-values are smaller than the 0.05 statis-
tical significance threshold for all performance measurements, we can state that
there are significant differences in performance between our approach and the
baseline for TLR in GSE.

5.4 Research Question 4

With regard to how much the simulations influence the quality of the solution
compared to the baseline, the obtained Cliff’s Delta values of the three reported
performance measurements are large, being 0.5 for recall, 0.7623 for precision,
and 0.6512 for F-measure.

RQ4 answer: From the effect size analysis of the Cliff’s Delta values that
are obtained when our approach is compared to the baseline, we can conclude
that there is a large influence on the quality of the solution for all performance
measurements with our approach using simulations for TLR in GSE.

6 Discussion

Industrial video games feature many requirements involving multiple methods,
but they also bring opportunities to TLR. Simulations, scarce in traditional
software, are common in video games due to NPCs being created during the
development. By analyzing the results, the noise that the simulations remove
by reducing the search space helps the evolutionary TLR procedure to work
significantly better than when using the complete code.

At least in the case study that was used in this work, there is no limitation in
the quality of the solution (recall) when the reduced traceability search space is
obtained. Nevertheless, our approach should be replicated with case studies from
other domains before assuring the generalization of the results. Nevertheless, our
results suggest that leveraging video game simulations for TLR is promising.

Our focus group, consisting of five software engineers in the field of GSE,
included one with 15 years of video game development experience, two with six
years, and two with two years of experience. This focus group dealt with the fol-
lowing open questions: (1) What do you think of the results of the approaches?;
(2) How do you feel about locating requirements in video games using simula-
tions?; (3) How do you imagine locating requirements using simulations in video
games of other genres and in more complex video games?

The software engineers valued very positively the results of our approach
using simulations, and stated that they preferred our approach using simulations
because the results were far superior to the results of the baseline. Although
none of the five engineers had thought of or used simulations for TLR before,
they agreed on the relevance of simulations for TLR in video games. In their
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opinion, the idea of using simulations for TLR is promising, and they would use
simulations for TLR in video games on a daily basis.

The engineers imagined using our approach in another of their video games
since they could also use simulations of NPCs to find requirements that give them
trouble. In addition, the engineers confirmed that our approach using simulations
can be used for other video game genres and more complex problems.

7 Threats to validity

In this section, we acknowledge the limitations of our approach using the classi-
fication of threats to validity proposed by Wohlin et. al. [26]:

Conclusion validity: To minimize this threat, we have based our work on
research questions. In addition, the requirements and code used in our approach
were taken from an existing commercial video game. None of the authors of this
work were involved in the creation of the game or in the generation of the data,
which was provided by the developers of the game.

Internal Validity: To minimize this threat, we have used the same NLP
techniques on all of the software artifacts and followed the same evaluation pro-
cess for all evaluated approaches. In addition, the available test cases represent a
broad scope of different scenarios within the case study in an accurate manner.

Construct validity: To minimize this threat, our evaluation was performed
using three measurements that are widely accepted and utilized in the state-of-
the-art literature: precision, recall, and F-measure. Moreover, we have used the
same software artifacts for all of the approaches, representing the same scenarios,
so that cause and effect are equally represented among them.

External Validity: This threat is concerned with generalization. All of the
artifacts under study in our work (requirements and code) are frequently used
in video games development. In addition, TLR is a common practice in all kinds
of video game development scenarios and the real-world case study used in our
research represents the industrial scene of video game developments well. More-
over, we defined our approach independently of the case study, and then applied
it to the case study. Hence, our approach can potentially work in any video
game scenario where requirements and code are available. Nevertheless, our re-
sults should be replicated with other case studies before ensuring their external
validity.

8 Related work

After reviewing a traceability survey that contains works from 1999 to 2011 [8],
we used the same query presented in the survey, and we found 11 more works
between 2012 and November 2023. For example, Dekhtyar et al. [12] assess the
accuracy of provided Requirements Traceability Matrix (RTM) by means of an
assessment committee composed of three to five different trace recovery meth-
ods, such as Probabilistic Information Retrieval (ProbIR). Parvathy et al. [21]
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propose automating the computation of traceability by looking at the correla-
tion between documents. Gethers et al. [15] propose the the Relational Topic
Model for TLR and combine different orthogonal IR-based methods for improv-
ing recovery accuracy. These three approaches require additional information
sources beyond source code, such as RTM, design documents, and domain mod-
els that support traceability. However, in the development of commercial video
games, creating or synchronizing these artifacts is often neglected. Therefore,
approaches like this work that focus on searching for solutions in terms of code
fragments in the source code are necessary in this context. Lapeña et al. [19,18]
leverage an already existing feature of the software artifacts to improve TLR
using BPMN models and leveraging on execution traces. None of these works
use simulations to reduce the search space.

We also performed a manual search and we only found three studies on lo-
cating artifacts in video games for GSE. Two of the three studies focus on bug
location using simulations, but neither reduces the search space as we propose.
Blasco et al. [6] focus on TLR for video games and use an evolutionary algorithm
for obtaining a code fragment from the source code that realizes a requirement
specified in a natural language. Casamayor et al. [9] use simulations in video
games and leverage the existence of NPCs in video games to remove any addi-
tional cost for the developers, as we do, but they do not use these simulations to
reduce the search space. Prasetya et al. [23] present an agent-based automated
testing framework for locating bugs in video games.

The rationale behind using simulations is that video game bugs are not al-
ways related to code malfunction, making traditional testing and bug location
inefficient. Video games bugs include other aspects related to design, such as
balancing certain values. Testing and bug location in video games need to be re-
active and able to interpret their environment to determine what actions to take.
This rationale differs from the rationale behind using simulations in this work.
We leverage these simulations for performing automated and precise executions
of the program, and registering the executed code. Thus, the search space for
TLR can be reduced with the goal of improving the quality of the results.

9 Conclusion

In this work, we have focused on GSE and TLR. GSE is a very novel field of work
that deals with the challenge of developing and maintaining the software of video
games, whereas TLR is a key support activity for the development, management,
and maintenance of software. Video games not only bring challenges to TLR, but
they also provide opportunities such as the information that can be extracted
from the simulations of NPCs, which are created as part of the video game.

This information had not yet been exploited for either reducing the search
space or for TLR. We have filled this gap, and we have shown that the search
space can be reduced and that TLR can be significantly improved by leveraging
video game simulations in a commercial video game. Specifically, compared to
the baseline, the search space was reduced by 99.21% on average, and our ap-
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proach improved the results with large differences (by 23.23% in recall, 18.34%
in precision, and 22.87% in F-measure). A focus group has demonstrated that
software engineers prefer the results of our approach using simulations over the
results of the baseline. The software engineers have also highlighted the useful-
ness of simulations to find requirements in other video game genres and more
complex problems (e.g., fighting games).

Our work opens a new direction in TLR, which is an essential task in both
GSE and in classic software engineering. Other essential maintenance tasks such
as bug location (our future work) can also benefit from the use of simulations.
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