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Abstract. The development of video games usually involves two main
methods: Code-centric Development (CcD) and Model-Driven Develop-
ment (MDD). CcD uses code languages that provide more control but
it requires more effort in order to deal with implementation details.
MDD raises the abstraction level (avoiding implementation details) by
means of software models that are transformed into code or interpreted
at run-time. Raising the abstraction level favors the participation of non-
technical roles such as level designers or artists that are essential for video
game development. However, bug localization, which is crucial for iden-
tifying faults, is less explored in MDD despite its advantages. This work
examines how MDD and CcD impact bug localization by using a com-
mercial video game that has been released on PlayStation 4 and Steam.
We compare bug localization in terms of performance, productivity, and
user satisfaction. The results showed that bug localization in MDD led
to higher satisfaction among subjects. However, the differences in per-
formance or productivity depended on experience and favored CcD for
professionals. Our findings suggest that bug localization practices per-
formed suboptimally in models, indicating a knowledge gap in addressing
bugs within MDD environments. With the rising popularity of MDD in
video games, there is a need to explore alternative forms of bug localiza-
tion for MDD.

Keywords: Experiment · Model-Driven Development · Code-centric De-
velopment · Bug Localization · Game Software Engineering.

1 Introduction

The video game industry has evolved into a highly profitable segment 3. The
increasing popularity of video games has led to a rise in the complexity of creat-
⋆ Partially supported by MINECO under the Project VARIATIVA (PID2021-

28695OBI00) and by the Gobierno de Aragón (Spain) (Research Group S05_20D)
3 T. B. R. Company, Gaming global market report 2023, https://

www.thebusinessresearchcompany.com/report/gaming-global-market-report.
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ing them. Video game development involves complex software that encompasses
various aspects of gaming, such as game mechanics, graphics, and physics. As
a result, a separate field of engineering, known as Game Software Engineering
(GSE), emerged. Its focus lies in the creation and maintenance of software that
is specifically tailored to meet the demands of video games [1].

Video games can be implemented using two primary methods: traditional
Code-centric Development (CcD) or Model-Driven Development (MDD) [5]. In
the case of CcD, game developers manually write and structure the code that
is responsible for the game’s behavior, mechanics, and graphics. This approach
allows for fine-grained control and customization, but it can be complex and
time-consuming. On the other hand, MDD involves creating high-level models
that describe the game’s structure, behavior, and components. These models are
then transformed into executable code or interpreted at runtime.

Unfortunately, similar to traditional software, the increase in video game
complexity is accompanied by an increase in the appearance of software bugs
[2]. A good example of this is the blockbuster Cyberpunk 2077 4. Hence, main-
tenance is becoming more and more important. Bug localization is one of the
most important and common activities performed by developers during software
maintenance and evolution. Bug localization aims to identify the location in the
artifact that is pertinent to a software fault. When models are used for code
generation, addressing bugs at the model level must not be neglected [3]. While
MDD is acknowledged for its advantages in software development [16], partic-
ularly in terms of development effort and quality [12], the exploration of bug
localization within the MDD context remains an underexplored area.

In this paper, we evaluate whether the development method (MDD or CcD)
can have an impact on bug localization tasks by analyzing Kromaia, a commer-
cial video game released on PlayStation 4 and Steam. We present an experiment
in which we compare bug localization in MDD and in CcD, in terms of perfor-
mance, productivity, and satisfaction. A total of 54 subjects (classified as stu-
dents or professionals) performed the tasks of the experiment, locating bugs in
two scenarios of Kromaia. The satisfaction of the subjects was greater when per-
forming bug localization in MDD. However, the performance and productivity
results of the students did not show significant differences, while the performance
and productivity results of the professionals were better when performing bug
localization in CcD.

Our results suggest that there exists a positive perception of MDD. However,
the practices used for bug localization need to be evaluated in models due to their
suboptimal results. This indicates a knowledge gap in addressing bug localization
in models. Given the growing popularity of MDD in the video game domain (and
its increasing use in industry-specific domains), there is a need to focus on how
engineers perform bug localization in models.

