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Abstract

Context: Maintenance activities cannot be completed without locating the set of software artifacts that
realize a particular feature of a software system. Manual Feature Location (FL) is widely used in industry,
but it becomes challenging (time-consuming and error prone) in large software repositories. To reduce manual
efforts, automated FL techniques have been proposed. Research efforts in FL tend to make comparisons
between automated FL techniques, ignoring manual FL techniques. Moreover, existing research puts the
focus on code, neglecting other artifacts such as models.
Objective: This paper aims to compare manual FL against automated FL in models to answer important

questions about performance, productivity, and satisfaction of both treatments.
Method: We run an experiment for comparing manual and automated FL on a set of 18 subjects

(5 experts and 13 non-experts) in the domain of our industrial partner, BSH, manufacturer of induction
hobs for more than 15 years. We measure performance (recall, precision, and F-measure), productivity
(ratio between F-measure and spent time), and satisfaction (perceived ease of use, perceived usefulness, and
intention to use) of both treatments, and perform statistical tests to assess whether the obtained differences
are significant.
Results: Regarding performance, manual FL significantly outperforms automated FL in precision and

F-measure (up to 27.79% and 19.05%, respectively), whereas automated FL significantly outperforms man-
ual FL in recall (up to 32.18%). Regarding productivity, manual FL obtains 3.43%/min, which improves
automated FL significantly. Finally, there are no significant differences in satisfaction for both treatments.
Conclusions: The findings of our work can be leveraged to advance research to improve the results of

manual and automated FL techniques. For instance, automated FL in industry faces issues such as low
discrimination capacity. In addition, the obtained satisfaction results have implications for the usage and
possible combination of manual, automated, and guided FL techniques.
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1. Introduction

Feature Location (FL) has been recognized as one
of the most common activities undertaken by soft-
ware developers [1]. During maintenance activities,
developers need to identify where and how a feature
(i.e., particular functionality) is realized in software
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artifacts in order to fix bugs, introduce new features,
and adapt or enhance existing features.

FL is considered as an important support activity
during development, management, and maintenance
of software, since it is helpful for a number of soft-
ware tasks such as feature coverage, software reuse,
program comprehension, or impact analysis. This
kind of tasks are considered as a good practice by
numerous major software standards such as CMMI
or ISO 15504 [2], and can be critical to the success of
a project [3], since they lead to increased maintain-
ability and reliability of complex software systems [4]
and decrease the expected defect rate in developed
software [5].

Furthermore, as reflected in a recent survey [6],
FL is gaining momentum in the research commu-
nity since it helps initiate Software Product Lines
(SPLs) from already existing software systems. SPLs
enable a systematic reuse of variants to tailor dif-
ferent products. Savings of $584 million in develop-
ment costs, a 2x-4x reduction in time to market, or
a reduction in maintenance costs of around 60% are
among the documented real-world examples of the
benefits of SPLs [7]. Hence, there is a need to adopt
SPLs in companies that deal with other complex soft-
ware systems such as automotive, cyber-physical and
robotics [8]. To adopt a SPL, the located features
are used to formalize the commonalities and vari-
abilities across the product family. To do the for-
malization, feature modeling [9] can be used. In
spite of the utility of FL, manual FL is a challeng-
ing activity in complex and large repositories of soft-
ware artifacts that have been developed over several
years by different developers [10, 2, 11]. In this con-
text, FL activities become time-consuming and error
prone [12, 13, 14, 15].

In order to reduce the effort of developers during
manual FL, researchers have presented several tech-
niques that provide automated assistance to locate
features. A compendium of the most well-known
techniques can be found within the survey by Ju-
lia Rubin and Marsha Chechik [16]. In the sur-
vey, the techniques are classified into static or dy-
namic techniques (depending on whether they in-
volve program execution information or not) and sub-
classified into plain or guided techniques (depending

on whether they produce an output automatically or
semi-automatically with user guidance). Most of the
techniques focus on FL in source code, and rely on In-
formation Retrieval (IR) techniques to locate the fea-
tures [1, 17, 18]. There are many IR techniques, but
most of the research efforts show better results when
applying Latent Semantic Indexing (LSI) [1, 19, 20].

Despite the importance of FL and the existence
of techniques for automated assistance, research ef-
forts tend to make comparisons between automated
techniques, without comparing them against manual
FL. In addition, automated techniques are focused
on code, neglecting other software artifacts such as
models (which have proved to increase efficiency and
effectiveness in software development [21]). Thus,
several important questions remain unanswered with
regard to the differences in performance, productiv-
ity, and satisfaction when the manual and automated
FL treatments are used to locate features in models.

To answer these questions, we conducted an ex-
periment to compare manual FL against automated
FL in models. Specifically, we recruited 18 subjects
(5 experts and 13 non-experts) in the domain of our
industrial partner, BSH, who has manufactured in-
duction hobs (under the Siemens and Bosch brands,
among others) for more than 15 years. For the man-
ual FL treatment, the subjects manually located the
model elements that realize a set of features using
the name of each feature and models as the search
space. For the automated FL treatment, we used an
algorithm that leverages LSI to obtain the model ele-
ments that realize a feature description, provided by
the subjects.

The experiment was conducted in terms of perfor-
mance (recall, precision, and F-measure), productiv-
ity (ratio between F-measure and spent time), and
satisfaction (perceived ease of use, perceived useful-
ness, and intention to use). Manual FL obtains aver-
age values of 44.42% recall, 42.36% precision, 41.49%
F-measure, 3.43%/min productivity, 3.42 Perceived
Ease of Use (PEOU), 3.47 Perceived Usefulness (PU),
and 3.22 Intention to Use (ITU). Automated FL ob-
tains average values of 76.60% recall, 14.57% pre-
cision, 22.44% F-measure, 1.21%/min productivity,
3.42 PEOU, 3.56 PU, and 3.33 ITU. After the ex-
periment, we analyzed the results of the manual and
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automated FL treatments by means of a statistical
analysis to find out whether significant differences ex-
ist between both. The analysis determines that the
differences in performance and productivity are sta-
tistically significant, while revealing that differences
in satisfaction are so minimal as to be of no practical
statistical significance.

The results of our work suggest that (1) neither do-
main experts nor domain non-experts find the perfect
solutions for the features, (2) manual FL outperforms
automated FL, and (3) satisfaction results are very
similar for both manual and automated FL. These
issues and their causes have a number of readings
and implications that can be leveraged to either im-
prove the results for manual and automated FL (by,
for instance, pairing software engineers or designing
complementary artefacts for automated approaches),
or to design further experiments that tackle novel re-
search questions that arise from this work. Overall,
the contributions of the paper can be summarized as
follows:

• We propose an experiment for comparing man-
ual and automated FL in models.

• We show that neither domain experts nor do-
main non-experts find the perfect solutions when
locating features.

• We show that the use of the automated FL yields
worse results than those that are manually ob-
tained. This is a novel point that our work un-
covers since research efforts have so far compared
assistance tools against assistance tools in order
to improve their results, instead of comparing
them against humans.

• Our analysis suggests how to advance research
on FL to lead to an improvement of the results
for assistance tools. In addition, the findings of
our work present implications for the usage and
possible combination of manual, automated, and
guided FL techniques.

The rest of the paper is structured as follows: Sec-
tion 2 provides the necessary background in FL in
models, manual FL, and automated FL. Section 3

describes the design of the experiment. Section 4
presents the results and their statistical analysis. Sec-
tion 5 discusses the outcomes of our work. Section 6
deals with the threats to the validity of our work.
Section 7 reviews the related work. Finally, Section 8
concludes the paper.

