
Co-evolving Scenarios and Simulated Players to Locate Bugs that arise from the
Interaction of Software Models of Video Games

Isis Rocaa,b,∗, Óscar Pastorb, Carlos Cetinaa, Lorena Arcegaa

aSVIT Research Group, Universidad San Jorge, Zaragoza, Spain
bPROS Research Centre, Universitat Politècnica de València, Valencia, Spain

Abstract

Context: Game Software Engineering (GSE) is a field that focuses on developing and maintaining the software part of video
games. A key component of video game development is the utilization of game engines, with many engines using software models
to capture various aspects of the game.

Objective: A challenge that GSE faces is the localization of bugs, mainly when working with large and intricated software
models. Additionally, the interaction between software models (i.e. bosses, enemies, or environmental elements) during gameplay
is often a significant source of bugs. In response to this challenge, we propose a co-evolution approach for bug localization in the
software models of video games, called CoEBA.

Method: The CoEBA approach leverages Search-Based Software Engineering (SBSE) techniques to locate bugs in software
models while considering their interactions. We conducted an evaluation in which we applied our approach to a commercial video
game, Kromaia. We compared our approach with a state-of-the-art baseline approach that relied on the bug localization approach
used by Kromaia’s developers and a random search used as a sanity check.

Results: Our co-evolution approach outperforms the baseline approach in precision, recall, and F-measure. In addition, to
provide evidence of the significance of our results, we conducted a statistical analysis that shows significant differences in precision
and recall values.

Conclusion: The proposed approach, CoEBA, which considers the interaction between software models, can identify and locate
bugs that other bug localization approaches may have overlooked.

Keywords: Bug Localization, Model Interaction, Game Software Engineering, Search-Based Software Engineering,
Model-Driven Engineering

1. Introduction

The video game industry has become a significant and lu-
crative software industry sector 1. As video games continue to
gain popularity, the development of these games has become
increasingly complex, involving the creation of sophisticated
software covering multiple aspects of the game, such as game
mechanics, graphics, and physics. Game Software Engineer-
ing (GSE), therefore, has emerged as a field that focuses on the
development and maintenance of software for video games [1].

In video game development, game engines serve as a basic
resource that combines elements such as graphics and physics
engines with a suite of accompanying tools. While there are
popular game engines [2, 3], some studios opt for custom so-
lutions tailored to their specific needs [4]. A recent literature
review [5] identifies both widely used game engines such as

∗Corresponding author.
Email addresses: iroca@usj.es (Isis Roca), opastor@pros.upv.es

(Óscar Pastor), ccetina@usj.es (Carlos Cetina), larcega@usj.es (Lorena
Arcega)

1T. B. R. Company, Gaming global market report 2023,
https://www.thebusinessresearchcompany.com/report/gaming-global-market-
report (2023).

Unity or Unreal and specific engines developed by the video
game studios themselves. A key asset of game engines is soft-
ware models. In the scope of this work, the concept of software
model should not be confused with the concept model used in
computer graphics and video games to refer to the visual rep-
resentation of 3D shapes or geometry. An actual example of a
model of the scenario of a final boss of Kromaia is presented in
Figure 1. In addition, Kromaia developers can also use the C++
programming language to create content for the game. Game
engines offer developers a choice between coding, often in lan-
guages such as C++, or using software models that are inte-
grated into the engines (as illustrated in Figure 2 [6]). These
models provide a higher level of abstraction, allowing develop-
ers to focus on designing the core content of the game. Typi-
cally, game engines incorporate their own modeling languages
(for instance, Unreal employs Blueprint models), while recent
trends in Model-Driven Game Development [5] highlight the
adoption of other languages such as UML and Domain Specific
Languages (DSLs).

This approach, similar to Model-Driven Engineering (MDE),
has proven to be useful in simplifying video game develop-
ment. However, applying MDE to video games requires spe-
cific bug localization approaches to ensure the quality of the

Preprint submitted to Information and Software Technology May 28, 2024

S
C

E
N

A
R

IO
M

E
T
A

M
O

D
E
L

Kromaia Scenario - Level 1 Source CodeModels

W

B

Figure 1: Example of a scenario developed using models and code.

Video Game Content
(non-player character, weapons, levels, ...)

Libraries (OpenGL, Vulkan, OGRE, Bullet, ...)

Game Engine
(Unreal, Unity, CryEngine, O3DE, ...)

Code Software Models

Graphics
Engine

Physics
Engine

Assets
Prefabs

Shaders

Meshes

...

Figure 2: Overview of video game artifacts.

software. Currently, bug location approaches mainly focus on
source code without considering other crucial elements such as
software models. This is shown in a survey on bug location [7],
which highlights that none of the existing approaches consider
models as a potential source of bugs. This lack of appropriate
approaches can have a negative impact on video game devel-
opment. It often results in an increase in development time,
which can lead to delays in delivery and, ultimately, the release
of games with a high number of bugs. A good example of this
is the blockbuster Cyberpunk 2077 2, which was released after
nine years of development with numerous bugs. Such was the
level of bugs that the game had to be pulled from store shelves,
and even a year after its initial release, patches were still being
released to fix them.

In this context, it is important to note that video games have
different characteristics compared to classic software in both,
developing and maintaining, due to the differences in the arti-
facts used (i.e., shaders, meshes, or prefabs) and the interactive
nature of video games. Additionally, game developers face dif-
ferent challenges than non-game developers when locating bugs

2How buggy is Cyberpunk 2077, really? - https://www.pcgamer.com/
how-buggy-is-cyberpunk-2077-really/

and reusing code [8].
In video game development, like the boss shown in Figure 1,

content can be defined through code or models (see the central
part of Figure 1 for the model and the right part for the code).
Models offer higher-level concepts and abstraction from imple-
mentation details, providing a smaller bug localization search
space. However, despite this advantage, existing literature on
bug localization in models is scarce, posing a challenge. As
models are key artifacts in video game development, bug local-
izations should be performed on models.

Furthermore, due to the interactive nature of video games,
the interaction between software models in the gameplay can
be a significant source of bugs and cannot be ignored. For in-
stance, the interaction between the player, the game environ-
ment, and the game mechanics can result in unpredictable be-
havior and bugs. The boss that appears in Figure 1 is a power-
ful enemy that appears at the end of the level. The bosses have
weak points that must be attacked to destroy them. However, a
boss can be invincible because a weak point is overlapped. This
bug occurs when solid objects overlap each other when they are
not supposed to. Letter W in Figure 1 indicates a weak point.
When the boss hits some blocks (letter B in Figure 1) that are
part of the scenario, this type of bug occurs. Someone may ar-
gue that this bug may occur due to the emergent behavior of
the game. However, other bugs can occur even in deterministic
games. For example, a boss can have wrong behavior because
the movement is blocked. This bug occurs when the parts of the
boss are incorrectly positioned. Incorrect positioning blocks the
movement of other parts of the model; for example, the position
of one part invades the space of the other. If they invade each
other the physics have unpredictable behavior. This bug occurs
due to an error in the boss’s programming (in code or models).
In games that do not provide linear experiences, the player has
many possibilities to perform different behaviors. This leads
to the concept of emergent gameplay. It describes situations
where a game’s mechanics and systems interact in ways that

2

were not intentionally designed by the developers but rather
created through the choices and actions of players. In addi-
tion, games can incorporate random elements. Such elements
can include factors like randomized enemy behavior, variable
item drops, or procedural level generation. Therefore, develop-
ers have the ability to create diverse and dynamic experiences
for players, making each playthrough unique.

Given the complexity of video games thorough game test-
ing becomes imperative. Game testing involves systematically
evaluating the game’s mechanics, interactions, and random el-
ements to identify bugs, balance issues, and unintended emer-
gent behaviors. In addition, games can also have many sce-
narios, which produce an excessively high amount of different
combinations that are unaffordable to be playtested by a human
[9].

