
Topic Modeling for Feature Location in Software Models:
Studying both Code Generation and Interpreted Models

Francisca Pérez∗, Raúl Lapeña, Ana C. Marcén, Carlos Cetina

Universidad San Jorge. SVIT Research Group
Autov́ıa A-23 Zaragoza-Huesca Km.299, 50830, Zaragoza, Spain

Abstract

Context: In the last 20 years, the research community has increased its attention to the use of topic
modeling for software maintenance and evolution tasks in code. Topic modeling is a popular and promising in-
formation retrieval technique that represents topics by word probabilities. Latent Dirichlet Allocation (LDA)
is one of the most popular topic modeling methods. However, the use of topic modeling in model-driven
software development has been largely neglected. Since software models have less noise (implementation
details) than software code, software models might be well-suited for topic modeling.
Objective: This paper presents our LDA-guided evolutionary approach for feature location in software

models. Specifically, we consider two types of software models: models for code generation and interpreted
model.
Method: We evaluate our approach considering two real-world industrial case studies: code-generation

models for train control software, and interpreted models for a commercial video game. To study the
impact on the results, we compare our approach for feature location in models against random search and a
baseline based on Latent Semantic Indexing, which is a popular information retrieval technique. In addition,
we perform a statistical analysis of the results to show that this impact is significant. We also discuss the
results in terms of the following aspects: data sparsity, implementation complexity, calibration, and stability.
Results: Our approach significantly outperforms the baseline in terms of recall, precision and F-measure

when it comes to interpreted models. This is not the case for code-generation models.
Conclusions: Our analysis of the results uncovers a recommendation towards results improvement. We

also show that calibration approaches can be transferred from code to models. The findings of our work with
regards to the compensation of instability have the potential to help not only feature location in models,
but also in code.

Keywords: Topic Modeling, Software Models, Search-based Software Engineering, Feature Location

∗Corresponding author. Tel.: +34 976060100
Email addresses: mfperez@usj.es (Francisca Pérez),

rlapena@usj.es (Raúl Lapeña), acmarcen@usj.es (Ana C.
Marcén), ccetina@usj.es (Carlos Cetina)

1. Introduction

Latent Dirichlet Allocation (LDA) [1] is a popular
and promising information retrieval technique, and
one of the most popular topic modeling methods [2].
A recent topic modeling survey [2] shows that the re-
search community has increased its attention to the
use of LDA through several publications in various

Preprint submitted to Information and Software Technology July 8, 2021

fields such as software maintenance and evolution
tasks. LDA represents topics by word probabilities.
The words with the highest probabilities in each topic
usually give a good idea of what the topic is about.
Previous works have proposed LDA to support soft-
ware maintenance and evolution tasks in source code
such as feature location [3], bug localization [4], and
traceability links recovery [5, 6].

Source code often suffers from the limitations of
the lexicon from which source code text is drawn.
The source code text that is embedded in identifiers,
comments, and string literals tends to be sparse in
nature. Source code text also lacks uniqueness and
exhibits a large degree of repetitiveness compared to
natural language text [7, 8].

In contrast to source code, software models have
less noise (implementation details) [9]. Software
models are high-level specifications of systems. Soft-
ware models contain information that raises the ab-
straction level by using language that is closer to the
problem domain, and that is less bound to the un-
derlying implementation and technology [9]. In ad-
dition, the information contained in software mod-
els has a different granularity than that contained in
other software artifacts: for instance, in code, FL ap-
proaches look for the most relevant method for the
implementation of the feature; while in the case of
software models, FL approaches look for the most rel-
evant model fragment for the implementation of the
feature. If a given feature description shares topic(s)
with a model fragment of the population, the model
fragment could be a strong candidate towards im-
plementing the feature. In this context, the coarse-
grained focus (topics) of LDA could enhance software
maintenance tasks where software models are used.

However, software models have not been researched
by any of the 74 works included in a recent topic mod-
eling survey [2], even though they are a popular as-
set in software development [9, 10]. We acknowledge
that models have not replaced source code as a means
of software development, but they have nonetheless
been reported as a successful paradigm to develop
industrial software [9, 10].

In this paper, we assess the use of LDA in the
context of software models. More precisely, we pro-
pose to use LDA as a fitness function for an evo-

lutionary algorithm with the aim of enhancing Fea-
ture Location (FL) in software models. The goal of
FL is to find the model elements (i.e., model frag-
ment) in a system that implement a feature, where
the term ‘feature’ refers to a specific functionality
or characteristic of a product. FL is arguably one
of the most frequently undertaken software mainte-
nance tasks [11, 3, 12, 13].

We evaluate the performance of LDA considering
two model-based industrial case studies. Each case
study uses a different kind of software models: soft-
ware models for code generation, and software mod-
els for interpretation. The first case study belongs
to a worldwide leader in train manufacturing, Con-
strucciones y Auxiliar de Ferrocarriles (CAF) 1, a
company that formalizes the manufactured products
in software models using a Domain-Specific Language
(DSL). In CAF, software models are used to generate
the firmware that controls their trains. The second
case study belongs to a commercial video game, Kro-
maia, that uses software models to reason about the
system, perform validations, and define game con-
tent such as bosses, worlds, and goals. In Kromaia,
software models are used for interpretation. Thus,
the content defined in the models is read and inter-
preted when the game is launched (without altering
the source code of the video game). The video game
has been released worldwide in two different plat-
forms (PlayStation 4 and STEAM) and in 8 different
languages.

To put the performance of LDA in perspective
and to study the impact on the results, we com-
pare our approach against a Latent Semantic Index-
ing (LSI) [14] baseline and Random Search. LSI is a
popular information retrieval technique that has been
proposed to support software engineering tasks such
as FL in source code [3] and software models [15, 16].
Random Search is used as a sanity check that en-
ables us to determine if LDA performs better than
mere chance. We compare the results of each case
study against those obtained by the LSI baseline and
Random Search in terms of recall, precision, and F-
measure. In addition, we perform a statistical anal-

1www.caf.net/en

2

www.caf.net/en

ysis (Quade test) and effect size measures (Vargha
and Delaney’s Â12 [17] and Cliff’s delta [18, 19]) in
order to provide quantitative evidence of the impact
of the results (following the guidelines by Arcuri and
Briand [20]) and to show that this impact is signifi-
cant. Finally, we carried out a focus group interview
with the aim of acquiring qualitative data and feed-
back from the engineers about the obtained results.
Hence, the contributions of this paper are threefold:

• We investigate the use of LDA for FL in two
kinds of software models (code generation and
model interpretation). The software models be-
long to two industrial case studies. To the best
of our knowledge, this is the first effort that ad-
dresses the challenge of FL in models for inter-
pretation in the literature. This is relevant be-
cause FL is an essential task for software main-
tenance and evolution [11, 3].

• We experimentally demonstrate that LDA signif-
icantly outperforms the LSI baseline (by 16.33%
in F-measure) when software models for inter-
pretation are used. In contrast, the LSI baseline
outperforms LDA (by 7.33% in F-measure) when
software models for code generation are used.
Both LDA and the LSI baseline outperform Ran-
dom Search in all measurements in both case
studies. In addition, through the focus group
interview, we evidence that practitioners prefer
the results of the LDA-based approach over the
results of the LSI baseline.

• We provide a comprehensive discussion on the
results considering four main limitations (data
sparsity, implementation complexity, calibra-
tion, and stability). We learned that (1) LDA
calibration approaches for code can also be
transferred to models, (2) the usage of an evo-
lutionary algorithm seems promising to compen-
sate for LDA instability, and (3) code generation
models can achieve better results if the model-
to-code transformation process is checked. We
provide insight into why the baseline outper-
forms LDA when models for code generation are
used. We found that the model-to-code trans-
formation process increases the information in-

cluded in the models. This phenomenon affects
the topics more than the similarity of terms be-
cause some topics change but there are still some
terms in common. If we omit the cases in which
this phenomenon occurs, the LDA fitness guide
the approach to outperform the baseline when
software models for generation are used. Hence,
we recommend paying attention to the model-to-
code transformation process in other code gen-
eration contexts.

The remainder of this paper is organized as follows.
Section 2 provides background notions for feature lo-
cation in software models and LDA. Section 3 de-
scribes our LDA-guided evolutionary approach for lo-
cating features in software models. Section 4 presents
our evaluation in two real-world industrial case stud-
ies. Results are reported in Section 5 and discussed
in Section 6. Section 7 discusses the threats to va-
lidity that could have affected our evaluation. Sec-
tion 8 presents the related work. Finally, Section 9
concludes the paper and outlines directions for future
work.

2. Background

This section overviews and motivates feature lo-
cation in software models, and describes LDA in a
nutshell.

2.1. Feature Location in software models
This section introduces FL in software models, us-

ing as a basis a model from one of our industrial case
studies, in the domain of railway solutions. Train
units are furnished with multiple pieces of equipment
that carry out specific tasks for the train. Some
examples of these devices are the pantograph that
harvests power from overhead wires, or the circuit
breaker that isolates and connects electrical circuits.
The control software of the train unit makes all the
equipment cooperate, achieving the desired function-
ality and guaranteeing compliance with regulations.

To implement such software, our industrial part-
ner formalizes the products manufactured in soft-
ware models using a DSL. The software models de-
scribe both the equipment interactions and the non-
functional regulation aspects. The top-most part of

3

Figure 1 depicts an example model, taken from a
real-world case study. It presents a scenario where
two separate pantographs (high voltage equipment)
collect energy from the overhead wires, sending it to
their independent voltage converters through their re-
spective circuit breakers (contactors). The convert-
ers power their assigned equipment: HVAC (air con-
ditioning system), PA (public address system), and
CCTV (television system). The model also presents
an intermediate ’failure overload’ contactor that con-
nects the ’peer coverage’ converter to an equipment
assigned to the other converter.

Input Models

Input Feature Description

Feature
Location
in Models

Passing of current from one converter
to equipment assigned to its peer for

coverage in case of overload or
failure of the first converter.

High voltage
equipment

Contactor

Voltage
converter

Consumer
equipment

Pantograph
Front

Breaker

Pantograph
Rear

Circuit

PA CCTV

Converter

HVAC

Peer
Coverage Failure

Overload

Model
Syntax

O
ut

pu
tM

od
el

Fr
ag

m
en

t

Figure 1: Feature Location in Software Models

FL in software models takes as input the models
and the feature description. The output is the most
relevant model fragment for the feature description.
In the example of Figure 1, the feature is the ‘con-
verter assistance’ feature, which allows the passing of
current from one converter to equipment assigned to
its peer for coverage in case of overload or failure, and
the fragment is the set of model elements highlighted
in light gray.

