
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2019.DOI

Evaluating Low-cost in Internal
Crowdsourcing for Software
Engineering: The Case of Feature
Location in an Industrial Environment
Francisca Pérez, Ana C. Marcén, Raúl Lapeña, Carlos Cetina
SVIT Research Group. Universidad San Jorge
Autovía A-23 Zaragoza-Huesca Km.299, 50830, Zaragoza, Spain
{mfperez, acmarcen, rlapena, ccetina}@usj.es

Corresponding author: Francisca Pérez (e-mail: mfperez@usj.es).

ABSTRACT
Internal crowdsourcing in software engineering is a mechanism for recruiting engineers to carry out more
efficiently software engineering tasks. However, engineers are busy resources and time is a valuable asset
in industry, which hinders internal crowdsourcing in software engineering from becoming a widespread
practice. In this work, we propose a low-cost variant of internal crowdsourcing for locating features in
models, which limits the time that engineers can spend for providing knowledge. Our approach uses the
knowledge provided by the internal crowd to automatically reformulate an initial feature description. The
result is taken as input to automatically locate the relevant model fragment using Latent Semantic Indexing.
We evaluate our approach using four query reformulation techniques in a real-world case study from our
industrial partner. We compare the results of our approach in terms of recall, precision and F-measure
with a baseline by means of statistical methods to show that the impact of the results of our approach is
significant. Despite the limitation of time, the results show that low-cost in internal crowdsourcing improves
significantly the results in an industrial context where engineers’ availability is scarce.

INDEX TERMS Crowdsourced Software Engineering, Crowdsourcing, Collaborative Information Re-
trieval, Query Reformulation, Feature Location

I. INTRODUCTION

Crowdsourcing in software engineering [1] uses an open
call format to recruit software engineers to cooperate in
carrying out various types of software engineering tasks such
as requirements extraction, design, coding and testing. Since
crowdsourcing in software engineering has been claimed to
lower costs and defect rates, it has increasing interest [1].

Studies show that software engineers spend about 85% of
the total effort in software maintenance and evolution [2].
Feature Location (FL), one of the most important tasks
undertaken during software maintenance [3], is the process
of finding the set of software artifacts that realize a specific
functionality. Most of the existing works in the literature
perform FL on code as the software artifact [4], [5], whereas
model artifacts have been neglected. To achieve FL, software
engineers often use search engines that need a query as

input, which describes the target feature in Natural Language
(NL). Unfortunately, the engineers generally lack the idea of
the software artifacts that realize a target software feature
in an industrial context where software has been developed
over years by different engineers. Hence, queries hardly lead
to relevant results, so the queries need to be reformulated
(e.g., to add more appropriate terms). Despite the engineers’
issues for locating features and the crowdsourcing benefits,
crowdsourcing is not a widespread practice for FL.

Previous works [6]–[9] use external crowdsourced knowl-
edge (Stack Overflow) to reformulate queries for code search.
However, external crowdsourced knowledge cannot provide
relevant information for specific industrial contexts. There-
fore, internal crowdsourced knowledge provided by software
engineers of the company is needed for feature location.
However, engineers are busy resources and time is a valuable

VOLUME X, 2019 1

asset in industry. This hinders engineers’ willingness to invest
in internal crowdsourcing.

To cope with the lack of internal crowdsourcing ap-
proaches for locating features in models, the contribution of
this paper is twofold.

1) We propose a novel approach that is a low-cost variant
of internal crowdsourcing in software engineering for
performing FL in models. The presented approach
limits the time that engineers spend for providing
knowledge (a description in NL of the target feature
and a self-rated level of confidence). Then, the ap-
proach leverages the provided knowledge to automat-
ically reformulate an initial feature description. The
reformulated feature description is used as the input
query for Latent Semantic Indexing (LSI) [10], which
automatically locates the most relevant model fragment
for the reformulated feature description. We select LSI
since it is used in previous studies that locate features
in code [4], [5] and it is the technique that obtains the
best results for FL tasks [11]–[13].

2) We evaluate our approach in a real-world case study
through four existing query reformulation techniques,
three expansion techniques (Rocchio, RSV, and Dice)
and query reduction. The evaluation is performed by
applying the techniques to a real-world case study
provided by our industrial partner (Construcciones y
Auxiliar de Ferrocarriles, CAF)1, a world reference in
train manufacturing. CAF provided us with the models
of the software that controls and manages the trains, 43
feature names to be located, and an oracle (the ground
truth, comprising the model fragments that materialize
the target features). Moreover, 19 domain experts from
CAF provide internal crowdsourced knowledge. We
compare the model fragment from the oracle with
the model fragment from our approach to measure
performance through recall, precision, and F-measure.
In addition, we compare the results of our approach
with a baseline by using statistical methods, in order
to provide both formal and quantitative evidence of
the impact of the obtained results, thus proving the
statistical significance of our work.

Despite the limitation of time, the results show that low-
cost in internal crowdsourcing improves significantly the re-
sults in an industrial context where engineers’ availability is
scarce. Our approach improves the F-measure of the baseline
by 27.66%. The obtained results highlight the importance
of internal crowdsourcing in industrial environments, and
promote the adoption of internal crowdsourcing in different
domains.

The rest of the paper is structured as follows: Section II
presents an overview of our approach. Section III describes
both how our approach homogenizes the NL feature descrip-
tions and four automatic query reformulation techniques.
Section IV describes how the relevant model fragment is ob-

1www.caf.net/en

tained from the reformulated feature description. Section V
presents the evaluation, and Section VI shows the results.
Section VII describes the threats to validity. Section VIII
reviews the related work. Finally, Section IX concludes the
paper.

II. OVERVIEW OF THE APPROACH
Crowdsourced Software Engineering generally involves the
following types of actors (or stakeholders) [1]: requesters and
workers. Requesters have a software engineering task that
needs to be done, whereas workers are recruited to work on
the software engineering task.

Figure 1 shows the inputs that these actors provide in our
proposed approach as well as an overview of the approach to
support low-cost in internal crowdsourcing for FL in models.
To start with, a requester provides a feature description from
the name of the target feature to be located in models. The
provided description is set as the input query.

Second, the feature name is also used to recruit work-
ers who have been working in the company (i.e., internal
workers). The recruitment of internal workers is done man-
ually by the requester or by the company based on different
criteria such as workers’ availability and knowledge. Each
recruited worker contributes to the internal crowdsourcing
by providing a feature description of the target feature and a
self-rated confidence level. The self-rated level of confidence
is provided through the use of a Likert scale ranging from
7 (highest confidence) to 1 (lowest confidence). We choose
7-point Likert items because they have been shown to be
more accurate, easier to use, and a better reflection of a
respondent’s true evaluation [14]. The approach limits the
time that each worker has to provide the knowledge. This
limitation aims to lower the costs of internal crowdsourcing
since the time and availability of workers is scarce in indus-
trial contexts. We set the time limit to 10 minutes per task.
This decision is made based on the majority of responses
from the workers of our industrial partner to the question
of how much time they would be willing to invest in a task
of internal crowdsourcing that was not going to significantly
interrupt their work.

