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Abstract

Context: Reducing the cost of maintenance tasks by fixing bugs automatically is the cornerstone of Auto-
mated Program Repair (APR). To do this, automated Fault Localization (FL) is essential. Two families of
FL techniques are Spectrum-based Fault Localization (SBFL) and Information Retrieval Fault Localization
(IRFL). In SBFL, the coverage information and execution results of test cases are utilized. Ochiai is one
of the most effective and used SBFL strategies. In IRFL, the bug report information is utilized as well as
the identifier names and comments in source code files. Latent Dirichlet Allocation (LDA) is a generative
statistical model and one of the most popular topic modeling methods. However, LDA has been used at
the method level of granularity as IRFL technique, whereas most existing APR tools are focused on the
statement level.
Objective: This paper presents our approach that combines topic modeling and Ochiai to boost FL at

the statement level.
Method: We evaluate our approach considering five different projects in Defects4J benchmark. We report

the performance of our approach in terms of hit@k and MRR. To study the impact on the results, we compare
our approach against five baselines: two SBFL approaches (Ochiai and Dstar), two IRFL approaches (LDA
and Blues), and one hybrid approach (SBIR). In addition, we compare the number of bugs that are found
by our approach with the baselines.
Results: Our approach significantly outperforms the baselines in all metrics. Especially, when hit@1,

hit@3 and hit@5 are compared. Also, our approach locates more bugs than Ochiai and Blues.
Conclusion: The results of our approach indicate that the integration of topic modeling with Ochiai

boosts FL. This uncovers the potential of topic modeling for FL at statement level, which is valuable for the
APR community.
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1. Introduction

Automated Program Repair (APR) aims to reduce
the cost of fixing bugs by automatically producing
patches. In APR, it is essential automated Fault
Localization (FL) to identify the suspicious program
statements that may be the cause of the failure. Re-
cent studies show that accuracy of the FL used by
APR has a significant effect on the success of APR [1].
Two existing families of FL techniques utilize either
test coverage information (Spectrum-based Fault Lo-
calization) or the bug report information (Informa-
tion Retrieval Fault Localization).

On the one hand, Spectrum-based Fault Localiza-
tion (SBFL) is very frequently used for APR [2].
SBFL techniques typically analyze program spectra
that corresponds to program elements, which are ex-
ecuted by failing and successful execution traces. As
a result, a ranked list of program elements (typically
program blocks or statements) is obtained. The rank-
ing takes into account the program elements that are
executed more often in the failing rather than correct
traces. In SBFL, GZoltar with the Ochiai ranking
strategy is one of the most effective ranking strate-
gies in object-oriented programs [3] and most APR
tools use it [4, 5, 1, 6].

On the other hand, Information Retrieval Fault Lo-
calization (IRFL) typically analyzes textual descrip-
tions contained in bug reports, and identifier names
(variables, classes...) and comments in source code
files. IRFL approaches take as input a bug report
and generate as output a ranked list of suspicious
program elements (typically files or methods) [7]. A
popular IRFL technique is Latent Semantic Index-
ing (LSI) [8], which analyzes relationships between
queries (e.g., bug report) and documents (e.g., source
code files).

Another technique that has previously shown
promising results in a variety of retrieval tasks in
source code [9, 10] and in software models [11] is La-
tent Dirichlet Allocation (LDA) [12]. LDA is one
of the most popular topic modeling methods [13].
LDA is a generative statistical model that has sig-
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nificant advantages, in modularity and extensibility,
over LSI [14]. As IRFL technique, LDA has been
used at the method level of granularity [14]. However,
most APR tools [5, 1, 6] work at the statement level
of granularity. If a given bug report shares topic(s)
with a code statement, the code statement could be
a strong candidate towards causing the failure. In
this context, we theorize that the coarse-grained fo-
cus (topics) of LDA could enhance IRFL.

In this paper, we propose to combine topic model-
ing (LDA) and Ochiai to boost fault localization at
the statement level of granularity. Thus, APR tools
can integrate our approach for FL. Although previous
works improve localization by combining multiple FL
techniques [15, 1], to the best of our knowledge, this
work is the first effort that investigates fault localiza-
tion of statements by combining topic modeling and
Ochiai in the literature.

For the evaluation, we use Defects4J, which is a
well-known Java benchmark that has been used in
previous FL and APR works [5, 1, 6]. The inputs
from Defects4J are bug reports, test cases and source
code from a total of 59 bugs of 5 different projects.
The output of our approach is a ranking of suspicious
statements from the provided inputs.

We assess the performance of our approach by con-
sidering two combination strategies (i.e., variants) to
obtain the ranking of suspicious statements. The
first variant obtains the mean suspiciousness score
between the obtained score of topic modeling and
Ochiai. The second variant considers the position
of the statement in the IRFL and SBFL ranking us-
ing a strategy that is inspired by the Borda Count
family [16]. This strategy applies more weight to the
values of topic modeling and Ochiai as the position
in the ranking is better.

To put the performance of our approach in per-
spective and to study the impact on the results, we
compare the results of the variants of our approach
against five baselines. Baseline1 is a SBFL approach
that uses GZoltar with the Ochiai ranking strategy
(most APR tools use it [4, 5, 1, 6] and it is effec-
tive in object-oriented programs [3]). Baseline2 is
also a SBFL approach that uses GZoltar but with
the DStar ranking strategy (another popular rank-
ing strategy [17]). Baseline3 is a IRFL approach
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that uses LDA as the topic modeling technique. Al-
though the application of LDA for FL in statements
is novel, we set it as baseline to compare its perfor-
mance with our approach, which combines the results
of topic modeling and Ochiai. Baseline4 is Blues,
which is a recent statement-level IRFL approach [1]
that uses an IR model (Term Frequency-Inverse Doc-
ument Frequency formulation) to search and rank
the statements based on their similarity with the
bug report. Baseline5 is SBIR, which is a recent
statement-level approach [1] that combines the re-
sults of Blues (Baseline4) with SBFL (GZoltar with
the Ochiai strategy as in Baseline1).
We report the performance of our approach and the

baselines in terms of solution quality using metrics
that are employed in previous FL studies [18, 19, 20,
21, 22, 1, 23, 24, 17, 25]: the commonly used hit@k
and Mean Reciprocal Rank (MRR). Hit@k is the
number of bugs localized in the top-k ranked state-
ments, whereas MRR measures the quality of the
ranking of the FL technique by capturing how close
to the top of ranking a target (i.e., faulty) statement
is retrieved. In addition, we perform a statistical
analysis that includes statistical significance (Holm’s
post-hoc) and a effect size measurement (Vargha and
Delaney’s Â12 [26]) to show whether the impact of
our approach is significant and if so, by how much
(following the guidelines by Arcuri and Briand [27]).
Furthermore, we compare the number of bugs that
are found by our approach and the baselines in order
to determine whether our approach locates bugs that
go undetected by the baselines (and vice versa).
The results show that the two variants of our ap-

proach significantly outperform the baselines in all
metrics by a large effect size. The highest differ-
ences between our approach and the baselines are
when hit@1, hit@3 and hit@5 are compared. Us-
ing the two variants of our approach, 20.34% of
the total number of bugs are ranked in the hit@1,
compared to 8.85% for Baseline3 (LDA), 6.77% for
Baseline1 (Ochiai) and Baseline5 (SBIR); and 3.38%
for Baseline4 (Blues). Also, our approach not only
locates all bugs that are detected by the base-
lines, but also locates 5 bugs that go undetected by
Baseline1 (Ochiai), and 7 of the bugs that go unde-
tected by Baseline4 (Blues).

