
1

Locating Clone-and-Own Relationships in
Model-based Industrial Families of Software

Products to Encourage Reuse
Francisca Pérez, Manuel Ballarin, Raúl Lapeña, Carlos Cetina

SVIT Research Group. Universidad San Jorge
Autovía A-23 Zaragoza-Huesca Km.299, 50830, Zaragoza, Spain

{mfperez, mballarin, rlapena, ccetina}@usj.es

Abstract—Companies often develop similar product variants
that share a high degree of functionality (i.e., features) by
copying and modifying code (the clone-and-own approach). In an
industrial context with a large amount of variants, software reuse
can become complex for engineers. Identifying the clone-and-
own relationships between the same feature in different product
variants can encourage reuse (e.g., suggesting improvements on
how features are reused or detecting feature reuse impediments).
This work presents our approach to locate the clone-and-own
relationships. To do this, our approach proposes an algorithm
that combines feature location and code-comparison techniques.
We evaluated our approach in three model-based industrial
families of two domains (firmware for induction hobs and
train control software). In our evaluation, we measure the
performance (in terms of precision and recall) and we compare
our approach with its previous version (baseline), which uses a
different technique to compare the code of each feature with its
variants. The results show that our approach is able to locate
clone-and-own relationships in different domains of real world
environments, and it outperforms the baseline up to 65.37% in
terms of precision.

Index Terms—Feature Location, Software Variability Extrac-
tion, Clone-and-Own Extraction, Software Maintenance and
Evolution

I. INTRODUCTION

Recent research has pointed out that a family of software
products inevitably contains a large amount of similar code [1]
that could be reused. Companies often develop a portfolio
of similar product variants which share a high degree of
common functionality (i.e., features) and code, mostly due
to the copy-and-paste programming practice (the clone-and-
own approach). In an industrial context, engineers could face
thousands of products that share features among them, so
software maintenance and reuse could be complex.

Identifying the clone-and-own relationships across the fam-
ily of products can encourage reuse. For example, clone-
and-own relationships can help developers to suggest im-
provements on how features are reused, detect feature reuse
impediments, analyze the cost-benefit payoffs of reusing code
fragments against reimplementing them, and detect the matu-
rity of a family of software products.

To encourage reuse, previous approaches have been pro-
posed to locate features from the source code or the mod-
els of a family of products. At the code level, there are
approaches [2], [3], [4], [5] that isolate the implementation

of the features but they do not extract the clone-and-own
relationships among features. In [6], associations between
artifacts are obtained by comparing the source code of existing
product variants to provide hints at what features could not
be separated, or for which artifacts there are multiple order
options available. In [7], templates are extracted from recurring
designs in source code. However, these approaches target
code and do not leverage models as a source of feature
location knowledge. Models have been proved to increase
efficiency and effectiveness in software development [8].
Therefore, companies that develop their software products
using models cannot apply these approaches to encourage
reuse. At the model level, approaches target the formalization
of the variability in the family of products to encourage the
reuse of model fragments [9], [10], [11], [12]. However, these
approaches do not incorporate both feature location at model
level and comparisons at code level with the goal of isolating
implementations of individual features.

To cope with this lack, we propose an approach that locates
the clone-and-own relationships between features in a model-
based family of software products, reflecting how features
are reused throughout its development. Our approach first
leverages the information that existing techniques on feature
location provide in order to develop an algorithm that is able to
retrieve the code associated with each feature. Afterwards, our
approach compares the source code of an isolated feature in
a particular product against the source code of the different
isolations of the same feature in other products, locating
the clone-and-own relationships between the different feature
isolations.

To show the feasibility and generalization of our approach,
we have applied it in three industrial model-based families
of software products from two domains: two model-based
families of firmware for induction hobs provided by our
industrial partner BSH, and a model-based family of train
control PLC software provided by our industrial partner CAF.
The BSH1 group produces firmwares for their induction hobs
(sold under the brands of Bosch and Siemens) over more than
15 years. CAF2 produces PLC software to control the trains
that they manufacture over more than 25 years.