Third, internal crowdsourcing is supported by automati-
cally reformulating the query (i.e., the feature description
provided by the requester) with the feature descriptions pro-
vided by the workers. Instead of automatically reformulating
the query, workers can just discuss together and collabora-
tively to manually draft a better description of the query.
However, this manual reformulation is time-consuming in
complex projects, specially in industrial environments where
a vast amount of software is accumulated over the years. This
is because the combination of a set of feature descriptions
in a single query requires much time since workers have
to both understand all feature descriptions that have been
provided and discuss about the most adequate terms to locate
the target feature. In order to avoid this time-consuming
manual reformulation, the combination of a set of feature
descriptions in a single query is automatically performed

2 VOLUME X, 2019

www.caf.net/en

Feature Location
technique

Model fragment Reformulated query

Automatic Query Reformulation technique

Internal Crowdsourcing

…

…

Requester

Query

Worker1

Feature
description1

Workern

Feature
descriptionn

Worker2

Feature
description2

Self-rated
confidence

Self-rated
confidence

Self-rated
confidence

Text homogenization process

Feature
description1

homogenized
terms

Feature
description2

homogenized
terms

Feature
description3

homogenized
terms

… Query
homogenized

terms

Feature name Product model

Feature
description

FIGURE 1: Overview of the approach

using automatic query reformulation techniques. Previous
works have proposed several approaches to automatically
reformulate a query, grouped into two categories [15], de-
pending on whether they expand or reduce the query.

Finally, both the model and the reformulated query are
used as input to locate the relevant model fragment through a
FL technique based on Latent Semantic Indexing (LSI). We
select LSI since it is the technique that obtains the best results
for FL tasks [16].

The next two sections describe different reformulation
techniques (three query expansion techniques and one query
reduction technique) where each technique can be used as
an alternative to support internal crowdsourcing in our ap-
proach, and how FL is performed using LSI.

III. SUPPORTING INTERNAL CROWDSOURCING
The goal of automatic query reformulation is to automatically
define a new query, starting from an initial one, which is
able to lead to improved retrieval results. To support internal
crowdsourcing, our approach applies an automatic query
reformulation technique. Over time, a large variety of au-
tomatic query reformulation techniques have been proposed
that either expand the initial query or reduce it.

The following three subsections present: the homoge-
nization process that our approach performs to the feature
descriptions, three techniques of query expansion and one
technique of query reduction. Each of these techniques can
be used to obtain the reformulated query in our approach,
so different variants of our approach can be executed. We
selected these techniques because they perform best in the

NL document retrieval field [17].

A. HOMOGENIZING THE TEXT OF FEATURE
DESCRIPTIONS
Our approach homogenizes the NL text of the feature de-
scriptions before the initial query is reformulated by combin-
ing Natural Language Processing (NLP) techniques. Homog-
enizing the text is often regarded as beneficial and a frequent
practice that is performed using a combination of parts-of-
speech tagging, removal of stopwords, and stemming [18].
We adopt this homogenization practice to process the feature
descriptions in the following way:

1) First, the text is split into words (tokens). A white space
tokenizer is typically good enough to split the text, but
more complex tokenizers (such as a CameCase naming
tokenizer) may need to be applied for some sources.

2) Secondly, Parts-of-Speech (POS) tagging is applied to
analyze the grammatical roles of the words, inferring
their roles in the provided text. The tagging of the
words allows for the removal of words that not carry
any relevant information (such as prepositions).

3) Then, stemming is applied to unify the language in
use in the text. Stemming reduces each word to its
root, which enables the grouping of different words
that refer to similar concepts. For instance, plurals are
turned into singulars (doors to door), and verb tenses
are unified (changes to chang).

4) Finally, domain terms extraction and stopwords re-
moval techniques are applied. To do this, software
engineers provide two separate lists of terms: one list of

VOLUME X, 2019 3

both single-word and multiple-word terms that belong
to the domain and must be kept for analysis, and a list
of irrelevant words that have no analysis value. Both
kinds of terms can be automatically filtered in or out of
the query.

breaker, convert, failur, hvac, convert,
chang

Homogenized terms

Domain term extraction
and stopword removal

4

Nouns:
breaker, convert, failur, hvac,

convert

Verbs: chang

…

Reducing each word
to its root

3

Nouns:
breaker, converter, failure,

HVAC, converter

Verbs: Changes

…

Analysis of the words
grammatically

2

The, breaker, changes, to, another,
converter, in, case, of, failure, in, the,
HVAC, converter

The text is tokenized
(divided into words)

1

NL text of a feature description

The breaker changes to another
converter in case of failure in the
HVAC converter

in
p
u
t

o
u
tp

u
t

FIGURE 2: Example of text homogenization process for a
feature description

Figure 2 shows an example of the text homogenization pro-

cess using the NLP techniques described above (division into
words, grammatical analysis of the words, root reduction,
and finally, domain terms extraction and stopwords removal).
The upper part of the figure shows the input of the text
homogenization process, which is the NL text that describes
the feature with the name “converter assistance”. The feature
description is as follows: ’The breaker changes to another
converter in case of failure in the HVAC converter’. The
bottom part of the figure shows the homogenized terms that
are obtained as output: breaker, convert, failur, hvac, convert,
chang.

B. QUERY EXPANSION
In the available literature [19], it is possible to find several
query expansion techniques that propose the inclusion of
terms that fit with the vocabulary of the software artifacts
in use. Not all of these techniques can be applied in our
work (for instance, model based corpus). Consequently, we
selected three existing techniques. To that extent, we applied
the following criteria: (1) we did not take into consideration
those techniques that rely on sources that are external to the
corpus, (such as the web or ontologies); (2) we discarded
the techniques that depend on the relationships between the
words that are present in NL, due to the fact that these
relationships are not shared between the words that appear in
software [20]; and (3) since our goal is to support the daily FL
tasks of engineers, we disregarded non-practical techniques
based on algorithms with elevated levels of computational
complexity.

It is important to highlight that the three selected expansion
techniques consider the top K documents from the list of
documents that are relevant for the query. Afterwards, these
techniques order the terms of these K documents in different
ways, and then select the top N terms to expand the query.

The first of the techniques is based on Rocchio’s expansion
technique [21], which is possibly the most utilized query
reformulation method [22]. It works by ordering the terms
that compose the top K relevant documents through the study
of the importance, relative to the corpus, of each term. To that
extent, the following equation is used:

Rocchio =
∑
d∈R

TfIdf(t, d) (1)

where R is the collection of the top K relevant documents,
d is one document in R, and t is one term in d. The first
component (Tf) is the term frequency, i.e., the number of
times t appears in d. It is an indicator of the importance of t
in d, compared to the rest of the terms in the document. The
second component (Idf) is the inverse document frequency,
that is, the inverse of the number of documents in the corpus
that contain t. It indicates the specificity of t for d.

The second technique that orders the terms in the top
K documents is the Robertson Selection Value (RSV) [19],
[23]. The RSV uses TfIdf as part of its equation, as
Rocchio’s method does. However, the RSV also takes into

4 VOLUME X, 2019

account the chance of a term occurring in a relevant docu-
ment to determine its importance. The RSV is calculated as
follows:

RSV =
∑
d∈R

TfIdf(t, d)[p(t|R)− p(t|C)] (2)

where C denotes the whole set of the documents in the
corpus, R represents the collection of the top K relevant
documents, d is one document in R, and t is one term in d. In
the equation, p(t|R) is the number of times that t appears in
R, and p(t|C) is the number of times that t appears in C.

Neither the first nor the second technique relies on the
similarities among the terms and the query. The intent of
both techniques is to use the first K documents that are
relevant to the query in order to expand it with the most
representative terms. In contrast, the third technique orders
the terms in the top K relevant documents through the Dice
similarity coefficient [19], which relates the terms of the
documents with each term of the query by using as a basis
their appearances within the same documents in the corpus.
The Dice similarity coefficient is given by the following
equation:

Dice =
2dfu∧v
dfu + dfv

(3)

where u is a term from the query, v is a term from the top
K documents, and df denotes the number of documents in
the corpus that contain either u (dfu), v (dfv), or both u and
v (dfu∧v).