2. Background

2.1. Feature Location In Models

Feature Location (FL) is one of the most impor-
tant and common activities performed by developers
during software maintenance and evolution [22]. FL
is the process of finding the set of software artifacts
that realize a specific feature. FL can be performed
either manually or in an automated fashion. Man-
ual FL is a common practice but it can become error
prone and time-consuming [10, 23, 8, 12, 13, 14, 15],
so automated FL has received much attention dur-
ing recent years [6, 16, 22] to reduce the associated
manual efforts.

In addition, major players in the software engineer-
ing field foresee a broad adoption of model-driven
software development techniques. Model-driven soft-
ware development techniques improve the productiv-
ity and ensure the quality and performance of soft-
ware in novel and industrial scenarios that demand
more abstract approaches than mere coding [21]. To
that extent, recent research efforts have started shift-
ing the focus of attention towards model-based en-
gineering [24], model-based SPL adoption [25], and
feature-oriented engineering [26, 27]. These works
propose approaches related to features and auto-
mated FL in the context of software engineering.
However, in model-driven software development in in-
dustrial contexts, companies tend to have a myriad
of products with large and complex models behind,
which are created and maintained over long periods of
time by different software engineers, who often lack
knowledge over the entirety of the product details.
Under these conditions, maintenance activities such
as FL consume high amounts of time and effort, with-
out guaranteeing good results.

For instance, take in account Figure 1. In the fig-
ure, it is possible to appreciate an excerpt of an indus-
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Figure 1: Induction hobs industrial model excerpt

trial model, specified using a Domain Specific Lan-
guage (DSL) [28]. The DSL formalizes the induction
hobs manufactured by our industrial partner. The
DSL has the expressiveness required to describe the
functionality and regulation aspects associated to the
manufactured products. Different features (i.e. par-
ticular functionalities) of the induction hobs can be
located throughout the contents of the model. A fea-
ture is implemented through one or more elements of
the model (i.e. a single-element or multiple-element
fragment of the model). Some real-world features
associated to the model in the figure are the High
External Main Power feature, where an external in-
verter sends a high amount of energy through the

usage of a single high current limit power channel, or
the Inductor Chain feature, where several non-virtual
inductors are linked in a series circuit fashion.

As the example might evidence, manual location
of these features in the model is not a trivial task:
expertise, time, and a keen eye are required to deter-
mine the appearances of the features in the model,
and the fragments of the model that implement the
appearances of the features. Even then, perfect fea-
ture location cannot be guaranteed, since software
engineers can make mistakes (for instance, by con-
fusing the extent of the feature and adding unneces-
sary elements, or by ignoring some of the properties
of the elements). However, there is still a need for
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the location of the particular features. The desire to
reduce the manual efforts and the amount of mistakes
associated to feature location in these particular sce-
narios is what motivates the interest in automated
FL techniques.

In order to better illustrate the manual and auto-
mated FL techniques, Figure 2 depicts a toy model
example, specified through the same DSL used by our
industrial partner, which will be used in the follow-
ing sections as a running example. For the sake of
understandability and in order to simplify the expla-
nations of the two techniques, the example presents
only the High External Main Power feature, where
an external inverter sends a high amount of energy
through the usage of a single high current limit power
channel. In the figure, it is possible to see the name
of the feature, its description, the model that con-
tains the feature, and the set of model elements (i.e.,
model fragment) that implements the feature. Notice
that the model fragment is highlighted in light gray in
the figure and it contains two elements of the model:
the inverter with ID=7, and the power channel with
ID=11.

Feature Name: High External Main Power
Feature Description: One external inverter with a high current limit
power channel

Id: 7
External: true
WLevel: L1
Alfa: A29

Id: 3
Min Gain: 500
Max Gain: 800
Redundancy: 700

Pos_Id: 1
Name: I7
Type: T12
Virtual: false

Id: 11
Main Route: true

Current Limit: 9000

Id: 12
Main Route: true

Current Limit: 10000
Pos_Id: 2
Name: I8
Type: T25
Virtual: true

IH Syntax

Inverter Power
Manager

Power
Channel

Inductor

Model Fragment

Figure 2: Example of model and model fragment

2.2. Manual Feature Location

In order to perform FL manually, a software engi-
neer is given a feature name and a model, and has to

identify the model elements in the model that are rel-
evant for the given feature. For instance, in the run-
ning example model, the software engineer is given
the model and the High External Main Power fea-
ture name, and has to manually identify the model
elements relevant for the feature, that is, the model
fragment that implements the feature. In ideal condi-
tions, when the manual FL process is carried out per-
fectly by the engineer, the model fragment proposed
by the software engineer will match the model frag-
ment highlighted in light gray in the same figure. In
the example, if the process is carried out perfectly by
the software engineer, the result provided by the en-
gineer will be the fragment composed by the inverter
with ID=7, and the power channel with ID=11.

In order to determine whether the manual FL pro-
cess is carried out without flaws for a specific feature,
we utilize as the ground truth the model elements
that have been added to the models throughout the
years whenever the feature was added to a product.
Manual FL can be leveraged by both domain experts
and domain non-experts.

However, since manual FL can become error prone
and time-consuming [10, 12, 13, 14, 15], auto-
mated FL has received much attention during recent
years [6, 16, 22].

2.3. Automated Feature Location

In order to perform FL in an automated fashion, a
software engineer is given only a feature name. The
software engineer must use the feature name to pro-
duce a query, that will in turn be used as input for
an automated FL technique. The style in which the
query has to be written is open to the criteria of the
software engineer, that is, using natural language and
expressing model element names and properties using
their own words. For instance, for the High External
Main Power feature, the engineer might write down
a query in the lines of ’external inverter that sends a
high amount of energy through one high current limit
power channel’.

As a technique for automated FL, Latent Semantic
Indexing (LSI) is leveraged, since it is the technique
that obtains the best results for automated FL ac-
tivities [29]. The inputs in use for LSI are the pro-
vided query and one model as search space. However,
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the results of FL through LSI depend greatly on the
style in which the natural language of software arti-
facts is written [30]. It is often regarded as beneficial
to preprocess the inputs of LSI through natural lan-
guage processing techniques. A frequent practice to
achieve the preprocessing is to use a combination of
parts-of-speech tagging, removal of stopwords, and
stemming [31]. We adopt this practice to process
the inputs. As an example, the result of processing
the query provided above as an example would be
’inverter send high energy high current limit power
channel’.

LSI [32] is an automatic mathematical/statistical
technique that analyzes relationships between queries
and documents (bodies of text). The technique has
been successfully used to retrieve traceability links
between different kinds of software artifacts in dif-
ferent contexts, specially among requirements and
code [16]. The technique constructs vector represen-
tations of both a user query and a corpus of text
documents by encoding them as a term-by-document
co-occurrence matrix, and analyzes the relationships
between those vectors to get a similarity ranking be-
tween the query and the documents. The outcome
of LSI is used to build a model fragment from the
model that serves as a candidate for realizing the
query. Figure 3 shows an example term-by-document
co-occurrence matrix, with values associated to our
toy example, the vectors, and the resulting ranking.
In the following paragraphs, an overview of the ele-
ments of the matrix is provided:

Each row in the matrix (term) stands for each of
the words that compose the processed query and
the natural language representation of the input
model. In Figure 3, it is possible to appreciate
a set of representative terms associated to our
running example such as ’Inverter’ or ’Inductor’
as the terms of each row.

Each column (document) stands for one model el-
ement in the input model. In Figure 3, model
elements from ME1 to ME7 stand for the docu-
ments associated to the elements in the running
example model of Figure 2: the inverter (ME1),
the two inductors (ME2 and ME3), the power

manager (ME4), and the three power channels
that appear in the model (ME5 to ME7). Due
to space reasons, only a subset of the columns
(ME1, ME2, and ME7) is represented.