Although the example shown in Figure 1 may
make FL in software models appear easy, in indus-
trial scenarios, the complexity of the models in use
and the number of elements in place render FL a
time-consuming, error prone, and person-power in-
tensive task. For instance, the data set provided by
our industrial partner comprises 23 trains, with one
software model per train, and 121 feature descrip-

tions. All models comprise above 1200 model ele-
ments. The elements of a model implement its dif-
ferent included features (e.g., the model of Figure 1
includes the CCTV consumer equipment element be-
cause this model includes the feature of the television
system). In order to match a particular feature to a
model fragment, a domain expert would need to de-
cide which set of elements of the models are relevant
to the feature. Assuming that the domain expert
must spend around 5 seconds to take the decision
with each element [21], creating a fragment would
take around 100 minutes. Manually locating all the
features would take slightly more than 200 hours (ap-
proximately, 26 full-time working days).

2.2. LDA in a nutshell

Latent Dirichlet Allocation (LDA) [1] is an unsu-
pervised probabilistic technique for estimating a topic
distribution over a text corpus. The corpus is made
up of a set of documents, where each document is a
set of terms. As a result, a probability distribution is
obtained for each document, indicating the likelihood
that it expresses each topic. In addition, a probabil-
ity distribution is obtained for each topic identified
by LDA, indicating the likelihood of a term from the
corpus being assigned to the topic.

LDA inputs include the documents (D), the num-
ber of topics (K), and a set of hyper-parameters (i.e.,
a set of parameters that have a smoothing effect on
the topic model generated as output). The hyper-
parameters of any LDA implementation are:

• k, which is the number of topics that should be
extracted from the data.

• α, which influences the topic distributions per
document. Lower α value results in fewer topics
per document.

• β, which affects the distribution of terms per
topic. Lower β value results in fewer terms per
topic, which in turn implies an increase in the
number of topics needed to describe a particular
document.

In this work, we use the Collapsed Gibbs Sampling
(CGS) for LDA because it requires less computa-

4

tional time [22], and it was previously used for locat-
ing features in source code [23]. This implementation
requires an additional hyper-parameter, σ, which de-
notes the number of sweeps to be made over the cor-
pus. Finding the configuration of hyper-parameters
that provides the best performance is not a trivial
task [24, 23, 25]. Thus, the hyper-parameter values
typically are set to either according to the facto stan-
dard values [23, 25] or calibrated [24].
LDA outputs include: φ, which is the matrix

that contains the term-topic probability distribution,
and θ, which is the matrix that contains the topic-
document probability distribution.

3. Our approach

Our approach uses LDA to guide an evolutionary
algorithm in the localization of features. The evolu-
tionary algorithm explores the vast amount of model
fragments (magnitudes around 10150 fragments for
models of 500 elements), and LDA assesses the rele-
vance of each model fragment to the feature descrip-
tion. Figure 2 presents an overview of our approach.
The top part of the figure highlights the inputs of
the approach (the input software models and feature
description), the middle part shows the four steps of
the evolutionary algorithm (text processing, model
fragment initialization, fitness assessment, and ge-
netic manipulation), and the bottom part presents
the output of the approach (a ranking of model frag-
ments that are relevant for the feature description).
The four steps are presented in detail through the
remainder of the section.

3.1. Text processing

The texts of the inputs are processed through the
usage of Natural Language Processing (NLP) tech-
niques, which homogenize the NL texts. The usage
of NLP techniques is often regarded as beneficial and
is a frequent practice for Software Engineering tasks
in the field of Information Retrieval [26]. In order to
process the NL texts, we use the following NLP tech-
niques [27]: tokenization, syntactical analysis, stem-
ming, and human NLP (inclusion of domain terms
and removal of stopwords).

Software models

Step 2 - Model fragment initialization

Initial model
fragment population

Step 3 - Fitness assessment

Latent Dirichlet Allocation

Feature description
(query)

Model fragment
ranking

Evaluated model
fragment population

Stop condition met?

Yes

No

In
pu

t
Ap

pr
oa

ch
Ou

tp
ut

Step 1 - Text processing

Software models
processed terms

Feature description
processed terms

MF1F = 0.7

Model fragment
population

Step 4 - Genetic manipulation

Selection Crossover Mutation

MF1…MFn

MF2F = 0.1

MFnF = 0.4

MF1F = 0.7

…
MFnF = 0.4

MF2F = 0.1

…

MF1…MFn

Figure 2: Approach Overview

As an example, consider the feature description
and the model fragment of Figure 1. Through the ap-
plication of the techniques described above, the lan-
guage is homogenized: the feature description (’pass-
ing of current from one converter to equipment as-
signed to its peer for coverage in case of overload
or failure of the first converter’) is transformed into
the terms [current, convert, hvac, peer, convert, cov-
erag, overload, failur, convert], and the text of the
model fragment is transformed into the terms [con-
vert, hvac, failur, overload, peer, coverag].

3.2. Model fragment initialization

This step generates an initial population of model
fragments from the input set of models. To generate

5

the initial population of model fragments, model ele-
ments of a model are randomly selected. This random
technique is the one commonly used in evolutionary
algorithms [16].

To represent a model fragment and to be able to
easily manipulate it, the model fragment is encoded
in a bit string. The encoding is an array that contains
as many positions as elements in the model. Each
position in the bit string has two possible values: 0,
if the element does not appear in the fragment; or
1, if the element does appear in the fragment. Fig-
ure 4 shows model fragments (highlighted in gray)
and their corresponding bit strings. For example, el-
ements 1 and 6-8 are set to ’1’ in the bit string of
Parent 1 in Figure 4, so these model elements com-
prise the model fragment. The initial population of
model fragments calculated through this step is used
as input in the next step.

3.3. Fitness assessment (LDA)

To assess the relevance of each model fragment
with regard to the provided feature description (i.e.,
query), we use LDA as a fitness function. Given the
terms for the query Q and the outputs of LDA (φ
and θ), the conditional probability P of Q given a
document Di is computed as follows [23]:

Sim(Q,Di) = P (Q|Di) =
∏
qk∈Q

P (qk|Di)

where qk is the kth homogenized term in the query,
and Di is a document (i.e., a model fragment) of
the population that is made of a set of homogenized
terms.

Figure 3 shows an example of the fitness assess-
ment for a population of model fragments, being
each model fragment an individual of the population.
Given a feature description (query), the figure depicts
how the fitness is assigned to the n model fragments
of the population by using LDA.

The left part of the figure shows an example of
the outputs of LDA, which include φ and θ as de-
scribed in Section 2.2. φ contains the term (K) to
topic (T) probability distribution. Each cell can have
a value from 0 to 1, indicating the likelihood of a term

from the corpus being assigned to a particular topic.
For instance, a value of φ[T1, current] = 0.1 indi-
cates a 10% likelihood of the term current being as-
signed to topic T1. θ contains the topic (T) to Model
Fragment (MF) probability distribution. Each cell,
with values that again range from 0 to 1, indicates
the likelihood with which a model fragment from the
population expresses a topic. For instance, a value
of θ[MF1, T1] = 0.23 indicates that model fragment
MF1 has a 23% likelihood of expressing topic T1.

The right part of the figure shows an example of
a provided feature description and its homogenized
terms. The homogenized terms of the feature de-
scription, along with the LDA outputs, are used to
calculate a matrix with dimensions K x n, of which
an example is shown in the middle part of the fig-
ure. The rows of the matrix represent the homog-
enized terms of the feature description (qt) and the
columns of the matrix represent each of the model
fragments in the population. Each cell in the matrix
contains the conditional probability for each homoge-
nized term given a particular model fragment (corre-
sponding to P (qk|Di) in the equation). The value of
the conditional probability is obtained by applying
the dot product operation between all the φ values
associated with the homogenized term and all the θ
values associated with the model fragment. The fig-
ure depicts an example of this operation, concerning
the homogenized term current and model fragment
MF1. The operation is visually represented through
a solid blue highlight of the φ and θ cells involved in
the dot product, along with blue lines that point to
the result of the operation, stored in the cell of the
central matrix that is also highlighted in solid blue.
The obtained value is the conditional probability for
the homogenized term current given model fragment
MF1, that is, P (current|MF1) = 0.4.

Once the matrix is calculated, the conditional
probability values of the terms obtained for each
model fragment are used to compute the condi-
tional probability between the query and the different
model fragments as described in the equation. The
newly calculated values are the fitness values associ-
ated with each of the model fragments. In the fig-
ure, these values appear in the vector beneath the
matrix. The visual representation of the operation

6

Topic Modeling - LDA outputs

0.16 0.3 0.1 0.14 … 0.19

0.6 0.9 0.08 0.5 … 0.41

0.2 0.13 0.38 0.71 … 0.3

0.17 0.66 0.05 0.3 … 0.15

… … … … … …

0.12 0.59 0.01 0.08 … 0.55

K1 K2 K3 K4 … Kj
T1
T2
T3
T4
…
Tk

𝞥
Term (K) - Topic(T)

probability distribution

0.23 0.21 0.4 0.1 … 0.08

0.61 0.04 0.11 0.22 … 0.18

0.3 0.02 0.76 0.43 … 0.44

0.02 0.61 0.01 0.2 … 0.49

… … … … … …

0.48 0.39 0.27 0.17 … 0.06

T1 T2 T3 T4 … Tk
MF1
MF2
MF3
MF4
…
MFn

𝞱
Topic(T) - Model Fragment (MF)

probability distribution

Conditional probability (P)
for each homogenized term(qt)

of the Query (Q) given a
Model Fragment (MF)

Feature Description (Query)

Query – homogenized terms

passing of current from one
converter to equipment
assigned to its peer for

coverage in case of overload or
failure of the first converter

current, convert, hvac, peer,
convert, coverag, overload,

failur, convert

0.4 0.65 0.34 0.68 … 0.41

0.1 0.22 0.9 0.46 … 0.3
0.7 0.4 0.8 0.12 … 0.2

0.01 0.9 0.62 0.19 … 0.9

… … … … … …
0.2 0.3 0.7 0.01 … 0.02
MF1 MF2 MF3 MF4 … MFn

q1

q2

q3

q4

…

qtcurrent

P(current | MF1)

0.06 0.08 0.11 0.03 … 0.01

P(Q | MF3) = Sim(Q | MF3) = Fitness(MF3)

Conditional probability (P) of the
Query (Q) given a Model Fragment (MF)

Figure 3: Fitness assessment example

is supported by an example, in the form of a light
green highlight of the values obtained for model frag-
ment MF3, which lead to a conditional probability
P (Q|MF3) = 0.11 between the query and model frag-
ment MF3. The final outcome of the LDA fitness,
P (Q|MF3), is stored as the fitness of MF3.