In our approach, we use the feature descriptions that are
provided by the internal crowd as the relevant documents,
which are used for query expansion. To select the top K
relevant documents, our approach orders these feature de-
scriptions from highest to lowest level of confidence.

An example of query expansion is shown in Figure 3. The
upper part of the figure shows three different descriptions for
the same target feature. One feature description is provided
by the Requester (i.e., query), whereas two feature descrip-
tions are provided by workers, who contribute to the internal
crowdsourcing (i.e., relevant documents). The middle part of
the figure shows both the result of the text homogenization
process (as described in Subsection III-A), and the result of
ordering the homogenized terms of the relevant documents
(from highest to lowest relevance) using Rocchio’s method
as automatic query reformulation technique. The lower part
of Figure 3 shows the reformulated query, which extends
the terms provided by the requester (breaker, convert, failur,
hvac, convert, chang) with the top 5 homogenized terms
provided by the workers. As a result, the reformulated query
contains the following terms: breaker, convert, failur, hvac,
convert, chang, energi, provid, current, coverag, overload.

C. QUERY REDUCTION
Although queries get longer as more sophisticated infor-
mation needs to be expressed, they tend to include noise

breaker, convert, failur, hvac, convert, chang, energi, provid, current, coverag,
overload

Reformulated query

Query
homogenized terms
breaker, convert, failur,
hvac, convert, chang

Relevant document1

current, convert, hvac,
coverag, overload, failur,

convert, assign

Relevant document2

failur, overload, convert,
energi, air, condit, unit,
circuit, breaker, energi,
convert, provid, provid

Text homogenization process

Requester feature
description

The breaker changes to
another converter in
case of failure in the
HVAC converter

Worker1 feature
description

Passing of current from
one converter to the
HVAC assigned to its
peer for coverage in case
of overload or failure of
the first converter

Worker2 feature
description

In case of failure or
overload in the converter
that provides energy to
the air conditioning unit,
the circuit breaker
provides energy from its
converter

Ordering the terms of the relevant documents
(from highest to lowest relevance)

energi, provid, current, coverag, overload, assign, overload,
air, condit, unit, circuit, convert, failur, hvac, breaker

Extending the query with the first 5 terms

Automatic Query Reformulation technique

FIGURE 3: Example of query expansion

among the relevant information. Thus, some terms in the
query are only confusing the search engine. Hence, most
commercial and academic search engines are affected by this
issue, and their performance deteriorates when longer queries
must be handled [24]. The aim of query reduction techniques,
therefore, is to tackle this issue by shortening queries.

The query reduction technique adopted in this work is a
conservative automatic reduction technique, previously ap-
plied in other software engineering works [17], [25]. The
technique eliminates non-discriminating terms, i.e., terms
appearing in more than 25% of the total of the documents
that conform the corpus.

IV. FEATURE LOCATION TECHNIQUE
In order to perform FL in an automated fashion, Latent
Semantic Indexing (LSI) [10] is used in previous works
that locate features in code [4], [5] and it is the technique
that obtains the best results for FL tasks [11]–[13]. For this
reason, we use LSI in our approach to locate the most relevant
model fragment for a reformulated query that is provided as
input.

LSI is an mathematical approach that automatically ana-
lyzes relationships between queries and textual documents.
Firstly, the technique encodes a query and a set of textual doc-
uments through a term-by-document co-occurrence matrix,
representing them as vectors afterwards. Then, the technique
analyzes the relationships between vectors to produce a sim-

VOLUME X, 2019 5

ilarity ranking between the query and each of the documents.
In our approach, the inputs for LSI are the reformulated

query and a product model as search space. Figure 4 shows
a sample product model taken from a real-world train of
our industrial partner, which is expressed using a Domain
Specific Language (DSL). The DSL that is used by our
industrial partner has enough expressiveness to define the
interactions between the pieces of equipment that compose
a train. For understandability and legibility purposes, and
also due to intellectual property rights concerns, Figure 4
graphically depicts a simplified, equipment-focused subset
of the DSL. The product model of the figure comprises a
set of model elements that represent a scenario where two
separate pantographs (high voltage equipment) collect energy
to send it through voltage converters, which in turn feed the
consumer equipment (for instance, the HVAC, which is the
air conditioning system of the train).

DSL Syntax

Circuit
Breaker 2

PA CCTV

Product Model

8

10

12

1614

9

11

13 15

1918 Converter 2
Circuit

Breaker 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Model Fragment encoding:

Pantograph 2Pantograph 1

Circuit
Breaker 1

3

5

7

4

6 17

Converter 1

High Voltage Equipment

Contactor

Voltage Converter

Consumer Equipment

Model Fragment

2

1

Model Element:

HVAC

Model Fragment

FIGURE 4: Product model and model fragment example

Figure 4 also shows in gray an example model fragment,
which realizes a feature. A model fragment is composed of a
subset of model elements that are part of the product model
(including relationships). To manipulate the model fragment
(which always belongs to the product model that is provided
as search space), it is encoded using a string of binary values
that contains as many positions as elements in the product
model. Each position in the string has two possible values:
0 in case the model element does not appear in the model
fragment, or 1 in case the model element does appear in
the model fragment. In Figure 4, elements 1-7 comprise the
model fragment, so the corresponding values are set to ’1’ in
its binary string representation as the lower part of the figure
shows.

Since the results of FL through LSI depend greatly in the
style in which the NL of software artifacts is written [17], it
is often regarded as beneficial to preprocess the inputs of LSI
through NL processing techniques. Therefore, our approach
preprocesses the NL of each model element of the input
product model as described in Subsection III-A. For example,
HVAC is a homogenized term that is extracted from Model
Element 7 of Figure 4.

The upper part of Figure 5 shows an example of term-
by-document co-occurrence matrix. The rows in the matrix
(keywords) represent the words (i.e., homogenized terms) that
compose the inputs. The columns (documents) represent the
model elements of the input product model. The last column
represents the reformulated query introduced as input. Cells
in the matrix contain the appearance frequency of the tex-
titkeyword denoted by the row in the document denoted by
the column.

Ke
yw

or
ds

Documents

ME1 ME2 … MEN Reformulated
Query

Circuit 1 0 … 0 0
Breaker 0 1 … 0 1
Convert 0 1 … 1 2

… … … … …

Model Element
Similitude Scores

ME2 = 0.82

MEN = 0.74

…

ME1 = -0.61

MFN

MF2

Q

MF1

RQ

ME2
MEN

ME1

Singular Value Decomposition

Threshold:
similitude ≥ 0.7

FIGURE 5: Automated Feature Location through Latent
Semantic Indexing

Vector representations of the documents and the reformu-
lated query are obtained by normalizing and decomposing
the term-by-document co-occurrence matrix using Singular
Value Decomposition (SVD) [10]. The lower-left part of
Figure 5 depicts a three-dimensional graph of the SVD,
containing the vectorial representations of some of the matrix
columns and the reformulated query. SVD usually calculates
the similarity between vectors using the cosine [10]. For this
reason, the similarity degree between vectors is calculated as
follows:
similarity(me) = cos (θ) = A·B

||A||·||B||
where the similarity of a model element (me) is calculated
as the cosine of the angle θ; the angle formed between the
vector representing the latent semantic of the model element
(A) and the vector representing the latent semantic of the
reformulated query (B). Cosine values closer to one denote a
higher degree of similarity, and cosine values closer to minus
one denote a lower degree of similarity. Similarity increases
as vectors point in the same general direction (as more terms
are shared between documents).