The main contributions of this paper are listed as
follows:

• We investigate the potential of combining topic
modeling and Ochiai for fault localization of
statements.

• We particularly assess the performance of our
approach in Defects4J, which is used in previous
FL and APR works [5, 1, 6].

• We compare the results of our approach against
five baselines. Thus, the performance of our ap-
proach is put in perspective.

• We provide an online replication package1 that
includes: the code of our approach that enables
its usage in other FL and APR works, the data
that is used as input in the evaluation, and the
data resulting from our evaluation that enable
the reproducibility of the results.

The remainder of the paper is structured as fol-
lows. The preliminary knowledge related to SBFL,
IRFL and topic modeling is reviewed in Section 2.
Section 3 presents our approach and the two vari-
ants to combine SBFL and IRFL. Section 4 presents
our evaluation in Defects4J. Results are reported in
Section 5 and discussed in Section 6. Section 7 dis-
cusses the threats to validity that could have affected
our evaluation. Section 8 presents the related works.
Finally, Section 9 concludes the paper.

2. Background

Fault localization plays an important role in soft-
ware development and debugging processes. The
primary objective of fault localization is to pin-
point the exact locations or sections of code re-
sponsible for software failures or anomalies. Vari-
ous techniques and approaches have been proposed
to tackle the challenge of fault localization, includ-
ing Spectrum-Based Fault Localization (SBFL), In-
formation Retrieval-based Fault Localization (IRFL).
The goal of this paper is to enhance fault localization

1https://figshare.com/s/99831d5178d72cda36e1
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by integrating existing techniques with topic model-
ing. To provide context for our approach, this sec-
tion offers a concise background on the two primary
fault localization families (SBFL and IRFL) and in-
troduces the fundamental principles of topic model-
ing.

2.1. SBFL (Spectrum-Based Fault Localization)

SBFL aims to reveal abnormal execution patterns
and thus detect potential bug locations. It is based
on the execution of developer written tests cases and
more specifically on the number of passing and fail-
ing tests. Therefore, it requires the program to have
a test suite (i.e. a collection of test cases) and at
least one failing test. The technique is based on the
assumption that a faulty code entity is more likely to
be present in more failing tests than in a correct one.

The code is instrumented to execute the available
tests and extract execution information. Such infor-
mation includes, for instance, the frequency of execu-
tion of the different code entities. This is called the
program spectrum. There are several possible granu-
larities for the code entities, such as file, method and
statement. They are the same for the different fault
localization approaches. Note that most techniques
use either file or method granularity.

Once the test suite has been executed and the code
entities frequency collected, the program spectrum
is used to generate the suspiciousness scores. These
scores serve as indicators of which code entities are
more likely to be faulty and are calculated using a
strategy.

One of the most well-known and popular fault lo-
calization techniques is Ochiai, as documented by
Abreu et al. [28]. Ochiai has demonstrated notable
effectiveness in analyzing object-oriented languages,
as highlighted in the studies conducted by Xuan et
al. [3] and Yang et al. [29]. The formula for Ochiai is
presented as follows:

Sochiai(e) =
failed(e)√

(failed(e)+passed(e))×(failed(e)+failed(¬e))

For each element e with a test coverage (i.e. at least
one test executes it), three pieces of information are
taken into account. The number of failing tests ex-
ecuting the element (failed(e)), the number passing

tests executing the element (passed(e)) and the num-
ber of failing tests that do not execute the element
(failed(¬e)). The higher the score, the more likely
the element is to be faulty. There are various other
existing strategies, such as Jacard [28], DStar [17] or
Tarantula [30], which are also used in many stud-
ies [3, 31, 32, 15, 24, 33].

JaCoCo [34] and Cobertura [35] are some of the
tools used in the literature to compute code coverage.
Particularly GZoltar [2] is the main SBFL tool using
some of the most popular formulas.

2.2. IRFL (Information Retrieval Fault Localization)

Contrarily to SBFL which leverages test suites,
IRFL uses bug reports written in natural language
(see Figure 1). They are texts written in natural lan-
guage, by users or developers, in order to track and
describe an issue they have encountered. IRFL tech-
niques are designed to find term relations between the
bug report and the source code. The more terms are
shared, the more likely the code entity (i.e. granular-
ity such as file, method, statement) is to be faulty.

Issue: Cli-193 (Defects4J Cli-32)

Title: StringIndexOutOfBoundsException in
HelpFormatter.findWrapPos

Description: In the last while loop in
HelpFormatter.findWrapPos, it can pass
text.length() to text.charAt(int), which
throws a StringIndexOutOfBoundsExcep-
tion. The first expression in that while loop
condition should use a <, not a <=.
...

Figure 1: Bug report example

Typically, the first step of such a technique is some
text processing common to Natural Language Pro-
cessing (NLP) tasks. Second, the algorithm is used
to compute the similarity between bug report and the
source code for a given granularity. Lastly, these sim-
ilarities are used to rank the items and thus create a
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ranking. Along with SBFL, the rankings are sorted in
descending order with higher scores meaning a higher
probability for the element to be faulty.
Many IR algorithms have been used for fault lo-

calization, including Vector Space Model (VSM), LSI
(Latent Semantic Indexing) and LDA (Latent Dirich-
let Allocation) [36, 32, 37, 8]. VSM leverages both
queries and documents as vectors of term weights.
Both LSI and LDA are topic-based, meaning that
they represent the correlation between terms con-
tained in the documents and topics. To identify the
term-document relationship, LSI uses Singular Value
Decomposition (SVD) whereas LDA estimates topic-
term and document-topic distributions using a prob-
abilistic techniques as explained in Section 2.3. Note
that LSI is also referred to as Latent Semantic Anal-
ysis (LSA).
Some of the techniques are supervised and some

are not. Unsupervised models are easier to use than
their counterparts, as they do not require training
data, which is difficult and time-consuming to collect.
Almost all existing IR techniques have a file or

method granularity. However, this is not suitable for
APR, since it requires a ranking of statements as in-
put.

2.3. Topic Modeling

Topic modeling aims to reduce a large text corpus
into a set of meaningful topics. Each topic consists of
a group of terms, collectively representing a potential
thematic concept that pervades the collection. The
power of topic modeling has motivated researchers to
cover different software engineering activities includ-
ing fault localization [14] and automated traceabil-
ity [38].
One of the most popular topic modeling meth-

ods [13] for information retrieval is Latent Dirichlet
Allocation (LDA) [12]. LDA is an unsupervised prob-
abilistic technique for estimating a topic distribution
over a text corpus. The corpus is made up of a set
of documents, and each document contains a set of
terms. As a result, each document receives a proba-
bility distribution, which indicates the likelihood that
the document expresses each topic.
The main LDA inputs are the documents (D) and

the number of topics (k) to be extracted. It is

also necessary to set hyper-parameters, which have
a smoothing effect on the topic model generated as
output. The hyper-parameters of any LDA imple-
mentation are:

• k indicates the number of topics to be extracted
from the documents.

• α controls the document-topic density. A lower
α value means that there are fewer topics per
document.