In this work, we present an approach, called CoEBA, for bug
localization in game software engineering that considers the
interaction between different software models. Our approach
applies Search-Based Software Engineering (SBSE) [10] tech-
niques to locate bugs by exploring the search space evolving
software models. Our CoEBA approach is designed to co-
evolve simulated players and scenarios to identify potential
bugs in software models while considering their interactions.
Simulated players represent player behaviors during the game-
play, and scenarios represent the environment around the player
including context, enemies, and bosses. In these scenarios is
where model interactions occur. In order to validate the effec-
tiveness of our approach, we compared it with two other ap-
proaches, a baseline [6] and a random search using the Kromaia
case study [11]. Kromaia is a commercial video game that in-
volves flying and shooting with a spaceship in 3D space and has
been released on multiple platforms and translated into different
languages.

To evaluate the CoEBA approach, we have formulated three
research questions:

• RQ1: What is the performance in terms of solution quality
of the CoEBA, the baseline, and the random search ap-
proaches?

• RQ2: Is there any improvement in performance taking into
account model interaction?

• RQ3: Are the differences in performance results obtained
by the CoEBA, the baseline, and the random search ap-
proaches significant?

In our evaluation, we use widely accepted metrics such as
precision, recall, and F-measure to evaluate the performance of
our approach, the baseline approach, and a random search ap-
proach. Our results show that CoEBA outperformed the base-
line and the random search approaches regarding recall, pre-
cision, and F-measure. The precision, recall, and F-measure
values achieved by CoEBA are 45.76%, 84.83%, and 53.87%,
respectively. We performed a statistical analysis to provide
quantitative evidence of the impact of the results. This anal-
ysis shows that the impact on performance is significant.

Game_Element

1

*

1

1..*source

target

1

*

1

*

1 *

Component

Weak_Point Shield Laser Spike Cannon

*

Link Hull Weapon

AI_Unit

S
D

M
L
 M

O
D

E
L

L
E

V
E

L
 1

 F
IN

A
L
 B

O
S

S
S

D
M

L
 M

E
T
A

M
O

D
E

L

*

Serpent boss

Hull head Hull 6 Link 5 Hull tail

Weak Spike 1 Spike 2point 6

Figure 3: The Shooter Definition Modeling Language (SDML).

From the evaluations performed, we can say that the inter-
action between models is relevant to locating bugs. This is be-
cause it defines the behavior of the video game as a whole and
provides insights to facilitate bug location improving the per-
formance of the approach.

The structure of this paper is as follows. Section 2 provides
an overview of the case study (Kromaia) and the motivation.
Section 3 describes our proposed approach, CoEBA. In Section
4, we present the evaluation methodology of our approach with
Kromaia. In section 5, we present the results. In sections 6
and 7, we discuss the results and analyse the threats to validity
respectively. In Section 8, we present a review of the related
work in this area. Finally, in Section 9, our conclusions are
summarized.

2. Background and motivation

This section presents the case study we employed to evalu-
ate this work. The case study involves the video game Kro-
maia3. Kromaia is a commercial video game released on PC
and PlayStation 4. It is set in a three-dimensional space. The
game is a blend of space exploration, action, and shooting gen-
res. Each level requires the player to pilot their spaceship from
a starting point to a target destination while exploring floating
structures, avoiding asteroids, and collecting items along the
way. The player must also defeat basic enemies attacking their

3To learn more about Kromaia, you can watch the official trailer released by
Playstation: https://youtu.be/EhsejJBp8Go

3

spaceship by firing projectiles. Once the player reaches the des-
tination, the final boss for that level appears, and the player must
defeat the boss to progress to the next level.

The developers of Kromaia use a Domain Specific Lan-
guage (DSL) called Shooter Definition Modeling Language
(SDML) to describe the various characteristics and behaviors of
the game’s entities, including bosses, environmental elements,
weapons, defenses, and movement behaviors. The develop-
ers of Kromaia implemented this DSL to define shooter-style
video games. However, its applicability extends beyond this
genre to other video games with similar themes. This model-
ing language has a fundamental role in the definition of various
attributes in relation to game entities. It provides a comprehen-
sive description of the anatomical structure of the characters,
covering details such as the constituent parts, their physical
characteristics, and how they are interconnected. In addition,
the DSL delves into the configuration of vulnerable sections,
weaponry, and protective measures within the character’s struc-
ture or body. It also regulates the various movement behaviors
associated with the character as a whole or its individual com-
ponents. SDML follows the principles of Model-Driven En-
gineering (MDE), allowing developers to specify the rules of
engagement between entities and the game environment, such
as boundaries, obstacles, and environmental hazards. The up-
per part of Figure 3 presents an excerpt version of the SDML
metamodel that provides a comprehensive understanding of the
game’s elements in Kromaia. The complete metamodel con-
sists of over 20 concepts, 20 relationships, and more than 60
properties. The SDML models are interpreted at runtime to
generate the corresponding entities in the video game. This
means that the software models are created using SDML and
translated into C++ objects at runtime by an interpreter used by
the game engine. Kromaia was developed with a specific video
game engine created by the company [11].

Kromaia’s specific engine uses concepts similar to those of
widespread engines such as Unity or Unreal. In fact, Kromaia’s
SDML models can be loaded into Unity’s WebGL (https://
svit.usj.es/models22/bl-in-mgse). This engine acts as
a framework in the context of the video game architecture and
allows developers to create content in two different ways:

• Programming, using the framework’s Application Pro-
gramming Interface (API).

• Software Models, which are created using SDML and
translated to its programming equivalent at run-time by an
interpreter that is used by the engine.

Therefore, developers should track only what they develop for
each part of the game content. In the specific case of Kromaia,
the developers started to create content with code, but to be
more productive they switched to SDML models to create the
content of the game (e.g., levels, NPCs, items, and weapons).
More can be learned about the SDML model of Figure 3 in the
following video: https://youtu.be/Vp3Zt4qXkoY

SDML allows the development of any game element such as
bosses, enemies, or environmental elements. An actual exam-
ple of a final boss of Kromaia is presented in the bottom part of

Figure 3. The Serpent is the final boss that the player must de-
feat to complete level 1. The central part of the figure shows the
model of the boss using the SDML. This boss is composed of
one main hull (the head of the serpent) followed by eight hulls.
The tail (last hull) has two shields and three spike weapons. As
in this example, all bosses, enemies, and elements in Kromaia
are implemented using SDML.

In order to locate bugs related to the SDML models that de-
fine the behavior of the game’s bosses, a previous work em-
ploys an approach that involves running game simulations [6].
These simulations are designed to simulate a one-on-one battle
between a boss and a simulated player that represents the ac-
tions and decisions of a human player. The simulated player
is powered by an algorithm that the Kromaia team developed.
The developers used the algorithm during the game’s develop-
ment to evaluate the content they made. The algorithm focuses
on simulating the player, so it is independent of changes in the
other elements of the game (attacking weak points and avoid-
ing taking damage or colliding with the scenario). However,
the algorithm is game-dependent (space shooter), so it cannot
be used as it is in other games. However, it would be possible
to find similar algorithms in other games, e.g., those controlling
opposing cars in a racing game, enemy generals commanding
troops in an RTS game, or bots in an FPS game. The algorithm
can be parametrized to define the fighting strategy. The simu-
lated player parameters were provided by the developers based
on the analysis of battles between human players and bosses. It
considers aspects such as the weaponry used by each of them
and the differences between the two entities in terms of agility,
speed, endurance, or size. For example, the parameters can de-
fine the time that the player spends in each element, how the
level is traversed, or the player’s reaction when the player is hit.
During the simulated battle, both the boss and the simulated
player are programmed to strive for victory and avoid tie games
at all costs, ensuring that there is a clear winner.

In addition to the bosses and the simulated player, environ-
mental elements in Kromaia play a crucial role in shaping the
gameplay experience. These elements, such as walls, spikes,
and towers, significantly impact the actions and strategies of
both the boss and the player during a duel. The placement and
layout of these elements can create opportunities for the boss
and the player to gain advantages or disadvantages and influ-
ence their movement patterns and attack styles. For example,
walls can serve as a strategic cover for the boss, allowing them
to evade incoming attacks or gain an advantageous position to
launch a counter-attack. Similarly, the player may use walls
to dodge or avoid the boss’s attacks or launch surprise attacks
behind the cover. Towers that shoot projectiles can provide an
additional challenge for both the boss and the player, as they
must be avoided or destroyed to gain an advantage.