After performing the calculation, only those model el-
ements with an associated similarity value greater than x
must be taken into account. A widely used threshold for x is
x = 0.7, corresponding to a 45◦ angle between vectors. The
selection of this threshold is an issue that is still under study.
However, the chosen value has led other works in the field
to [26], [27] promising results. Therefore, in our approach,
the model elements from the product model that was used

6 VOLUME X, 2019

as search space that meet the x ≥ 0.7 condition are set to
’1’ in a model fragment encoding and they conform a model
fragment. This model fragment is candidate for realizing
the reformulated query. In the example of Figure 5, ME2
and MEN conform the model fragment. The model fragment
generated in this manner is the final output of LSI.

V. EVALUATION
A. RESEARCH QUESTIONS
We aim to answer the following research questions to evalu-
ate several aspects with regard to how the results are affected
by enabling low-cost in internal crowdsourcing and using
different automatic query reformulation techniques.

RQ1: Is there improvement in performance for internal
crowdsourcing despite the limitation of time?

RQ2: What is the performance locating features using
different automatic query reformulation techniques in the
context of internal crowdsourcing?

RQ3: How much is the performance influenced using each
automatic query reformulation technique?

The first research question investigates in an industrial
environment whether there are significant differences in the
performance results (in terms of recall, precision and F-
measure) of our approach, which limits the time in internal
crowdsourcing, with a baseline approach, which does not
use internal crowdsourcing. The second research question
investigates the performance using different automatic query
reformulation techniques. Finally, the third research question
investigates how much the performance is influenced by
comparing the results of each query reformulation technique
with the baseline.

B. DATA SET
The data set in use is provided by CAF, our industrial partner.
CAF is an international reference in the manufacturing of
railway solutions, which can be found at a global level in
many different shapes (trains, subway, light rail, or monorail,
among others). The case study comprises 23 trains, with
each model being composed by around 1200 elements, on
average. The models are built from a basis of 121 different
features, which can be part of a specific model. It is important
to highlight that these features have been developed and
maintained by different people over years.

For the evaluation of our approach, CAF provided us
with two separate lists, one containing domain terms and
one containing stopwords for NLP purposes. Moreover, CAF
provided us with the names of 43 features from different
trains, and a mapping to the model fragments that realize
each feature. The model fragments comprise between 5 and
20 model elements. Nineteen CAF domain experts acted as
either requester or worker for providing a description that is
used to locate each of the 43 features.

C. IMPLEMENTATION DETAILS
We implemented the four automatic query reformulation
techniques using Java. To manipulate the product models and

to manage the model fragments, we used Eclipse Modeling
Framework and CVL [28]. The NLP techniques were devel-
oped using the OpenNLP POS-Tagger [29] and the English
(Porter2) stemming algorithm [30]. The Efficient Java Matrix
Library (EJML [31]) was used to implement the LSI.

The evaluation was executed using a Dell XPS with a
processor Intel(R) Core(TM) i7-2670QM @2.2GHz, 8 GB of
RAM and Windows 10 Pro N 64 bits as the hosting Operative
System. The time taken by the approach to locate each feature
ranged between 10 seconds and 22 seconds.

D. PLANNING AND EXECUTION
Figure 6 presents an overview of the execution process and
performance measurement that was planned to answer each
research question. This process takes as input the documen-
tation from our industrial partner (43 feature names, product
models and model fragments of the features), 43 feature
descriptions from 19 requesters, and the information pro-
vided by the internal crowd for each feature (18 workers who
provide feature descriptions and their self-rated confidence
within the time limit). Next, a baseline approach is executed
in order to put the performance of our work in perspective.
Moreover, four variants of our approach are executed where
each variant uses a different automatic query reformulation
technique.

As the result of the execution of either the baseline or one
of the variants of our approach, we obtain a model fragment
that realizes the target feature. The obtained model fragment
is compared with the oracle as shown in Figure 6. The oracle
is considered to be the ground truth (correct solutions for the
issue under study), and is made up of the mapping between
model fragments and target features provided by our indus-
trial partner. By comparing the obtained results against the
oracle, a confusion matrix is calculated. A confusion matrix
is a table that describes the performance of a classification
model on a set of test data (the best solutions) for which
the true values are known (from the oracle). In our work,
each obtained solution is a model fragment, composed by
an assembly of model elements (subset of the complete
model). Being the granularity at the model elements level,
the presence or absence of each model element is considered
as a true or false classification, respectively. The confusion
matrix distinguishes between predicted values and real values
by classifying them into four distinct categories:

1) True Positive (TP): predicted true in the solution, also
true in the oracle.

2) False Positive (FP): predicted true in the solution, but
false in the oracle.

3) True Negative (TN): predicted false in the solution,
also false in the oracle.

4) False Negative (FN): predicted false in the solution, but
true in the oracle.

From the confusion matrix, some performance measure-
ments can be derived. Specifically, we report three perfor-
mance measurements: recall, precision and F-measure.

VOLUME X, 2019 7

From Industrial Partner

FLM Rocchio
Expansion

Model
Fragment

Oracle

R&P
ReportBaseline

approach

FLM RSV
Expansion

FLM Dice
Expansion

FLM Query
Reduction

FLM Baseline

Model
Fragment

Model
Fragment

Model
Fragment

Model
Fragment

R&P
Report

R&P
Report

R&P
Report

Internal Crowdsourcing

Requester

Feature
description

Worker1

Feature
description1
Self-rated
confidence

R&P
Comparison

Report

Research Question3

Feature name

Our approach

Confusion
Matrix

Confusion
Matrix

Confusion
Matrix

Confusion
Matrix

Confusion
Matrix

R&P
Comparison

Report

R&P
Report

Research Question2

Research Question1

Statistical
methods

Statistical
methods

Workern

Feature
descriptionn
Self-rated
confidence

…

Model Fragment
of the FeatureProduct model

FIGURE 6: Evaluation execution and measurement to answer each research question

Recall measures the percentage of elements of the oracle
correctly retrieved by the proposed solution, and is calculated
as:

Recall =
TP

TP + FN

Precision measures the percentage of elements from the
proposed solution that appear in the oracle, and is calculated
as:

Precision =
TP

TP + FP

The F-measure is the harmonic mean of precision and
recall, and is calculated as:

F −measure = 2 ∗ Precision ∗Recall
Precision+Recall

Recall and precision values can range from 0% to 100%.
Obtaining values of 100% precision and 100% recall would
imply that the obtained solution and the oracle are equal. A
recall value of 0% would indicate that the obtained solution
does not contain a single model element of the oracle, and a
value of 100% recall would mean that the obtained solution
has correctly retrieved all the model elements of the oracle.
A precision value of 0% would denote that no single model
element from the obtained solution appears in the oracle, and
a value of 100% precision would entail that all the model
elements from the obtained solution appear in the oracle.

To obtain the performance measurements that answer each
research question, the execution process is as follows:

Answering RQ1. To answer whether there is an improve-
ment in performance for internal crowdsourcing despite the
limitation of time, we executed a baseline approach that
does not support internal crowdsourcing to locate features
in models. The baseline follows the approach as described
in Figure 1 without using the inputs of the “Internal Crowd-
sourcing” part. Specifically, the baseline takes as input a
feature description from a requester and it locates the model
fragment that realize the feature description using LSI as
described in Section IV.