The structure of this paper is as follows. Section 2 reviews the related works
in the area. Section 3 presents the case study, Kromaia. Section 4 outlines the

4 How buggy is Cyberpunk 2077, really? - https://www.pcgamer.com/how-buggy-is-
cyberpunk-2077-really/
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experimental design. Section 5 presents the experiment results, followed by a
discussion in Section 6. Section 7 summarizes the threats to the validity. Finally,
Section 8 concludes the paper.

2 Related Work

Although there are no research efforts that empirically compare MDD and CcD
from a bug location perspective, previous studies have emphasized the effective-
ness of MDD in various domains, showcasing its benefits, especially in small-scale
projects under favorable conditions [10, 14]. Existing research has primarily com-
pared MDD and CcD in software development scenarios [12].

Studies by Krogmann and Becker [12], Kapteijns et al. [10], and Mellegård
and Staron [14] have provided insights into the efficiency and effectiveness of
MDD in different contexts, shedding light on its potential advantages and the
distribution of effort between models and other artifacts. Martínez et al. [13]
explored the perceptions of undergraduate students regarding Model-Driven,
Model-Based, and Code-centric methodologies, indicating that the Model-Driven
approach was considered the most beneficial, although perceived as less aligned
with developers’ prior experiences. Pappoti et al. [18] further underscored the
advantages of MDD, demonstrating shorter development times and fewer chal-
lenges when utilizing code generation.

Panach et al. [17] and Domingo et al. [8] delved into the contextual factors
influencing the benefits of MDD. Panach et al. affirm its consistent delivery
of higher-quality results. Chueca et al. [6] performed an empirical evaluation
in the field of game development. They highlighted the enhanced correctness
achieved through Software Product Lines (SPLs) based on MDD compared to
other traditional methods.

The field of Game Software Engineering (GSE) is gradually becoming a focus,
although studies in this specific area still need to be completed. Our work aims
to extend the comparative analysis between MDD and CcD by focusing on bug
localization in the context of a video game company.

3 Background

The case study that we used to assess this experiment focuses on the video
game Kromaia 5. It is a commercial video game that is accessible on both PC and
PlayStation 4 platforms. It immerses players in a three-dimensional environment
that combines elements of space exploration, action, and shooting genres.

The developers of Kromaia can follow the principles of MDD. They can
employ a Domain-Specific Language (DSL) called Shooter Definition Modeling
Language (SDML) to define the attributes and behaviors of the game’s entities.
The game’s entities include bosses, environmental elements, weapons, defenses,
5 For more information about Kromaia, you can view the official trailer released by

Playstation: https://youtu.be/EhsejJBp8Go
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Fig. 1. Scenario Metamodel and Bug example in MDD and CcD.

and movement behaviors. SDML, which was initially designed for shooter-style
video games, has proven to be adaptable for games with similar themes out-
side of this genre. A simplified subset of the SDML metamodel is shown in the
central part of Fig. 1. The complete metamodel comprises more than 20 con-
cepts, 20 relationships, and over 60 properties. SDML models are interpreted
at runtime to generate the corresponding game’s entities. In other words, soft-
ware models created using SDML are translated into C++ objects at runtime
using an interpreter integrated into the game engine [5]. For more information
on the SDML model shown in Fig. 1, a video presentation can be found here:
https://youtu.be/Vp3Zt4qXkoY.
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SDML allows the development of any game element, such as bosses, enemies,
or environmental elements. An actual example of the scenario of a final boss of
Kromaia is presented in the upper part of Fig. 1. The Serpent is the final boss
that the player must defeat in order to complete Level 1. This boss is composed
of one main hull (the head of the serpent) followed by eight hulls. The head has
one weapon, and the tail (last hull) has three spike weapons.