The final column stands for the query, that is, the
processed textual description of the feature de-
rived by the software engineer from the name of
the feature (’inverter send high energy high cur-
rent limit power channel’).

Each cell in the matrix contains the frequency with
which the term of its row appears in the docu-
ment denoted by its column. For instance, in
Figure 3, the term ’Inverter’ appears once in the
’ME1’ document and once in the query, and the
term term ’Inductor’ appears once in the ’ME2’
document but it does not appear in the query
whatsoever.

Vector representations of the documents and the
query are obtained by normalizing and decompos-
ing the term-by-document co-occurrence matrix using
Singular Value Decomposition (SVD) [32]. SVD is a
form of factor analysis, or more properly the math-
ematical generalization of which factor analysis is a
special case. In SVD, a rectangular matrix is de-
composed into the product of three other matrices.
One component matrix describes the original row en-
tities as vectors of derived orthogonal factor values,
another describes the original column entities in the
same way, and the third is a diagonal matrix con-
taining scaling values such that when the three com-
ponents are matrix-multiplied, the original matrix is
reconstructed.

Figure 3 depicts a three-dimensional graph of the
SVD, containing the vectorial representations of some
of the matrix columns. To measure the similarity de-
gree between vectors, the cosine between the query
vector and the documents vectors is calculated. Co-
sine values closer to one denote a higher degree of sim-
ilarity, and cosine values closer to minus one denote
a lower degree of similarity. Similarity increases as
vectors point in the same general direction (as more
terms are shared between documents). Through this
measurement, the model elements are ordered ac-
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Figure 3: Automated Feature Location Through Latent Se-
mantic Indexing

cording to their similarity degree to the feature de-
scription, in a relevancy ranking.

The relevancy ranking (as seen in Fig. 3) is pro-
duced according to the calculated similarity degrees.
In this example, LSI retrieves ’ME1’ and ’ME7’ in
the first and second position of the relevancy rank-
ing due to query-documents cosines being ’0.8279’
and ’0.7461’, implying a high similarity degree be-
tween the model elements and the feature descrip-
tion. On the opposite, the ’ME2’ model element is
returned in a latter position of the ranking due to
its query-document cosine being ’-0.6192’, implying a
lower similarity degree.

From the ranking, of all the model elements, only
those model elements that have a similarity measure
greater than a certain x value must be taken into ac-
count. A widely used heuristic is x = 0.7. This value
corresponds to a 45◦ angle between the corresponding
vectors. Even though the selection of the threshold is
an issue under study, the chosen heuristic has yielded
good results in other similar works [33, 34]. Follow-
ing this principle, the elements with a similarity mea-
sure x ≥ 0.7 are taken to conform a model fragment,
candidate for realizing the query (ME1 and ME7 in
the example). The model fragment generated in this
manner is the final output of LSI.

3. Experiment Design

3.1. Objective

The experiment for comparing manual FL with au-
tomated FL in models was designed following the
Wohlin et al. guidelines [35]. The goal of our exper-
iment was to analyze FL in models, for the pur-
pose of filling in the gap in empirical evaluation on
this topic, with respect to the different FL treat-
ments, from the viewpoint of both experts and
non-experts in a domain, in the context of soft-
ware development for induction hobs.

The measures used in our research to achieve the
determined goal are performance, productivity, and
satisfaction. To evaluate the performance we use pre-
cision, recall, and F-measure. These measures are
widely accepted in the software engineering research
community [36, 37]. In addition, productivity and
satisfaction are widely applied when analyzing user
behavior in the software engineering research com-
munity [38].

We seek to answer the following three research
questions:

RQ1 Is the performance different when using man-
ual FL and automated FL for FL in software models?

RQ2 Is the productivity different when using man-
ual FL and automated FL for FL in software models?

RQ3 Is the satisfaction different when using man-
ual FL and automated FL for FL in software models?

To answer these research questions, we have for-
mulated the following null hypotheses:

H01: There is no difference in the performance of
FL in software models when manual FL and auto-
mated FL are used.

H02: There is no difference in the productivity of
FL in software models when manual FL and auto-
mated FL are used.

H03: There is no difference in the satisfaction
about FL in software models when manual FL and
automated FL are used.

3.2. Participants

There were a total of 18 subjects, 13 of which were
non-experts in the induction hobs domain, and 5 of
which were experts in the induction hobs domain.
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Figure 4: Overview of the experimental procedure

In order to characterize the population, the subjects
filled a demographic questionnaire before entering
the experiment, which allowed us to retrieve some
relevant information about the working habits and
expertise of the subjects of the experiment. Non-
experts are master students from Universidad San
Jorge (Zaragoza, Spain), who have spent from 0 to
13 years developing software (a mean of 4.1 years).
They stated spending an average of 4.9 hours per day
developing software, and 1.34 hours per day working
with modeling languages. Experts are researchers
and software developers in the induction hobs do-
main, who have spent from 3 to 13 years developing
software (a mean of 6,6 years). They stated spending
an average of 4 hours per day developing software,
and an average of 4.2 hours per day working with
modeling languages.

Apart from the subjects, two instructors and one
software engineer were involved in the experiment.
The instructors are senior software engineers from the
company who, apart from their day-to-day develop-
ment activities, are responsible for training newcomer
engineers after a hiring process. One instructor de-
signed the task sheets for the experiment, provided
information about the domain specific language, clar-
ified doubts during the experiment, took notes during
the focus group, generated the correction templates
for the task sheets and analyzed the results. This

instructor was responsible for designing the exercise
so that they are similar yet independent enough to
avoid the learning effect. The other instructor ex-
plained the experiment, managed the focus groups,
and corrected the exercises associated to the man-
ual FL treatment. Finally, the software engineer cor-
rected the exercises associated to the automated FL
treatment.

3.3. Defining Variables

Independent Variables. We conducted a sin-
gle factor experiment where the independent vari-
able is the treatment used to locate features in soft-
ware models, which is a nominal variable with two
values: manual FL and automated FL. These treat-
ments were explained in Section 2.

In our experiment, the subjects had to perform the
exercises in two different task sheets, where each task
sheet contained 6 exercises regarding FL in a software
model. One of the task sheets was performed through
the manual FL treatment by the subjects of the ex-
periment, and the other task sheet was performed by
the automated FL treatment. The outcome of each
exercise in the task sheets was a set of elements, be-
lieved by the subjects or the automated technique to
be the ones that implement the feature that must be
located. With manual FL, the subjects received a
copy of a model along with the task sheet, and wrote
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down in the task sheet, for each of the 6 exercises,
the elements that they consider to be the ones as-
sociated to the feature that must be located. With
automated FL, the subjects wrote down a textual de-
scription of the feature to locate, and the associated
elements were found with the assistance of the LSI
algorithm, implemented in Java through the EJML
library [39].

Dependent Variables. During the experiment,
we measured performance, productivity, and satisfac-
tion, which are defined as follows:

• Performance is the accuracy and completeness
achieved with the two different treatments under
study. We use three measurements for perfor-
mance [40]:

– Recall measures the number of elements ac-
cording to the ground truth (the oracle)
that are correctly retrieved by the proposed
solution. Recall values can range from 0%
(no single model element obtained from the
oracle is present in the solution) to 100%
(all the model elements from the oracle are
present in the solution).

– Precision measures the number of elements
from the proposed solution that are cor-
rect according to the ground truth (the or-
acle). Precision values can range from 0%
(no single model element from the solu-
tion is present in the oracle) to 100% (all
the model elements from the solution are
present in the oracle). A value of 100% pre-
cision and 100% recall implies that both the
solution and the oracle are the same.