The evolutionary algorithm will continue its ex-
ecution by providing the evaluated model fragment
population as input to Step 4 (genetic manipulation)
until the stop condition is met. The stop condition
can be a fixed number of generations, a trigger value
for the fitness, or a time slot. The stop condition
greatly depends on the domain and the problem be-
ing solved, and is therefore calibrated based on the
output results. When the algorithm stops, it returns
a model fragment ranking, sorted according to the
fitness values obtained by LDA. Higher fitness scores
entail higher degrees of similarity between query and
model fragment, whereas lower fitness scores entail
lower degrees of similarity between query and model
fragment. As an example, if the stop condition of
the evolutionary algorithm is met at the end of the
iteration that yields the fitness values shown in the
figure, the algorithm will order the model fragments
into a ranking where MF3 will be in the first position
due to having the highest fitness score among all the
model fragments in the population, with the rest of
the model fragments ordered beneath it. The entire
ranking of model fragments is associated as a solu-

tion for the query, with the model fragment in the
first position of the ranking being considered as the
most similar model fragment to the query.

Similarly to other works that retrieve text from an
initial query using LDA or other information retrieval
techniques, the results depend on the quality of the
queries [23, 28], which is typically improved through
an iterative refinement process [29]. If a query (i.e.,
feature description) explicitly mentions more proper-
ties and values of the model elements to be retrieved,
the result will be closer to the objective. Therefore,
even when irrelevant model fragments are obtained in
the ranking, the results can be considered as a start-
ing point for the iterative refinement process. From
there, software engineers can either manually tweak
the proposed solutions or modify the feature descrip-
tion to automatically obtain different solution model
fragments. New inputs (feature description and soft-
ware models where the feature must be located) will
be necessary to execute the evolutionary algorithm
again.

3.4. Genetic manipulation

As the fourth and final step, if the stop condition
is not met, the evolutionary algorithm uses three ge-
netic operations (selection, crossover, and mutation)
to generate new model fragments based on existing
ones.

7

The selection operation picks the best candi-
dates from the population as input for the rest of
operations. There are different methods that can be
used to perform the selection of the parents, but one
of the most spread choices is to follow the wheel se-
lection mechanism [30], where each model fragment
from the population has a probability of being se-
lected proportional to their fitness score. The single-
point crossover operation enables the creation of
new individuals by combining the genetic material
from two parent model fragments. The mutation
operation is used to imitate the mutations that ran-
domly occur in nature when new individuals are born.
The operations are taken from [31] and [32] respec-
tively, where their application to models is detailed.

Figure 4 shows an example of application of the
genetic operations, following the example models in-
troduced in Section 2.1. First, the selection operation
is applied, and two model fragments from the popu-
lation are chosen.

Parent 1

× →

1 2 3 4 5 6 7 8 9

1 0 0 0 0 1 1 1 0

1

3

5

2

4
7

9
8

Parent 2

1 2 3 4 5 6 7 8 9

1 1 1 0 0 1 1 1 0

1

3

5

2

4

8

9

6

7

Offspring 1
1 2 3 4 5 6 7 8 9

1 0 0 0 0 1 1 1 0

1

3

5

2

4

8

9

6

7

→
(𝑀)

(𝐶)
6

Offspring 2

1 2 3 4 5 6 7 8 9

1 1 1 0 0 1 1 1 0

1

3

5

2

4

7

8

6

1 2 3 4 5 6 7 8 9

0 0 0 0 0 1 1 1 0

Mutated Offspring 1

1

3

5

2

4

8

9

6

7

1 2 3 4 5 6 7 8 9

1 1 1 0 0 1 1 1 1

Mutated Offspring 2

9

1

3

5

2

4

7

8

6

9

→
(𝑀)

P1 P2

P2 P1

Figure 4: Genetic operations example

Afterwards, the crossover operation is applied. The
two selected model fragments are taken as parents.
The operation randomly selects a point on both par-
ents and swaps the encoding based on the selected
point, generating two offspring individuals in the pro-
cess. The first offspring will hold the first half of the
encoding from the first parent, and the second half
of the encoding from the second parent. The sec-
ond offspring will hold the first half of the encoding
from the second parent, and the second half of the

encoding from the first parent. Figure 4 shows an
example of the single-point crossover operation over
two model fragments.

Finally, the mutation operation is applied to add or
remove elements from the offspring model fragments.
In the example of Figure 4, the mutation operation
takes the offspring fragments produced through the
crossover operation and removes or adds one element
from them. The model fragments resulting from the
mutated offspring fragments are new candidates in
the population.

The model fragment population generated through
the genetic operations is then assessed through the
fitness function. The last two steps of the approach
(fitness assessment and genetic manipulation) are re-
peated in this manner until the solution converges to
a certain stop condition.

4. Evaluation

This section describes the evaluation of our work:
the research questions we aim to answer, the two
model-based industrial case studies that comprise
both the models for code generation and the models
for interpretation, the sanity check and the baseline
to put the performance of our work in perspective,
and the experimental setup we use to answer the re-
search questions.

4.1. Research questions

We aim to answer the following research questions:

RQ1 What is the performance of topic modeling for
locating features in the two kinds of software
models?

RQ2 How much is topic modeling influencing the
performance in the two kinds of software mod-
els?

Answering RQ1 allows us to discover the perfor-
mance results (in terms of recall, precision and the
F-measure) of topic modeling, the sanity check and
the baseline in two model-based industrial case stud-
ies (which use different kind of models: the models
for code generation and the models for interpreta-
tion). Answering RQ2 allows us to properly compare

8

the performance results using statistical methods in
order to determine whether the differences in the re-
sults are significant and if so, to determine by how
much (the magnitude of improvement).

4.2. Case studies

Our first case study has been provided by one of
our industrial partners in the railway domain, CAF.
In our first case study, the models are used for code
generation purposes. The data is made up of 23
trains where, on average, each product model2 is
composed of more than 1200 model elements. Each
model element has about 15 properties that include
terms, which are used to differentiate among model
elements. Specifically, our industrial partner pro-
vided the following documentation: 121 feature de-
scriptions, the 23 product models where the model
fragments should be located, and the approved fea-
ture realization (that is, the model fragment that cor-
responds to each feature) that will be considered to
be the ground truth (oracle). The model fragments
that correspond to each feature have between 5 and
20 model elements, with an average of 13.55 model
elements and a median of 14 model elements.

Our second case study has been provided by one of
our industrial partners in the video games develop-
ment domain. This industrial partner has provided
us with the models and documentation for one of
their commercial video games, Kromaia, which was
released worldwide in both physical and digital ver-
sions for PlayStation 4 and STEAM, and translated
into 8 different languages. In this second case study,
the models are built with interpretative purposes in
mind, or in other words, to formalize the system and
capture its particularities. These models are used
to reason about the system, perform validations, or
transform them into run-time objects. Our indus-
trial partner provided us with 15 product models, 106
feature descriptions, and the approved feature real-
izations. Each product model is composed of more
than 800 model elements. The model fragments that
correspond to each feature have between 7 and 18

2Learn more about the models for code generation of CAF
at https://youtu.be/Ypcl2evEQB8

model elements, with an average of 12.42 model el-
ements and a median of 12 model elements. Each
model element has about 16 properties that include
terms.

The upper part of Figure 5 shows an excerpt of
a product model in Kromaia where different model
elements are included to specify content in the video
game such as a boss. A boss is a powerful enemy
that the player must defeat at the end of a level. The
model elements that are included in the figure show
an excerpt of hull and link. A hull is a module of
solid bodies that are connected through configurable
links. The lower part of Figure 5 shows an example
of boss during the execution of the video game as a
result of interpreting the configuration of the product
model3.

4.3. Baseline

For each case study, we set as baseline a variant
of the evolutionary algorithm that is described in
Section 3 in which the fitness function (Step 3) is
replaced with Latent Semantic Indexing (LSI) [14],
which analyzes relationships between queries and
documents (bodies of text). LSI is a popular infor-
mation retrieval technique [23] that has been used
in software engineering tasks such as feature loca-
tion in source code [3]. Furthermore, previous works
evaluated different fitness functions to calculate the
similarity between the feature description and each
model fragment: LSI [15], Formal Concept Analy-
sis [32], learning to rank [33], understandability [34],
timing [35], and combinations of these [15]. Consid-
ering all of the works mentioned above, LSI is the
fitness function that achieves the best results. LSI is
also the most common fitness used for feature loca-
tion in models [32, 16, 36, 15, 21]. Consequently, we
have used LSI as a baseline for this work.

LSI produces a term-by-document co-occurrence
matrix. Rows in the matrix stand for the terms to
be found, in our case, the homogenized terms that
appear in the feature description and the model frag-
ments. Columns in the matrix stand for each of the

3Learn more about the interpreted models of Kromaia at
https://youtu.be/Vp3Zt4qXkoY

9

https://youtu.be/Ypcl2evEQB8
https://youtu.be/Vp3Zt4qXkoY

<
COMPOUND>
●●●

<HULLS Number="64">
●●●

<Hull HullType="1">
<ObjectData ModelFileName="core.mesh" PositionX="0" ●●● />
<PhysicalObjectData CollisionModelFileName="SPHEROID" ●●● />
●●●

<HullVitalData VitalHullLayer="1" ●●● />
</Hull>
●●●

</HULLS>
●●●

<LINKS Number="38">
●●●

<Link LinkType="1">
<LinkData HullIndexFirst="0" HullIndexSecond="1" ●●● />
<LinkRopeData RopeElements="1" RopeMass="0" ●●● />

</Link

●●●

●●●

A

Product model: +800 model elements

Figure 5: Example of model and interpreted game content

search documents, in our case, the model fragments
in the generated population. The final column stands
for the query, in our case, the input feature descrip-
tion. Each cell in the matrix contains the frequency
of each term in each document.

Vector representations of the documents and the
query are obtained by normalizing and decompos-
ing the term-by-document co-occurrence matrix us-
ing a matrix factorization technique called Singular
Value Decomposition (SVD) [14]. Afterwards, the
similarity degree between the query and the docu-
ments is measured by calculating the cosine between
the query vector and the document vectors. Cosine
values closer to one denote a high degree of similar-
ity, and cosine values closer to minus one denote a

low degree of similarity. Through this measurement,
the model fragments are ordered according to their
similarity degree to the query.

Besides the LSI baseline, we compare our work
against a standard Random Search approach that is
used as a sanity check. Using Random Search enables
us to determine if topic modeling performs better
than mere chance. Random Search starts with a ran-
dom initial model fragment (considered as the best
candidate for the first iteration). Then, a new ran-
dom model fragment is generated (candidate). The
best candidate is updated if the fitness value of the
new candidate is better than that of the current best
candidate. The fitness value is calculated using LSI
as described for the baseline. This loop is repeated
until the stop condition is met.