In addition, Kromaia developers can also follow a CcD method. They can use
the C++ programming language to create content for the game. Game elements
created in C++ must have the same rules and structural patterns as those
created with SDML in order to fit correctly with the rest of the game.

An actual example of a bug is illustrated in the bottom part of Fig. 1. The
left part of the figure shows the bug in MDD, while the right part shows the same
bug in CcD. In this particular case, a player reported: “I am unable to fight the
final boss of the first level, which is supposed to be the easiest. I die after being
hit by a single shot, so I believe that something is wrong". A closer inspection
reveals that the issue is attributed to an improper weapon configuration. On
the one hand, the fireDamage attribute exceeds the player’s life, resulting in
the player’s immediate death when attacked by the boss. On the other hand,
the reloadTime attribute is set to zero, causing the boss to launch continuous
attacks without pause. This bug significantly impacts the player experience.

4 Experiment Design

4.1 Objectives

According to Wohlin’s guidelines [21] for reporting software engineering experi-
ments, we have organized our research objectives using the Goal Question Metric
template for goal definition [4]. Our goal is to analyze software development
methods, MDD and CcD, for the purpose of comparison, with respect to
performance, productivity, and user satisfaction, from the point of view of
students and professionals developers, in the context of bug localization for a
video game company.

4.2 Variables

In this study, the factor under investigation is the software development method
(Method) in which the bug localization is performed. There are two alternatives:
MDD or CcD, which are the methods used by the subjects to perform the bug
localization tasks (BL tasks).

Since the goal of this experiment is to evaluate the effects of using different
methods when performing bug localization in a scenario of a commercial video
game, we selected Performance and Productivity as the objective dependent
variables.

We evaluated Performance by calculating precision, recall, and F-measure
based on the confusion matrix between subjects’ solutions and the ground truth.
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Precision reflects the accuracy of the identified bugs, recall captures how well
all bugs were found, and F-measure balances these two aspects. To represent
the Performance of the subjects in each BL task, we used the F-measure as the
percentage of a BL task solved by a subject. We measured the time used by each
subject to finish each task to calculate Productivity as the ratio of Performance
to time spent (in minutes) to perform a BL task.

We also analyzed the methods with respect to Satisfaction using a 5-point
Likert-scale questionnaire based on the Technology Acceptance Model (TAM)
[15]. We use TAM adapted to bug location since it is the questionnaire previ-
ously used to measure variables related to satisfaction (comparing MDD and
CcD)[9]. We decompose Satisfaction into three subjective dependent variables
as follows: Perceived Ease of Use (PEOU), the degree to which a person believes
that learning and using a particular method would require less effort. Perceived
Usefulness (PU), the degree to which a person believes that using a particu-
lar method will increase performance, and Intention to Use (ITU), the degree
to which a person intends to use a method when performing BL tasks. Each
of these variables corresponds to specific items in the TAM questionnaire. We
average the scores obtained for these items to obtain the value for each one of
these variables.

4.3 Design

We chose a factorial crossover design with two periods using two different tasks,
T1 and T2, one for each period. The subjects were randomly divided into two
groups (G1 and G2). In the first period of the experiment, all of the subjects
solved T1 with G1 using MDD and G2 using CcD. Afterwards, in the second
period, all of the subjects solved T2 with G1 using the CcD and G2 using MDD.

This repeated measure design enhances the experiment’s sensitivity, as noted
by Vegas et al. [19]. By observing the same subject using both alternatives,
between-subject differences are controlled, thus improving the experiment’s ro-
bustness regarding variation among subjects. By using two different sequences
(G1 used MDD first and CcD afterwards, and G2 used CcD first and MDD
afterwards) and different tasks, the design counterbalances some of the effects
caused by using the alternatives of the factor in a specific order (i.e., learning
effect, fatigue). The effects of the factors period (Task), sequence (Group), and
subject will be studied to guarantee the validity of this experiment.

To verify the experiment design, we conducted a pilot study with two sub-
jects. The pilot study facilitated an estimate of the time required to complete
the tasks and questionnaires, the identification of typographical and semantic
errors, and the testing of the online environment used to create the experiment.