• β controls the topic-term density. A lower β
value means that there are few words per topic,
which in turn implies an increase in the number
of topics needed to describe a particular docu-
ment.

The LDA outputs are: ϕ, which is a matrix that
contains the topic-term probability distribution, and
θ, which is a matrix that contains the document-topic
probability distribution.

Topic modeling as an IRFL technique has been
used in previous works to rank files or methods [14,
39]. However, existing APR tools [4, 5, 1, 6, 40] re-
quire a ranking of statements as input.

3. Our approach

Most APR tools work at the statement level of
granularity and use GZoltar and the Ochiai strategy
as a SBFL technique [5, 1, 6], which relies on test
suites. However, when using GZoltar some potential
bugs go undetected (e.g., no tests pass through the
statement or they do not fail). In this context, bug
reports hold important information that can be ex-
ploited to improve the results of GZoltar. To address
this, our approach OTM combines Ochiai and Topic
Modeling at the statement level of granularity.

Figure 2 provides an overview of our approach.
The top part of the figure highlights the inputs of
the approach (the bug report, the source code, and
the test cases), the middle part shows the two steps
of our approach (fault localization and score com-
bination), and the bottom part shows the output of
the approach (a ranking of suspicious statements that
might be the cause of the bug).

5



Topic modeling (IRFL) Ochiai (SBFL)

Natural Language Processing

Source 
code

Score combination

In
pu

t
O

ur
 a

pp
ro

ac
h

(O
TM

)
O

ut
pu

t

Bug report1
Test caseTest caseTest case1

Latent Dirichlet Allocation

Normalization

Test methods listing

Program spectra
collection

Fault localization metric 
calculation

IRFL ranking of 
suspicious statements

SBFL ranking of 
suspicious statements

Ranking of suspicious 
statements

Suspiciousness score 
per statement

Processed 
terms of the 
bug report

Processed 
terms 

per statement
List of test methods

Tests results and 
code coverage

Fault 
Localization1

2

Figure 2: Approach overview

In the first step of our approach, the fault localiza-
tion is performed with topic modeling (as the IRFL
technique, taking the source code and the bug re-
port as input) and Ochiai (as the SBFL technique,
described in Section 2.1, taking the source code and
the test cases as input). Once topic modeling and
Ochiai are executed, an IRFL ranking and a SBFL
ranking, respectively, are obtained.

In the next two sections, we present how we uti-
lize topic modeling for FL in statements, and how
we combine the IRFL and the SBFL rankings in the
second step of our approach.

3.1. Topic modeling (LDA) for FL of statements

The middle-left part of Figure 2 shows the steps
to obtain the IRFL ranking of suspicious statements
using LDA as the topic modeling technique. First,
the bug report and the source code are processed by

means of NLP techniques as is usual in IRFL stud-
ies [1, 32, 39]. The text is lowercased, tokenized, and
stemmed. In order to exclude the words commonly
used in English, which would not add any value, the
words are filtered using a stopword list. We also ex-
clude the Java keywords to improve the performance.
As a result, the processed terms of the bug report
as well as the processed terms per statement of the
source code are obtained. Figure 3 shows an exam-
ple of the processed terms per statement and the pro-
cessed terms of a bug report after the NLP techniques
are applied.

Afterwards, we use LDA as the topic modeling
technique to obtain the suspiciousness score per
statement with regard to the bug report. Given the
processed terms for the bug report as query (Q), each
statement as document (D), and the outputs of LDA
(ϕ and θ) as described in Section 2.3, the conditional
probability P of Q given a document Di is computed
as follows [41]:

Sim(Q,Di) = P (Q|Di) =
∏
qk∈Q

P (qk|Di)

where qk is the kth homogenized term in the query
(i.e., bug report), and Di is a document (i.e., code
statement) that is made of a set of homogenized
terms.

Figure 3 shows an example of the process for assess-
ing the suspiciousness score of the n statements using
LDA as the topic modeling technique. The left part
of the figure represents the outputs of LDA, which in-
clude ϕ and θ as described in Section 2.3. ϕ contains
the term (K) to topic (T ) probability distribution.
Each cell can have a value from 0 to 1, indicating
the likelihood of a term from the corpus being as-
signed to a particular topic. For instance, a value of
ϕ[T1, text.length] = 0.14 indicates a 14% likelihood
of the term text.length being assigned to topic T1. θ
contains the topic (T ) to statement (S) probability
distribution. Each cell, with values that again range
from 0 to 1, indicates the likelihood with which a
statement expresses a topic. For instance, a value
of θ[S1, T1] = 0.39 indicates that statement S1 has a
39% likelihood of expressing topic T1.
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Figure 3: Example of assessing suspicious statements using
topic modeling

The LDA outputs (ϕ and θ) and the processed
terms of the bug report are used to calculate a ma-
trix with dimensions K x n. The rows of the matrix
represent the processed terms of the bug report (bn)
and the columns of the matrix represent each of the
statements (Sn). Figure 3 shows an example of this
matrix. Each cell in the matrix contains the con-
ditional probability for each processed term given a
particular statement (corresponding to P (qk|Di) in
the equation). The value of the conditional proba-
bility is obtained by applying the dot product oper-
ation between all the ϕ values associated with the
processed term and all the θ values associated with
the statement. The figure depicts an example of this
operation, concerning the processed term text.length
and the statement S3. The operation is visually rep-
resented through a solid orange highlight that points

to the result of the operation, stored in the cell of
the matrix. The obtained value is the conditional
probability for the processed term text.length given
statement S3, that is, P (text.length|S3) = 0.74.

Once the matrix is calculated, the conditional
probability values of the terms obtained for each
statement are used to compute the conditional proba-
bility between the query and the different statements
as described in the equation. The newly calculated
values are the suspiciousness scores associated with
each statement. In Figure 3, these values appear in
the vector beneath the matrix. The visual represen-
tation of this operation is supported by an example,
in the form of a light blue highlight of the values ob-
tained for statement S2, which lead to a conditional
probability P (B|S2) = 0.35 between the bug report
and statement S2. This result, P (B|S2), is stored as
the suspiciousness score of S2.

Finally, the suspiciousness scores are normalized
because the values of APR fault localization rank-
ings are between 0 and 1. The outcome is used to
obtain the IRFL ranking of suspicious statements,
which sorts the statements from the highest to the
lowest suspiciousness score. The bottom part of Fig-
ure 3 shows an example of the IRFL ranking where
S3 is in the first position of the ranking (hit@1) since
it obtains the highest suspiciousness score.

The process that has just been described to obtain
the IRFL ranking takes a set of source code files as
input. To that end, we set a parameter f representing
the number of most suspicious files that should be
selected for statement level FL. This file localization,
computed on all the files of a given project, follows
the exact same steps that are previously presented,
but using files as documents instead of statements.