4.4. Experimental setup
Figure 6 shows an overview of the experimental

setup to answer each research question, which is de-
scribed as follows:

Research Question 1

From industrial case study

Baseline:
Evolutionary

Algorithm + LSI

Product
model1
Product
model1Product model1

Pr
od

uc
t F

am
ily

Model fragment
(Ranking @ 1)

Fe
at

ur
e

1

Approved
Feature

Realization

Evolutionary
Algorithm + LDA

Model fragment
(Ranking @ 1)

Calculation of performance measurements Oracle

Feature
Description

Research Question 2

Statistical
significance

Effect size
measurements

Random Search

Model fragment
(Ranking @ 1)

input

Figure 6: Experimental setup

Answering RQ1: The performance of the ap-
proach is assessed in each case study separately. To

10

that extent, the evaluation starts by taking the in-
puts from the case study, shown in the upper part
of Figure 6 (the product models and feature descrip-
tions with their corresponding approved feature real-
ization, which conforms the evaluation oracle). Next,
our LDA-based approach, the LSI-based baseline and
random search are executed, as the middle part of
Figure 6 shows. We executed 30 independent runs (as
suggested by Arcuri and Fraser [37]) for each feature
in both the approach and the baseline: 121 (features)
x 3 (approach, baseline and random search) x 30 rep-
etitions in Case Study 1, plus 106 (features) x 3 (ap-
proach, baseline and random search) x 30 repetitions
in Case Study 2, for a total of 20430 independent
runs.

From the ranking of model fragments that is ob-
tained as a result of each run, the first model frag-
ment (i.e., the model fragment with the highest fit-
ness value) is compared against the oracle, which is
considered to be the ground truth. Once the compar-
ison is performed, a confusion matrix is calculated.

A confusion matrix is a table that is often used to
describe the performance of a classification model on
a set of data (the best solution) for which the true
values are known (from the oracle). In our case, each
outputted solution is a model fragment. Since the
granularity is at the level of model elements, the pres-
ence or absence of each model element is considered
as a classification. The confusion matrix arranges the
results of the comparison between the model frag-
ment from the oracle and the solution into four cate-
gories of values: (1) True Positive (TP) values, model
elements that are present in the model fragments of
both the solution and the oracle, (2) False Positive
(FP) values, model elements that are present in the
solution but absent in the oracle, (3) True Negative
(TN) values, model elements that are absent in both
the solution and the oracle, and (4) False Negative
(FN) values, model elements that are absent in the
solution but present in the oracle.

The confusion matrix holds the results of the com-
parison between the results of the execution and the
oracle. From the values in the matrix, it is possi-
ble to extract measurements that evaluate the perfor-
mance of the approach and the baseline for each case
study. Specifically, we derive three performance mea-

surements which are widely accepted in the software
engineering research community [38, 5, 39]: recall,
precision, and F-measure.

Recall measures the number of elements of the or-
acle that are correctly retrieved by the proposed so-
lution, and is defined as:

Recall =
TP

TP + FN

Precision measures the number of elements from
the solution that are correct according to the oracle,
and is defined as:

Precision =
TP

TP + FP

Finally, the F-measure corresponds to the har-
monic mean of precision and recall:

F −measure = 2 · Precision ·Recall
Precision+Recall

Recall values can range between 0% (which means
that no single model element from the oracle is
present in the solution model fragment) to 100%
(which means that all the model elements from the
oracle are present in the solution model fragment).
Precision values can range between 0% (which means
that no model elements from the solution model frag-
ment appear in the oracle) to 100% (which means
that all the model elements from the solution model
fragment appear in the oracle). A solution with val-
ues of 100% in both precision and recall implies that
the solution and the oracle are the same.

Answering RQ2: To determine whether the dif-
ferences between our approach and the baseline, and
between our approach and random search are signifi-
cant in the two case studies, the results must be prop-
erly compared and analyzed using statistical meth-
ods. To do this, we follow the guidelines presented
in [20] with the aim to provide formal evidence that
the differences do in fact have an impact on the com-
parison measurements (or in other words, that the
differences in the results were not obtained by mere
chance).

A statistical test should then be run to assess
whether there is enough empirical evidence to claim

11

that there are differences between our approach and
the baseline, between our approach and random
search, and between the baseline and random search.
It is accepted by the research community that a p-
value under 0.05 implies statistical significance [20].

The statistical test that must be followed depends
on the properties of the data. Since our data does
not follow a normal distribution, our analysis requires
the usage of non-parametric techniques. There are
several tests for analyzing this kind of data. How-
ever, the Quade test is more powerful than other
tests when working with real data [40], and accord-
ing to [41], has shown better results than other tests
when the number of algorithms is low (no more than
4 or 5 algorithms). The Quade test was also used by
previous FL approaches [16, 15]. We record a p-value
for each performance measure (recall, precision and
F-measure) in each case study.

To determine how much the performance is influ-
enced by using our approach, the baseline and ran-
dom search, it is important to assess (through effect
size measures) whether our approach is statistically
better than the baseline, and if so, measuring how
much the solution obtained by our approach improves
the quality of the solution obtained by the base-
line (the magnitude of the improvement). For non-
parametric effect size measurements, we use Vargha
and Delaney’s Â12[17] and Cliff’s delta [18, 19].
Â12 measures the probability that running one ap-

proach yields higher values than running another ap-
proach. With the Â12 statistic, the approaches are
compared in pairs (treatment vs control). If the Â12

statistic obtains a value greater than 0.5, the com-
parison will be in favor of the treatment. If the Â12

statistic obtains a value lesser than 0.5, the compar-
ison will be in favor of the control and 1-Â12 will be
used to interpret the magnitude of effect. According
to the guidelines for interpreting Â12 values [17], the
Â12 value of 0.5 means that the two approaches are
equivalent (no effect). The Â12 value of 0.56 means
a small effect in the magnitude of improvement, 0.64
means a medium effect, and 0.71 means a big effect.
For example, a value of Â12 = 0.56 means that on
56% of the runs, the treatment would obtain bet-
ter results than the control and that the effect in
the magnitude of improvement is small. A value of

Â12 = 0.24 means that on 76% of the runs, the con-
trol would obtain better results than the treatment,
and that the effect in the magnitude of improvement
is large.

Cliff’s delta is an ordinal statistic that describes
the frequency with which an observation from one
group is higher than an observation from another
group compared to the reverse situation. It can be
interpreted as the degree to which two distributions
overlap, with values ranging from -1 to 1. For in-
stance, when comparing distributions of the treat-
ment and the control, a value of 0 means no difference
between the two distributions, a value of -1 means
that all samples in distribution of the treatment are
lower than all samples in distribution the control, and
a value of 1 means the opposite (all samples in the
treatment are higher than all samples in the control).
In addition, threshold values can be defined [42] for
the interpretation of Cliff’s delta effect size as ”negli-
gible” (|d| < 0.147), ”small” (|d| < 0.33), ”medium”
(|d| < 0.474), and ”large” (|d| ≥ 0.474).

We record an Â12 value and a Cliff’s delta value
for each pair-wise comparison between our approach
and the baseline, between our approach and random
search and between the baseline and random search
for each performance indicator (recall, precision and
F-measure) in each case study.

4.5. Implementation

To perform a fair comparison between the ap-
proach and the baseline in the two case studies, it
is necessary to properly calibrate the parameters of
the evolutionary algorithm, LDA, and LSI.

Regarding the evolutionary algorithm, we have
chosen the parameter settings that are commonly
used in the literature [43, 44, 15, 16, 21] for evolu-
tionary algorithms and LSI. The settings are shown
in Table 1. The top part of the table shows the pa-
rameters related to the evolutionary algorithm such
as the population size, the number of parents, or the
crossover and mutation probabilities.

Table 1 also shows the LDA and LSI hyper-
parameters. To calibrate the hyper-parameters, we
follow the recommendations of Biggers et al. [23],
which were designed for dealing with code software
artifacts. In addition, as recommended by Panichella

12

Table 1: Parameter settings

Parameter description Value
Evolutionary algorithm Size: Population Size 100

r: Solutions replaced at population size 2
µ: Number of Parents 2
λ: Number of offspring from µ parents 2
pcrossover: Crossover probability 0.9
pmutation: Mutation probability 0.1

LDA k: Number of topics 300
α: Topic distributions per document 1.0
β: Distribution terms per topic 0.5
σ: Number of sweeps over the corpus 300

LSI k: Number of dimensions 100

et al. [24], we perform a trial-and-error procedure by
changing the values of the hyper-parameters for other
recommended values [23] in order to ensure that the
chosen calibration leads to a balance between per-
formance in the solution quality and computational
cost.

We used the Eclipse Modeling Framework [45] to
manipulate the software models in the implementa-
tion of our approach and the baseline. The tech-
niques used to process the NL were implemented
using OpenNLP [46] for the POS-Tagger, and the
English (Porter2) algorithm for stemming [47]. The
LDA fitness was implemented using JGibbLDA [22].
LSI was implemented using the Efficient Java Ma-
trix Library (EJML) [48]. The genetic operations
are built upon the Watchmaker Framework for Evo-
lutionary Computation [49]. An independent run of
the baseline comprises more than 1406 lines of code,
whereas an independent run of our approach com-
prises more than 2488 lines of code. Just the imple-
mentation of the LDA fitness comprises more than
1082 lines of code.

In this work, we put the focus on performance mea-
surements and optimizing the quality of the solution
(i.e., obtaining a solution that is more similar to the
one from the oracle in terms of precision and recall)
instead of the algorithm speed (or search effort). Af-
ter running some prior tests for our approach and the
baseline in the two case studies to determine the al-
gorithm convergence time (and adding a margin to
ensure convergence), we allocated a fixed amount of
wall clock time (80 seconds) to stop the execution
of the evolutionary algorithm. The execution was
performed using a Mac Pro computer with an Intel

Xeon E5-2697 V2 processor (clock speeds 2.7 GHz
and 12 cores) and 64 GB of RAM. The computer
was running macOS Catalina (10.15.4) as the host-
ing Operative System and the Java(TM) SE Runtime
Environment (build 1.8.0 77).

Due to confidentiality agreements with our indus-
trial partners, the data set and part of the implemen-
tation are limited. The CSV files used as input in the
statistical analysis as well as an open-source imple-
mentation of the LDA fitness function and the base-
lines are available here: https://bitbucket.org/

svitusj/tm-fitness

5. Results

5.1. Measurements report

Table 2 shows the mean values and standard de-
viations of recall, precision, and F-measure for our
LDA-guided approach, the LSI-guided baseline, and
Random Search. In addition, the distribution of the
obtained results is depicted in the box-plots that can
be seen in Figure 7.

On the first case study (models for code genera-
tion) the LDA fitness guides the approach to aver-
age values of 28.18%±14.17% recall, 26.68%±14.88%
precision, and 23.34%±10.82% F-measure, and the
LSI baseline guides the approach to average values
of 34.34%±15.13% recall, 33.06%±12.47% precision,
and 30.67%±10.82% F-measure.

On the second case study (models for interpreta-
tion), the LDA fitness guides the approach to aver-
age values of 65.51%±13.22% recall, 59.21%±13.97%
precision, and 60.63%±9.68% F-measure, and the
LSI baseline guides the approach to average values
of 45.72%±16.59% recall, 49.86%±14.63% precision,
and 44.30%±11.45% F-measure.
RQ1 answer: The results reveal that the baseline

outperforms LDA in the three performance measure-
ments in the first case study (models for code gen-
eration). In contrast, LDA outperforms the baseline
in the three performance measures in the second case
study (models for interpretation).