4.4 Research Questions and Hypotheses

The research questions and null hypotheses are formulated as follows:
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RQ1 - Does the Method impact the Performance of the BL tasks? The
corresponding null hypothesis is H0,Per: The Method does not have an effect
on the Performance of the BL tasks.

RQ2 - Does the Method impact the Productivity of the BL tasks? The
corresponding null hypothesis is H0,Pro: The Method does not have an effect
on the Productivity of the BL tasks.

RQ3 - Does user satisfaction differ when developers use a different Method
to solve BL tasks? To answer this question, we formulated three hypotheses based
on the variables Perceived Ease of Use, Perceived Usefulness, and Intention to
Use, with their corresponding null hypotheses. These are: H0,PEOU , the Method
does not have an effect on Perceived Ease of Use; H0,PU , the Method does not
have an effect on Perceived Usefulness; H0,ITU , the Method does not have an
effect on Intention to Use.

The hypotheses are formulated as two-tailed hypotheses since we have not
found empirical studies that support a specific direction for the effect in the
video game domain.

4.5 Participants

We selected the subjects using convenience sampling [21]. A total of 58 subjects
with different knowledge about programming, modeling, and video game devel-
opment performed the experiment, but only 54 decided to submit their answers
and confirmed their agreement to be part of this study. In this study, the par-
ticipants included 10 professionals working in video game development and 44
third-year undergraduate students who are taking a course in object-oriented
programming from a technology program at Universidad San Jorge.

The experiment was conducted by two instructors. During the experiment,
one of the instructors gave instructions and managed the focus groups. Both
instructors clarified doubts and took notes during the experiment.

4.6 Experimental Objects

The tasks of our experiment were extracted from real-world software develop-
ment, Kromaia [5]. The tasks consisted of localizing two bugs using textual
descriptions of the bugs. Each bug was located in a scenario of Kromaia.

To solve the BL tasks using MDD, the subjects used UML diagrams of Kro-
maia scenarios and the metamodel. To solve the BL tasks using CcD, the subjects
used C++ code of Kromaia scenarios and the files of the C++ classes.

A video game engineer who was involved in the development of Kromaia and a
researcher designed the two tasks of similar difficulty and prepared the correction
templates. In both CcD and MDD, the two tasks consisted of localizing the six
error points of a bug given its description. The scenarios where the subjects had
to localize the bug had a total of 223 possible error points in Task 1 and 200 in
Task 2.

For data collection, we prepared two forms using Microsoft Forms (one for
each experimental sequence) with the following sections:
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I An informed consent form that the subjects must review and accept vol-
untarily. It clearly explains what the experiment consists of and that the
personal data will not be collected.

II A demographic questionnaire was used to characterize the sample.
III A specific questionnaire for each sequence to collect the subjects’ responses

during the experiment (their solutions to the tasks, the start and end time
of each task, and their answers to the satisfaction questionnaire).

The experimental objects used in this experiment (the training material, the
tasks, the correction templates, and the forms used for the questionnaires), as
well as the results and the statistical analysis, are available as a replication
package at http://svit.usj.es/MDDvsCcD-BugLocalization.

4.7 Experimental Procedure

The experiment was conducted in two different sessions. The experiment was
conducted face-to-face with a group of students in the first session. In the sec-
ond session, the experiment was conducted online with professionals. During
the online session, all of the participants joined the same video conference via
Microsoft Teams, and the chat session was used to share information or clarify
doubts. The experiment was scheduled to last for one hour and 45 minutes and
was conducted following the experimental procedure described as follows:

1. An instructor explained the parts of the session and clarified that the exper-
iment was not a test of the subjects’ abilities. (5 min)

2. The subjects attended a video tutorial on the different methods used in Kro-
maia to develop the video game scenarios and the BL tasks in those scenarios.
The information used in the experiment was available to the subjects. (10
min)