Moreover, the presence of spikes or other environmental ele-
ments can further enrich the gameplay experience, as the player
needs to be aware of their location and avoid taking damage
from them. The placement of these environmental elements can
force the player to alter their attack strategies or movement pat-
terns to avoid taking damage, adding a layer of complexity to
the game. Thus, to achieve a realistic simulation between the

4

M
O

D
E

L
S

 I
N

 S
C

E
N

A
R

IO
S

C
E

N
A

R
IO

Player

Wall element

Hull 1 Link n Hull n Hull

Spike 1 Spike 2

Spikes element

Figure 4: Example of model interaction in the scenario.

boss and the simulated player, it is essential to consider the im-
pact of these environmental elements in conjunction. We refer
as a scenario to the interaction of all these models (bosses and
elements of the environment) that conform to the same meta-
model. Figure 4 shows an example of a real scenario with walls
and spikes and the player in the middle.

The figure depicted in Figure 5 presents two different sim-
ulations that emulate a player’s behavior during a battle with a
boss in the game. These simulations aim to predict how the boss
and simulated player will behave under different conditions and
to locate bugs in the software models of the game. The trian-
gle symbol in the figure represents the simulated player, while
the circles and lines that connect them correspond to game el-
ements, such as the boss, towers, spikes, or walls. The dashed
lines indicate the path followed by the simulated player or the
projectiles, and the crosses represent the attacks performed by
the simulated player, the boss, and the environmental elements.

The upper simulation presented in Figure 5 shows a duel be-
tween the simulated player and a boss without considering the
environmental elements (a previous work [6]). The bottom ex-
ample shows a simulation between the simulated player, a boss,
and (taking into account) the environmental elements (the one
used in this work). That is, this simulation considers several
software models of the video game (i.e., boss, towers, spikes,
or walls) and the interactions that these models have through-
out the simulation. The M1 model represented in this figure is
the level 1 final boss shown in Figure 3, the rest of the models
(M3, M4, M6, M7, M8, M12, M13, M21, M33, and M36) rep-
resented show environmental elements that are present in the
scenario and that have been defined using SDML (Fig 3).

The interaction among the software models of the environ-
mental elements, the boss, and the simulated player can also
generate unwanted bugs that may impact the game’s overall
quality. For instance, if the boss’s software model is not ap-
propriately designed to handle the presence of walls or towers,
this could cause unintended behaviors that could lead to glitches
and an unpleasant gaming experience for the player. Similarly,
if the player’s behavior is not adapted to the presence of envi-
ronmental elements, such as walls or spikes, this could result

Simulated player and boss (a previous work)

Simulated player and scenario (this work)

M1

M3
M7

M13

M33

M6

M21

M8

M12

M36

M4

M1

Legend

Player Wall element

Laser tower

Spikes element

Spikes with movement
Boss

Attack

Figure 5: Example of two different simulations: simulated player and boss (one
software model), simulated player, boss, and environmental elements (several
software models).

in unintended collisions or ineffective attacks. To minimize the
risk of unwanted bugs, it is crucial to incorporate the impact
of environmental elements into the simulations and thoroughly
test the gameplay. This can help to ensure that the interactions
between the boss, the simulated player, and the scenario are
smooth and error-free, leading to a more enjoyable and immer-
sive gaming experience.

3. Co-Evolving scenarios and simulated players to locate
bugs in the interaction of software models of video games

The gameplay of a video game can involve numerous com-
binations of scenarios (game elements in the scene) and player
strategies, so the number of different model interactions that
can be triggered is very high. Since the search space is too
large, it is difficult to perform playtesting manually, exploring
the space of possibilities exhaustively [9]. To tackle this chal-
lenge, we leverage SBSE through a co-evolutionary algorithm
to explore the vast search space produced by combinations of
scenarios (game elements in the scene) and simulated players
(player behaviors in the battle).

5

Initialize
Population 1

Simulated player
 Population

stop?

yes

no

Initialize
Population 2

Scenarios
 Population

Ranked
Simulation traces

Video
Game

Software
Models

CoEBA

Genetic Operators

New Scenarios
New Simulated

players

Fitness Function

Figure 6: CoEBA: Co-Evolutionary Bug Localization approach for GSE.

In co-evolutionary algorithms, instead of evolving a popu-
lation of individuals representing the solution, they co-evolve
subpopulations representing specific parts of the solution.
There are two types of co-evolution: cooperation and compe-
tition [12, 13]. We have selected a competitive co-evolutionary
algorithm for its ability to solve problems involving interactions
between different entities. Such problems arise in situations
where entities require adaptation and evolution in response to
their opponents’ strategies, as in games in which competitive
co-evolutionary algorithms excel [14, 15]. Taking into account
the problem we want to solve, we follow a competitive ap-
proach taking into account the simulated players and the en-
vironmental elements where the fitness value of an individual
from one subpopulation depends on the fitness value of other
individuals from the other subpopulation.

In this section, we first present an overview of our approach
and then provide the details of the approach and our adapta-
tion of the co-evolutionary algorithm to deal with the specific
challenges of software models of video games.

3.1. Overview of our approach
Figure 6 presents our Co-Evolutionary Bug Localization ap-

proach for GSE called CoEBA. The left part shows the input for
the approach: the set of software models that describe the video
game’s content. The center shows the main steps. The ’Initial-
ize Population’ step calculates the two initial populations. The
’Fitness’ step assigns values that assess how good each individ-
ual of each population is. Finally, the ’Genetic Operations’ step
produces new generations of both populations. The approach
outputs a ranked list of simulation traces that can trigger the
bug.

3.2. CoEBA populations
CoEBA works with two different populations. The first popu-

lation is composed of simulated players, which represent player
behaviors during battles. The second population is composed of
game scenarios, encompassing diverse combinations of game
elements within a given scene. To represent each individual of
each population, we use a vector representation.

For the first population, each vector’s dimension represents
a simulated player parameter. The simulated player emulates
the behavior of a player in a determined scenario when the bat-
tle with the boss occurs. For example, the parameters can de-
fine how many steps the simulated player takes in each hull
of the boss or each environmental element, the order in which
the hulls and the environmental elements are visited following
different patterns, the behavior of the player when they are at-
tacked, or the direction used to visit the hulls of the boss or the
environmental elements. Thus, an individual is defined as a set
of parameters applied to a simulated player. The size of the in-
dividual corresponds to the number of parameters (dimensions)
in the vector. The developers provided the simulated player pa-
rameters based on the analysis of real games played. Figure 7
upper part shows four different simulated players. The SP1 ex-
ample shows a simulated player that attacks the first hull and
then moves away. The SP2 example shows a simulated player
that attacks the first hull, then skips one, and attacks the follow-
ing hulls to the end of the boss.

For the second population, each vector’s dimension repre-
sents a software model that can appear (or not) in the scenario
(see the central part of Figure 7). That is, each vector repre-
sents the different types of environmental elements (software
models) that can come onto the scene. Each vector in the popu-
lation has a dimension corresponding to a specific scenario and
contains information about the software models present in the
scenario. The number of different types of environmental ele-
ments available in the game determines the number of dimen-
sions in the vector. These environmental elements have been
identified and defined by the Kromaia developers, and we have
used their specifications to create our vector representation for
the second population.

The central part of Figure 7 presents four different scenarios.
Each example presents different types of software models that
appear as environmental elements in the scenario. To represent
the S1 example, the individual would have the dimension corre-
sponding to M3 set to 1, while the dimension corresponding to
M2 would be set to 0. In contrast, the S2 example would have
the dimension corresponding to M2 set to 1, while the dimen-

6

...

Population 1 - Simulated players

M1 M2 ...
1 0 1...

M3 Mn-1 Mn
1 0

Individual S1
M1 M2 ...
0 1 1...