– The F-measure corresponds to the har-
monic mean of precision and recall.

• Productivity is the ratio of quality work to ef-
fort [41], we measure the quality work as the
F-measure and the effort as the time spent (in
minutes) to perform the exercises associated to
each treatment. That is, we measure the pro-
ductivity as the F-measure to time spent ratio
(F-measure/time) [38].

• Satisfaction is measured using a satisfaction
questionnaire filled out by the subjects after fin-
ishing the experiment task sheet associated with
each treatment. We measure satisfaction using
a 5-point Likert scale questionnaire. Based on
TAM, which is a widely applied model to ana-
lyze user acceptance, the satisfaction can be de-
composed as follows [40, 42]:

– Perceived Ease of Use (PEOU): the degree
to which a person believes that learning and
using a particular value-driven treatment
would be free of effort.

– Perceived Usefulness (PU): the degree to
which a person believes that using a par-
ticular treatment will increase her/his job
performance within an organizational con-
text.

– Intention to Use (ITU): the extent to which
a person intends to use a particular treat-
ment. It represents a perceptual judgment
about the efficacy of the treatment, that is,
whether it is cost-effective and commonly
used to predict the likelihood of acceptance
of a treatment in practice.

3.4. Instruments

Demographic Questionnaire. This question-
naire identifies the profile of each subject, requesting
their education level, the amount of time develop-
ing software (in years), their age, their gender, the
amount of time spent per day developing software,
the amount of time spent per day working with soft-
ware models, their knowledge about software model-
ing, and their knowledge about DSLs.

Software Model. The subjects had to find out
the solution to the exercises in software models, or
in other words, the subjects had to locate the fea-
tures in the software models. Software models use
the DSL that formalizes the induction hobs manu-
factured by our industrial partner. There are two
models, which are independent from each other. The
models are formed by 56 elements each, including in-
verters, power channels, power managers, and induc-
tors (as shown in Figures 1 and 2).
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Task sheet. A task sheet for each FL treatment
was given to the subjects. Each task sheet contains
6 FL exercises and two text fields. Every exercise
states a feature that must be located in a software
model. Both the number of exercises in a task sheet
and their difficulty are similar for both treatments. In
addition, the instructor in charge of creation of the
task sheets was responsible for designing the feature
location exercises so that they are similar yet inde-
pendent enough to avoid the learning effect. Some ex-
amples of the features that must be located as an ex-
ercise are ’quad inductor’ or ’inverter power backup’.
The subjects wrote down feature elements for man-
ual FL, and a feature description for automated FL,
providing us with data to calculate performance. In
the text fields, the subjects had to annotate the task
sheet starting and finishing times, providing us with
data to calculate productivity.
Correction template. One of the instructors

generated the templates with the solution for all the
exercises. This instructor did not participate in the
correction process. These templates were used by the
other instructor and the software engineer to correct
the exercises.
Satisfaction questionnaire. We defined a sat-

isfaction questionnaire for each treatment. Even
though the meaning of each question was the same for
both treatments, each questionnaire includes terms
that are specific to the measured treatment. The sat-
isfaction questionnaire was built using the approach
presented in [38] to evaluate PEOU, PU, and ITU. As
suggested by [43], we defined six questions to measure
PEOU, eight questions to measure PU, and two ques-
tions to measure ITU. The subjects had to respond
to these questions using a scale of predefined scores,
within the Likert scale ranging from 1 (totally dis-
agree) to 5 (totally agree), providing us with data to
calculate satisfaction.
Open-ended questionnaire. Four questions

about each applied treatment were answered by the
subjects. One of the questions, as an example, is:
describe your process to find out the solution. The
answers improve our knowledge about how the sub-
jects solved the exercises of each task sheet [44].
Focus Group Interview. The objective of the

focus group interview [45], composed of open ques-

tions, was to obtain qualitative data from comments
of the subjects. The aims of these questions are (1)
to know the rationale and the model elements more
frequently used to solve the exercises, and (2) to de-
tect the concepts or processes in the performance of
the exercises that are more problematic for subjects,
as well as to determinate the real causes of the prob-
lems.

The materials resulting from carrying out the ex-
periment can be found at https://svit.usj.es/

manual-automated-fl-experiment/.

3.5. Experimental Procedure

We chose a crossover design where the two treat-
ments were applied. To avoid the threat of confusing
treatment and order, we considered a crossover design
where experimental units are divided into two groups
(G1 and G2) through block randomization [38, 46].
At first, while G1 locates features in model 1 with
the manual FL treatment, G2 locates features in
model 1 with the automated FL treatment. Then,
both groups locate features in model 2, interchang-
ing the FL treatment. This particular experiment
design uses the largest possible sample size, elimi-
nates the learning problem effect, avoids confusing
problem and treatment, and removes the variability
that can appear in the results due to differences in
the average responsiveness (capacity of positive and
quick reaction to the experiment) among the subjects
of the experiment [38].

To verify the experiment design, we conducted a
pilot study [47] with one participant, who did not
take part in the final experiment. We verified that
the experiment had a correct parametrization, and we
detected some typographical and semantic mistakes
in some expressions, which were solved for the final
experiment.

The experiment was conducted on two different
days. On the first day, it was performed at Univer-
sidad San Jorge (Zaragoza, Spain) with a group of
thirteen master students (non-experts) in a subject
about advanced software modeling. On the second
day, the same experiment set up was performed at
Universidad San Jorge by now with five experts. In
the second case, the experiment was performed by
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two separate groups of respectively three and two ex-
perts, based on their schedule availability. Figure 4
depicts the experimental procedure for all of the sub-
jects, which was as follows [48]:

1. The subjects were given information about the
experiment development, and were told that it
was not a test of their abilities.

2. The subjects attended a tutorial (taught by the
instructor) about FL in software models, and
about the DSL used in the experiment. The av-
erage duration of the tutorial was 15 minutes.
Copies of the slides that were used in the tuto-
rial were given to the subjects and were available
to them during the experiment.

3. The subjects were asked to fill in a demographic
questionnaire prior to conducting the experi-
ment.

4. The subjects were given a series of clear instruc-
tions to fill out the task sheet.

5. The subjects were asked to perform the exer-
cises on the first task sheet (locating six features
using one of the treatments). If the treatment
was manual FL, as a result of these exercises,
the subjects had to locate and write down the
model elements of the features. If the treatment
was automated FL, as a result of these exercises,
the subjects had to write down the description
of the features, and then the elements of the fea-
tures were found with the assistance of an algo-
rithm. The results were used to calculate the
performance.

6. The subjects were asked to fill in a satisfaction
questionnaire about the applied treatment. The
answers were used to calculate the PEOU, PU,
ant ITU for the applied treatment.

7. Next, the subjects answered an open-ended ques-
tionnaire. These answers improved our knowl-
edge about how the subjects solved the task
sheets.

8. When a subject finished the task sheet corre-
sponding to one treatment, before beginning the
next one, an instructor checked that the subject
had filled in all of the fields in the task sheet and
the satisfaction questionnaire.

9. Then the subject began the second treatment
task sheet, repeating Steps 5 to 8.

10. A focus group interview about the task sheets
was conducted by one instructor with each group
of subjects.

11. Finally, according to the correction templates
generated, the software engineer corrected the
results corresponding to automated FL and one
instructor corrected the results corresponding to
manual FL. The other instructor analyzed the
results.

4. Results

The findings of our work for each of the research
questions under study can be summarized as follows:

RQ1: While automated FL obtains better recall val-
ues than manual FL, manual FL outperforms au-
tomated FL overall. Differences in the results are
statistically significant.