3. The subjects received clear instructions on where to find the links to access
the forms for participating in the experiment. They were also told about the
structure of these forms and where they could find information about the
methods used in the experiment. The subjects were randomly divided into
two groups (G1 and G2). (5 min)

4. The subjects accessed the online form, and they read and confirmed hav-
ing read the information about the experiment, the data treatment of their
personal information, and the voluntary nature of their participation before
accessing the questionnaires and tasks of the experiment. (5 min)

5. The subjects completed a demographic questionnaire. (5 min)
6. The subjects performed the first task. The subjects from G1 had to use MDD

to perform a BL task, and the subjects from G2 had to perform the same
task but using CcD. After submitting their solution, the subjects completed a
satisfaction questionnaire about the method used for bug localization. (max-
imum of 30 min)

7. The subjects performed the second task. The subjects from G1 used CcD,
and the subjects from G2 used MDD. Then, the subjects completed the
satisfaction questionnaire. (maximum of 30 min)
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8. One instructor conducted a focus group interview about the tasks while the
other instructor took notes. (10 to 15 minutes)

9. Finally, the tasks were corrected, and a researcher analyzed the results.

4.8 Analysis Procedure

We have chosen the Linear Mixed Model (LMM) [20] for the statistical data
analysis. LMM handles correlated data resulting from repeated measurements,
and it allows us to study the effects of factors that intervene in a crossover design
(period, sequence, or subject) and the effects of other blocking variables (e.g.,
in our experiment, professional experience) [19]. In the hypothesis testing, we
applied the Type III test of fixed effects with unstructured repeated covariance.
This test enables LMM to produce the exact F-values and p-values for each
dependent variable and each fixed factor.

In this study, Method was defined as a fixed-repeated factor to identify
the differences between using MDD or CcD, and the subjects were defined as
a random factor (1|Subj) to reflect the repeated measures design. The depen-
dent variables (DV) for this test were Performance and Productivity, and the
three other variables correspond to Satisfaction: Perceived Ease of Use (PEOU),
Perceived Usefulness (PU), and Intention to Use (ITU).

In order to take into account the potential effects of factors that intervene
in a crossover design in determining the main effect of Method, we considered
Period and Sequence to be fixed effects. In order to explore the potential effects
of the subject’s experience to determine the variability in the dependent variables
in the statistical model, we also considered the fixed factors Experience and
the combination of factors Method and Experience.

We tested different statistical models in order to find out which factors, in
addition to Method, could best explain the changes in the dependent variables.
Some of these statistical models are described mathematically in Formula 1.
The starting statistical model (Model 0) reflects the main factor used in this
experiment, Method and the random factor (1|Subj). We also tested other
statistical models (e.g., Model 1, Model 2, and Model 3) that included the fixed
factors Experience (Exp.), Period (Per.) or Sequence (Seq.), which could
have effects on the dependent variables.

(Model 0) DV ∼ Method+ (1|Subj.)
(Model 1) DV ∼ Method+ Exp.+Method ∗ Exp.+ (1|Subj.)
(Model 2) DV ∼ Method+ Seq.+ Per.+ (1|Subj.)
(Model 3) DV ∼ Method+ Exp+Method ∗ Exp.+ Seq.+ Per.+ (1|Subj.)

(1)

The statistical model fit of the tested models for each variable was evalu-
ated based on goodness of fit measures such as Akaike’s information criterion
(AIC) and Schwarz’s Bayesian Information Criterion (BIC). The model with the
smallest AIC or BIC is considered to be the best fitting model [11, 9].

The assumption for applying LMM is the normality of the residuals of the
dependent variables. To verify this normality, we used Shapiro-Wilk tests as
well as visual inspections of the histograms and normal Q-Q plots. To describe
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the changes in each dependent variable, we selected the statistical model that
satisfied the normality of residuals and also obtained the smallest AIC or BIC
value.