5.2. Statistical significance and effect size

The following paragraphs outline the statistical sig-
nificance and effect size of the obtained results.

13

https://bitbucket.org/svitusj/tm-fitness
https://bitbucket.org/svitusj/tm-fitness

●

●●

●

0
20

40
60

80
10

0

Case study 1: models for code generation

Recall Precision F−measure

LDA Baseline Random Search

●

0
20

40
60

80
10

0

Case study 2: models for interpretation

Recall Precision F−measure

Figure 7: Performance achieved for each case study

Regarding statistical significance, the p-values ob-
tained through the Quade test for our LDA-guided
approach, the LSI-guided baseline, and Random
Search in the first case study (models for code gen-
eration) are 1.472x10−12 for recall, 8.27x10−16 for
precision, and < 2.2−16 for the F-measure.

In the second case study (models for interpreta-
tion), the Quade test obtains p-values of < 2.2−16

for recall, precision, and the F-measure.

Regarding the effect size, Table 3 shows the ob-
tained values for the Â12 and Cliff’s delta mea-
surements associated with the three reported perfor-
mance measurements obtained by our LDA-guided
approach, the LSI-guided baseline, and Random
Search in both case studies.

In the first case study (models for code genera-
tion), the Â12 measurement obtains values of 0.3833
for recall, 0.3645 for precision, and 0.3103 for the F-

Table 2: Mean values and standard deviations for recall, pre-
cision, and the F-measure for each case study

Case study 1: models for code generation

Recall ± (σ) Precision ± (σ) F-measure ± (σ)

LDA 28.18 ± 14.17 26.68 ± 14.88 23.34 ± 10.82
Baseline 34.34 ± 15.13 33.06 ± 12.47 30.67 ± 10.82
Random Search 19.71 ± 13.30 16.84 ± 11.91 14.55 ± 9.78

Case study 2: models for interpretation

Recall ± (σ) Precision ± (σ) F-measure ± (σ)

LDA 65.51 ± 13.22 59.21 ± 13.97 60.63 ± 9.68
Baseline 45.72 ± 16.59 49.86 ± 14.63 44.30 ± 11.45
Random Search 24.46 ± 14.13 22.23 ± 13.80 19.53 ± 11.60

measure, implying that the baseline obtains better
values than our approach in 61.66% of the runs for
recall, 63.55% of the runs for precision, and 68.97%
of the runs for the F-measure. In addition, the Cliff’s
delta measurement indicates a small effect size for re-
call, a small effect size for precision, and a medium
effect size for the F-measure. When our approach
is compared against Random Search, the Â12 mea-
surement shows that our approach obtains better val-
ues than Random Search in all performance measure-
ments. Specifically, our approach obtains better val-
ues than Random Search in 66.96% of the runs for
recall, 69.45% of the runs for precision, and 73.68%
of the runs for the F-measure. The Cliff’s delta mea-
surement indicates a medium effect size in all per-
formance measurements. When the baseline is com-
pared to Random Search, the baseline obtains bet-
ter results in all performance measurements, and the
Cliff’s delta measurement indicates a large effect size.

In the second case study (models for code genera-
tion), the Â12 measurement obtains values of 0.8223
for recall, 0.6705 for precision, and 0.8610 for the F-
measure, implying that the LDA approach obtains
better values than the baseline in 82.23% of the
runs for recall, 67.05% of the runs for precision, and
86.10% of the runs for the F-measure. In addition,
the Cliff’s delta measurement indicates a large effect
size for recall, a medium effect size for precision, and
a large effect size for the F-measure. LDA also out-
performs Random Search, which shows a large effect
size according to the Cliff’s delta measurement. In
this case study, the baseline also outperforms Ran-

14

Table 3: Effect size measures for comparing recall, precision
and F-measure in the two case studies

Case study 1: models for code generation
LDA vs Baseline

Recall Precision F-measure

Â12 0.3833 0.3645 0.3103
Cliff’s Delta -0.2334 (small) -0.2710 (small) -0.3793 (medium)

LDA vs Random Search

Â12 0.6696 0.6945 0.7368
Cliff’s Delta 0.3391 (medium) 0.3889 (medium) 0.4736 (medium)

Baseline vs Random Search

Â12 0.7651 0.8232 0.8647
Cliff’s Delta 0.5302 (large) 0.6464 (large) 0.7294 (large)

Case study 2: models for interpretation
LDA vs Baseline

Recall Precision F-measure

Â12 0.8223 0.6705 0.8610
Cliff’s Delta 0.6446 (large) 0.3409 (medium) 0.7220 (large)

LDA vs Random Search

Â12 0.9858 0.9697 0.9960
Cliff’s Delta 0.9717 (large) 0.9394 (large) 0.9920 (large)

Baseline vs Random Search

Â12 0.8295 0.9093 0.9288
Cliff’s Delta 0.6590 (large) 0.8185 (large) 0.8576 (large)

dom Search by a large effect size.

RQ2 answer: Since the Quade test p-values are
smaller than the 0.05 statistical significance thresh-
old for all performance indicators in both case stud-
ies, we can state that there are significant differences
in performance among the LDA approach, the LSI
baseline, and Random Search when locating features
in the two kinds of software models from the case
studies under research.

In addition, from the effect size analysis, we can
conclude how much the performance is influenced by
using LDA compared to the baseline in the two kinds
of models. In the first case study, the baseline obtains
better results than the LDA approach in over 60%
of the runs for the three measurements, albeit the
effect size ranges from small to medium. On the other
hand, in the second case study, the LDA approach is
the one that obtains better results in the majority of
the runs, and the effect size ranges from medium to
large.

6. Discussion

In order to structure the discussion, we are going
to consider the four main limitations that have been
studied in the literature for the last 20 years of ap-
plication of LDA to code problems [25].

6.1. Data sparsity

Source code tends to suffer from sparsity of data.
In particular, the vocabulary in use for source code
text is limited. Therefore, approaches that deal
with source code often tune the parameters of LDA,
even more so than approaches that deal with nat-
ural language [7, 8]. From an analytical perspec-
tive, data sparsity raises major concerns about the
feasibility of using approaches such as LDA or LSI
to generate semantically coherent topics in source
code [50, 51, 52, 53].

The main difference between code and software
models is that the latter use terms that are closer to
the problem domain. Even though this is true both
for code generation models and interpreted models,
the results are significantly distinct. The lexicon in
use for code generation models is more limited than
that of models for interpretation. This is due to the
fact that the majority of features present terms that
do not have a correspondence with the terms that
appear in code generation models. These terms only
appear in the model-to-code transformation process.

We reviewed the model-to-code transformation
process and in most cases, we found that the model-
to-code transformation process increases the informa-
tion included in the models (around 70%). This co-
incides with the main idea of model-driven software
development. Models abstract from implementation
details and the model-to-code transformation process
adds those details. However, in the rest of the cases,
the engineers from CAF have embedded domain in-
formation in the model-to-code transformation pro-
cess. For example, when the concept compressor ap-
pears in the model, the model-to-code transforma-
tion process has hardcoded the code that generates
the state machine to regulate the compressor. In a
way, this is an abuse of the model-to-code transfor-
mation process. This is like programming in imper-

15

ative despite using an object-oriented programming
language.

When we asked the engineers why they do it this
way, they stated that is because that functionality
has not changed so far but they would include the
information in the models (instead of hardcoding
the functionality in the model-to-code transforma-
tion process) if the functionality changes. This phe-
nomenon affects more the topics than the similarity
of terms. This is because some topics change but
there are still some terms in common. We checked
that this phenomenon does not occur in models for
interpretation. If we omit the cases in which this phe-
nomenon occurs in the results of the first case study
(models for code generation), the LDA fitness guide
the approach to average values of 40.61% in recall,
37.94% in precision and 36.94% in F-measure. The
Quade test obtains p-values smaller than the 0.05
statistical significance threshold for all performance
indicators, so we can state that there are statisti-
cal differences in performance. The Â12 measure-
ment when the LDA-guided approach is compared
with the LSI-guided baseline obtains values of 0.6503
for recall, 0.6252 for precision, and 0.6939 for the F-
measure, implying that the LDA approach obtains
better values than baseline when software models for
generation are used.

These results lead us to recommend that the
model-to-code transformation process should be
checked in other code generation contexts. If the en-
gineers of our industrial partner embedded domain
information in the model-to-code transformation pro-
cess, this could happen in other contexts.

6.2. Implementation complexity

The mathematical structure of generative topic
modeling techniques is not intuitive or easy to grasp
and understand [1]. The added theoretical complex-
ity is the main reason why topic modeling is often
used as a black box with little to no customization
in order to deal with special corpora coming from
software systems [51, 50]. In our work, we have also
used topic modeling as a black box. We have not in-
troduced any modification so as to take into account
the particularities of the software models in use.

6.3. Calibration

Most of the topic modeling techniques from the
literature require an exhaustive calibration process.
During this process, several parameters are calibrated
until the desired output is reached [1, 54, 55]. Such
parameters (for instance, α, β, K, and the number
of iterations) often need to be simultaneously cali-
brated until the best configuration settings for the
task under research are identified. Often, researchers
overcome the problem by relying on heuristics stem-
ming from experimental settings [56, 57, 50]. Other
times, the topic modeling algorithm is run multiple
times, and then the average (or best) performance of
the runs is taken as a result. However, such heuris-
tics do not necessarily guarantee the success of the
techniques in all experimental settings. In addition,
there is no objective way to determine the optimal
amount of algorithm runs, nor an objective criterion
for choosing the best model. Even with the support
of automated calibration strategies [58, 24, 59], the
calibration process is still computationally expensive
and not guaranteed to find an optimal solution.

Regarding the calibration of our work, we have
used calibration guidelines originally designed for
dealing with code software artifacts. Even though
it is not possible to ensure that the calibration is op-
timal, the calibration has yielded better results than
those reached without calibration. This issue sug-
gests that the efforts in calibration with code artifacts
can be transferred to calibration for model artifacts.

6.4. Stability

Topic modeling techniques rely on intractable
stochastic inference strategies in order to generate
topics. Hence, it cannot be guaranteed that different
runs of topic modeling techniques will generate simi-
lar distributions of topics [60, 1]. This issue raises ma-
jor practicality concerns, since solutions might vary
depending on the starting inferred conditions.

A major difference between FL approaches for code
and FL approaches for software models is the granu-
larity of the artifacts: regarding code, FL approaches
look for the most relevant method for the implemen-
tation of the feature, and in the case of software mod-
els, FL approaches look for the most relevant model

16

fragment for the implementation of the feature. The
sheer amount of potential solution model fragments
leads to the usage of evolutionary algorithms as a
means of efficiently exploring the large search space.
With each new iteration of the evolutionary algo-
rithm, a new run of LDA classifies the new model
fragment population. The evaluation of a same model
fragment by LDA in the context of different model
fragment populations mitigates the stochastic infer-
ence of LDA. In any case, more experiments in this
line of research are required to study the stability of
the technique.