RQ2: Manual FL obtains better productivity results
than automated FL. Again, differences in the re-
sults are statistically significant.

RQ3: Automated FL obtains generally better results
than manual FL regarding satisfaction. How-
ever, differences are so minimal as to be of no
statistical significance.

The following subsections provide more details on
the results for each of the research questions sepa-
rately.

4.1. RQ1 Answer

In order to assess whether there are differences in
performance when the manual and automated treat-
ments are used to locate features in models, we mea-
sure the values of recall, precision, and F-measure.
Figure 5 shows the box-and-whiskers plots for the
three measurements. From left to right, up to the
third plot, the figure shows: (1) the box-and-whiskers
plot for recall, where it can be observed that the me-
dian, first quartile, and third quartile associated with
automated FL are better than those associated with
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manual FL; (2) the box-and-whiskers plot for pre-
cision, where it can be observed that the median,
first quartile, and third quartile associated with man-
ual FL are better than those associated with auto-
mated FL; and (3) the box-and-whiskers plot for the
F-measure, where it can be observed that the me-
dian, first quartile, and third quartile associated with
manual FL are better than those associated with au-
tomated FL.

Table 1 shows the mean values of recall, precision,
and F-measure altogether for both manual and auto-
mated FL. Regarding manual FL, the results of all
the subjects yield average values of 44.42% in recall,
42.36% in precision, and 41.49% in F-measure. In the
case of manual FL, domain experts achieve slightly
better results than domain non-experts (60.12% in
F-measure). Regarding automated FL, the results of
all the subjects yield average values of 76.60% in re-
call, 14.57% in precision, and 22.44% in F-measure,
with neither domain experts nor domain non-experts
results standing out from the average.

A statistical test must be run to assess whether
there is enough empirical evidence to claim that there
is a difference between the two treatments regarding
performance. The test should verify whether the null
hypothesis H01 (as defined in Section 3) can be re-
jected. Statistical tests provide a probability value,
p-V alue. The p-V alue obtains values between 0 and
1. The lower the p-V alue of a test, the more likely
that the null hypothesis is false. It is accepted by
the research community that a p-V alue under 0.05 is
statistically significant enough for hypothesis H01 to
be considered false [49].

The statistical test that must be followed depends
on the properties of the data [35]. Since our data does
not follow a normal distribution in general, our anal-
ysis requires the use of non-parametric techniques.
There are several tests for analyzing this kind of data,
such as the Quade test or the Holm’s post hoc analy-
sis [50, 51], which are amongst the most powerful sta-
tistical tests when working with real data and a low
amount of treatments. However, in order to provide
an answer to the question under study (’which of the
treatments gives the best performance?’ ), each treat-
ment should be individually compared against all
other alternatives [52], something which the Quade

test is incapable of. Hence, we undergo a Holm’s
post hoc analysis, which performs a pair-wise com-
parison among the results of each treatment, provid-
ing a p-V alue that determines whether statistically
significant differences exist.

With the post hoc analysis, we obtain one p-V alue
for each of the considered measurements: 1.3 × 10−5

for recall, 4.8× 10−6 for precision, and 9.7× 10−5 for
the F-measure. All of these values are smaller than
the corresponding significance threshold value (0.05).
Hence, we reject the H01 hypothesis, since there are
significant differences between the treatments for the
performance indicators.

Once it is detected that a treatment is statistically
better than another, it is also important to assess the
magnitude of the improvement. Effect size measures
are needed to analyze this. For a non-parametric
effect size measure, we use Vargha and Delaney’s
Â12 [53]. Â12 measures the probability that running
one treatment yields higher values than running an-
other treatment. If the two treatments are equiva-
lent, then Â12 will be 0.5. For example, Â12 = 0.8
means that we would obtain better results in 80%
of the cases with the first of the pair of treatments
that have been compared, and Â12 = 0.2 means that
we would obtain better results in 80% of the cases
with the second of the pair of treatments that have
been compared. In our experiment, the Â12 values
are 0.1358 for recall, 0.8611 for precision, and 0.7623
for the F-measure. The Â12 value for recall shows a
superiority of automated FL, whereas the Â12 value
for precision shows a superiority of manual FL. All in
all, the Â12 value for F-measure shows that 76.23%
of the cases obtain better results with manual FL.

4.2. RQ2 Answer

In order to assess whether there are differences in
productivity when the manual and automated treat-
ments are used to locate features in models, we
measure the obtained percentage of F-measure per
minute. The right-most graph of Figure 5 shows the
box-and-whiskers plot for productivity, where it can
be observed that the median, first quartile, and third
quartile associated with manual FL are better than
those associated with automated FL. Regarding man-
ual FL, the results of all the subjects yield average
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Table 1: Mean Values and Standard Deviations for Performance

Manual Feature Location

Recall ± (σ) Precision ± (σ) F-measure ± (σ)

Domain non-experts 40.21 ± 23.08 33.05 ± 15.51 34.32 ± 15.72
Domain experts 55.38 ± 26.59 66.57 ± 35.52 60.12 ± 30.53
All subjects 44.42 ± 24.32 42.36 ± 26.56 41.49 ± 23.13

Automated Feature Location

Recall ± (σ) Precision ± (σ) F-measure ± (σ)

Domain non-experts 76.27 ± 17.88 14.15 ± 10.06 22.12 ± 12.34
Domain experts 77.46 ± 23.60 14.72 ± 13.18 23.31 ± 19.03
All subjects 76.60 ± 18.89 14.57 ± 10.60 22.44 ± 13.90

Manual FL Experts Automated FL ExpertsManual FL Non-Experts Automated FL Non-Experts

Figure 5: Box-plots for Performance (Recall, Precision, and F-measure) and Productivity

values of 3.43±2.71%/min productivity (3.54%/min
for non-experts, and 3.57%/min for experts). Re-
garding automated FL, the results of all the subjects
yield average values of 1.21±0.80%/min productiv-
ity (1.19%/min for non-experts, and 1.27%/min for
experts).

We performed the same statistical analysis as in
RQ1 in order to determine whether there are statisti-
cally significant differences between manual and au-
tomated productivity. The Holm’s post hoc p-V alue
value obtained is 0.0004 (thus, differences between
the techniques are significant), and an Â12 value of
0.8117 (manual FL performs better in 81.17% of the
cases). Therefore, the null hypothesis H02 can be
rejected.

4.3. RQ3 Answer

In order to assess whether there are differences in
satisfaction when the manual and automated treat-
ments are used to locate features in models, we mea-
sure the Perceived Ease of Use (PEOU), Perceived
Usefulness (PU), and Intention to Use (ITU). Fig-
ure 5 shows the box-and-whiskers plots for the three
measurements. From left to right, the figure shows:
(1) the box-and-whiskers plot for PEOU, where it
can be observed that the median and first quar-
tile are higher for automated FL, whereas the third
quartile is higher for manual FL; (2) the box-and-
whiskers plot for PU, where it can be observed that
the median, first quartile, and third quartile associ-
ated with automated FL are better than those asso-
ciated with manual FL; and (3) the box-and-whiskers
plot for ITU, where it can be observed that the me-
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Table 2: Mean Values and Standard Deviations for Satisfaction

Manual Feature Location

PEOU ± (σ) PU ± (σ) ITU ± (σ)

Domain non-experts 3.46 ± 0.85 3.48 ± 0.68 3.24 ± 0.92
Domain experts 3.44 ± 0.87 3.5 ± 0.68 3.24 ± 0.92
All subjects 3.42 ± 0.84 3.47 ± 0.66 3.22 ± 0.89

Automated Feature Location

PEOU ± (σ) PU ± (σ) ITU ± (σ)

Domain non-experts 3.42 ± 0.76 3.55 ± 0.65 3.35 ± 0.90
Domain experts 3.45 ± 0.75 3.59 ± 0.65 3.35 ± 0.90
All subjects 3.42 ± 0.74 3.56 ± 0.64 3.33 ± 0.87

Manual FL Experts Automated FL ExpertsManual FL Non-Experts Automated FL Non-Experts

Figure 6: Box-plots for Satisfaction (Perceived Ease of Use, Perceived Usefulness, and Intention to Use)

dian, first quartile, and third quartile associated with
automated FL are better than those associated with
manual FL.