To quantify the differences in the dependent variables due to the factors con-
sidered, we calculated the Cohen d value [7], which is the standardized difference
between the means of the dependent variables for each factor alternative. Values
of Cohen d between 0.2 and 0.3 indicate a small effect, values around 0.5 indicate
a medium effect and values greater than 0.8 indicate a large effect. We selected
box plots to describe the results graphically.

5 Results

The Method factor produced changes in all of the dependent variables. How-
ever, its effect size was different between the objective and subjective dependent
variables, and, for objective variables, it depended on experience. Table 1 shows
the values for the mean and standard deviation of the dependent variables for
each method and the corresponding Cohen d value measuring the effect size
of Method for each variable. Positive values of Cohen d value indicate differ-
ences in favor of MDD, and negative values indicate differences in favor of CcD.
Values indicating medium and high effects are shaded in light and dark gray,
respectively.

Table 1. Values for the mean and standard deviation of the response variables and
Cohen d values for the alternatives of Method (MDD and CcD)

Performance Productivity Satisfaction µ± σ

µ % ±σ µ %/min ±σ PEOU PU ITU

All Subjects MDD 34.66±27.17 1.88±1.57 3.45±0.93 3.39±0.92 3.41±1.17
CcD 33.28±26.15 1.72±1.63 2.64±0.89 2.57±0.85 2.52±1.11

Cohen d 0.052 0.101 0.89 0.932 0.78

Students MDD 37.64±26.62 2.02±1.55 3.53±0.88 3.49±0.89 3.57±1.17
CcD 31.94±26.69 1.59±1.53 2.72±0.9 2.64±0.86 2.63±1.14

Cohen d 0.214 0.282 0.908 0.971 0.818

Professionals MDD 21.57±27 1.24±1.57 3.1±1.09 2.99±0.99 2.7±0.92
CcD 39.22±23.99 2.27±2.01 2.3±0.76 2.28±0.76 2.05±0.86

Cohen d -0.691 -0.575 0.849 0.809 0.729

According to Cohen d values, we can state that when considering all of the
subjects who participated in the experiment, the effect size of the Method factor
in favor of MDD for Performance and Productivity was negligible, with Cohen
d values of less than 0.2 in favor of MDD. When considering only the students,
the Cohen d value of 0.21 indicates small effects in favor of MDD, whereas, for
professionals, the negative Cohen d value smaller than -0.5 indicates medium
effects in favor of CcD. On the other hand, when considering all of the subjects
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or distinguishing them by experience, the effect size of Method in favor of
MDD was large, with Cohen d values around 0.8 for the variables related to
satisfaction: Perceived Ease of Use (PEOU), Perceived Usefulness (PU), and
Intention to Use (ITU). The box plots in Fig. 2 illustrate these results.
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Fig. 2. Boxplots for dependent variables

All of the statistical models shown in Formula 1 verify the normality of the
residuals. The statistical model that best explains the changes in the Perfor-
mance and Productivity variables is Model 3 of Formula 1 since it is the one
that obtained the lowest values for the AIC and BIC fit measures. Model 1 of
Formula 1 is the one that best explains the changes for the variables related to
satisfaction. Table 2 shows the results of the Type III fixed effects test for each
of the dependent variables and for each fixed factor of the statistical model used
in each case. Values indicating significant differences are shaded in grey.

Table 2. Results of Type III test of fixed effects for each variable and factor. NA=Not
Applicable

Method Experience Method*Exp. Sequence Period

Performance F=.890;p=.350 F=.545;p=.464 F=4.416;p=.041 F=5.649;p=.021 F=6.023;p=.018
Productivity F=.821;p=.369 F=.044;p=.834 F=5.357;p=.025 F=7.103;p=.010 F=.666;p=.418
PEOU F=24.656;p<.001 F=2.456;p=.123 F=.001;p=.974 NA NA
PU F=22.731;p<.001 F=2.760;p=.103= F=.172;p=.680 NA NA
ITU F=7.620;p=.008 F=7.620;p=.008 F=.258;p=.614 NA NA