3.2. Combining SBFL and IRFL results

Once the IRFL and SBFL rankings are obtained,
the last step is to combine them. We favor two main
combination strategies. The first one is a statement-
based average, labeled OTMAvg. For each of the
statements, the combined ranking is obtained by cal-
culating the average of the two suspiciousness scores
from the IRFL ranking and SBFL ranking as shown
in the upper part of Figure 4.
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Figure 4: Example of score combination for the IRFL and
SBFL rankings using the two variants

The second combination strategy, inspired by the
Borda Count family [16], is labeled as OTMWBC .
This variant takes into consideration the position
in the ranking in contrast to the first combination
strategy. Thus, it is possible to give weight to the
IRFL/SBFL score depending on its position in the
ranking. This avoids that similar suspiciousness val-
ues are obtained when two statements in the bound-
aries are combined (e.g., one statement has a sus-
piciousness value of 1 in the IRFL ranking and a
value of 0 in the SBFL ranking), or when statements
that have similar suspiciousness scores in the mid-
dle of the ranking are combined. The value of each
statement is calculated as rankingSize− stmtRank
where rankingSize is the size of the two rankings
and stmtRank is the rank of the statement in the

current ranking (starting at 0). Then, a weight is
applied to both values, which is the suspiciousness
of their respective statement. Finally, the results are
summed pairwise, normalized and sorted to get the
final ranking as shown in the lower part of Figure 4.
For instance, s1,R and s2,R are the statements for
each of the two rankings for location R. Their sus-
piciousness scores are 1 and 0.77 respectively, their
weights are 100 and 99. Indeed, in our example, the
rankings have a length of 100 and the two statements
are placed first and second (eg. 100−0, 100−1). Each
value is multiplied by its weight, 1× 100 = 100, and
99 × 0.77 = 76.23. The final score is obtained by
summing the two products (176.23). The process is
repeated for all statements of the ranking.

At this point, it is important to highlight that most
of the time, the IRFL and SBFL rankings do not con-
tain the same statements. Some of the statements are
present in both rankings, whereas others are present
in only one of them. To overcome this issue, any
statement contained in only one of the two rankings
is added to the other one. Thus, the two rankings
have the same size and contain the same statements
for the combination. The suspiciousness score of each
added statement is set to 0.

Furthermore, it is important to note that the com-
bined ranking can be considered by the developers
as an starting point for an iterative refinement pro-
cess. From there, developers can either manually
tweak the statements if multiple and related faults
exist in the source code, or modify the inputs (e.g.,
the bug report) to execute our approach again if the
ranking does not contain relevant statements. The
iterative refinement process is typically performed in
other works [42] that retrieve text using information
retrieval techniques since the results depend on the
quality of the queries [41, 43].

4. Evaluation

This section explains the evaluation of our work,
the research questions we aim to answer, the evalua-
tion process (including metrics, baselines and statis-
tical analysis that we used to answer each research
question) as well as the implementation details.
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4.1. Research questions

We seek to answer the following three research
questions:
RQ1: What is the performance in terms of solu-

tion quality of our approach and the baselines?
RQ2: Is the difference in performance between our

approach and the baselines significant? If so, by how
much?
RQ3: Does our approach locate bugs undetected by

the baselines (and vice versa)?

4.2. Planning and execution

Figure 5 shows an overview of the process followed
to answer each research question, which is described
as follows:
Answering RQ1: To answer this research ques-

tion (performance in terms of solution quality), in-
puts from Defects4J [44] are used. Defect4J is a com-
mon Java benchmark, and that has been used in pre-
vious fault localization and APR works [45, 5, 1, 6].
We choose bugs from five Defects4J projects:

Chart, Lang, Cli, Mockito and Math. Specifically,
we select single location bugs where the modifications
are applied to consecutive lines (or a sole line) within
a single file. Some bugs lack associated bug reports,
rendering them unsuitable for IRFL computation, so
we exclude them. Hence, our experiment counts a
total of 59 bugs. For each project, the inputs are: a
bug report described in natural language, the source
code, and a set of test cases. These inputs are used
to assess the performance of our approach considering
the two variants presented in Section 3.2.
To put the performance of our approach into

perspective, we set five baselines. The first two
baselines are SBFL techniques and computed us-
ing GZoltar [2]: Ochiai (Baseline1) and DStar [17]
(Baseline2). They are two of the most popular rank-
ing strategies used in the literature [1, 45, 24, 15, 4].
Also, Ochiai is known to be the best performing met-
ric for Object Oriented Programming (OOP) lan-
guages and is commonly used in FL and APR studies
using Java [5, 1, 6].
The following two baselines are IRFL based.

Baseline3 is LDA, which is the first step of our ap-
proach. Although the application of LDA for locat-
ing faulty statements is novel, we set it as a baseline

to compare its performance with our approach, which
combines the results of IR (LDA) and SBFL (Ochiai).
Blues [1] (Baseline4), is built on top BLUiR [37], a
file level fault localization using TF.IDF, and lever-
ages it to obtain statement level FL. It is used as
the first step of SBIR [1], which is a recent FL tool
that combines IR and SBFL using the Cross-entropy
Monte Carlo algorithm, a rank aggregation algorithm
and the Spearman’s footrule. SBIR is Baseline5.

For each variant of our approach or baseline, a
ranking of suspicious statements per bug is obtained
as Figure 5 shows. To assess the performance in terms
of solution quality, we compare the ranking of suspi-
cious statements of each variant of our approach or
baseline with an oracle, which is the approved faulty
statement (ground truth) of each bug. This results
in the calculation of hit@k, which is the number of
bugs that are localized when inspecting the top K
program statements in a given ranking. Hit@k (also
called Top N) is a well-known fault localization metric
that is widely used in past FL works [32, 45, 37, 7]
since developers often will stop inspecting program
elements if they do not get promising results in the
top ranked program statements [46].

Specifically, we obtain results for hit@1, hit@3,
hit@5 and hit@10. We selected these values because
hit@1, hit@5 and hit@10 are commonly used in eval-
uations [18, 32, 19, 21]. Additionally, we introduced
hit@3 to provide insight into statement ranking im-
provements with higher precision. The results are
presented in Table 5.

In addition to hit@k, we utilize one other metric for
each ranking of suspicious statements: Mean Reverse
Ranking (MRR)[18, 19, 20, 21, 22]. MRR measures
the quality of the ranking by capturing how close to
the top of the ranking a target (i.e., faulty) statement
is retrieved. MRR is computed as the inverse of the
rank of the target statement. If the ranking does not
contain the target statement, the MRR value is set
to 0. The MRR for all ranking is calculated as follow:

MRR = 1
|R|

|R|∑
i=1

1
ranki

, R a set of rankings

In our case, we compute the MRR for specific
hit@k values, so the sizes of the rankings are 1, 3,
5 and 10, respectively. Note that higher MRR values
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Figure 5: Overview of the evaluation process

indicate better performance.

As suggested by Arcuri and Fraser [47], we exe-
cuted 30 independent runs per bug when LDA is
used (in the two variants of our approach and in
Baseline3). Doing multiple executions is commonly
done in other FL works from the literature such as [1]
that should address random variation. Thus, answer-
ing RQ1 entails a total of 1947 runs: 59 bugs x 30
repetitions (Baseline3) + 59 bugs (Baseline1) + 59
bugs (Baseline2) + 59 (Baseline4). The variants and
Baseline5 do not require recomputing the values us-
ing for the combination as they were already com-
puted by other baselines (Baseline1, Baseline3 and
Baseline4). Only the combination of the existing
rankings is done each time.