M3 Mn-1 Mn
1 0

Individual S2
M1 M2 ...
1 0 1...

M3 Mn-1 Mn
0 0

Individual S3
M1 M2 ...
0 0 0...

M3 Mn-1 Mn
1 0

Individual Sn

Population 2 - Scenarios

Steps in
the hull

Order ... Remaining
steps Direction

10 0 -2 1...

Individual SP1

SP1

Steps in
the hull

Order ... Remaining
steps Direction

20 2 -5 1...

Individual SP2

SP2

Steps in
the hull

Order ... Remaining
steps Direction

5 0 0 1...

Individual SP3

SP3

SP3

SP3

Steps in
the hull

Order ... Remaining
steps Direction

2 1 -1 -1...

Individual SPn

SPn

...

S2S1

M1

M3
M7

M13

M33

M6

M21

M8

M12

M36

M4

S1

M1

M3
M7

M13

M33

M6

M21

M8

M12

M36

M4

M2

M3
M7

M23

M33

M6
M21

M8

M12

M36

M4

M34

S3

M1

M7

M6
M21

M12

M4

Sn

M15

M3 M33

M8

M12

M36

M34

M1

M3
M7

M13

M33

M6

M21

M8

M12

M36

M4=+

Simulation

Figure 7: Examples of individuals and their representation from both populations simulated players and scenarios, and an example of a simulation (simulated player
+ scenario)

sion corresponding to M13 would be set to 0. The number and
the type of these environmental elements can play an essential
role while the combination of a simulated player and a scenario
(that is, a simulation, see bottom part of Figure 7) is running.
Hence, the interaction of the software models of the environ-
mental elements, the player, and the boss when all of them are
put together in the scenario can trigger unwanted bugs.

3.3. CoEBA fitness

The fitness function used by our approach assesses simulated
players and scenarios based on their ability to detect game bugs.
It is based on two functions for each population: 1) evaluating
their alignment with how the game developers intended for the
game to behave; 2) maximizing the coverage of the less suitable
simulated players or scenarios in the generation.

In both populations, the first function involves a duel between
the game’s player and boss. The goal is to evaluate how closely
the game’s behavior aligns with the developers’ intent. This
function calculates its fitness value based on the percentage of
player victories and the percentage of player health remaining
after winning a simulated battle. The calculations for victory
and health are performed in the same manner as described in
previous studies [11, 6]. In a previous study by Blasco et al.
[11] (content generation), simulations closest to the developers’
intentions were rewarded. However, the opposite approach is
taken for bug localization [6]. Hence, in this work, simulated

players that deviate the most from what developers intended are
rewarded and ranked first in the function.

For the second fitness function, we select the top individu-
als from each population, which are the worst simulated play-
ers and scenarios. For assessing each simulated player, our ap-
proach considers the number of scenarios that did not achieve
expected victory and health values in the duel. The more
scenarios that generate unwanted behavior with the simulated
player, the higher the fitness value. In order to normalize the
numerical value, we establish this as a percentage of the unde-
sired scenarios against the total number present in the popula-
tion. Similarly, our approach considers the number of simulated
players that did not achieve expected victory and health values
in the duel to assess each scenario. The more simulated players
that generate unwanted behavior with the scenario, the higher
the fitness value. In order to normalize the numerical value, we
establish this as a percentage of the undesired simulated play-
ers against the total number present in the population. Thus,
resulting values can vary from 0 to 1.

The fitness value of a simulated player is the average value
between the first and the second fitness values described above.
Subsequently, our algorithm orders simulated players and sce-
narios in an ascending manner with those having lower fitness
values ranked first. A lower fitness value means that the sim-
ulated player or the scenario produces undesirable outcomes,
which do not align with the intended objectives of the develop-

7

ers.

3.4. CoEBA genetic operators
To generate subsequent populations, genetic operators are

applied, which involve selecting the individuals that will serve
as parents for the new individuals. Following the selection op-
erator, other genetic operators, such as crossover and muta-
tion, are applied to manipulate the individuals. These opera-
tors help in generating new sets of individuals from the existing
ones. The selection process ensures that the fittest individuals
are more likely to be selected as parents, thus increasing the
chances of producing offspring with better fitness scores. Fur-
thermore, the use of genetic operators like crossover and muta-
tion helps to introduce diversity into the population, preventing
premature convergence and promoting exploration of the search
space.

Selection. In order to select individuals from both subpop-
ulations, our approach considers their fitness values. Our ap-
proach employs the roulette wheel selection mechanism. This
selection approach helps to prevent premature convergence
[16], a phenomenon that can reduce the algorithm’s perfor-
mance. In essence, the roulette wheel selection mechanism as-
signs a probability of selection to each individual in the popu-
lation that is directly proportional to their fitness score. By us-
ing this technique, the algorithm guarantees that solutions with
greater fitness have a higher chance of being selected, emulat-
ing the concept of ”survival of the fittest”. This aids in the con-
vergence towards optimal or nearly optimal solutions. Mean-
while, the roulette wheel selection mechanism maintains diver-
sity by providing less fit solutions with a possibility of being
chosen. This diversity is crucial as it prevents the algorithm
from becoming trapped in local optima and encourages the ex-
ploration of the solution space, which is especially critical for
complex optimization problems. The selected individuals will
be the ones that generate the next individuals.

Crossover. In the CoEBA approach, the crossover opera-
tor plays a significant role in generating new and diverse in-
dividuals. This operator involves the combination of genetic
material from two parent solutions to create offspring solutions
with new characteristics. CoEBA uses a single, random, cut-
point crossover, where two-parent solutions are split at a ran-
dom cut-point to generate two sub-vectors. The offspring so-
lutions are then produced by combining the first part of one
parent with the second part of the other parent for the first off-
spring and combining the first part of the second parent with the
second part of the first parent for the second offspring. It should
be noted that the length of the solutions remains constant dur-
ing the crossover operation. Thus, the new solutions obtained
through the crossover operation are the same length as the par-
ent solutions. This method helps to promote diversity and can
lead to the discovery of new individuals that may not have been
present in the previous population.

Mutation. In our approach, the mutation operator plays a
crucial role in maintaining diversity in the population and ex-
ploring new regions of the search space. The mutation operator
randomly changes one or more parameters in a solution, intro-
ducing novel genetic material that can lead to improved solu-

tions. For the simulated player population, the mutation opera-
tor starts by selecting certain positions within the vector repre-
sentation of the individual. These selected dimensions are then
replaced by a different value of the corresponding parameter.
However, the values for mutation are not randomly generated
numbers. Instead, they are obtained from a catalog of values
compiled by developers based on their experience. Similarly,
the mutation operator for the scenario population also starts by
selecting certain positions within the vector representation of
the individual. These selected dimensions are then replaced by
a different value of the corresponding environmental element.
By utilizing a pre-collected catalog of values, the mutation op-
erator can efficiently and effectively explore the search space
of both populations. The use of a pre-collected catalog of val-
ues also ensures that the mutations are relevant and appropriate
for the game’s mechanics, increasing the likelihood of finding
effective and realistic solutions.

CoEBA generates a collection of simulation traces ranked
according to their expected probability of triggering the in-
tended bug. Overall, the aim of CoEBA is to highlight potential
sources of bugs in the interaction between the software models
of the video game.

4. Evaluation methodology

This section presents the methodology used in the evaluation
of the approach, including the preparation of the evaluation, the
experimental process, the measures used to evaluate the algo-
rithm performance, and the explanation of the statistical analy-
sis performed.

In order to evaluate the CoEBA approach, we have formu-
lated the following research questions:

• RQ1: What is the performance in terms of solution quality
of the CoEBA, the baseline, and the random search ap-
proaches?

• RQ2: Is there any improvement in performance taking into
account model interaction?

• RQ3: Are the differences in performance results obtained
by the CoEBA, the baseline, and the random search ap-
proaches significant?