The top part of Table 2 shows the values associ-
ated with the three metrics for both manual and au-
tomated FL for the subjects of the experiment. Re-
garding manual FL, the subjects report an average
PEOU value of 3.42, an average PU value of 3.47,
and an average ITU value of 3.22. Regarding auto-
mated FL, the subjects report average values of 3.42
PEOU, 3.56 PU, and 3.33 ITU.

We performed the same statistical analysis to as-
sess whether the differences between techniques are
significant regarding satisfaction, and if so, by how
much. In the case of satisfaction, PEOU attains a
p-V alue of 0.98 and a Â12 value of 0.4753, PU at-

tains a p-V alue of 0.54 and a Â12 value of 0.4414,
and ITU attains a p-V alue of 0.84 and a Â12 value
of 0.4599. Even though automated FL obtains bet-
ter results in the three measurements in slightly over
50% of the cases (according to the Â12 values), the
p-V alue values obtained by Holm’s post hoc analysis
for the three measurements point out that differences
are not significant. Therefore, the null hypothesis
H03 cannot be rejected.

4.4. Open-ended Questionnaire
In this subsection, we present a set of answers pro-

vided by the subjects in the open-ended question-
naires. The questionnaires were completed after fin-
ishing the task sheets with the different FL treat-
ments (manual and automated). Some of the ap-
pearing answers are unrelated to the FL treatment
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in use or the characteristics of the subject. Some
representative examples of those answers are: ’I am
not sure about the solution’, ’a greater domain knowl-
edge would facilitate the completion of the exercises’,
or ’I have improved my performance with the exer-
cises once I have already finished some of them’.

Regarding the FL process, the subjects demanded
some type of filtering so that the model elements do
not show all their properties. To that extent, it would
be desirable for the model elements to show only the
properties that are involved in the feature that is be-
ing searched for. According to this, the subjects de-
clared that they use the properties of the elements to
identify the elements that make up a feature, and as
a proof of the proposed solution.

We inquired the subjects about which model el-
ement or elements they considered relevant for lo-
cating features through manual FL. Regarding non-
expert subjects, the concrete syntax was considered
relevant by 46% of the subjects, the element relations
were considered relevant by 54% of the subjects, the
element properties were considered relevant by 54%
of the subjects, and the element attributes were con-
sidered relevant by 23% of the subjects. Regarding
expert subjects, the concrete syntax was considered
relevant by 80% of the subjects, the element relations
were considered relevant by 20% of the subjects, the
element properties were considered relevant by 40%
of the subjects, and the element attributes were con-
sidered relevant by 20% of the subjects.

4.5. Focus Group Interview

In this subsection, the statements of the subjects
in the focus group interview are summarized. The fo-
cus group interview was conducted after completing
the task sheets. Most of the subjects stated that they
considered manual FL to be easier than automated
FL. Both experts and non-experts agreed that their
performance improved as more exercises were per-
formed. Both experts and non-experts solved the ex-
ercises by searching for the correct solutions through
comparisons between all the possible solutions. Fi-
nally, expert subjects declared that the concrete syn-
tax of the models was very important to perform the
exercises.

5. Discussion

Table 3 provides an overview of the main discussion
issues that arise from the results of our work. The
rest of the section provides more details on each of
the points outlined in the table.

Table 3: Summary of the discussion points

Experts vs Non-experts

The experts in the domain do not have complete knowledge about the features.

There is a gap between the natural language in use by the subjects and
the text of the features, to which LSI is sensitive.

The textual similitude gap can be improved through a dictionary of domain
translations and identification of linguistic patterns.

Manual FL vs Automated FL

None of the two treatments retrieve perfect results.

Manual FL obtains better results than automated FL
in terms of performance and productivity.

Automated FL obtains better satisfaction results than manual FL.

Comparing automated FL against automated FL is not enough,
it is necessary to involve manual FL to assess the FL results correctly.

The results of our work suggest that neither do-
main experts nor domain non-experts find the perfect
solutions for the features. In addition, the perfor-
mance results show indicates that while automated
FL outperforms manual FL up to 32.18% in recall,
manual FL outperforms automated FL up to 27.79%
in precision. As recall and precision are compared
against the ground truth, F-measure (the harmonic
mean of precision and recall) is used. Manual FL
outperforms automated FL up to 19.05% in terms of
F-measure, in a statically significant manner. This
is an important point that our work uncovers since
research in the field has so far compared assistance
tools against assistance tools but not against human
participants.

Through our work, we have identified some issues
inherent to manual FL and automated FL that help
explain the obtained results. The following para-
graphs introduce said issues and explain why auto-
mated FL fails on its duty. We also depict possible
solutions to the mentioned issues, which should be
explored in the future in order to improve the work
possibilities of the research community dedicated to
FL in models.
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Regarding manual FL, both domain experts and
domain non-experts seem to be unable to retrieve the
appropriate solutions for the manual FL exercises.
The models contain products specified and main-
tained for over 15 years by a team composed of several
software engineers. The team has even changed over
time, with newcomers taking the place of those en-
gineers leaving the company (be it due to retirement
or due to the pursue of other job opportunities). It is
extremely unlikely for a single software engineer to be
involved in the creation and maintenance of the full
set of features and models. In addition, the long span
of time for which the products under study have ex-
isted makes it hard for software engineers to remem-
ber all the details and intricacies of all the products
where they have worked over time. Therefore, even
domain experts tend to lack all the necessary infor-
mation for the correct resolution of the manual FL
exercises, having to collaborate with other experts to
solve their day-to-day challenges. This issue helps
explain the fact that individual software engineers
are unable to find perfect solutions for the provided
queries. In the light of this finding, we should study
the results of pairing or grouping software engineers
when performing manual FL exercises.

Regarding automated FL, utilizing a technique
such as LSI yields worse results than those obtained
by software engineers. Even though recall values are
higher than those of software engineers, the technique
obtains extremely low precision values in comparison.
With automated FL, the number of model elements
retrieved for a feature is very high, due to the fact
that the discrimination capacity is low. On the other
hand, the precision in automated FL is lower than in
the case of manual FL because the amount of model
elements retrieved incorrectly with automated FL is
higher. This issue has passed undetected in the com-
munity so far, due to the fact that most studies com-
pare humans against humans or tools against tools,
leaving tool against human comparisons unstudied.

Upon close inspection of the queries and models,
we realized why the results of the technique are not
as good as the ones from human participants. LSI is
based upon textual similitude, and the natural lan-
guage included in the queries by the software engi-
neers is not as technical as the language in use in

the models. This is better depicted through a sim-
ple example. Consider a query built by an engineer
with the text ’Choose a single virtual inverter with
a high current limit power channel’. In the model,
virtual inverters are differentiated from real invert-
ers through a Boolean value (virtual = true) and the
current limit does not have an associated word, but
rather a numeric value. Neither the Boolean value
nor the numerical value appear in the query, since a
human software engineer already knows how to inter-
pret said words when looking for the solution. There-
fore, the interpretation that LSI makes of the query,
or in other words, what LSI tries to find for the in-
troduced query in the model, are the terms inverter,
virtual, current limit, power channel. Hence, LSI re-
trieves all the inverters (all of them contain the in-
verter and virtual terms) and all the power channels
(all of them contain the current limit and power chan-
nel terms) in the model. Hence, it is very easy for the
technique to find the elements that conform the cor-
rect solution (thus, the generally high recall values),
but it is also very easy for LSI to find a lot of ele-
ments not in the correct solution (thus, the generally
low precision values).