Answering RQ2: To determine whether the dif-
ference in performance between of our approach and
the baselines is significant, we compare the variant of

our approach that obtains the best results in the pre-
vious question with each baseline. To achieve this,
the results must be properly compared and analyzed
using statistical methods. We follow the guidelines
outlined in [27] to determine whether differences be-
tween the variant of our approach and the baselines
are significant. Each comparison yields a correspond-
ing p-value. We utilize Holm’s post-hoc analysis for
pair-wise comparison, ensuring that any differences
in results are not merely due to random chance. Our
null hypothesis states that the results of our variant
are not improved compared to those of the alterna-
tive technique. In the research community, a p-value
below 0.05 implies statistical significance [27]. Thus,
a p-value below 0.05 allows us to reject our null hy-
pothesis and establish statistical significance.

In case that the difference in performance is sig-
nificant, it is important to determine through effect
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size measures how much the results obtained by our
approach improve the results obtained by each base-
line. For non-parametric effect size measurements, we
use Vargha and Delaney’s Â12[26]. Â12 measures the
probability that running one approach yields higher
values than running another approach, so the ap-
proaches are compared in pairs (A vs B). If the Â12

statistic obtains a value greater than 0.5, the compar-
ison will be in favor of the A. If the Â12 statistic ob-
tains a value lesser than 0.5, the comparison will be in
favor of the B and 1-Â12 will be used to interpret the
magnitude of effect. The guidelines for interpreting
Â12 values [26] are: the Â12 value of 0.5 means that
the two approaches are equivalent (no effect). The
Â12 value of 0.56 means a small effect in the mag-
nitude of improvement, 0.64 means a medium effect,
and 0.71 means a big effect. For instance, a value
of Â12 = 0.57 means that on 57% of the runs, ap-
proach A would obtain better results than approach
B, and that the effect in the magnitude of improve-
ment is small. A value of Â12 = 0.27 means that
on 73% of the runs, approach B would obtain better
results than approach A, and that the effect in the
magnitude of improvement is large.
Answering RQ3: To answer this research ques-

tion, we report the number of bugs identified by our
approach’s variants and the baselines. Thus, it possi-
ble to determine whether our approach locates bugs
that the baselines do not and vice versa.

4.3. Implementation details

For the Defects4J benchmark, we use the v2.0.0
version and the Java Development Kit 8. It is impor-
tant to note that our oracle, which determine faulty
statements, is based on the difference between the
buggy and fixed source code provided by Defects4J.
As an SBFL tool, we employ GZoltar [2] version

1.7.2 and use both the Ochiai [28] and DStar [17]
ranking strategies.
Additionally, we utilize Blues and SBIR to com-

pare our approach to IRFL and combined techniques.
These tools were introduced in a previous work [1],
which also explores the combination SBFL and IRLF.
In our implementation, we also incorporate JGib-

blda [48], a Java implementation of LDA using Gibbs
Sampling for information retrieval. The values that

are set for the LDA parameters that were described
in Section 2.3 (k, α and β) may influence the re-
sults. For example, if the number of topics (k) is too
low, the LDA output may fail to capture the nuanced
themes present in the documents. Conversely, if the
number of topics is too high, the LDA output may
have topics that are too redundant or fragmented. To
set the parameter values, Arcuri and Fraser [47] sug-
gest that default parameters are sufficient to measure
performance. Hence, we consider the LDA parame-
ter values from a previous work for fault localization
using bug reports [39], and after doing experiments,
we set the LDA parameters as follows: k = 400,
α = 0.01, and β = 0.01.

We made a deliberate choice in our preprocess-
ing step. While it is common for IRLF studies to
use camelCase splitting as part of their preprocess-
ing [1, 32, 49, 21, 22], we decided to only lowercase
the words. After experimenting with various alter-
natives, we found that this strategy yielded the best
result.

In Section 3.1, we introduced the parameter f ,
which represents the number of most suspicious files
considered for statement level localization. Like pre-
vious studies [50, 1], f is set to 50.

In order to reproduce the results of this
work, the data and source code are available at
https://figshare.com/s/99831d5178d72cda36e1.

5. Results

5.1. Research Question 1: Performance

The upper part of Table 1 shows the hit@k values
of the baselines and the variants. Both variants out-
perform all the baselines for all hits. Indeed, in terms
of hit@k, both variants obtain the exact same results.

Notably, the results are more favorable for lower
hits (i.e. hit@1 and hit@3), indicating that our
approach is good at increasing the number of top
ranked elements. For instance, both variants show
an improvement of 8 bugs for hit@1 compared to
Baseline1 and Baseline5, as well as 10 bugs compared
to Baseline2 and Baseline4. This represents an im-
provement of 200% and 500%, respectively. We still
have an improvement of 7 bugs compared to LDA
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Table 1: Results of the baselines and the variants of our ap-
proach

k = 1 k = 3 k = 5 k = 10

hit@k

Baseline1 (Ochiai) 4 10 17 22
Baseline2 (DStar) 2 7 10 15
Baseline3 (LDA) 5 6 8 12
Baseline4 (Blues) 2 4 4 7
Baseline5 (SBIR) 4 7 14 20
Our approach-OTMAvg 12 19 21 25
Our approach-OTMWBC 12 19 21 25

MRR@k

Baseline1 (Ochiai) 0.068 0.107 0.135 0.149
Baseline2 (DStar) 0.034 0.068 0.079 0.090
Baseline3 (LDA) 0.085 0.090 0.097 0.106
Baseline4 (Blues) 0.034 0.048 0.048 0.054
Baseline5 (SBIR) 0.068 0.088 0.113 0.127
Our approach-OTMAvg 0.203 0.251 0.259 0.268
Our approach-OTMWBC 0.203 0.251 0.259 0.267

alone (Baseline3). In fact, 20.34% (12/59) are found
at the very top of the ranking using our approach. By
only taking into account the bugs that are at hit@10,
48% (12/25) of the bugs are at hit@1. The closer
the target statement is to the top of the ranking, the
higher the chance of bug detection and resolution.

For hit@3, we observe improvements ranging from
9 (Baseline1) to 15 bugs (Baseline4). 32.20% of the
bugs are in the top 3 and 37.29% are in the top 5.
Indeed, for hit@5, the improvements ranges from 4
(Baseline1) to 18 bugs (Baseline4) to a total of 21
bugs. Lastly, the improvements for hit@10 range
from 3 to 18 with 25 bugs in the top 10, representing
42.37% of all the bugs.

As the lower part of Table 1 shows, the MRR values
of our variants also outperform all baselines. For each
k, the MRR values of both variants are higher than
the MRR values of the baselines. Both variants share
the same MRR up to hit@5. For hit@10, OTMAvg

is slightly better than OTMWBC even though the
difference is minor.

Because the hit@k are equal for the two variants,
it is expected for the MRR to be similar. Because
MRR takes into account the exact rank for each bug,
they provide more precise insights than hit@k. Even

though the values are equal for a given hit@k value,
the ranks underneath are not always equal. However,
they compensate one another and finally obtain the
same results.

RQ1 answer: The results reveal that the
variants of our approach outperform all base-
lines in all hit@k and MRR@k values. Specif-
ically, the highest differences between our ap-
proach and the baselines are observed in the
lower hits (hit@1 and hit@3). This indicates
that our approach locates more faulty state-
ments in the lower positions of the ranking.

5.2. Research Question 2: Statistical significance and
effect size

Columns 2-3 of Table 2 show the p-values of com-
paring each baseline with OTMAvg (the variant of our
approach that obtains the best results). All p-values
are below the threshold of 0.05. Consequently, we
can reject the null hypothesis and establish that our
results hold statistical significance.