6.5. Other issues

Outside of the prior categories, the analysis of the
results has led to the identification of other issues,
common to FL approaches and scenarios, that are
negatively affecting the results of the approach and
baseline: vocabulary mismatch and tacit knowledge.

Vocabulary mismatch happens when the language
in use in the feature descriptions and the software
artifacts is not strictly the same, or in other words,
when different terms are used to describe the same
actions and components in the natural language of
the descriptions and in the language in use in the
models. This issue happens due to the fact that the
artifacts are created with different purposes in mind,
and when the artifacts are created by different soft-
ware engineers. For example, both circuit breaker
and HSBC refer to an on-off switch.

Tacit knowledge happens when the software en-
gineers make assumptions about the domain knowl-
edge of other software engineers, based on their own
knowledge and expertise. Hence, when feature de-
scriptions are written, parts of the domain knowledge
are assumed by the domain experts, and not por-
trayed in the writing of the descriptions, but nonethe-
less used to build the final software artifacts. This
leads to yet another textual mismatch between the
descriptions, which contain only part of the domain
knowledge, and the models, which contain the en-
tirety of the domain knowledge. For example, soft-
ware engineers use the term doors in feature descrip-
tions, but they do not clarify whether the doors be-
long to one side or another of the train, or if the doors
refer to cabin doors, car doors, or both.

6.6. Focus group interview
To obtain qualitative data from practitioners, we

ran a focus group with four engineers from the part-
ner companies (two for each case study). The engi-
neers from the first case study have spent 7 and 8
years developing software. The engineers from the
second case study have spent 4 and 15 years develop-
ing software. The aim of the questions was to acquire
feedback from the engineers about the results that
were obtained with topic modeling (LDA) and the
baseline (LSI). Specifically, the focus group was com-
posed of the following open questions: (1) How do
you feel about the results of each approach? (2) What
challenges did you have in understanding the results
of each approach? and (3) Why would you choose the
results of one approach over the results of the other
approach?

All engineers stated that they preferred the results
of topic modeling rather than the results of LSI, indi-
cating that topic modeling seemed to understand the
context better than LSI. As an example, feature de-
scriptions and model fragments with the terms Pan-
tograph and Circuit Breaker in some cases refer to
model elements that are organized for the ignition
system of the train, whereas in other cases these same
elements are organized for emergency systems of the
train, such as fire control. In all cases, the majority of
terms are Pantograph and Circuit Breaker, whereas
the terms that are related to the ignition system or
the emergency system are the minority. While LSI
would be influenced by the majority of the terms
without distinguishing that the terms are from dif-
ferent contexts, topic modeling can identify differ-
ent topics for the ignition system and the emergency
system. Thus, topic modeling is able to distinguish
model fragments and feature descriptions that belong
to each of these two contexts.

The other aspect that the engineers highlighted as
an advantage of topic modeling over LSI is that, in
LSI, it is possible to count terms but not to group
them in topics as topic modeling does. Not only en-
gineers found this grouping in topics useful, but in
addition, they recognized that some of the topics un-
covered by topic modeling challenged their intuition:
some of the topics identified by topic modeling would
not have been naturally inferred or proposed by the

17

engineers, but were recognized by the engineers as
relevant topics for the case studies.

7. Threats to validity

In this section, we use the classification of threats
to validity suggested by De Oliveira et al. [61] to ac-
knowledge the threats to validity of our work.
Conclusion validity: We considered random

variation with 30 independent runs [37] for each fea-
ture description in our approach and the baseline in
the two case studies. We used measurements (recall,
precision and F-measure) that are widely accepted
in the software engineering research community [37]
to analyze the obtained confusion matrix. We also
used statistical and effect size measurements (Quade
test, Â12, and Cliff’s delta) following accepted guide-
lines [37].
Internal Validity: We followed the same evalua-

tion process for our approach and the baseline in the
two case studies. We addressed the poor parameter
settings threat using values from the literature in our
approach and the baseline. Default values are good
enough to measure the performance of location tech-
niques as suggested by Arcuri and Fraser [37]. With
regard to the time needed to produce a solution (stop
condition), we used 80 seconds since it was the time
needed to converge in the two industrial case stud-
ies. Nevertheless, we have not yet researched how
this time scales in other industrial case studies with
a larger search space size or a larger solution size.
Moreover, we addressed the threat related to the lack
of real problem instances by applying the evaluation
of this paper to two industrial case studies.
Construct validity: We performed our evalua-

tion around three widespread measurements (recall,
precision, and F-measure) in the software engineer-
ing research community [37] to address the identified
threat of the lack of assessing the validity of cost mea-
sures. Moreover, we performed a fair comparison be-
tween our approach and the baseline in the two case
studies.
External Validity: We evaluated our approach in

two real-world industrial case studies to mitigate the
threat of the lack of a clear object selection strategy.
With regard to the extent to which it is possible to

generalize the results, the results depend on the qual-
ity of the queries as occurs in other works [23, 28].
Poor feature descriptions lead to the selection of irrel-
evant model fragments. It is also worth noting that
the domain-specific language used for the model el-
ements and feature descriptions must use the same
terminology to rank relevant model fragments with
LDA and LSI. To narrow the gap between the model
elements and the feature descriptions, different NLP
techniques (i.e., tokenizers, stemming, and POS tag-
ging techniques) are applied. Also with regard to the
mitigation of the generalization threat, our approach
has been evaluated in two model-based case studies
from two different domains. Our approach can be ap-
plied to any model that conforms to MOF (the OMG
metalanguage for defining modeling languages), and
the text elements that are associated with the mod-
els are extracted automatically by using the reflective
methods provided by the Eclipse Modeling Frame-
work. The requisites to apply our approach are that
the set of models must conform to MOF, and the
feature description must be provided in natural lan-
guage. Nevertheless, our approach should be repli-
cated with case studies from other domains before
assuring its generalization.

8. Related work

Regarding Feature Location, some works [62,
63] propose automated approaches for the identifica-
tion of features within a set of existing software vari-
ants. The features are then used to generate Software
Product Lines (SPLs). Mart́ınez et. al., [63] evaluate
their approach through two different real-world sys-
tems, comparing the number of model elements of the
original system with the model elements of the blocks
that can be identified in the generated SPL. In [62],
Assunçao et. al. present an automated approach for
SPL generation based on an evolutionary algorithm
that leverages existing UML class diagrams and a list
of well defined features to generate a Feature Model.
The authors of [62] evaluate their approach through
10 different case study applications. These studies
use UML models as input, and are focused on gener-
ating Feature Models for SPLs. In our work, we do
not aim to generate Feature Models for SPLs, but we

18

rather put the focus of our Feature Location efforts
in locating model fragments that implement features
(which description is provided) by using LDA as a
fitness function for an evolutionary algorithm. In ad-
dition, our work is built on two different kinds of soft-
ware models (models for code generation and models
for interpretation) distinct from UML.

Other of our previous works deal with Feature Lo-
cation in industrial software models. Some of these
works generate and rank model fragments that are
relevant for the location of a feature, guiding the pro-
cess through the usage of different approaches such as
clustering [32] and empirical learning [33], or through
the evaluation of a combination of similitude, under-
standability, and timing measurements [15]. Another
work [16] explores different search strategies with a
fixed fitness function based on similitude. The au-
thors of [64] propose expanding the available informa-
tion for the Feature Location task through the usage
of models at run-time, and the authors of [21] intro-
duce collaboration in Feature Location for complex
location tasks that exceed the knowledge of individ-
ual software engineers. In [65], the Feature Location
process is guided through the analysis of the sustain-
ability of long-living software systems. Finally, the
study in [36] provides measurements to describe the
model fragments in use for Feature Location in soft-
ware models. While these studies deal with Feature
Location in industrial models, they do not study Fea-
ture Location for different kinds of software models
(models for code generation and models for interpre-
tation) as this paper does. In addition, none of these
works study the application of LDA as a fitness func-
tion to guide the evolutionary algorithm.
Regarding Topic Modeling, it soon became

popular within the software engineering commu-
nity [2, 66]. A recent survey [2] investigated previ-
ous works that are related to topic modeling based
on LDA to perform source code analysis. Lukins et
al. [4] present a Feature Location technique that uses
LDA to identify methods affected by a bug. In [67],
LDA was used to extract topics from source code and
to perform visualization of software similarity. There
has also been research on the appropriate configura-
tion of LDA in source code. Grant et al. [57] were con-
cerned about K (the number of topics). Panichella

et al. [24] proposed LDA-GA, a genetic algorithm ap-
proach that searches for the appropriate LDA hyper-
parameters for software engineering specific tasks.
Biggers et al [23] studied different configurations of
LDA to retrieve features from open source Java sys-
tems.

Although topic models based on LDA have an im-
portant role within the software engineering commu-
nity, previous works have been focused on source code
as the main software engineering artifact. Unlike
previous works, we study the use of LDA in a dif-
ferent software engineering artifact, software models.
Specifically, we study the use of LDA for feature lo-
cation in both software models for generation and
software models for interpretation. In addition, we
do not research the configuration of LDA, but rather
use it as a means of guiding the evolutionary algo-
rithm in our approach.

9. Conclusion and future work

LDA has not been studied in the literature when
software models are used as the main software en-
gineering artifact even though models are a popu-
lar asset in software development. In this paper, we
have filled this research gap by proposing an approach
that uses LDA to guide an evolutionary algorithm
that locates features in two kinds of software mod-
els (for code generation and for interpretation). The
evaluation has been performed in two real-world in-
dustrial case studies. Our results have shown that
LDA significantly outperforms the LSI-based base-
line when software models for interpretation are used.
In contrast, LDA does not outperform the baseline
when software models for code generation are used.
We have found that the model-to-code transforma-
tion process increases the information included in the
models. This phenomenon affects the topics more
(LDA) than the similarity of terms (LSI).

We have also discussed our results considering
the following aspects: data sparsity, implementation
complexity, calibration, and stability. Our findings
about transferring calibration approaches from code
to models can help other researchers to not dismiss
those approaches even if they were originally designed

19

with code artifacts in mind. Our findings about com-
pensating instability with the evolutionary algorithm
can also help researchers working in both models and
code. Instability is an open issue when LDA is ap-
plied to code. Finally, our findings on checking the
model-to-code transformation process lead us to rec-
ommend that the model-to-code transformation pro-
cess should be checked in other code generation con-
texts and domains when LDA and models for code
generation are used.

It is important to highlight that the models taken
as input in this work are used in code generation and
in model interpretation contexts. For this reason,
these models are richer in terms than other kinds of
models such as sketches for analysis or models at run-
time (which are partially connected to the run-time
implementation). We cannot generalize the outcomes
of LDA when meeting these other types of models.
Hence, as future work, we also plan on researching
these other types of models.