To improve the results of LSI, it would be nec-
essary to create a dictionary of domain translations
that can be used to artificially analyze the meaning
of the language of the queries, reformulating them
in terms of the language that appears in the mod-
els (for instance, translating virtual into virtual true
to help LSI reduce the population of inverters). An-
other possible step towards improving automated FL
would be to generate a population of model fragments
from the model, defining a collection of patterns that
solve specific features. Instead of building a model
fragment through the analysis of individual model
elements, the enhanced LSI would assess the popula-
tion of model fragments, refining the resulting rank-
ing through the patterns. Exploring these directions
of automated FL and whether the obtained results
help in assisting software engineers when carrying out
FL exercises remains as future work.

Regarding satisfaction, the results of our work
highlight a paradox: even though the results of auto-
mated FL are worse than those of manual FL, partic-
ipants seem to be slightly more satisfied with auto-
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mated FL outcomes than with manual FL outcomes.
Participants appear to assume that tool assistance
has a positive impact on the outcomes of the treat-
ment, and they seem to not question the fact that au-
tomated FL results can be worse than what they can
produce in a manual fashion. This apparent lack of
skepticism and positive attitude towards automated
FL might have contributed to the absence of research
papers comparing manual and automated FL so far.

However, while most of the literature puts the fo-
cus on FL in source code, our work is centered in
reporting FL in models. Additional experimentation
is needed to determine whether the results of study-
ing FL in models can be transferred, generalized, or
compared against the results from other works in the
literature that focus on FL in source code.

In any case, models are becoming increasingly
popular [21], and a widespread and extensively uti-
lized software artifact in novel approaches related
to model-based engineering [24], model-based SPL
adoption [25], and feature-oriented engineering [26,
27]. These works show that FL in models remains
as a relevant topic for the research community. In
that sense, the findings of our work contribute to the
study of the application of manual and automated FL
in models to the context of FL techniques and their
application in models. Other researchers in the con-
text can use the provided findings to perform more
experimentation in the field, as well as to improve the
FL techniques and their usage.

Finally, although our work puts the focus on
manual and automated FL techniques, guided FL
techniques have been gaining traction in the last
years. These semi-automatic techniques, which can
be found in the survey by Julia Rubin and Marsha
Chechik [16], generally work by producing a set of
results and then allowing the software engineers to
iteratively re-adjust the query, the result set, or both.
However, our work suggests that the subjects are
equally satisfied with the results of manual and au-
tomated FL techniques. This finding suggests that,
when faced with the results provided by an auto-
mated technique, the subjects consider them to be
at least as good as the final version of the results
that they can produce by themselves. Hence, we face
the possibility that, if subjects consider the results

to be good enough, they may lack the motivation to
iterate on the query or the results through the usage
of guided techniques, beneficial as they are.

This issue, in turn, raises several research ques-
tions. What is the predisposition of the subjects to
acknowledging their own mistakes? Do subjects rec-
ognize their own limitations when performing manual
FL? Are performance, productivity, and satisfaction
of subjects improved when using guided FL tech-
niques to perform the FL activity in models? And
more importantly, when do subjects consider results
to be good enough so as to disregard iteration over
queries and results? It becomes clear that more ex-
perimentation is needed to explore this point and the
implications of the results of our work with regards on
how to combine manual, automated, and guided FL
efforts. Perhaps the results of manual FL techniques
could be used as seeds that can be leveraged as inputs
for automated techniques, developing novel ways of
approaching guided FL. Nonetheless, responding to
these uncovered research questions, issues, and their
implications remains as an open topic. Designing and
carrying out the necessary experimentation consti-
tutes the next steps in our future work.

6. Threats To Validity

To describe the threats of validity of our work, we
use the classification of [54], which distinguishes four
aspects of validity (construct validity, internal valid-
ity, external validity, and reliability).

Construct validity reflects the extent to which
the operational measures that are studied represent
what the researchers have in mind and what is in-
vestigated based on the research questions. There
are six threats of this kind: author bias, task design,
mono-method bias, hypothesis guessing, evaluation
apprehension, and mono-operation bias. Author bias
occurs when people that define the artifacts can sub-
jectively influence the results that they are looking
for. In order to mitigate this threat, the models and
features to locate are balanced, i.e. their sizes are the
same for both location treatments. The task design
threat appears when the exercises in the task sheets
can be correctly performed just by chance. To miti-
gate this threat, the proposed exercises did not have
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a true/false answer. Rather, the subjects had to lo-
cate a feature, which is very difficult for subjects to
answer correctly if they do not understand the exer-
cise. Mono-method bias occurs due to using a single
type of measure [38]. All of the measurements were
affected by this threat. To mitigate this threat for the
performance and productivity measurements, an in-
structor checked that the subjects filled all the fields
correctly and we mechanized these measurements as
much as possible by means of correction templates.
Regarding satisfaction, we mitigated this threat by
using a widely applied model (TAM) [40, 42]. The
hypothesis guessing threat appears when the subject
may guess the hypotheses and work having them in
mind. To mitigate this, we did not speak with the
subjects about the research questions or the objec-
tive of the experiment. The evaluation apprehension
threat appears when the subjects are afraid of be-
ing evaluated. To mitigate this threat the subjects
were informed that the experiment was not a test of
their abilities. Finally, mono-operation bias occurs
when treatments depend on a single operationaliza-
tion. The experiment was affected by this threat,
since we worked with a DSL. For this reason, gener-
alization of results must be approached with caution.
Internal validity threats appear when causal re-

lations are examined, since there is a risk that the
studied aspects may be affected by other factors that
are not considered in the experiment. There are seven
threats of this kind: learning effect, information ex-
change, understandability, fatigue effects, researcher
bias, imbalanced group of subjects and subject mo-
tivation. A learning effect occurs when the sub-
jects learn something during the experiment that may
influence later exercises. We mitigated this threat
by ensuring every participant worked with the two
FL treatments on two different experimental objects.
Regarding the information exchange threat, since the
experiment was designed to take place in two differ-
ent days, the subjects might have been able to ex-
change information during the time between the ses-
sions. To our knowledge, experts and non-experts do
not know each other. The understandability threat
appears when the subjects do not understand how
to carry out the experiment. This threat was mit-
igated by writing the experimental materials in the

language of subjects or easy English. In addition,
a tutorial was taught before the experiments by in-
structors who were also available to solve doubts.
The fatigue effect occurs when the subjects get tired
during the experiment. This was solved by establish-
ing a total time of 90 minutes for the whole exper-
iment (including the tutorial). Researcher bias oc-
curs when assumptions and personal beliefs of the
researcher might affect the study [55]. We mitigated
this threat by not participating in the selection of
the participants; on the other hand, to avoid the in-
fluence in the correction of the exercises, one instruc-
tor designed the correction templates and he didn’t
participate in the correction process. Our experi-
ment was affected by the threat of an imbalanced
group of subjects because the amount of experts was
lower than the amount of non-experts. We mitigated
this threat by using block randomization, in which
randomization among treatments (manual and auto-
mated FL) was performed separately for non-experts
and experts [46]. The main reason for the imbalance
in the groups of subjects (that is, having less subjects
in the experts group than in the non-experts group)
is the difficulty to access the experts. Even though
the number of experts may seem relatively small, the
user experience research advises to use five subjects in
the usability test to detect 80% of the usability prob-
lems [56]. Finally, subject motivation threats appear
when the subjects are not motivated to participate
in the experiment. The experiment was affected by
this threat, since non-experts carried it out as a non-
optional activity during a masters degree subject. To
mitigate this threat, the score of non-experts in the
subject was augmented by their participation in the
experiment.