Answering the first research question (RQ1) enables us to
evaluate and contrast the performance outcomes of our pro-
posed approach with the baseline approach, using metrics such
as recall, precision, and F-measure. Additionally, we compare
our approach and a random search (RS) as a sanity check. The
second research question (RQ2) seeks to determine whether
model interactions affect the results. Finally, answering the
third research question (RQ3) allows us to conduct a thorough
comparison between the approaches, provide formal and quan-
titative evidence (statistical significance) that the differences in
the results are not due to chance, and demonstrate that these
differences are significant in practice (i.e., effect size).

8

Test Case
input input outputComparison

to Oracle

Approach
output Approach

Ranking
Approach
Report

Software models
of VG content

Oracle inputBugs reports &
solutions of VG

- CoEBA
- Baseline
- Random Search

Figure 8: Overview of the evaluation process.

4.1. Evaluation preparation

The Kromaia developers provide the software models, the
bug reports, the bug solutions, and the video game documenta-
tion. We employ all this information to build the oracle used
in this evaluation. The oracle is the ground truth and is used
to compare the results provided by the CoEBA approach, the
baseline, and a random search.

The baseline is a previously developed approach for bug lo-
calization in GSE [6]. It uses an evolutionary algorithm for
generating simulations that produce relevant traces for locating
bugs. We use a standard random search (RS) as a sanity check.
If RS outperforms an intelligent search method, we can con-
clude that there is no need to use a metaheuristic search. The
algorithm starts with a random population of simulated players
and a random population of scenarios. The simulated players
are assessed using the CoEBA fitness function to obtain the best
simulated player. Then, new random populations are generated
and assessed. The search moves to a new simulated player if
the fitness value is better than the current best simulated player.
The loop is repeated until the stop condition is met.

To prepare the oracle, a total of 30 bugs were selected from
the entire documentation. These 30 bugs cover the 6 different
level bosses and have been provided by the Kromaia develop-
ers. These bugs are the most common when developers create
the models.

We created the test case needed as input by the approaches
for each bug. Each test case included the set of product models
where the bug was manifested.

4.2. Experimental process

Figure 8 shows an overview of the process followed to evalu-
ate our approach. The inputs to this process are used to run the
different approaches, generating a set of results for each bug.

However, since these approaches perform genetic operations,
chance could affect the results. Therefore, each approach is
executed 30 times for each bug in order to minimize the effect
of chance, as recommended in [17]. We employed the same
parameters for the baseline approach as reported in [6]. For
CoEBA, we began with the parameters reported in [11], since
we utilized the same simulation algorithm and verified that they
converged.

Once the approaches are executed, the next step is to compare
them with each other and with a RS approach using statistical
methods. To do this, the best solutions for each bug are selected
from the ranking generated by each approach [18]. Then, these

solutions are compared to the oracle (the actual solution) to gen-
erate the final report.

The approaches generate a list of traces. The trace contains
all the model elements used by the interpreter at runtime during
the simulation. All model elements that appear in the trace form
the most relevant model fragment for the bug according to the
trace. We can then compare the model fragments with an oracle
to check accuracy.

Overall, the process involves running different approaches
multiple times for each bug, selecting the best solutions, and
comparing them with the actual solution to generate a report.
This process is designed to minimize the effect of chance and
provide a statistically rigorous evaluation of the different ap-
proaches.

4.3. Algorithm performance
A confusion matrix is a table that is commonly used to eval-

uate the performance of a classification model (our approach
under evaluation) on a set of test data (the solution) where the
truth values are known (derived from the oracle). In our case,
each solution is a trace that consists of a subset of model ele-
ments that are part of a model (where the bug is present). Since
the classification granularity is at the level of model elements,
the presence or absence of each element is considered a classi-
fication. Thus, our confusion matrices distinguish between two
values: TRUE (presence) and FALSE (absence). The confu-
sion matrix then arranges the comparison results into four cate-
gories:

• True positive (TP): an element present in the predicted so-
lutions that is also present in the actual solution.

• True Negative (TN): an element not present in the pre-
dicted solution that is not present in the actual solution.

• False Positive (FP): an element present in the predicted
solution that is not present in the actual solution.

• False Negative (FN): an element not present in the pre-
dicted solution that is present in the actual solution.

The confusion matrix holds the results of the comparison be-
tween the predicted and actual results; it is just a specific table
layout to help the visualization of the performance of a classi-
fier. However, to evaluate the performance of the approach, it
is necessary to derive some measurements from the values of
the confusion matrix. In this case, the three measurements are
precision, recall, and F-measure.

9

• Precision measures the number of elements from the pre-
diction (the result of the approach) that are correct accord-
ing to the ground truth (the oracle).

Precision =
T P

T P + FP
(1)

• Recall measures the number of elements of the ground
truth (the oracle) that are correctly retrieved by the pre-
diction (the result of the approach).

Recall =
T P

T P + FN
(2)

• F-measure combines both recall and precision as the har-
monic mean of precision and recall.

F − measure = 2 ×
Precision × Recall
Precision + Recall

(3)

Precision and recall values can range between 0% to 100%.
A value of 100% in precision and 100% in recall implies that
both the predicted solution and the solution from the oracle are
the same.

4.4. Implementation details

We conducted some parameter optimization to determine the
optimal values for our algorithm’s parameters. Nevertheless,
this paper is not meant to optimize the algorithm’s performance
on a specific problem, but instead to compare the quality of dif-
ferent solutions provided by the algorithms. Hence, most of
the default values suffice to evaluate the performance of search-
based techniques within the testing context [19, 20]. We apply
the crossover operation with a probability of 0.9 and the mu-
tation operation with a probability that depends on the number
of hulls in the boss during simulated player evolution or on the
number of environmental elements during scenario evolution:
1/(Number). The population size is set to 100.

In addition, there are two fundamental performance metrics
for evolutionary algorithms: one measuring solution quality
and the other measuring algorithm speed. This study is focused
on solution quality, which is measured through precision, recall,
and F-measure (Section 4.3). Therefore, a budget has been as-
signed for each execution of the approach to ensure the quality
of the solution. The focus of this paper is the solution qual-
ity and not the performance of each algorithm in terms of time.
After conducting preliminary tests, we have determined that the
time of convergence, or the point at which the search reaches its
highest point and ceases to improve, occurs after around 40 sec-
onds of execution. To ensure convergence, we set a wall clock
time of 60 seconds for each run.

The replication package including models,
bugs, oracles, and source code, is available at
https://doi.org/10.5281/zenodo.10231570.

4.5. Statistical analysis
To compare our approaches accurately, we analyzed all the

data derived from the empirical analysis using statistical meth-
ods in accordance with the guidelines provided in [17]. Our sta-
tistical analysis aims to: 1) provide formal and quantitative ev-
idence (statistical significance) that our approaches do, in fact,
have an impact on the comparison metrics (i.e., that the vari-
ations in the results were not achieved by mere chance); and
2) show that those differences are significant in practice (effect
size).

4.5.1. Statistical significance
Hypotheses are used in statistical analysis to make infer-

ences and draw conclusions about a population based on sample
data. In the context of comparing algorithms, hypothesis testing
helps determine whether there is sufficient evidence to support
the idea that there is a difference between the algorithms being
compared.

The null hypothesis, denoted as H0, represents the default
assumption that there is no significant difference between the
algorithms. It assumes that any observed differences in the data
are due to random variation or chance. In other words, H0 states
that there is no effect or relationship between the algorithms
being compared.

The alternative hypothesis, denoted as H1, is the opposite
of the null hypothesis. It suggests that there is a significant
difference between at least one pair of algorithms being com-
pared. H1 states that the observed differences in the data are not
merely due to chance but are instead a result of a true difference
or effect.

When conducting hypothesis testing, the goal is to gather
enough evidence from the data to either reject the null hypothe-
sis in favor of the alternative hypothesis or fail to reject the null
hypothesis. This is done by calculating a test statistic and com-
paring it to a critical value or using a p− value to determine the
statistical significance of the results. If the evidence is strong
enough to reject the null hypothesis, it provides support for the
alternative hypothesis and indicates that there is a significant
difference between the algorithms.