Table 2: Holm’s post hoc p-values (statistical significance) and

Â12 values (effect size) for each pair-wise comparison

Statistical significance Effect size

hit@k MRR@k hit@k MRR@k

Baseline1 (Ochiai) vs OTMAvg 0.030 0.030 0.250 0
Baseline2 (DStar) vs OTMAvg 0.027 0.030 0.063 0
Baseline3 (LDA) vs OTMAvg 0.030 0.030 0.031 0
Baseline4 (Blues) vs OTMAvg 0.030 0.030 0 0
Baseline5 (SBIR) vs OTMAvg 0.030 0.030 0.188 0

Although Table 2 shows the p-values for OTMAvg,
the p-values for OTMWBC are the same since the
difference for the MRR at hit@10 for the two variants
is minor enough to have no impact on the p-values.
Table 2 also shows the Â12 values (effect size) when

each baseline is compared with OTMAvg. For hit@k

(Column 3 of the table), all Â12 values are lesser
than 0.5, so the comparison is in favor of our ap-
proach. The highest effect size for hit@k is when
Baseline4 (Blues) is compared to OTMAvg, imply-
ing that our approach obtains better results than
Baseline4 in 100% of the runs. The smallest Â12 value

12



for hit@k is when Baseline1 (Blues) is compared to
OTMAvg, implying that our approach obtains bet-
ter results than Baseline4 in 75% of the runs. For
MRR@k (Column 4 of Table 2), all Â12 values are
equal to 0, so the comparison is also in favor of our
approach. This implies that our approach obtains
better results than the baselines in 100% of the runs
for MRR@k.

RQ2 answer: We conclude that there are
significant differences between our approach
and the baselines since all p-values are smaller
than 0.05. In addition, we conclude that our
approach outperforms the baselines by a large
effect size.

5.3. Research Question 3: Number of bugs found

Both variants of our approach perform equally with
regard to the number of new bugs that are identified.
This means that the bugs detected and those missing
are the same between the two variants. Consequently,
this section refers to the comparison of any of the
variants with the baselines.
Using our approach, only 5 bugs are undetected.

There are 5 additional bugs that are newly identified
by the variants compared to the SBFL techniques,
Baseline1 (Ochiai) and Baseline2 (DStar), constitut-
ing 8,47% of the bugs. Notably, both Baseline1
(Ochiai) and Baseline2 (DStar) yield identical results
regarding the number of missing and detected bugs,
as both are computed using GZoltar and thus the
same code coverage technique.
Regarding Baseline3 (LDA), our variants identify

16 new bugs. Baseline4 (Blues) detects 7 fewer bugs
that the variants, amounting 11,86% of the bugs.
Baseline5 (SBIR) is not compared to the variants

in this section because the rankings generated by
SBIR only contain the 100 most suspicious state-
ments. Thus, it is impossible to compare the number
of missing bugs as it would require having the full
rankings.
Since the variants are a combination of Baseline1

(Ochiai) and Baseline3 (LDA), they contain the union
of the bugs found in both. Therefore, bugs not
identified by Baseline1 (Ochiai) and those missed by

Baseline3 (LDA) are all found by the variants. It is
important to highlight that the newly found bugs are
close to the top of the ranking or even at hit@1 in
some instances.

There are 3 bugs that remain undetected by nei-
ther the baselines nor the variants. These 3 bugs are
consistent across all baselines implying that neither
the baselines, being SBFL or IRFL, nor the variants
locate these bugs. This accounts for 5% of the bugs.
In addition, many of the bugs found undiscovered by
either Baseline3 or Baseline4 are common to both.

RQ3 answer: Our approach locates all bugs
that are detected by the baselines. In addi-
tion, our approach locates 5 bugs that are un-
detected by Baseline1 (Ochiai) and Baseline2
(DStar), as well as 7 additional bugs in com-
parison to baseline4 (Blues). In fact, some of
these new bugs that are detected by our ap-
proach even achieve the top positions of the
ranking.

6. Discussion

In this section, we discuss the key takeaways con-
cerning the content of bug reports and their impact
on the results.

6.1. Comparison of the results of our approach with
the baselines

After analyzing the results, the combination of
topic modeling and Ochiai pays off the baselines. The
distribution of terms into topics instead of using term
frequencies makes that the faulty statement is in a
better position of the ranking because it is not nec-
essary that the query contains the exact terms of the
statement. If the query contains a term that is in the
same topic of a statement, the similarity of that state-
ment is higher than using term frequencies (when the
terms query-statement do not match).

In addition, by comparing the results of
Baseline3 (LDA) and the variants, we note that com-
bining the SBFL and the IRFL rankings is beneficial.
On the one hand, it improves the rank of most of the
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targets, and thus, more statements are located in the
10 most suspicious statements. When combining two
rankings, if the target statement has a high suspi-
cousness in both cases, it will also be the case after
the combination, that is not the case for statements
that have been considered highly suspicious by a sin-
gle ranking. Also, if one technique found a statement
“particularly” suspicious (i.e. placed at the very top
of the ranking), even if the other technique found it
only “a little” suspicious, the target will be ranked
quite high. On the other hand, by combining two
rankings, it allows to browse more different state-
ments. For this reason, more bugs are uncovered by
combining rankings in our approach than by using a
single technique.

6.2. Takeaways concerning the failing tests and the
content of bug reports

Both SBFL and IRFL are limited on the state-
ments they can examine. Because SBFL is based on
tests, if there is no failing test passing by the faulty
statement, it cannot be detected. Using IRFL, it is
important to highlight that the results depend on the
quality of the queries as occurs in other works [41, 43].
In our work, the queries are the bug reports, which
content can vary significantly depending on the per-
son who authored them. For instance, some reports
could be written by the developers of the application,
while others would have been written by users that
do not know the internal code structure and can only
comment on the final behavior of the program. Vari-
ous factors come into play that can affect the quality
of the query, such as the size of the text, the level of
precision and detail it provides, and whether or not
it includes source code snippets.
Certain bug report patterns are favorable for high

performance. For example, if the bug report (i,e.,
query), contains exactly or almost exactly the tar-
get line (document), the similarity between the query
and the document is maximal. The statement would
thus be ranked close to the top of the ranking.
Nevertheless, bug reports usually contain context

(i.e. more than the target line). This may penalize
the ranking position of the target statement because
other statements highly match with the query due to
similar frequencies of terms. This implies that several

statements share a nearly identical set of terms or
that the query contains enough terms to match other
statements with close similarity. Similarly, if the bug
report contains source code that is not closely related
to the target statement, it would have the same effect.
In such cases, some statements would have a high
similarity with the query, which would add a lot of
noise and move the target statement away from the
top of the ranking.

IRFL obtains good results when the bug report
contains explanations in natural language but with
some programming terms such as class or variable
names. The bugs with the best localization perfor-
mances are not necessarily the ones with the longest
bug reports. Long text can contain a lot of context,
which would be particularly fitting for file level gran-
ularity. However, in the case of statement level FL,
the context may increase the similarity of statements
that are not the target, even though they may be in
the same class or method. Otherwise, although some
reports are short, they obtain good results since most
of the terms may have relations with the target doc-
ument.