To locate the model fragment that realizes each of the
43 features using low-cost in internal crowdsourcing, we
executed the variant of our approach that uses the query
expansion technique based on Rocchio since it is the most
commonly used method for query reformulation. To perform
the reformulation, we set k=5 and N=10 (i.e., the top five
workers’ feature descriptions are set as relevant documents
and the top 10 term suggestions from these feature descrip-
tions are used to expand the requester’s feature description).
These settings are based on recommendations found in the
literature [19]. For each feature, we executed our approach
for each of the 19 domain experts (one is a requester and
the remaining 18 are workers who constitute the internal
crowd. The sum for the baseline and the approach presented
gives a total of 1634 independent runs, i.e., 43 (features)
x 19 (requesters) = 817 independent runs x 2 (baseline +
approach). For each of the 43 features in the baseline and
in our approach, we record the mean values and standard
deviations for recall, precision and F-measure.

In addition, we compare the results of the baseline and our
approach through the usage of statistical methods that can
prove the statistical significance of our work, i.e., that provide
formal and quantitative evidence of the improvements posed
by our research. To that extent, we perform a Holm’s post hoc
analysis, which compares the results in a pair-wise manner.
The result is a probability value, or p−value. The p−value
can range between 0 and 1, but in order to be accepted by the
research community as statistically significant, a p − value
must be under 0.05.

However, statistically significant differences can be ob-
tained even if they are so small as to be of no practical value.
Therefore, in addition to addressing whether the results of an
approach are statistically better than those obtained by an-
other approach, it is important to assess the magnitude of the
improvement. In other words, it is important to measure how
much does the solution obtained by one approach improve
the quality of the solution obtained by another approach. To
analyze this issue, Effect size measures are needed. For a non-

8 VOLUME X, 2019

parametric effect size measure, we use Cliff’s delta [32], [33].
Cliff’s delta is an ordinal statistic that describes the frequency
with which an observation from one group is higher than
an observation from another group compared to the reverse
situation. It can be interpreted as the degree to which two
distributions overlap, with values ranging from -1 to 1. For
instance, when comparing distributions X and Y: a value of
0 means no difference between the two distributions; a value
of -1 means that all samples in distribution X are lower than
all samples in distribution Y; and a value of 1 means the
opposite (all samples in X are higher than all samples in
Y). In addition, threshold values can be defined [34] for the
interpretation of Cliff’s delta effect size (|d| < 0.147 →
’negligible’; |d| < 0.33 → ’small’; |d| < 0.474 →
’medium’, |d| ≥ 0.474→ ’large’).

Answering RQ2. To measure the performance of locating
features using different query reformulation techniques in the
context of internal crowdsourcing, we executed three variants
of our approach where each variant uses a different automatic
query reformulation technique (either RSV expansion, Dice
expansion and Query Reduction). For each variant, we ex-
ecuted our approach to locate each of the 43 features using
the information provided by each of the 19 domain experts
(one is a requester and the remaining 18 are workers who
constitute the internal crowd), i.e., 3 (variants) x 43 (features)
x 19 (requesters) = 2451 independent runs. For each variant
and each of the 43 features, we record the mean values and
standard deviations for precision, recall and F-measure.

Answering RQ3. To answer how much is the performance
influenced using each automatic query reformulation tech-
nique, we perform a pair-wise comparison between the re-
sults of each query reformulation technique and the baseline
(that does not support internal crowdsourcing as described in
RQ1) using statistical methods. Thus, formal and quantitative
evidence about the influence of internal crowdsourcing using
each automatic query reformulation technique can be pro-
vided. Specifically, we carry out a Holm’s post hoc analysis
and a Cliff’s delta as described to answer RQ1.

VI. RESULTS AND DISCUSSION
A. RESEARCH QUESTION 1

Table 1 shows the mean values of recall, precision and F-
measure for the 43 features of the industrial case study. The
baseline obtains the best result in terms of recall, which
obtains a value of 70.28%. Our approach (using Rocchio
as the query expansion technique) outperforms the baseline
in terms of precision and F-measure (50.90% and 42.71%,
respectively).

Table 2 shows the p−V alues of Holm’s post hoc analysis
of the pair-wise comparison between the performance indi-
cators (recall, precision and F-measure) of our approach and
the baseline. The results show that all p − V alues have sta-
tistically significant differences in the performance indicators
since they are smaller than the corresponding significance
threshold value (0.05).

TABLE 1: Mean values and standard deviations for recall,
precision and F-measure for the baseline and our approach
using Rocchio expansion in the industrial case study

Recall ± (σ) Precision ± (σ) F-measure ± (σ)

Baseline 70.28 ± 10.00 16.51 ± 7.12 26.02 ± 9.43

Our approach
using Rocchio 41.21 ± 14.81 50.90 ± 13.45 42.71 ± 11.34

Table 2 also shows the Cliff’s Delta values, which can be
interpreted as large according to the magnitude scales [34].
Specifically, the Cliff’s Delta value in precision shows large
differences of our approach with regard to the baseline
(0.9892). In addition, the Cliff’s Delta value in the harmonic
mean of precision and recall (F-measure) shows large differ-
ences of our approach with regard to the baseline (0.7555).

TABLE 2: Statistical analysis for comparing our approach
using Rocchio expansion with the baseline

Our approach using Rocchio expansion vs Baseline
Holm’s post hoc Effect size

p− V alue Cliff’s Delta

Recall Precision F-measure Recall Precision F-measure

1.3x10−13 2x10−14 5.5x10−9 -0.9027 0.9892 0.7555

RQ1 answer. From the results, we can conclude that
low-cost in internal crowdsourcing when locating features in
models produces an improvement in performance despite the
limitation of time.

B. RESEARCH QUESTION 2
Table 3 shows the mean values of recall, precision and F-
measure for the 43 features of the three variants of our
approach. Each variant uses a different automatic query refor-
mulation technique (either RSV expansion, Dice expansion
or Query Reduction).

TABLE 3: Mean values and standard deviations for recall,
precision and the F-measure for our approach using different
automatic query reformulation techniques

Recall ± (σ) Precision ± (σ) F-measure ± (σ)

RSV expansion 37.67 ± 14.65 52.12 ± 12.32 41.23 ± 11.59
Dice expansion 52.42 ± 14.19 59.10 ± 15.01 53.68 ± 11.32
Query Reduction 28.45 ± 14.55 81.33 ± 12.52 39.88 ± 16.59

RQ2 answer. Reduction obtains the best result for pre-
cision, providing a precision value of 81.33%, whereas
the worst precision value is obtained by RSV expansion
(52.12%). Dice expansion obtains the best result for recall
and F-measure (52.42% and 53.68%, respectively), whereas
the worst result for recall and F-measure is obtained by Query
Reduction (28.45% and 39.88%, respectively).

VOLUME X, 2019 9

C. RESEARCH QUESTION 3
Table 4 shows the p−V alues of Holm’s post hoc analysis for
pair-wise comparisons between each reformulation technique
(RSV expansion, Dice expansion and Query Reduction) and
the baseline (as presented in the results of RQ1 in Subsection
VI-A) for recall, precision and F-measure. The results show
that all pair-wise comparisons have statistically significant
differences because the values are smaller than the corre-
sponding significance threshold value (0.05). With regard
to the Cliff’s Delta values, Table 5 shows that the baseline
obtains large differences in recall, whereas all automatic
query reformulation techniques (either expansion or reduc-
tion) show large differences with the baseline in precision
and F-measure according to the magnitude scales [34]. In
F-measure, the highest Cliff’s Delta value is obtained when
Dice expansion is compared to the baseline (with the value
of 0.9427).