For Performance and Productivity, the factor Method obtained p-values
that are greater than 0.05. Therefore, our first two null hypotheses are not re-
jected, at least when considering the aggregated data of students and profession-
als. The p-value of less than 0.05 for the combination of factors Method*Expe-
rience for Performance and Productivity indicates that, for both dependent
variables, the effect of Method on students is significantly different from the
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effect of Method on professionals. By testing the results of the Experience
separately, the Method factor obtained p-values of less than 0.05. However, for
students, the differences due to the Method factor are significant only when us-
ing Model 0 of Formula 1. For students, the effects of Sequence or Period are
larger than the effects of Method. Thus, a comprehensive answer to RQ1 and
to RQ2 is that there are significant changes in Performance and Productivity
due to the Method factor, although the direction and size of these changes vary
depending on the subjects’ experience, as shown by the descriptive statistics and
Cohen d values.

On the other hand, the Experience factor obtained a p-value greater than
0.05 for Performance and Productivity, which indicates that there are no signif-
icant differences between the average results achieved by students and profes-
sionals on BL tasks. Nevertheless, as the Method*Experience factor indicates,
these results are distributed in different ways between the different methods de-
pending on experience. In addition, for Performance, the p-values of less than
0.05 obtained by the factors Sequence and Period indicate significant changes
in this variable due to these two design factors. We obtained a Cohen d value
of 0.474 between the two alternatives of Sequence (G1: MDD-CcD, G2: CcD-
MDD), indicating medium differences in favor of G1. The subjects who began the
experiment by locating bugs in MDD demonstrated better performance results
than those who started with CcD. Similarly, the Cohen d value of 0.405 between
the two alternatives of Period (Task 1, Task 2) indicates medium differences
in favor of Task 1. The subjects performed better on the first task than on the
second task. For Productivity, the p-values obtained by the factor Sequence are
also lower than 0.5, indicating significant changes in the subjects’ productivity
depending on the method they use first during the experiment. The Cohen d
value of 0.580 between the two alternatives of Sequence indicates medium dif-
ferences in favor of G1. The subjects who started the experiment solving the
BL task in MDD were more productive in both tasks than those who started
the experiment solving the BL task in CcD. The differences that we observed in
the subjects’ performance between the first task and the second task were not
reproduced in their productivity since the subjects spent more time on the first
task than on the second.

For the variables related to satisfaction, Perceived Ease of Use, Perceived
Usefulness and Intention to Use, the Method factor obtained p-values of less
than 0.05. Therefore, our third null hypothesis is rejected, and the answer to
RQ3 is affirmative: The user satisfaction is significantly different when devel-
opers use a different Method to solve BL tasks. Method has significant large
effects on PEOU, PU, and ITU, which confirms the statistical significance of
the differences observed in the mean values of the variables related to satisfac-
tion. In addition, the factor Experience obtained a p-value of less than 0.05 for
ITU. The Cohen d value of 0.606 between students and professionals indicates
a medium effect in favor of the students. The students gave higher scores than
the professionals on ITU for both of the methods used in the experiment.
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6 Discussion

Overall, both students and professionals reported greater satisfaction when using
MDD for bug localization. However, the results of performance and productivity
do not show significant differences when considering the group of students. In
contrast, when considering the group of professionals, the results of performance
and productivity show significant differences in favor of CcD. The results of sat-
isfaction and the focus group comments suggest a positive perception of models
in this context, although the results of performance and productivity are not
aligned with the subjects’ satisfaction.

This observation is consistent with the current state of the scientific literature
in this field. Many research efforts make claims regarding the benefits of models,
including bug reduction. Nevertheless, the effectiveness of bug localization in
models has not been exhaustively evaluated, perhaps because of the assumption
that it would be better to use models.