As IRFL relies on the bug report as the query, bugs
without bug reports were excluded from our analy-
sis. However, in some cases bug reports exist but they
are nearly empty or consist solely of a title without a
description. In such cases, due to the limited terms
available for the matching between the query and the
documents, the quality of the solution tends to be pe-
nalized since the target statement is not in the top po-
sitions of the IRFL ranking. For certain bugs where
their position in the SBFL ranking is close to the top,
the combined ranking helps to improve the quality of
the solution.

When poor bug reports obtain extremely bad po-
sitions in the IRFL ranking, SBFL results may still
struggle to fully compensate the results in the com-
bined ranking. In these situations, the combined
ranking does not usually obtain as good results as
the SBFL ranking.

With regard to the SBFL ranking, if a SBFL tool
does not consider a statement to be faulty, its suspi-
ciousness is assigned a value of zero. However, it is
possible that some of these statements may still be
faulty despite the tool’s verdict (false negative). In
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Section 5.3, we examined statements that were ab-
sent from the rankings. When considering statements
present in the rankings but with suspiciousness scores
equal to zero, the results differ. Baseline1 (Ochiai)
has two of those statements, and Baseline2 (DStar)
has 13. If we categorize them as missing bugs, they
represent 15% and almost 34% of all bugs, respec-
tively.

6.3. Undetected bugs

We analyzed why there are three bugs that are not
found by any baseline or variant of our approach.
In all cases, the required fix is an addition to lines
without terms (i.e. a blank line, a closing brace...).
In the case of SBFL, there can be no code coverage
for a blank line. For IRFL, there is no term to match
with the query; thus, blank lines are filtered out of
the analysis. This is consistent with the intuition
behind the approach and the two variants. In fact,
these cases may be almost impossible to solve since
there is no prior information helping to deduce that
an addition is needed.

7. Threats to validity

We identify four main categories of threats rele-
vant to our work. This classification is based on the
suggestion of De Oliveira et al. [51].
Internal validity: In the context of developing

our approach, we reuse an existing library [48] to
compute LDA in order to avoid implementation is-
sues. Also, we addressed the poor parameter set-
tings threat using values from the literature in our
approach and the baselines. Default values are good
enough to measure the performance as suggested by
Arcuri and Fraser [47]. Nevertheless, we cannot yet
claim if the values of the parameters (e.g., the number
of topics: k) should be tuned for other fault localiza-
tion benchmarks.
External validity: Our results derive from an

experiment on 59 bugs from five different projects,
which come from a well-known benchmark [44] that
is also used in previous FL works [5, 1, 6]. For most of
the benchmark elements, both source code and bug
reports are available.

Also, our technique requires both a test suite (to
uncover the bug) and a bug report for the target
project. For this reason, some Defect4J projects have
been excluded from the experiment. Indeed, this re-
quirement is shared by fault localization techniques.
In addition, we suppose that there are enough tests
to uncover bugs as well as bug reports written with
meaningful identifiers that allow the matching with
the source code.

Also, the generalization of the results depend on
the quality of the queries as occurs in other IR
works [41, 43]. Poor bug reports lead to irrelevant
statements in the top positions of the ranking. It
is also worth noting that the statements and bug re-
ports must use the same terminology to rank relevant
statements with IRFL. To narrow the gap between
the statements and the bug reports, different NLP
techniques (e.g., lowercasing, tokenizers, and stem-
ming) are applied.

Our implementation requires that the target
project is part of the Defects4J benchmark. For
this reason, our implementation can be updated to
evaluate our approach with Java projects from other
benchmarks before assuring its generalization.

Construct validity: Finally, threats to construct
validity relate to the hit@k metric usage. Neverthe-
less, it has been used in previous works [32, 45, 37, 7]
and is considered to illustrate the quality of a fault
localization approach. In addition, we calculated p-
values to demonstrate that our approach is statisti-
cally significant. All baselines and variants are eval-
uated in the same way to ensure fairness between
comparisons.

Conclusion validity: Finally, our approach ex-
ploits randomness. In order to limit the discordance
between successive executions, we compute the LDA
runs 30 times for each bug as advised in the litera-
ture [47].

8. Related work

Previous works have addressed FL using a variety
of techniques. We focus on SBFL and IRFL since our
work combines them. Table 3 presents previous tools
that address FL with SBFL (upper part of the table)
and IRFL (middle part of the table). The table also
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includes previous tools that address FL by combining
existing SBFL and IRFL approaches (lower part of
the table), and our work (the last row of the table).

Table 3: Previous SBFL and IRFL tools

Work
Tool
Name

FL
IRFL

Technique
Granularity

Compos et al. [2] GZoltar SBFL - Statement
Xuan and Monperrus [3] MULTRIC SBFL - Method
Ribeiro et al.. [52] Jaguar SBFL - Statement
Silva et al.. [53] FLACOCO SBFL - Statement

Wen et al. [19] Locus IRFL VSM Code change
Rahman et al. [54] Blizzard IRFL VSM File
Moreno et al. [55] Lobster IRFL VSM File
Ye et al. [56] - IRFL VSM File
Wong et al. [57] BRTracer IRFL rVSM File
Zhou et al. [7] BugLocator IRFL rVSM File
Rahman et al. [58] MBuM IRFL rVSM Method
Youm et al. [49] BLIA IRFL rVSM File
Saha et al. [37] BLUiR IRFL TF.IDF File
Motwani and Brun [1] Blues IRFL TF.IDF Statement
Wang et al. [21] AmaLgam IRFL TF.IDF File
Wang et al. [22] AmaLgam+ IRFL TF.IDF File
Li et al. [45] IRBFL IRFL TF.IDF Method
Zhang et al. [59] FineLocator IRFL TF.IDF Method
Koyuncu et al. [18] D&C IRFL Gradient Boosting File
Koyuncu et al. [50] iFixR IRFL Gradient Boosting Statement
Khatiwada et al. [60] - IRFL Combination File
Almhana et al. [61] - IRFL Multi objective search Method
Almhana et al. [62] - IRFL Multi objective search Method
Poshyvanyk et al. [8] - IRFL LSI Method
Lukins et al. [14] - IRFL LDA Method
Nguyen et al. [39] BugScout IRFL LDA File

Motwani and Brun [1] SBIR SBFL & IRFL TF.IDF Statement
Le et al. [32] - SBFL & IRFL VSM Method

Our work - SBFL & IRFL LDA Statement

8.1. SBFL

SBFL is one of the most researched FL family [23].
It relies on the tests available in a program to de-
tect which parts of the source code is most likely
to be faulty. Because it leverages code coverage, it
can have low granularity and pinpoint specific state-
ments. Previous SBFL tools are shown at the top of
Table 3.
Many APR tools [5, 1, 6] are based on SBFL at the

statement level mainly through GZoltar [2]. Xuan
and Monperrus [3] lated proposed MULTRIC, a tool
combining SBFL formulas in order to improve the
performance.
Two additional tools that should be mentioned al-

though they are not as widely used as GZoltar are
Jaguar [52] and FLACOCO [53]. Jaguar has the par-
ticularity to use data-flow in addition to control-flow.
Data-flow is scarcely used because of its high exe-
cution cost, however, Jaguar leverages a lightweight
approach to solve that limit. FLACOCO has been

proposed recently. Like Jaguar, it is based on Ja-
CoCo [34] for code coverage. Jacoco is a Java library
that releases version regularly, hence, it can be used
on recent Java version. That allows Jaguar and Ja-
CoCo to also be usable on recent Java versions which
is not the case of GZoltar. FLACOCO, as well as be-
ing available as a command-line interface (CLI) tool,
it is also embedded in Continuous Integration (CI) as
FLACOCOBOT. When a failing pull request (PR)
is detected, it comments SBFL information collected
using FLACOCO.