TABLE 4: Holm’s post hoc p − V alues to compare each
reformulation technique with the baseline

Recall Precision F-measure

RSV Expansion vs Baseline 9.8x10−14 1.5x10−14 9.3x10−11

Dice Expansion vs Baseline 2.4x10−7 2x10−14 5.9x10−14

Query Reduction vs Baseline 1.5x10−14 1.5x10−14 1.2x10−05

TABLE 5: Cliff’s Delta values to measure the effect size
between each reformulation technique and the baseline

Recall Precision F-measure

RSV Expansion vs Baseline -0.9448 0.9957 0.7015
Dice Expansion vs Baseline -0.6917 0.9957 0.9427
Query Reduction vs Baseline -0.9935 1 0.5068

RQ3 answer. From the results, we can conclude that
the influence in the performance indicator of F-measure (the
harmonic mean of precision and recall) that is obtained by
our approach using query reformulation techniques (Rocchio
expansion, RSV expansion, Dice expansion and Query re-
duction) is both significant and large.

D. DISCUSSION
In an industrial context where engineers’ availability is
scarce, our empirical results have confirmed that low-cost
in internal crowdsourcing improves significantly the results
of locating features in models. Although the results do not
include all of the model elements of the features (100% of
recall and precision), the different variants of our approach
obtain large differences with the baseline in precision and F-
measure.

For RQ1 (using Rocchio as the query reformulation tech-
nique), the result of 50.90% in precision of our approach is
considered excellent according to the classification obtained
from [35]. We acknowledge that the classification obtained
from [35] is to trace requirements in code. To the best of our
knowledge, there is no other table that classifies the results of
recall and precision for locating features in models.

It is important to highlight that the results for RQ1 of
our approach show statistically significant differences with
regard to the baseline. For Precision and F-measure (the har-
monic mean of precision and recall), our approach also shows
large differences with regard to the baseline (according to the
Cliff’s Delta value). Despite the limitation of time, the results
point that low-cost in internal crowdsourcing is promising.
In addition, the results obtained with other reformulation
techniques can lead to better results as it is shown in RQ2

with Dice expansion.
Engineers can consider the model fragment provided by

our approach as an initial solution. Since the feature location
depends on the terms of the reformulated query, the initial
solution can be manually refined (in case that model elements
do not meet the engineers’ expectations), or engineers may
refine their terms of feature descriptions to automatically
obtain different solutions.

Using our approach, engineers benefit from techniques that
automatically support both low-cost internal crowdsourcing
and feature location. The limitation of time that is proposed in
our approach reduces the effort during software maintenance
and evolution tasks and improve the quality of the solution.
In the context of our industrial partner, suppose we ask
the engineer to manually locate the model elements that
correspond to the 43 features of the data set provided by CAF.
Taking into account that the data set comprises 23 trains and
the product model of each train has more than 1200 model
elements, at least 27600 model elements should be evaluated.
To assess a model element, it is reasonable to consider its
properties. In the data set, each element has about 15 proper-
ties. Therefore, about 414000 properties of model elements
should be considered. Assuming that an engineer only needs
1 second to consider a property of a model element, the
engineer needs 4.79 days to manually locate each feature. In
this industrial context where maintenance contracts last 25
years, an engineer may not have the full knowledge to locate
the features in the product model. Therefore, the manual
result of the location may not be correct and time-consuming.
For this reason, techniques that automatically support both
low-cost in internal crowdsourcing and feature location are
necessary.

We detected that the support of low-cost in internal crowd-
sourcing of our approach improves the results because the
reformulated query can include more appropriate terms to
locate the target feature. These results are promising, and
they promote that low-cost in internal crowdsourcing be-
comes a widespread practice in FL. As well as in other
works [22], [36], results depend on the quality of the queries.
By analyzing the results, we detected that the quality of the
solution is negatively influenced due to the following issues:
1) engineers omitted terms in the queries due to a lack of
knowledge, and 2) the language used in the queries was
different to the language used in the models because the
models were maintained by different engineers over years.
Addressing these issues to evaluate the influence in the
quality of the solution as well as evaluating new techniques

10 VOLUME X, 2019

and new combinations of workers constitute our future work.

VII. THREATS TO VALIDITY
In order to acknowledge the limitations of the evaluation
of our work, we use the classification of threats of validity
presented in [37], [38], that distinguishes four aspects of
validity:

Construct validity: our evaluation is performed through
the usage of three measurements (recall, precision, and F-
measure), widely accepted in the software engineering re-
search community [39], to minimize this risk.

Internal Validity: to evaluate our approach and the base-
line, we used a set of feature names and an oracle as ground
truth (obtained from our industrial partner) that specified the
solution that is considered as correct and that enables the
calculations of recall, precision, and F-measure. Regarding
the number of relevant documents and the number of terms
in use to expand the query, we used the values of 5 and
10, respectively, as recommended in the literature [19]. With
regard to the time limit that workers have to provide both the
feature descriptions and the self-rated level of confidence, we
set 10 minutes as decided by the workers of our industrial
partner. However, at this stage of our research, we have not
studied how different time values would impact the results
yet.

External Validity: to mitigate this threat, we have de-
signed our approach in such a way that allows for it to be
applied not only to the domain of our industrial partner, but
to other different domains as well. To apply our approach,
the only requirements are: (1) that the set of models where
features must be located conform to MOF (the OMG meta-
language for defining modeling languages); (2) that feature
descriptions must be provided in a textual manner; and (3)
that the self-rated confidence level must be provided as a
number ranging from 1 to 7.

Furthermore, automatic query reformulation techniques
only work if a feature description is used as a query, and
in cases where the feature descriptions formulated by the
internal crowd are well worded enough to retrieve at least
some of the relevant documents [22]. As well as in other
works [22], [36], results depend on the quality of the queries:
poor queries cause irrelevant model fragments to be highly
ranked. It is also worth noting that the language used for
the textual elements of the models and for the feature de-
scriptions must be the same. Eventually, some modifications
can be applied to the NLP techniques to narrow the gap
between both elements (different tokenizers, stemming, or
POS tagging techniques). In this work, we select those NLP
techniques that obtain the best results in a previous work [40].
Since the contribution of this work is to evaluate low-cost in
internal crowdsourcing, we have not yet studied how different
NLP techniques impact the results. Note that the language in
use is particular for each domain, and therefore, even though
our approach can be applied to locate features in MOF-based
models from a real-world industrial context, the approach

should be applied to other domains before completely reas-
suring its generalization.

Reliability: to reduce this threat, concerning to the extent
with which the data and the analysis are dependent on the
researchers, both the feature descriptions and the models are
provided by our industrial partner, who is not further involved
in the development of this research work.

VIII. RELATED WORK
Previous works [6]–[9] have been proposed to use external
crowdsourced knowledge to reformulate queries for code
search. Specifically, the external crowdsourced knowledge
is obtained from StackOverflow Q&A site. However, these
works are focused on searching in code instead of search-
ing in other software artifacts such as models. Moreover,
these works use external crowdsourced knowledge, which
cannot be available to obtain relevant information in specific
industrial contexts (e.g., due to intellectual property rights
concerns).

Other works propose to expand the query in an automatic
fashion to add words that are similar to or related to the
query terms. Hill et al. [36] use word context to extract
potential query expansion terms from the code. Other ap-
proaches propose to reformulate queries by removing words.
Kumaran and Carvalho [24] reduce queries by analyzing the
most promising subsets of terms from the original query.
Haiduc et al. [17] propose an approach trained with a sample
of queries and relevant results to automatically recommend
a reformulation technique (expansion or reduction). Other
works have been proposed to improve the effectiveness of FL
by involving the feedback of users regarding the relevance of
the retrieved results. For instance, Wang et al. [41] proposed
a code search approach, incorporating user feedback to refine
the query. Zou et al. [42] proposed a re-ranking approach
that refines search results by investigating the style of the
answers to software questions with different interrogatives.
Despite the effort of improving the performance of FL in
code through automatic query reformulation, it has been
neglected in models and in industry.