During the focus group, some subjects highlighted that having performed the
location in the model before helped them to understand the C++ code. This
led to improved performance and productivity in the bug localization tasks for
those who had performed the MDD-CcD sequence. These outcomes are sup-
ported by the results and hypothesis tests. In addition, the students stated that
they preferred to perform bug localization in the models. However, professionals
who have a greater proficiency in software development prefer to perform bug
localization in the C++ code.

It seems that in CcD, the subjects have a way of navigating (e.g., starting
from a method relevant to the bug, they inspect the methods that call it or the
methods it calls). However, in MDD, when a model element relevant to the bug
is located, it is not clear to the subjects how to continue inspecting the model.
One may think that graphically connected model elements (e.g. connected with
relationships) are also relevant to the bug, but the bug may involve unconnected
model elements. This suggests that it is not straightforward to transfer bug
localization in CcD to bug localization in MDD.

Our findings suggest that there is a lack of knowledge on how to approach
bug localization in models. This might mean that the established practices yield
suboptimal results when they are applied to models. In fact, the students who
are more unfamiliar with established practices in software development obtained
better results when performing bug localization in models. In contrast to the
professionals, the students used more intensively the metamodel to locate bugs,
which can also explain why their results were better.

Considering the growing popularity of MDD in the video game domain and
their increasing use in industry-specific domains, there is a critical need to focus
on how engineers perform bug localization in models. It is important to move
away from the current trend of assuming that models are inherently superior for
bug localization, as empirical evaluations do not support this assumption.
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7 Threats to Validity

To describe the threats to validity of our work, we use the classification of Wohlin
et al. [21]. This section shows the threats that affected the experiment.

Conclusion validity: The low statistical power was minimized because the
confidence interval is 95%. To minimize the fishing and the error rate threat, the
statistical analysis has been done by a researcher who did not participate in the
task design or in the correction process. The reliability of measures threat was
mitigated because the measurements were obtained from the data sheets that
were automatically generated by the forms with the answers of the subjects when
they performed the tasks. The reliability of treatment implementation threat was
alleviated because the procedure was identical in the two sessions. Also, the tasks
were designed with similar difficulty.

Internal validity: To avoid the instrumentation threat, we conducted a pi-
lot study to verify the design and the instrumentation. The interactions with
selection threat affected the experiment because there were subjects who had
different levels of experience, different levels of modeling or coding, and differ-
ent levels of knowledge of the video game domain. To mitigate this threat, the
treatment was applied randomly.

This threat also affected the experiment because of the voluntary nature of
participation. We selected students from a course whose content was in line with
the experiment activities to avoid student demotivation.

Construct validity: To mitigate the mono-method bias threat, we mecha-
nized the measurements as much as possible by means of correction templates.
To weaken the evaluation apprehension threat, at the beginning of the exper-
iment, the instructor explained to the subjects that the experiment was not a
test of their abilities. The instructor also told the students that neither partici-
pation nor results would affect their grades in the course where the experiment
took place. In order to mitigate the author bias threat, the tasks were extracted
from a commercial video game and were designed by the same experts with sim-
ilar difficulty for the two methods compared. The experiment was affected by
the mono-operation bias threat since we worked with only two BL tasks from a
specific video game.

External validity: The interaction of selection and treatment threat affects
the experiment because it involves a larger number of students than professionals,
making students more represented in the overall results than professionals. The
domain threat occurs because the experiment has been conducted in a specific
domain (video game) and for a very specific type of task, i.e., to solve a BL
task in a scenario of Kromaia video game. We think that other experiments in
different games should be performed to validate our findings.

8 Conclusion

In this work, we present an experiment that compares MDD and CcD in terms
of performance, productivity, and satisfaction. This work investigates the influ-
ence of MDD and CcD on bug localization, employing the video game Kromaia
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(a commercial video game) as a case study. Bug localization in MDD increased
satisfaction, but professionals performed better in CcD. The subjects’ techniques
that were applied for bug localization showed suboptimal performance in mod-
els, highlighting a knowledge gap in MDD bug localization. With the growing
popularity of MDD in video games, exploring effective bug localization methods
specific to MDD is essential.
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