The p − values obtained from the test is used to make this
determination, and a p − values under 0.05 is considered sta-
tistically significant [17]. Non-parametric techniques like the
Quade test are suitable for analyzing data that does not follow a
normal distribution, and it is more powerful than other tests for
real data [21] with a low number of algorithms (no more than
four or five algorithms) [22].

However, the Quade test cannot determine which algorithm
performs the best. To perform this comparison, we need to con-
duct a post hoc analysis that compares the performance of each
algorithm against all other alternatives through pair-wise com-
parisons.

4.5.2. Effect size
When comparing different algorithms, more is needed to de-

termine solely whether there are statistically significant differ-
ences between them. It is equally important to assess the prac-
tical significance or magnitude of any improvements observed.

10

This can be achieved through the use of effect size measures.
One commonly used is the Cohen′s d value [23]. The Cohen′s
d value ranges from 0 to infinity, with higher values indicating
a more substantial effect size. A value of 0.8 and above repre-
sents a high interaction effect, while a value between 0.5 and
0.8 signifies a medium interaction effect, and a value between
0.2 and 0.5 represents a small interaction effect. Values ranging
from 0 to 0.2 indicate almost no interaction effect.

5. Results

This section presents the results obtained by the three ap-
proaches: 1) our approach, CoEBA; 2) the baseline approach;
and 3) the RS approach; in evaluating bugs in Kromaia. The
results are presented in Table 1, which shows the mean val-
ues and standard deviations for each measure obtained by each
approach. The measures used to compare them are recall, pre-
cision, and F-measure.

Table 1: Mean values and standard deviation of the Precision, Recall, and F-
measure values obtained by each approach.

Precision ± (σ) Recall ± (σ) F-measure ± (σ)

CoEBA 45.76 ± 28.70 84.83 ± 33.92 53.87 ± 24.71

Baseline 36.34 ± 28.47 68.95 ± 42.87 44.46 ± 29.03

Random Search 02.14 ± 10.06 08.07 ± 25.34 02.64 ± 09.64

The CoEBA and baseline approaches obtained better results
than the RS approaches. Furthermore, the CoEBA approach
outperformed the baseline approach and obtained the best re-
sults in all three measures (precision, recall, and F-measure)
for the first research question (RQ1). Specifically, the CoEBA
approach achieved an average value of 45.76% in precision,
84.83% in recall, and 53.87% in F-measure.

The second research question (RQ2) asks whether the inter-
action between models contributes to the improvement in bug
location. The results show that CoEBA achieved an improve-
ment of 9.42% in precision, 15.88% in recall, and 9.41% in
F-measure compared to the baseline approach, which did not
take into account the interaction between models. Therefore,
answering to RQ2, the results indicate that take into account the
interaction of software models pays off for bug localization in
GSE.

5.1. Stadistical analysis
The p − value obtained in the Quade test is < 2.2x10−16 for

recall, precision, and F-measure (results are significantly differ-
ent).

In the post hoc analysis, we perform statistical tests to deter-
mine if there are significant differences in the results between
specific pairs of algorithms. Table 2 presents the results of
Holm’s post hoc analysis, which includes the p − value and
performance indicators for the algorithms. Most p − values are
below the significance threshold of 0.05, indicating significant
differences in performance between the algorithms. We can see
that precision and recall values are significant.

Table 2: Holm’s post hoc p − values for each pair of algorithms.

Precision Recall F-measure

CoEBA vs Baseline 0.0088 < 2.2x10−16 0.57

CoEBA vs RS < 2.2x10−16 < 2.2x10−16 < 2.2x10−16

Baseline vs RS < 2.2x10−16 < 2.2x10−16 < 2.2x10−16

Table 3: Cohen’s d values of the Precision, Recall, and F-measure values ob-
tained by each approach.

Precision Recall F-measure

CoEBA vs Baseline 0.329345 0.410637 0.349083

CoEBA vs RS 2.028632 2.563807 2.731206

Baseline vs RS 1.602291 1.728865 1.933129

Furthermore, Table 3 presents the Cohen′s d values for re-
call, precision, and F-measure obtained by each approach. Re-
garding the Cohen′s d values for the CoEBA and the baseline
approaches, the results show a small effect size in precision but
highlight a more significant effect on recall.

Table 4: Classification of the precision and recall results. Obtained from [24].

Measure Acceptable Good Excellent

Precision 20% − 29% 30% − 49% > 50%

Recall 60% − 69% 70% − 79% > 80%

Although the effect size according to Cohen′sd is small,
we must take into account Hayes et al. classification [24].
Their work classifies performance for precision and recall as
Acceptable, Good, or Excellent, as shown in Table 4. We
started from a baseline approach with Good results in precision
and through CoEBA approach we also obtained Good results in
precision, but bordering on Excellent. On the other hand, the
baseline approach obtained Acceptable results in recall while
CoEBA approach achieved Excellent results.

The statistical analysis performed allows us to answer the
research question (RQ3) that asks if the performance results ob-
tained by the CoEBA, the baseline, and the random search ap-
proaches are significant. Although the differences in F-measure
values are not significant when we compare the CoEBA and
the baseline approaches, the differences in precision and recall
values are significant.

6. Discussion

The video game industry has seen a significant increase in
popularity, but video game research has not received enough
attention yet. Recent research by Politowski et al. [9] has high-
lighted the differences in testing between classical software en-
gineering (CSE) and game software engineering (GSE) and the
need for further work in automating playtesting. They conclude
that video game testing is still a long way to go. Our work con-
tributes to this effort by addressing the crucial role of software

11

model interaction in video game testing. The behavior of video
games as a whole also includes the interaction between video
game software models, and it is essential to explore this area
to improve game testing. By investigating the co-evolution of
simulated players and scenarios in bug location, our work helps
to take another step towards improving video game testing and
ultimately enhancing the quality of video games.

The evaluation presented in this work provides a detailed
analysis of the values for three performance metrics obtained by
applying our approach to locate the bugs of a commercial video
game. The study conducted by Hayes et al. in [24] classified
the results obtained into three categories: acceptable, good, and
excellent. According to the Hayes et al. criteria, the CoEBA
approach obtains good results for precision and excellent re-
sults for recall. It is worth mentioning that the precision and
recall values obtained by CoEBA are significantly higher than
the values obtained by the baseline. These suggest that CoEBA
is a promising approach for bug localization in video game soft-
ware models. It is important to note that this study represents
only a first step in exploring the potential of CoEBA. Future re-
search could investigate its application to more complex video
game scenarios that involve additional tasks, such as finding
objects or completing missions.

The recent work of Politowski et al. [9] includes a survey
for video game developers. The main concerns highlighted in
the paper relate to the high cost of building testing tools and the
need for general testing tools that can work with a wide range
of game types and game engines. Our approach does not share
the concerns mentioned earlier. Our approach does not require
developing simulation algorithms from scratch. Non-Playable
Characters (NPCs) are commonly developed in video games as
part of the regular development process. These NPCs serve dif-
ferent purposes, such as being enemies, cooperating with play-
ers, or inhabiting the virtual world to increase realism. NPCs
can be utilized as the raw material for simulated players and
scenarios, reducing the effort required to apply CoEBA. In ad-
dition, our approach locates bugs that arise from the interaction
of software models and, hence, can be used in games that use
software models. However, many game engines use models to
capture different aspects of the game.

Additionally, some respondents expressed concerns about
the potential for AI to replace game testers. When game devel-
opers perform playtesting, they have to test the complete video
game to check several things, such as if it is fun or has problems
like bugs or glitches. The solutions proposed by our approach
are ordered by how far they are from what the developers con-
sider to be the ideal experience (and, in their opinion, the most
fun). However, our approach is intended to locate bugs rather
than determine if the game is fun. Our approach can be an ally
so that game testers can focus on tasks that are difficult for a ma-
chine to perform. This alliance could save time in video game
developments avoiding delays in the deadlines and postpone-
ment of the launch date.