Acknowledgements

This work has been partially supported by the Min-
istry of Economy and Competitiveness (MINECO)
through the Spanish National R+D+i Plan and
ERDF funds under the Project ALPS (RTI2018-
096411-B-I00).

References

[1] D. M. Blei, A. Y. Ng, M. I. Jordan, Latent
dirichlet allocation, J. Mach. Learn. Res. 3
(2003) 993–1022.

[2] H. Jelodar, Y. Wang, C. Yuan, X. Feng, La-
tent dirichlet allocation (LDA) and topic model-
ing: models, applications, a survey, Multimedia
Tools and Applications 78 (2019) 15169–15211.

[3] B. Dit, M. Revelle, M. Gethers, D. Poshyvanyk,
Feature location in source code: a taxonomy and
survey, Journal of Software: Evolution and Pro-
cess 25 (2013) 53–95.

[4] S. K. Lukins, N. A. Kraft, L. H. Etzkorn, Source
code retrieval for bug localization using latent
dirichlet allocation., in: A. E. Hassan, A. Zaid-
man, M. D. Penta (Eds.), 15th Working Confer-
ence on Reverse Engineering, IEEE Computer
Society, 2008, pp. 155–164.

[5] A. Marcus, A. Sergeyev, V. Rajlich, J. I. Maletic,
An information retrieval approach to concept lo-
cation in source code, in: Proceedings of the
11th Working Conference on Reverse Engineer-
ing, WCRE ’04, IEEE Computer Society, Wash-
ington, DC, USA, 2004, pp. 214–223.

[6] H. U. Asuncion, A. U. Asuncion, R. N. Tay-
lor, Software traceability with topic model-
ing, in: Proceedings of the 32nd ACM/IEEE
International Conference on Software Engi-
neering - Volume 1, ICSE ’10, Association
for Computing Machinery, New York, NY,
USA, 2010, p. 95–104. URL: https://doi.

org/10.1145/1806799.1806817. doi:10.1145/
1806799.1806817.

[7] M. Gabel, Z. Su, A study of the
uniqueness of source code, in: Proceed-
ings of the Eighteenth ACM SIGSOFT In-
ternational Symposium on Foundations of
Software Engineering, FSE ’10, Association
for Computing Machinery, New York, NY,
USA, 2010, p. 147–156. URL: https://doi.

org/10.1145/1882291.1882315. doi:10.1145/
1882291.1882315.

[8] A. Hindle, E. T. Barr, Z. Su, M. Gabel, P. De-
vanbu, On the naturalness of software, in:
Proceedings of the 34th International Confer-
ence on Software Engineering, ICSE ’12, IEEE
Press, Piscataway, NJ, USA, 2012, pp. 837–
847. URL: http://dl.acm.org/citation.cfm?
id=2337223.2337322.

[9] M. Brambilla, J. Cabot, M. Wimmer, Model-
driven software engineering in practice, Synthe-
sis Lectures on Software Engineering 1 (2012)
1–182.

20

https://doi.org/10.1145/1806799.1806817
https://doi.org/10.1145/1806799.1806817
http://dx.doi.org/10.1145/1806799.1806817
http://dx.doi.org/10.1145/1806799.1806817
https://doi.org/10.1145/1882291.1882315
https://doi.org/10.1145/1882291.1882315
http://dx.doi.org/10.1145/1882291.1882315
http://dx.doi.org/10.1145/1882291.1882315
http://dl.acm.org/citation.cfm?id=2337223.2337322
http://dl.acm.org/citation.cfm?id=2337223.2337322

[10] D. D. Ruscio], R. F. Paige, A. Pierantonio,
Guest editorial to the special issue on success
stories in model driven engineering, Science of
Computer Programming 89 (2014) 69 – 70. Spe-
cial issue on Success Stories in Model Driven En-
gineering.

[11] J. Krüger, T. Berger, T. Leich, Features and how
to find them: A survey of manual feature loca-
tion, in: Software Engineering for Variability In-
tensive Systems - Foundations and Applications,
Taylor & Francis Group, 2019, pp. 153–172.

[12] D. Poshyvanyk, Y.-G. Gueheneuc, A. Marcus,
G. Antoniol, V. Rajlich, Feature location using
probabilistic ranking of methods based on exe-
cution scenarios and information retrieval, IEEE
Transactions on Software Engineering 33 (2007)
420–432.

[13] J. Wang, X. Peng, Z. Xing, W. Zhao, An ex-
ploratory study of feature location process: Dis-
tinct phases, recurring patterns, and elementary
actions, in: Proceedings of the 27th Conference
on Software Maintenance, IEEE, 2011, pp. 213–
222. doi:10.1109/ICSM.2011.6080788.

[14] T. K. Landauer, P. W. Foltz, D. Laham, An in-
troduction to latent semantic analysis, Discourse
processes 25 (1998) 259–284.

[15] F. Pérez, R. Lapeña, J. Font, C. Cetina, Frag-
ment retrieval on models for model maintenance:
Applying a multi-objective perspective to an in-
dustrial case study, Information & Software
Technology 103 (2018) 188–201.

[16] J. Font, L. Arcega, Ø. Haugen, C. Cetina,
Achieving feature location in families of mod-
els through the use of search-based software en-
gineering, IEEE Transactions on Evolutionary
Computation PP (2017) 1–1.

[17] A. Vargha, H. D. Delaney, A critique and im-
provement of the cl common language effect size
statistics of mcgraw and wong, Journal of Edu-
cational and Behavioral Statistics 25 (2000) 101–
132.

[18] N. Cliff, Dominance statistics: Ordinal analy-
ses to answer ordinal questions., Psychological
Bulletin 114 (1993) 494.

[19] N. Cliff, Ordinal methods for behavioral data
analysis. (1996).

[20] A. Arcuri, L. Briand, A hitchhiker’s guide to sta-
tistical tests for assessing randomized algorithms
in software engineering, Softw. Test. Verif. Re-
liab. 24 (2014) 219–250.

[21] F. Pérez, J. Font, L. Arcega, C. Cetina, Collab-
orative feature location in models through au-
tomatic query expansion, Automated Software
Engineering 26 (2019) 161–202.

[22] Jgibblda. a java implementation of latent dirich-
let allocation (LDA) using gibbs sampling for
parameter estimation and inference, http://

jgibblda.sourceforge.net, 2020.

[23] L. R. Biggers, C. Bocovich, R. Capshaw, B. P.
Eddy, L. H. Etzkorn, N. A. Kraft, Configuring
latent dirichlet allocation based feature location,
Empirical Softw. Engg. 19 (2014) 465–500.

[24] A. Panichella, B. Dit, R. Oliveto, M. D. Penta,
D. Poshyvanyk, A. D. Lucia, How to effectively
use topic models for software engineering tasks?
an approach based on genetic algorithms, in:
2013 35th International Conference on Software
Engineering (ICSE), 2013, pp. 522–531.

[25] A. Mahmoud, G. Bradshaw, Semantic topic
models for source code analysis, Empirical
Softw. Engg. 22 (2017) 1965–2000.

[26] A. Hulth, Improved automatic keyword extrac-
tion given more linguistic knowledge, in: Pro-
ceedings of the 2003 conference on Empirical
methods in natural language processing, 2003,
pp. 216–223.

[27] R. Lapeña, J. Font, O. Pastor, C. Cetina, Ana-
lyzing the impact of natural language processing
over feature location in models, in: GPCE 2017
- 16th International Conference on Generative
Programming: Concepts & Experience, 2017.

21

http://dx.doi.org/10.1109/ICSM.2011.6080788
http://jgibblda.sourceforge.net
http://jgibblda.sourceforge.net

[28] B. Sisman, A. C. Kak, Assisting code search
with automatic query reformulation for bug lo-
calization, in: Proceedings of the 10th Work-
ing Conference on Mining Software Reposito-
ries, MSR, 2013, pp. 309–318. doi:10.1109/MSR.
2013.6624044.

[29] E. Hill, L. Pollock, K. Vijay-Shanker, Automati-
cally capturing source code context of nl-queries
for software maintenance and reuse, in: Pro-
ceedings of the 31st International Conference on
Software Engineering, ICSE ’09, 2009, pp. 232–
242. doi:10.1109/ICSE.2009.5070524.

[30] M. Affenzeller, S. M. Winkler, S. Wagner, A. Be-
ham, Genetic Algorithms and Genetic Program-
ming - Modern Concepts and Practical Applica-
tions, CRC Press, 2009.

[31] J. Font, L. Arcega, Ø. Haugen, C. Cetina, Fea-
ture Location in Model-Based Software Prod-
uct Lines Through a Genetic Algorithm, in:
Proceedings of the 15th International Confer-
ence on Software Reuse: Bridging with Social-
Awareness, 2016.

[32] J. Font, L. Arcega, Ø. Haugen, C. Cetina, Fea-
ture location in models through a genetic al-
gorithm driven by information retrieval tech-
niques, in: Proceedings of the ACM/IEEE
19th International Conference on Model Driven
Engineering Languages and Systems, MODELS
’16, ACM, 2016, pp. 272–282. doi:10.1145/
2976767.2976789.

[33] A. C. Marcén, J. Font, O. Pastor, C. Cetina,
Towards feature location in models through a
learning to rank approach, in: Proceedings
of the 21st International Systems and Software
Product Line Conference - Volume B, SPLC ’17,
2017, p. 57–64. doi:10.1145/3109729.3109734.

[34] H. Störrle, On the Impact of Layout Quality
to Understanding UML Diagrams: Size Matters,
17th International Conference on Model Driven
Engineering Languages and Systems (MOD-
ELS) (2014).

[35] T. Zimmermann, P. Weisgerber, S. Diehl,
A. Zeller, Mining Version Histories to Guide
Software Changes, in: Proceedings of the 26th
International Conference on Software Engineer-
ing, 2004.

[36] M. Ballaŕın, A. C. Marcén, V. Pelechano,
C. Cetina, Measures to report the location
problem of model fragment location, in: Pro-
ceedings of the 21th ACM/IEEE International
Conference on Model Driven Engineering Lan-
guages and Systems, MODELS 2018, Copen-
hagen, Denmark, October 14-19, 2018, 2018, pp.
189–199. doi:10.1145/3239372.3239397.

[37] A. Arcuri, G. Fraser, Parameter tuning or
default values? an empirical investigation in
search-based software engineering, Empirical
Software Engineering 18 (2013) 594–623.

[38] G. Salton, M. J. McGill, Introduction to Modern
Information Retrieval, McGraw-Hill, Inc., New
York, NY, USA, 1986.

[39] D. Falessi, G. Cantone, G. Canfora, Empirical
principles and an industrial case study in retriev-
ing equivalent requirements via natural language
processing techniques, IEEE Transactions on
Software Engineering 39 (2011) 18–44.

[40] S. Garćıa, A. Fernández, J. Luengo, F. Herrera,
Advanced nonparametric tests for multiple com-
parisons in the design of experiments in compu-
tational intelligence and data mining: Experi-
mental analysis of power, Information Sciences
180 (2010) 2044–2064.