A variety of formulas have been proposed (e.g.
Ochiai [28], Jacard [28], DStar [17] and Taran-
tula [30]). GZoltar and Jaguar both propose a set
of several formulas whereas FLACOCO only imple-
mented Ochiai but provide an interface to extend the
tool if needed.

8.2. IRFL

IRFL is a family of FL techniques that typically
analyzes the textual relationships between a query
(e.g., a bug report) and program elements (typically
files or methods as the middle part of Table 3 shows).

VSM (Vector Space Model) or rVSM (revised
Space Model) are the most used IRFL techniques
with 36% of the IRFL tools shown in Table 3. It
is used in information retrieval and natural language
processing (NLP) to represent text as vectors in high-
dimension space. In particular, rVSM addresses cer-
tain limitations by, for instance, refining document
representation or enhancing the weighting strategy.
Tools using these techniques are for example:

Locus [19] utilizes software changes to detect bugs.
For instance, commit logs can be mined to identify
changes that introduced bugs. The localization is
narrowed down to code change level. Blizzard [54]
classifies bugs reports into categories depending on
their content and then apply query reformulation.
Lobster [55], uses stack traces extracted from the bug
report. In addition to stack traces, BRTracer [57] seg-
ments the bug reports to reduce the impact of noise
in long reports. Previous works [63, 64] reported that
longer files have a higher chance of being faulty, Bu-
gLocator [7] is proposed to address that limitation.

TF.IDF (Term Frequency Inverse Document Fre-
quency) is a weighted scheme used in many stud-

16



ies [37, 1, 21, 22, 45, 59]. VSM tools sometimes use
TF.IDF, but due to their specific way of representing
documents, we have not labeled them as TF.IDF in
Table 3.
BLUiR [37] is based on Indri [65], a search en-

gine based on a language model. It uses the built-
in TF.IDF Indri model based on BM25 (Okapi
model [66]). One of its peculiarities is that it extracts
the terms from the Abstract Syntax Tree (AST) and
not directly from the source code. All preprocessing
is also done by Indri.
Blues [1], is a recent tool built on top of BLUiR.

Like BLUiR, it does not require any training data.
After the NLP preprocessing, Blues ranks the project
files. This is done with the same parameters as
BLUiR. Statements are then extracted from the top
suspicious files. These are then fed back to BLUiR
to produce a ranking of the statements.
AmaLgam [21] and AmaLgam+ [22] are two tools

using more information that simply a bug report.
Version history can be used for instance taking into
account files modified recently, which have more
chance to introduce future bugs [67]. Recognizing
that developers often work on a subset of the source
code, Wang et al. [21, 22] also considered the history
of files previously containing errors to help localize a
current bug.
Other studies use different localization techniques.

For instance: Koyuncu et al. introduced D&C [18],
an approach that employs multi-classification to
weight the importance of what they refer to as ”fea-
tures”. These features correspond to the sources
of information derived from bug reports and source
code. Their work builds upon previous IRFL studies
that have incorporated multiple source of informa-
tion to enhance fault localization precision [7, 37, 21,
68, 49, 19].
D&C is employed by iFixR [50], a statement level

fault localization tool. iFixR has a particularity,
as it selectively considers a subset of statements as
fault localization information based on their type.
Their distinction is motivated by Liu et al. find-
ings [69], which demonstrates that certain types of
statements were more error-prone than others. iFixR
focuses on 5 statements types: IfStatements, Ex-
pressionStatements, FieldDeclarations, ReturnState-

ments and VariableDeclarations.
Khatiwada et al. [60] propose to combine four in-

formation retrieval methods: TF.IDF, LSI, Jensen-
Shannon Model (JSM) and Pointwise Mutual In-
formation(PMI). Almhana et al. [61, 62] use multi-
objective search to improve the performance of IRFL
by finding the right balancing between minimizing
the number of recommended classes and maximizing
the the relevance of the result. Ye et al. [56] using
domain knowledge combined with bug reports.

Finally, there are few previous tools using topic
modeling as IRFL technique. Poshyvanyk et al. [8]
leverage Latent Semantic Analysis (LSI) and Sce-
nario Based Probabilistic for feature localization and
applied it to fault localization case study. Even
though previous works [14, 39] used LDA, their gran-
ularity is different, they focus on methods and files,
respectively.

Note that many FL tools based on supervised ma-
chine learning are not listed in Table 3 as we consid-
ered them outside of the scope of this work, which
does not require previous training data.

Among the IRFL techniques shown in Table 3,
55% of them have a file granularity, followed by 32%
of tools with method granularity. Only one tool is
code changes-based, and only two tools are statement
based. Hence, there is a lack of IRFL techniques with
statement granularity that can serve to enhance the
results of APR tools.

8.3. IRFL and SBFL combination

There have been many studies to improve fault
localization using several methods (SBFL, IRFL,
MBFL). Even though each of them provides good
results, they all have their limitations due to their
inputs. Both SBFL and MBFL use program spectra
and are thus impacted by the quality of the test suite.
Likewise, IRFL uses bug reports as input, the quality
of which, has a strong impact on the performance of
fault localization.

One way to improve the performance without cre-
ating an entirely new method is to combine existing
ones. There have been a few studies in this direction.
Le et al. [32] propose such an approach to combine
SBFL and IRFL. Their approach is split into four
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components AMLSpectra, AMLText, AMLSuspWord

and Integrator. They respectively focus on calcu-
lating the suspiciousness leveraging program spectra,
bug reports and words contained in both spectra and
the bug reports. The integrator is tasked with com-
bining the result of the three components. The suspi-
ciousness calculated by AML is done at the method
level.

Recently, Motwani and Brun [1] proposed SBIR,
a tool combining SBFL and IRFL. The rankings
come from GZoltar employing the Ochiai strategy
and Blues (their own IRFL tool), respectively. The
results of the two rankings are combined to produce
a final ranking of 100 statements.

The last row of Table 3 compares our work with
previous FL works. To the best of our knowledge,
this work is the first effort in the literature that inves-
tigates fault localization at statement level of granu-
larity using LDA, and combining LDA and Ochiai.

9. Conclusion and future work

This paper proposes a novel approach that com-
bines topic modeling with Ochiai to enhance fault
localization at the statement level of granularity. By
leveraging the benefits of both Spectrum-Based Fault
Localization (SBFL) and Information Retrieval Fault
Localization(IRFL), our approach demonstrates sig-
nificant improvements in fault localization compared
to using Ochiai independently. Specifically, using
the two variants of our approach, 20.34% of the to-
tal number of bugs are ranked in hit@1, compared
to only 8.47% for topic modeling (Baseline3), 6.77%
for Ochiai and SBIR (Baseline1 and Baseline5) and
3.38% for Blues (Baseline4).

These findings emphasize the potential of integrat-
ing topic modeling techniques with existing fault lo-
calization approaches, providing valuable insights for
the automated program repair community.

As future work, we plan to study the impact on
the solution quality using additional sources of infor-
mation (e.g. stack traces in bug reports). We also
plan to study whether extending the preprocessing
step (e.g., using automatic query reformulations) can
improve the quality of the located statements.
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