Finally, the approach we have developed considers the envi-
ronmental elements present in the scenario and uses this infor-
mation to apply a probability of damage dependent on the type
of element. However, this is just the beginning of the possi-

bilities that this approach presents. For example, future work
involves exploring the interactions between more complex en-
vironmental elements such as mini-bosses. Additionally, this
work serves as a starting point for other types of simulations
where the objective is not only to defeat the boss but also to
complete missions or find specific objects within the game en-
vironment. The potential for further exploration and expansion
of this approach is vast, and it presents exciting opportunities
for future research in the field of video game development and
bug localization.

7. Threats to validity

In the following section, we will discuss potential threats to
the validity of our work. To identify these threats, we will refer
to the guidelines provided by De Oliveira et al. [25].

Conclusion validity threats.

• Not accounting for random variation: We addressed this
threat by performing 30 independent runs for each algo-
rithm on each bug.

• Not using formal hypothesis and statistical tests: We fol-
lowed established guidelines [19] to employ standard sta-
tistical analysis and avoid this threat. To address the lack
of good descriptive analysis, we utilized a variety of met-
rics, including precision, recall, and F-measure, to analyze
the confusion matrix obtained from the experiments.

Internal validity threats.

• Poor parameter settings threat: We used standard values
for the algorithms that have been tested in similar algo-
rithms for bug location in video games [11, 6].

• Lack of real problem instances: For the evaluation, we uti-
lized a commercial video game and obtained the necessary
problem artifacts directly from the game developers and
documentation. We selected the same bugs as the baseline
algorithm to ensure a fair comparison.

Construct validity threats.

• Lack of assessing the validity of cost measures: To ensure
the validity of our approach, we conducted a rigorous com-
parison with both the baseline and the sanity check. Ad-
ditionally, our evaluation employed established metrics,
such as precision, recall, and F-measure, which have been
widely used in previous software engineering studies [19].

• Lack of clarity on data collection: To mitigate this poten-
tial threat, we utilized the SDML models of the contenders
to conduct the simulation and relied on two primary in-
dicators, the victory percentage, and health level, which
were obtained from the developers and utilized to evaluate
the approaches.

External validity threats.

12

• Lack of a clear object selection strategy: We tested the ef-
fectiveness of our approach in a real-world context by eval-
uating it on a commercial video game. To ensure the rel-
evance of our results, we collected instances directly from
the game’s development team and documentation.

8. Related Work

This section summarizes the research efforts from two areas
that are related to this work: bug localization in MDE and bug
localization in video games using simulations.

8.1. Bug localization in MDE

Several techniques are employed for bug localization in mod-
els beyond the video game domain. In software development,
models can play various roles and provide domain information
useful in bug localization. Hence, bugs in models cannot be
ignored in MDE and our work focuses on this area. In [26],
the authors use models at runtime to locate bugs resulting from
dynamic reconfigurations. They employ search-based software
engineering to generate a list of reconfiguration sequences that
could potentially lead to the model at runtime containing the
bug. In [27], their approach considers the domain informa-
tion embedded in models and metamodels, which is not present
in the source code. Additionally, Arcega et al. [28] evaluate
the application of existing model-based bug localization ap-
proaches to mitigate the effects of starting localization in the
wrong place. They also consider software engineers’ ability to
refine the results at different stages. By combining their ap-
proaches with manual refinement, they obtain the best results.
Finally, Khorram et al. [29] propose a generic framework for
coverage computation and fault localization of domain-specific
models. They consider a test suite for an executable model and
analyze the model’s execution traces to extract its covered el-
ements which compose the coverage matrix for the test suite.
The applied fault localization techniques are capable of iden-
tifying the defects injected in the models based on coverage
measurements.

Despite the significance of the aforementioned works in bug
localization within MDE, none of them are tailored toward
video game development. These approaches were not cre-
ated considering the specific characteristics of video games, nor
have they ever undergone evaluations in the context of video
games. Moreover, as far as we know, no research has been con-
ducted on the impact of model interactions as a source of bugs
in video game development.

8.2. Bug localization in video games using simulations

Testing video games is commonly referred to as playtesting
since it requires testers to play the game to analyze it. However,
relying solely on human playtesters has limitations, and there is
a need for new approaches to automate game testing. Research
efforts that introduce alternative methods, such as simulations,
are becoming more prevalent to address these challenges [9].

Several recent research works have employed agents to auto-
mate video game testing. For instance, Albaghajati and Ahmed

[30] proposed a co-evolutionary genetic algorithm-based ap-
proach that uses agents to test and verify video games. The ap-
proach involves two agents, one of which generates faulty game
states while the other uses colored Petri nets to analyze the
game states and detect errors. Ariyurek et al. [31, 32] explored
the impact of different Monte Carlo Tree Search (MCTS) modi-
fications on the ability of agents to find bugs in games while op-
erating within specific computational budgets. They introduced
various changes to the MCTS algorithm and demonstrated that
such modifications could enhance the agents’ capability to find
bugs. Furthermore, they also evaluated the human-like qual-
ities of the agents, taking into account the computational re-
sources available. Pfau et al. [33] employ agents to play ad-
venture games as fast as possible (similar to a speedrun). Their
approach can be utilized to execute various Visionaire Engine-
based games and for assessing daily builds, hardware compat-
ibility, performance tests, and quality assurance playthroughs
in a generic manner. Shirzadehhajimahmood et al. [34] in-
troduced an agent-based testing framework with a search algo-
rithm and on-the-fly model construction. Their approach en-
ables the agent to navigate through the 3D game world and
overcome obstacles while solving the testing tasks. They also
employ an Extended Finite State Machine (EFSM) model to
capture the general properties of the game, which assists in the
search process.

The approaches mentioned above also employ player sim-
ulation to test games and locate bugs, but they do not consider
software models as a potential source of bugs. Since models are
more and more used in video game development [5], ignoring
them as a possible cause of bugs is not advisable.

Casamayor et al. [6] developed an evolutionary algorithm
that uses model simulations to locate bugs in software models.
They evolve game simulations that generate traces to identify
the location of bugs. However, our approach differs from theirs
as our work considers that the interactions of software models
that occur during simulations can cause bugs to appear.

9. Conclusion

Bug localization in video games that use Model-Driven En-
gineering (MDE) requires specialized approaches due to the
unique characteristics of the game software. The interaction
between software models during gameplay can be a significant
source of bugs, particularly in games that provide non-linear
experiences with various possibilities for player behavior and
scenarios.

To address this issue, this work aimed to evaluate how the
interaction between software models affects bug localization
in video games. The paper compared two approaches: Co-
EBA, which co-evolves simulated players (player behavior) and
scenarios (environmental elements), and the baseline approach
which does evolve simulations but does not take into account
model interaction. The evaluation was performed on Kromaia
case studies.

The results of this paper showed that CoEBA provided sig-
nificantly better bug localization results than the baseline ap-
proach. The results of this paper show that model interaction

13

through co-evolving simulated players and scenarios could be a
promising direction for future research in the field of bug loca-
tion for video games.

Acknowledgements

This work was supported in part by the Spanish Min-
istry of Science and Innovation under the Excellence Network
AI4Software (Red2022-134647-T), in part by the Ministry of
Economy and Competitiveness (MINECO) through the Span-
ish National R+D+i Plan and ERDF funds under the Project
VARIATIVA under Grant PID2021- 28695OBI00, and in part
by the Gobierno de Aragón (Spain) (Research Group S05 20D).

References

[1] A. Ampatzoglou, I. Stamelos, Software engineering research for com-
puter games: A systematic review, Information and Software Technology
52 (9) (2010) 888–901. doi:https://doi.org/10.1016/j.infsof.2010.05.004.

[2] U. Technologies, Unity real-time development platform — 3d, 2d vr &
ar engine, https://unity.com, [Online; accessed 21-November-2021]
(2005).

[3] E. Games, Unreal engine: The most powerful real-time 3d creation tool,
https://www.unrealengine.com, [Online; accessed 21-November-
2021] (1998).

[4] Crytek, Cryengine — the complete solution for next generation game
development by crytek, https://www.cryengine.com, [Online; ac-
cessed 21-November-2021] (2002).