External validity threats are concerned with to
what extent it is possible to generalize the findings
and to what extent the findings are of relevance for
other cases. There are four threats of this kind: sta-
tistical power, object dependency, and selection sub-
jects. The statistical power threat appears when the
number of subjects is not enough to generalize re-
sults. Our experiment was affected by this threat,
because the number of subjects (18) was not high
enough to generalize results. To mitigate this threat,
we have used a confidence interval where conclu-
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sions are 95% representative. The object dependency
threat appears when the results may depend on the
objects used in the experiment, thus not being gener-
alizable. The experiment was affected by this threat
since we only analyzed exercises with models belong-
ing to the induction hobs domain. The influence of
the domain threat appears when the outcomes de-
pend on a specific domain. This experiment was af-
fected by this threat since we only analyzed the in-
duction hobs domain. Finally, regarding the selec-
tion subjects threat, the experiment was performed
by non-experts and experts. The participation of
non-experts can be a source of experiment weakness.
However, using students as subjects instead of do-
main experts is not a major issue as long as research
questions are not specifically focused on experts [57].
Reliability is concerned with to what extent the

data and the analysis are dependent on the re-
searchers. There are two threats of this type: data
collection, and completion data. The data collection
threat appears when data collection is not carried out
in the same way throughout the different sessions.
This was mitigated by applying the same procedure
to each session and using the same formulas to calcu-
late the dependent variable values. The completion
data threat appears when there is missing data after
the data collection process. To mitigate this threat,
two instructors tested the data coherence when the
subjects had finished the exercises in each task sheet.

In this experiment, as far as possible, the threats
have been avoided or mitigated. Even though the
experiment uses real-world data from an industrial
partner, the number of subjects is not enough to
guarantee the generalization of the results, and thus
they should be extrapolated with caution. However,
we consider replicating the experiment on a large
scale with more experienced and professional develop-
ers. For instance, the experiment can be conducted
again with additional non-experts coming from fu-
ture editions of the master’s degree, and with more
experts coming from our industrial partner. The
replications of the experiment should consider the di-
mensions (Operationalization, Population, Protocol
and Experimenters) that are identified by Gómez et
al. [58]. To replicate the experiment on a large scale
with more experienced and professional developers,

only the dimension Population should be changed
with an increased number of subjects, who will be
classified as either expert or non-expert. We also
consider replicating the experiment using other DSLs
coming from other industrial domains and partners.
To do this, only the dimension Protocol should be
changed to vary the software models and the task
sheets, whereas their size and difficulty should be the
same than in our experiment.

7. Related Work

Some works research how developers locate fea-
tures. The work presented in [59] reports an ex-
ploratory study of FL, consisting of three experi-
ments with six FL exercises. The study evaluates
the quality of FL and the impact of explicit FL
knowledge, also proposing a conceptual framework
for understanding FL processes. In [60], the authors
present an exploratory case study on identifying and
manually locating features in Marlin, a variant-rich
open-source embedded firmware. Another work [20]
presents a novel feature location technique named
SITIR, a semi-automated technique for FL in source
code. These empirical studies do not compare man-
ual FL versus automated FL as our work does.

Other works compare different FL treatments.
In [61], a case study is described where two fea-
tures must be located in a sample of poorly struc-
tured legacy Fortran code through three different
FL treatments: software reconnaissance, dependency
graphs, and ”grep” text search, finding out advan-
tages and disadvantages for every treatment. In [62],
the authors introduce rank topology, a metric for
comparing FL techniques, and propose an alterna-
tive measure of relevance based on the likelihood of
finding results in a ranking. In [63], the authors
compare five different Single Objective Evolutionary
Algorithms for FL in models. The work presented
in [64] takes advantage of long-living software sys-
tems to address the FL challenge, using commonal-
ity and modifications through model retrospectives
to promote model fragments that suffered less mod-
ifications over time. Another paper [1] proposes a
new FL technique named PROMESIR, combining
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LSI over source code with a Scenario-based Proba-
bilistic Ranking of events. The approach is validated
with the Eclipse and Mozilla projects, measuring ef-
fectiveness and comparing PROMESIR with other
two existent techniques. These works do not perform
a formal evaluation with users as we do.

Other research focuses on improving FL. Ji et.
al. [65] argue that manual recording and maintaining
of features can be effectively embedded into software
assets, and that costs are surpassed by the benefits of
the information during development. They test this
hypothesis in a study where they simulate the devel-
opment of a product line using a lightweight code an-
notation approach, identifying annotation evolution
patterns and measuring annotation cost against ben-
efit. In [66], an exploratory study is performed with
Motorola to compare the CodeTEST and Klocwork
inSight tools, identifying the pitfalls that might make
this tool combination unusable for FL. The work pre-
sented in [67] focuses on FL in a complex large-scale
mature software system, developed by professional
software engineers. In [68], a tool named FLOrIDA
is presented and evaluated by two experts. The tool
uses previously defined annotations to locate and vi-
sualize features in a large software industrial sys-
tem. Again, these works lack a formal evaluation
with users.

Finally, as asserted in the background, other re-
cent research efforts have started shifting the focus
of attention towards model-based engineering [24],
model-based SPL adoption [25], and feature-oriented
engineering [26, 27]. These works propose approaches
related to features and automated FL in the context
of software engineering. Our work does not propose
novel automated FL approaches, but rather puts the
focus on comparing manual FL approaches against
automated FL approaches such as the ones presented
by these works in the context of industrial software
engineering. To our knowledge, there is no previous
research that compares manual and automated FL in
models.

8. Conclusions

Feature Location (FL) is one of the most frequent
activities in software development, particularly dur-

ing maintenance activities. However, in industrial
environments, software artifacts are developed over
long periods of time by different software engineers,
resulting in complex and large repositories, and thus
FL becomes a challenging, time-consuming activity
that does not guarantee good results. To tackle this
issue, researches have proposed automated Informa-
tion Retrieval techniques such as LSI to assist soft-
ware engineers in FL.

However, these automated FL techniques are often
compared against other techniques, neglecting com-
parisons against the manual FL process. Moreover,
most of these techniques tackle code, ignoring other
relevant artifacts such as models. In this paper, we
have compared manual FL against automated FL in
models through an experiment that compares the re-
sults obtained by human subjects against those ob-
tained by the usage of LSI. The experiment was con-
ducted in terms of performance, productivity, and
satisfaction. While manual FL obtains better results
in terms of performance and productivity, subjects
are slightly more satisfied with automated FL usage
and results. The results of our work suggest that (1)
neither domain experts nor domain non-experts find
the perfect solutions for the features, (2) manual FL
outperforms automated FL, and (3) satisfaction re-
sults are very similar for both manual and automated
FL.

The analysis of these results suggests discussion
points, findings and future directions to lead an im-
provement of FL techniques (manual, automated,
and guided FL). For example, the results can be bet-
ter than those manually obtained by exploring the
direction of the discrimination capacity of existing
FL techniques such as LSI. Other directions to be
explored are pairing software engineers or designing
complementary artefacts for automated approaches.
Following these directions can help industry to re-
duce the time that is necessary to locate features in
complex and large repositories of software artifacts
that have been developed over several years by dif-
ferent developers. Thus, the adoption of automated
FL techniques can be promoted in industry. Fur-
thermore, the future directions from this work lead
the design of further experiments that tackle novel
research questions.
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