In our previous works [43]–[45], we also perform query
reformulation to locate features in models. In [43], we use
the common approach for query reformulation by using
as relevant documents other train models instead of using
feature descriptions produced by software engineers as this
work does. In this paper, the results are better than without the
internal knowledge provided by software engineers. In [44],
we obtain a reformulated query from a set of domain experts
that serves to evaluate two techniques (Information Retrieval
using LSI and Linguistic rules) for locating relevant model
fragments. Since LSI obtains the best results in [44], we use
LSI in this paper as the feature location technique. In [45],
we propose CoFLiM and we evaluate whether collaboration
improves the quality of the solution as well as how the quality
of the solution is influenced by the number of domain experts
input. CoFLiM only uses Rocchio expansion as the query
reformulation technique and it uses a different FL technique

VOLUME X, 2019 11

(evolutionary algorithm), whereas this paper evaluates the
quality of the solution using Rocchio expansion as well as
other three query reformulation techniques (RSV expansion,
Dice expansion and Query Reduction) using a different FL
technique (LSI). In contrast to [44], [45], this paper compares
the results with a baseline and explores how the quality of the
results is affected by: (1) limiting the time that the internal
crowd has to provide knowledge (which is a need to promote
internal crowdsourcing in industrial environments), and (2)
using different automatic query reformulation techniques.

IX. CONCLUDING REMARKS

Despite the issues that engineers have for locating features
and the crowdsourcing benefits, internal crowdsourcing is
not a widespread practice. Engineers are busy resources and
their time is a valuable asset in industry, which hinders
engineers’ willingness to invest in internal crowdsourcing. In
this paper, we propose a novel approach that is a low-cost
variant of internal crowdsourcing in software engineering for
locating features in models. Our approach limits the time
that engineers can spend for providing knowledge. After, our
approach uses this knowledge to automatically reformulate
an initial feature description. Finally, the reformulated feature
description is taken as input to automatically locate the
relevant model fragment using LSI as FL technique.

We evaluate four variants of our approach in a real-world
case study to explore different automatic query reformulation
techniques (Rocchio query expansion, RSV query expansion,
Dice query expansion or Query reduction) to locate features
in models. In addition, we evaluate a baseline approach,
which does not use internal crowdsourcing, to compare the
results of our approach using statistical methods. The results
of our approach show that Dice query expansion obtains the
best result in F-measure (53.68) instead of Rocchio query
expansion (42.71), which is the most commonly used method
for query reformulation. The results also show that the superi-
ority of our approach is significant and large compared to the
results of the baseline. Specifically, our approach improves
F-measure up to 27.66%.

As future work, we plan to investigate how much the
performance is influenced by changing (either increase or
decrease) the time limit. Moreover, we plan to evaluate the
influence in the quality of the solution with new approaches
to locate the relevant model fragment (e.g., using Machine
Learning), and to recruit a different combination of workers
(e.g., increasing the number of workers) who can provide
other knowledge to reformulate the initial feature description.

ACKNOWLEDGEMENTS

This work has been partially supported by the Ministry
of Economy and Competitiveness (MINECO) through the
Spanish National R+D+i Plan and ERDF funds under the
Project ALPS (RTI2018-096411-B-I00).

REFERENCES
[1] K. Mao, L. Capra, M. Harman, and Y. Jia, “A survey of the use of

crowdsourcing in software engineering,” Journal of Systems and Software,
vol. 126, pp. 57 – 84, 2017.

[2] L. Favre, “Modernizing software & system engineering processes,” in
Proceedings of the International Conference on Systems Engineering,
2008, pp. 442–447.

[3] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location in
source code: a taxonomy and survey.” Journal of Software: Evolution and
Process, vol. 25, no. 1, pp. 53–95, 2013.

[4] J. Rubin and M. Chechik, “A survey of feature location techniques,” in
Domain Engineering. Springer, 2013, pp. 29–58.

[5] A. Razzaq, A. Le Gear, C. Exton, and J. Buckley, “An empirical as-
sessment of baseline feature location techniques,” Empirical Software
Engineering, vol. 25, no. 1, pp. 266–321, 2020.

[6] M. M. Rahman and C. K. Roy, “Quickar: Automatic query reformulation
for concept location using crowdsourced knowledge,” in Proceedings of
the 31st IEEE/ACM International Conference on Automated Software
Engineering, 2016, pp. 220–225.

[7] M. M. Rahman and C. Roy, “Effective reformulation of query for code
search using crowdsourced knowledge and extra-large data analytics,” in
Proceedings of the International Conference on Software Maintenance and
Evolution (ICSME), 2018.

[8] Z. Li, T. Wang, Y. Zhang, Y. Zhan, and G. Yin, “Query reformulation
by leveraging crowd wisdom for scenario-based software search,” in
Proceedings of Internetware, 2016, pp. 36–44.

[9] L. Nie, H. Jiang, Z. Ren, Z. Sun, and X. Li, “Query expansion based
on crowd knowledge for code search,” IEEE Transactions on Services
Computing, vol. 9, no. 5, pp. 771–783, 2016.

[10] T. K. Landauer, P. W. Foltz, and D. Laham, “An Introduction to Latent
Semantic Analysis,” Discourse processes, vol. 25, no. 2-3, pp. 259–284,
1998.

[11] D. Poshyvanyk, Y.-G. Gueheneuc, A. Marcus, G. Antoniol, and V. Rajlich,
“Feature location using probabilistic ranking of methods based on execu-
tion scenarios and information retrieval,” IEEE Transactions on Software
Engineering, vol. 33, no. 6, pp. 420–432, Jun. 2007.

[12] D. Liu, A. Marcus, D. Poshyvanyk, and V. Rajlich, “Feature location via
information retrieval based filtering of a single scenario execution trace,”
in Proceedings of the Twenty-second IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE ’07. New York, NY, USA:
ACM, 2007, pp. 234–243.

[13] M. Revelle, B. Dit, and D. Poshyvanyk, “Using data fusion and web
mining to support feature location in software,” in IEEE 18th International
Conference on Program Comprehension (ICPC), 2010, pp. 14–23.

[14] K. Finstad, “Response interpolation and scale sensitivity: Evidence against
5-point scales,” Journal of usability studies, vol. 5, no. 3, pp. 104–110,
2010.

[15] X. A. Lu and R. B. Keefer, “Query expansion/reduction and its impact
on retrieval effectiveness,” in Proceedings of The Third Text REtrieval
Conference, TREC 1994, Gaithersburg, Maryland, USA, November 2-4,
1994, 1994, pp. 231–240.

[16] S. Winkler and J. Pilgrim, “A Survey of Traceability in Requirements
Engineering and Model-Driven Development,” Software and Systems
Modeling (SoSyM), vol. 9, no. 4, pp. 529–565, 2010.

[17] S. Haiduc, G. Bavota, A. Marcus, R. Oliveto, A. De Lucia, and T. Menzies,
“Automatic query reformulations for text retrieval in software engineer-
ing,” in Proceedings of the 2013 International Conference on Software
Engineering, ser. ICSE ’13, 2013, pp. 842–851.

[18] A. Hulth, “Improved automatic keyword extraction given more linguistic
knowledge,” in Proceedings of the 2003 conference on Empirical methods
in natural language processing, 2003, pp. 216–223.

[19] C. Carpineto and G. Romano, “A survey of automatic query expansion in
information retrieval,” ACM Comput. Surv., vol. 44, no. 1, pp. 1:1–1:50,
Jan. 2012.