[5] M. Zhu, A. I. Wang, Model-driven game development: A literature re-
view, ACM Comput. Surv. 52 (6) (nov 2019). doi:10.1145/3365000.

[6] R. Casamayor, L. Arcega, F. Pérez, C. Cetina, Bug localization in game
software engineering: Evolving simulations to locate bugs in software
models of video games, in: Proceedings of the 25th International Confer-
ence on Model Driven Engineering Languages and Systems, MODELS
’22, Association for Computing Machinery, New York, NY, USA, 2022,
p. 356–366. doi:10.1145/3550355.3552440.

[7] W. E. Wong, R. Gao, Y. Li, R. Abreu, F. Wotawa, A survey on soft-
ware fault localization, IEEE Trans. Software Eng. 42 (8) (2016) 707–
740. doi:10.1109/TSE.2016.2521368.

[8] L. Pascarella, F. Palomba, M. Di Penta, A. Bacchelli, How is video game
development different from software development in open source, 2018.
doi:10.1145/3196398.3196423.

[9] C. Politowski, Y.-G. Guéhéneuc, F. Petrillo, Towards automated video
game testing: Still a long way to go, in: Proceedings of the 6th
International ICSE Workshop on Games and Software Engineering:
Engineering Fun, Inspiration, and Motivation, GAS ’22, Association
for Computing Machinery, New York, NY, USA, 2022, p. 37–43.
doi:10.1145/3524494.3527627.

[10] M. Harman, B. F. Jones, Search-based software engineering, Information
and software Technology 43 (14) (2001) 833–839.

[11] D. Blasco, J. Font, M. Zamorano, C. Cetina, An evolutionary ap-
proach for generating software models: The case of kromaia in
game software engineering, J. Syst. Softw. 171 (2021) 110804.
doi:10.1016/j.jss.2020.110804.

[12] L. Miguel Antonio, C. A. Coello Coello, Coevolutionary multiob-
jective evolutionary algorithms: Survey of the state-of-the-art, IEEE
Transactions on Evolutionary Computation 22 (6) (2018) 851–865.
doi:10.1109/TEVC.2017.2767023.

[13] M. Boussaa, W. Kessentini, M. Kessentini, S. Bechikh, S. Ben Chikha,
Competitive coevolutionary code-smells detection, in: G. Ruhe, Y. Zhang
(Eds.), Search Based Software Engineering, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013, pp. 50–65.

[14] A. B. Cardona, J. Togelius, M. J. Nelson, Competitive coevolution in ms.
pac-man, in: 2013 IEEE Congress on Evolutionary Computation, 2013,
pp. 1403–1410. doi:10.1109/CEC.2013.6557728.

[15] E. Z. Elfeky, S. Elsayed, L. Marsh, D. Essam, M. Cochrane,
B. Sims, R. Sarker, A systematic review of coevolution in
real-time strategy games, IEEE Access 9 (2021) 136647–136665.
doi:10.1109/ACCESS.2021.3115768.

[16] M. Affenzeller, S. M. Winkler, S. Wagner, A. Beham, Genetic Algorithms
and Genetic Programming - Modern Concepts and Practical Applications,
CRC Press, United Kingdom, 2009.

[17] A. Arcuri, L. Briand, A hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering, Soft-
ware Testing, Verification and Reliability 24 (3) (2014) 219–
250. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1486,
doi:https://doi.org/10.1002/stvr.1486.

[18] H. Ishibuchi, Y. Nojima, Tsutomu Doi, Comparison between single-
objective and multi-objective genetic algorithms: Performance com-
parison and performance measures, in: 2006 IEEE International
Conference on Evolutionary Computation, 2006, pp. 1143–1150.
doi:10.1109/CEC.2006.1688438.

[19] A. Arcuri, G. Fraser, Parameter tuning or default values? an empirical
investigation in search-based software engineering, Empirical Software
Engineering 18 (2013) 594–623.

[20] A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, A. De Lu-
cia, Parameterizing and assembling ir-based solutions for se tasks using
genetic algorithms, in: 2016 IEEE 23rd International Conference on Soft-
ware Analysis, Evolution, and Reengineering (SANER), Vol. 1, 2016, pp.
314–325. doi:10.1109/SANER.2016.97.

[21] S. Garcı́a, A. Fernández, J. Luengo, F. Herrera, Advanced non-
parametric tests for multiple comparisons in the design of experi-
ments in computational intelligence and data mining: Experimen-
tal analysis of power, Information Sciences 180 (10) (2010) 2044
– 2064, special Issue on Intelligent Distributed Information Systems.
doi:http://dx.doi.org/10.1016/j.ins.2009.12.010.

[22] W. J. Conover, Practical Nonparametric Statistics, 3rd Edition, Wiley,
USA, 1999.

[23] J. Cohen, Statistical power analysis, Current directions in psychological
science 1 (3) (1992) 98–101.

[24] J. H. Hayes, A. Dekhtyar, S. K. Sundaram, Advancing candidate link
generation for requirements tracing: The study of methods 32 (1) (2006).
doi:10.1109/TSE.2006.3.

[25] M. de Oliveira Barros, A. C. D. Neto, Threats to validity in search-based
software engineering empirical studies, Tech. Rep. 0006/2011 (2011).

[26] L. Arcega, J. Font, C. Cetina, Evolutionary algorithm for bug lo-
calization in the reconfigurations of models at runtime, in: Pro-
ceedings of the 21th ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems, MODELS ’18, Associa-
tion for Computing Machinery, New York, NY, USA, 2018, p. 90–100.
doi:10.1145/3239372.3239392.

[27] L. Arcega, J. Font, Ø. Haugen, C. Cetina, An approach for bug local-
ization in models using two levels: model and metamodel, Software and
Systems Modeling 18 (6) (2019) 3551–3576. doi:10.1007/s10270-019-
00727-y.

[28] L. Arcega, J. F. Arcega, O. Haugen, C. Cetina, Bug localization in model-
based systems in the wild, ACM Trans. Softw. Eng. Methodol. 31 (1) (oct
2021). doi:10.1145/3472616.

[29] F. Khorram, E. Bousse, A. Garmendia, J.-M. Mottu, G. Sunyé, M. Wim-
mer, From coverage computation to fault localization: A generic frame-
work for domain-specific languages, in: Proceedings of the 15th ACM
SIGPLAN International Conference on Software Language Engineering,
SLE 2022, Association for Computing Machinery, New York, NY, USA,
2022, p. 235–248. doi:10.1145/3567512.3567532.

[30] A. Albaghajati, M. Ahmed, A co-evolutionary genetic algorithms ap-
proach to detect video game bugs, Journal of Systems and Software 188
(2022) 111261. doi:https://doi.org/10.1016/j.jss.2022.111261.

[31] S. Ariyurek, A. Betin-Can, E. Sürer, Enhancing the monte carlo tree
search algorithm for video game testing, in: IEEE Conference on Games,
CoG 2020, Osaka, Japan, August 24-27, 2020, IEEE, 2020, pp. 25–32.
doi:10.1109/CoG47356.2020.9231670.

[32] S. Ariyurek, A. Betin-Can, E. Surer, Automated video game testing us-
ing synthetic and humanlike agents, IEEE Transactions on Games 13 (1)
(2021) 50–67. doi:10.1109/TG.2019.2947597.

[33] J. Pfau, J. D. Smeddinck, R. Malaka, Automated game testing with icarus:
Intelligent completion of adventure riddles via unsupervised solving, CHI

14

PLAY ’17 Extended Abstracts, Association for Computing Machinery,
New York, NY, USA, 2017. doi:10.1145/3130859.3131439.

[34] S. Shirzadehhajimahmood, I. S. W. B. Prasetya, F. Dignum, M. Dastani,
An online agent-based search approach in automated computer game test-
ing with model construction, in: Proceedings of the 13th International
Workshop on Automating Test Case Design, Selection and Evaluation,
A-TEST 2022, Association for Computing Machinery, New York, NY,
USA, 2022, p. 45–52. doi:10.1145/3548659.3561309.

15