[41] W. Conover, Practical nonparametric statistics,
Wiley series in probability and statistics, 3. ed
ed., Wiley, New York, NY [u.a.], 1999.

[42] J. Romano, J. D. Kromrey, J. Coraggio,
J. Skowronek, Appropriate statistics for ordi-
nal level data: Should we really be using t-test
and cohen’sd for evaluating group differences on
the nsse and other surveys, in: annual meeting
of the Florida Association of Institutional Re-
search, 2006, pp. 1–33.

22

http://dx.doi.org/10.1109/MSR.2013.6624044
http://dx.doi.org/10.1109/MSR.2013.6624044
http://dx.doi.org/10.1109/ICSE.2009.5070524
http://dx.doi.org/10.1145/2976767.2976789
http://dx.doi.org/10.1145/2976767.2976789
http://dx.doi.org/10.1145/3109729.3109734
http://dx.doi.org/10.1145/3239372.3239397

[43] A. S. Sayyad, J. Ingram, T. Menzies, H. Ammar,
Scalable product line configuration: A straw to
break the camel’s back, in: Automated Soft-
ware Engineering (ASE), 2013 IEEE/ACM 28th
International Conference on, 2013, pp. 465–474.
doi:10.1109/ASE.2013.6693104.

[44] C. Carpineto, G. Romano, A survey of auto-
matic query expansion in information retrieval,
ACM Comput. Surv. 44 (2012) 1:1–1:50.

[45] D. Steinberg, F. Budinsky, M. Paternostro,
E. Merks, EMF: Eclipse Modeling Framework
2.0, 2nd ed., Addison-Wesley Professional, 2009.

[46] Apache opennlp: Toolkit for the processing
of natural language text, https://opennlp.

apache.org/, 2020.

[47] English (porter2) stemming algorithm, http:

//snowball.tartarus.org/algorithms/

english/stemmer.html, 2020.

[48] Efficient java matrix library, http://ejml.

org/, 2020.

[49] D. Dyer, The watchmaker framework for
evolutionary computation (evolutionary/genetic
algorithms for java), http://watchmaker.

uncommons.org/, 2016.

[50] A. Abadi, M. Nisenson, Y. Simionovici, A trace-
ability technique for specifications, in: Pro-
ceedings of the 2008 The 16th IEEE Interna-
tional Conference on Program Comprehension,
ICPC ’08, IEEE Computer Society, USA, 2008,
p. 103–112. URL: https://doi.org/10.1109/
ICPC.2008.30. doi:10.1109/ICPC.2008.30.

[51] A. D. Lucia, M. D. Penta, R. Oliveto,
A. Panichella, S. Panichella, Using IR meth-
ods for labeling source code artifacts: Is it
worthwhile?, in: D. Beyer, A. van Deursen,
M. W. Godfrey (Eds.), IEEE 20th Interna-
tional Conference on Program Comprehension,
ICPC 2012, Passau, Germany, June 11-13, 2012,
IEEE Computer Society, 2012, pp. 193–202.
URL: https://doi.org/10.1109/ICPC.2012.

6240488. doi:10.1109/ICPC.2012.6240488.

[52] G. Maskeri, S. Sarkar, K. Heafield, Mining busi-
ness topics in source code using latent dirichlet
allocation, in: Proceedings of the 1st India Soft-
ware Engineering Conference, ISEC ’08, Associ-
ation for Computing Machinery, New York, NY,
USA, 2008, p. 113–120. URL: https://doi.

org/10.1145/1342211.1342234. doi:10.1145/
1342211.1342234.

[53] A. Mahmoud, N. Niu, On the role of semantics
in automated requirements tracing, Requir. Eng.
(2015) 281–300.

[54] A. Kuhn, S. Ducasse, T. Gı́rba, Inf. Softw. Tech-
nol. 49 (2007) 230–243.

[55] T. Hofmann, Probabilistic latent semantic in-
dexing, in: Proceedings of the 22nd Annual
International ACM SIGIR Conference on Re-
search and Development in Information Re-
trieval, SIGIR ’99, Association for Comput-
ing Machinery, New York, NY, USA, 1999,
p. 50–57. URL: https://doi.org/10.1145/

312624.312649. doi:10.1145/312624.312649.

[56] D. Andrzejewski, A. Mulhern, B. Liblit, X. Zhu,
Statistical debugging using latent topic models,
in: J. N. Kok, J. Koronacki, R. L. d. Mantaras,
S. Matwin, D. Mladenič, A. Skowron (Eds.), Ma-
chine Learning: ECML 2007, Springer Berlin
Heidelberg, 2007, pp. 6–17.

[57] S. Grant, J. R. Cordy, Estimating the op-
timal number of latent concepts in source
code analysis, in: Proceedings of the 2010
10th IEEE Working Conference on Source
Code Analysis and Manipulation, SCAM ’10,
IEEE Computer Society, USA, 2010, p. 65–74.
URL: https://doi.org/10.1109/SCAM.2010.

22. doi:10.1109/SCAM.2010.22.

[58] S. Lohar, S. Amornborvornwong, A. Zisman,
J. Cleland-Huang, Improving trace accuracy
through data-driven configuration and compo-
sition of tracing features, in: Proceedings of
the 2013 9th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2013, Associ-
ation for Computing Machinery, New York, NY,

23

http://dx.doi.org/10.1109/ASE.2013.6693104
https://opennlp.apache.org/
https://opennlp.apache.org/
http://snowball.tartarus.org/algorithms/english/stemmer.html
http://snowball.tartarus.org/algorithms/english/stemmer.html
http://snowball.tartarus.org/algorithms/english/stemmer.html
http://ejml.org/
http://ejml.org/
http://watchmaker.uncommons.org/
http://watchmaker.uncommons.org/
https://doi.org/10.1109/ICPC.2008.30
https://doi.org/10.1109/ICPC.2008.30
http://dx.doi.org/10.1109/ICPC.2008.30
https://doi.org/10.1109/ICPC.2012.6240488
https://doi.org/10.1109/ICPC.2012.6240488
http://dx.doi.org/10.1109/ICPC.2012.6240488
https://doi.org/10.1145/1342211.1342234
https://doi.org/10.1145/1342211.1342234
http://dx.doi.org/10.1145/1342211.1342234
http://dx.doi.org/10.1145/1342211.1342234
https://doi.org/10.1145/312624.312649
https://doi.org/10.1145/312624.312649
http://dx.doi.org/10.1145/312624.312649
https://doi.org/10.1109/SCAM.2010.22
https://doi.org/10.1109/SCAM.2010.22
http://dx.doi.org/10.1109/SCAM.2010.22

USA, 2013, p. 378–388. URL: https://doi.

org/10.1145/2491411.2491432. doi:10.1145/
2491411.2491432.

[59] A. Agrawal, W. Fu, T. Menzies, What is wrong
with topic modeling? and how to fix it using
search-based software engineering, Information
and Software Technology 98 (2018) 74 – 88.

[60] H. M. Wallach, D. M. Mimno, A. McCallum, Re-
thinking LDA: Why priors matter., in: Y. Ben-
gio, D. Schuurmans, J. D. Lafferty, C. K. I.
Williams, A. Culotta (Eds.), Advances in Neural
Information Processing Systems 22 (NIPS 2009),
Curran Associates, Inc., 2009, pp. 1973–1981.

[61] M. de Oliveira Barros, A. C. D. Neto, Threats
to Validity in Search-based Software Engineering
Empirical Studies, Technical Report 0006/2011,
2011.

[62] W. K. Assunção, S. R. Vergilio, R. E. Lopez-
Herrejon, Automatic extraction of product line
architecture and feature models from uml class
diagram variants, Information and Software
Technology 117 (2020) 106198.

[63] J. Martinez, T. Ziadi, T. F. Bissyandé, J. Klein,
Y. L. Traon, Automating the extraction of
model-based software product lines from model
variants (t), in: Automated Software Engineer-
ing (ASE), 2015 30th IEEE/ACM International
Conference on, 2015, pp. 396–406.

[64] L. Arcega, J. Font, Ø. Haugen, C. Cetina,
Leveraging models at run-time to retrieve in-
formation for feature location, in: Proceedings
of the 10th International Workshop on Mod-
els@run.time co-located with the 18th Interna-
tional Conference on Model Driven Engineering
Languages and Systems (MoDELS 2015), Ot-
tawa, Canada, September 29, 2015, 2015, pp.
51–60.

[65] C. Cetina, J. Font, L. Arcega, F. Pérez, Im-
proving feature location in long-living model-
based product families designed with sustain-
ability goals, Journal of Systems and Software
134 (2017) 261–278.

[66] J. C. Campbell, A. Hindle, E. Stroulia,
Chapter 6 - latent dirichlet allocation: Ex-
tracting topics from software engineering data,
in: C. Bird, T. Menzies, T. Zimmermann
(Eds.), The Art and Science of Analyzing
Software Data, Morgan Kaufmann, Boston,
2015, pp. 139 – 159. URL: http://www.

sciencedirect.com/science/article/pii/

B9780124115194000069. doi:https://doi.
org/10.1016/B978-0-12-411519-4.00006-9.

[67] M. Gethers, D. Poshyvanyk, Using relational
topic models to capture coupling among classes
in object-oriented software systems, in: Pro-
ceedings of the 2010 IEEE International Con-
ference on Software Maintenance, ICSM ’10,
IEEE Computer Society, USA, 2010, p. 1–10.
URL: https://doi.org/10.1109/ICSM.2010.

5609687. doi:10.1109/ICSM.2010.5609687.

24

https://doi.org/10.1145/2491411.2491432
https://doi.org/10.1145/2491411.2491432
http://dx.doi.org/10.1145/2491411.2491432
http://dx.doi.org/10.1145/2491411.2491432
http://www.sciencedirect.com/science/article/pii/B9780124115194000069
http://www.sciencedirect.com/science/article/pii/B9780124115194000069
http://www.sciencedirect.com/science/article/pii/B9780124115194000069
http://dx.doi.org/https://doi.org/10.1016/B978-0-12-411519-4.00006-9
http://dx.doi.org/https://doi.org/10.1016/B978-0-12-411519-4.00006-9
https://doi.org/10.1109/ICSM.2010.5609687
https://doi.org/10.1109/ICSM.2010.5609687
http://dx.doi.org/10.1109/ICSM.2010.5609687

	Introduction
	Background
	Feature Location in software models
	LDA in a nutshell

	Our approach
	Text processing
	Model fragment initialization
	Fitness assessment (LDA)
	Genetic manipulation

	Evaluation
	Research questions
	Case studies
	Baseline
	Experimental setup
	Implementation

	Results
	Measurements report
	Statistical significance and effect size

	Discussion
	Data sparsity
	Implementation complexity
	Calibration
	Stability
	Other issues
	Focus group interview

	Threats to validity
	Related work
	Conclusion and future work