[20] G. Sridhara, E. Hill, L. L. Pollock, and K. Vijay-Shanker, “Identifying
word relations in software: A comparative study of semantic similarity
tools.” in ICPC, R. L. Krikhaar, R. LÃd’mmel, and C. Verhoef, Eds. IEEE
Computer Society, 2008, pp. 123–132.

[21] G. Salton, The SMART Retrieval System—Experiments in Automatic
Document Processing. Upper Saddle River, NJ, USA: Prentice-Hall, Inc.,
1971.

[22] B. Sisman and A. C. Kak, “Assisting code search with automatic query
reformulation for bug localization,” in Proceedings of the 10th Working

12 VOLUME X, 2019

Conference on Mining Software Repositories, MSR ’13, 2013, pp. 309–
318.

[23] S. E. Robertson, “On term selection for query expansion,” Journal of
Documentation, vol. 46, no. 4, pp. 359–364, 1990.

[24] G. Kumaran and V. R. Carvalho, “Reducing long queries using query
quality predictors,” in Proceedings of the 32Nd International ACM SIGIR
Conference on Research and Development in Information Retrieval, ser.
SIGIR ’09. New York, NY, USA: ACM, 2009, pp. 564–571.

[25] G. Gay, S. Haiduc, A. Marcus, and T. Menzies, “On the use of relevance
feedback in ir-based concept location.” in ICSM. IEEE Computer Society,
2009, pp. 351–360.

[26] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic, “An information
retrieval approach to concept location in source code,” in Proceedings of
the 11th Working Conference on Reverse Engineering, ser. WCRE ’04,
2004, pp. 214–223.

[27] H. E. Salman, A. Seriai, and C. Dony, “Feature location in a collection
of product variants: Combining information retrieval and hierarchical
clustering,” in The 26th International Conference on Software Engineering
and Knowledge Engineering, 2013, pp. 426–430.

[28] Ø. Haugen, B. Moller-Pedersen, J. Oldevik, G. Olsen, and A. Svendsen,
“Adding standardized variability to domain specific languages,” in Soft-
ware Product Line Conference, 2008. SPLC ’08. 12th International, Sept
2008, pp. 139–148.

[29] “Apache opennlp: Toolkit for the processing of natural language text,”
https://opennlp.apache.org/, 2017.

[30] “English (porter2) stemming algorithm,” http://snowball.tartarus.org/
algorithms/english/stemmer.html, 2018.

[31] “Efficient java matrix library,” http://ejml.org/, 2017.
[32] N. Cliff, “Dominance statistics: Ordinal analyses to answer ordinal ques-

tions.” Psychological Bulletin, vol. 114, no. 3, p. 494, 1993.
[33] ——, Ordinal methods for behavioral data analysis. Psychology Press,

1996.
[34] J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek, “Appropriate

statistics for ordinal level data: Should we really be using t-test and co-
henâĂŹsd for evaluating group differences on the nsse and other surveys,”
in annual meeting of the Florida Association of Institutional Research,
2006, pp. 1–33.

[35] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram, “Advancing candidate
link generation for requirements tracing: the study of methods,” IEEE
Transactions on Software Engineering, vol. 32, no. 1, pp. 4–19, Jan 2006.

[36] E. Hill, L. Pollock, and K. Vijay-Shanker, “Automatically capturing source
code context of nl-queries for software maintenance and reuse,” in Pro-
ceedings of the 31st International Conference on Software Engineering,
ser. ICSE ’09, 2009, pp. 232–242.

[37] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical software engineering,
vol. 14, no. 2, pp. 131–164, 2009.

[38] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wess-
lén, Experimentation in software engineering, 2012.

[39] G. Salton and M. J. McGill, “Introduction to Modern Information Re-
trieval,” 1986.

[40] R. Lapeña, J. Font, O. Pastor, and C. Cetina, “Analyzing the impact of
natural language processing over feature location in models,” in Proceed-
ings of the 16th ACM SIGPLAN International Conference on Generative
Programming: Concepts and Experiences, GPCE 2017, 2017, pp. 63–76.

[41] S. Wang, D. Lo, and L. Jiang, “Active code search: Incorporating user
feedback to improve code search relevance,” in Proceedings of the 29th
ACM/IEEE International Conference on Automated Software Engineer-
ing, ser. ASE ’14, 2014, pp. 677–682.

[42] Y. Zou, T. Ye, Y. Lu, J. Mylopoulos, and L. Zhang, “Learning to rank
for question-oriented software text retrieval,” in Proceedings of the 30th
IEEE/ACM International Conference on Automated Software Engineer-
ing, 2015, pp. 1–11.

[43] F. Pérez, J. Font, L. Arcega, and C. Cetina, “Automatic query reformula-
tions for feature location in a model-based family of software products,”
Data & Knowledge Engineering, 2018.

[44] F. Pérez, A. C. Marcén, R. Lapeña, and C. Cetina, “Introducing collabora-
tion for locating features in models: Approach and industrial evaluation,”
in Proceedings of the 25th International Conference on Cooperative Infor-
mation Systems, CoopIS, 2017, pp. 114–131.

[45] F. Pérez, J. Font, L. Arcega, and C. Cetina, “Collaborative feature loca-
tion in models through automatic query expansion,” Automated Software
Engineering, 2019.

Francisca Pérez is an assistant professor
(tenure track) in the SVIT Research Group
(https://svit.usj.es) at San Jorge University.
She received a PhD in Computer Science
from the Technical University of Valen-
cia. Her research interests include Model-

Driven Development, Collaborative Information Retrieval,
Search-Based Software Engineering, and Variability Mod-
eling. She publishes her research results and participates in
high quality international software engineering conferences
and journals, such as the Automated Software Engineering
(AUSE) journal, the Information & Software Technology
(IST) journal, and the Journal of Systems and Software
(JSS). More about Pérez and her work is available online at
http://franciscaperez.com.

Ana C. Marcén is a PhD student in com-
puter science and researcher in the SVIT
Research Group at San Jorge University.
Her current research lines include feature
location, trazability link recovery and ma-
chine learning. Marcén obtained her Mas-
ters’ degree in computer science from San

Jorge University. Contact her at acmarcen@usj.es

Raúl Lapeña is a PhD student in computer
science and researcher in the SVIT Re-
search Group at San Jorge University. His
main research interests lie in model-driven
development, feature location, and software
product lines. Lapeña received his degree

in computer engineering from San Jorge University. Contact
him at rlapena@usj.es

Carlos Cetina is an associate professor
with San Jorge University and the Head of
the SVIT Research Group. He received a
PhD in computer science from the Technical
University of Valencia. His research focuses
on software product lines and model-driven
development. His research results have re-

shaped software development in world-leader industries from
heterogeneous domains ranging from induction hob firmware
to train control and management systems. More information
about his background can be found at his website: http:
//carloscetina.com.

VOLUME X, 2019 13

https://opennlp.apache.org/
http://snowball.tartarus.org/algorithms/english/stemmer.html
http://snowball.tartarus.org/algorithms/english/stemmer.html
http://ejml.org/
https://svit.usj.es
http://franciscaperez.com
http://carloscetina.com
http://carloscetina.com

	Introduction
	Overview of the approach
	Supporting internal crowdsourcing
	Homogenizing the text of feature descriptions
	Query Expansion
	Query Reduction

	Feature Location technique
	Evaluation
	Research questions
	Data set
	Implementation details
	Planning and execution

	Results and discussion
	Research Question 1
	Research Question 2
	Research Question 3
	Discussion

	Threats to validity
	Related work
	Concluding remarks
	REFERENCES