1www.bsh-group.com
2www.caf.net/en

www.bsh-group.com
www.caf.net/en

2

The results of our evaluation show that our approach can be
applied in different domains of real world environments and
it is able to locate the following clone-and-own relationships
between features: Reimplemented, Modified, Adapted, Unal-
tered, and Ghost Features. In addition, the results show that
our approach outperforms the baseline in terms of precision
for modified (up to 65.37%) and adapted (up to 37.5%) clone-
and-own relationships, and in terms of recall for adapted (up to
48.72%) and unaltered (up to 17.95%) relationships thanks to
the improved code comparison between features, which avoids
that unaltered clone-and-own relationships are incorrectly
classified as adapted or modified, and adapted clone-and-own
relationships are incorrectly classified as modified.

This paper is an extension of a conference paper [13]
and the significant differences with the conference version
include: 1) The modification of the step of our approach that
compares the source code of a feature in a product with
the source code of the same feature in another product in
order to avoid irrelevant textual differences; 2) The application
of our approach in a different industrial domain (the train
control PLC software provided by CAF) in order to prove
its generalization; and 3) The evaluation has been further
extended to measure the performance of both our approach and
the baseline (the previous version of our approach) in terms
of recall and precision in the three industrial case studies.

The remainder of the paper is structured as follows: Sec-
tion II provides a background of the clone-and-own relation-
ships. Section III presents our approach and shows how to
apply it to a simple example. Section IV shows the evaluation
of our approach in three case studies of two industrial domains.
Section V summarizes the related work, and Section VI states
the relevant conclusions.

II. BACKGROUND

This section presents the different clone-and-own relation-
ships as well as how these relationships can help developers
to suggest improvements on how features are reused.

Figure 1 shows an example of a family of software products.
Product A consists of two features (F1 and F2). After some
time, another product (Product B) is constructed from a variant
of F1 from Product A (using the clone-and-own approach),
so Product B holds a clone-and-own (CAO) relationship
with a previous product, Product A. Moreover, Product B
comprehends a new feature (F3), which has been created from
scratch. After, another product (Product C) is built with a new
feature (F4), a variant of F3 from Product B, and a variant of
F2 from Product A. Hence, Product C holds two clone-and-
own relationships with Product A and Product B, one for each
reused feature. In total, this family of products comprises 3
products, 4 features, and 3 clone-and-own relationships.

Different clone-and-own relationships may exist in a prod-
uct family. The existing relationships depend on the reuse
possibilities of FN(PX) and FN(PY), where (PX) is a product
that existed priorly to another product (PY), and where (FN)
is a feature that is present in both (PX) and (PY) (e.g., F1(PA)
and F1(PB) in Figure 1). We identified in [13] the clone-and-
own relationships that Figure 2 depicts:

F4

F3

F2

Product C
F1

F3

Product B

F1

F2

Product A

Products

FN Features

Clone-and-Own	relationships

Fig. 1. Clone-and-own relationships in a family of products

1) Reimplemented Feature: There is no shared code
between FN(PX) and FN(PY). Therefore, their imple-
mentations are entirely different.

2) Modified Feature: There is, to some extent, code that
is shared between both features. Code from FN(PX)
that is also present in FN(PY) is denoted as Legacy.
Differences among FN(PX) and FN(PY) are denoted as
modifications.

3) Adapted Feature: FN(PY) includes all the code from
FN(PX), plus additional novel code. Code of FN(PX) is
denoted as Legacy. The novel code that causes FN(PY)
and the Legacy to differ is denoted as Adapter.

4) Unaltered Feature: The implementations of FN(PX)
and FN(PY) contain the exact same code.

5) Ghost Feature: The FN feature is theoretically included
in PY, but the approach uncovers that the code of FN is
not present in PY.

FN(PX) FN(PY)FN(PX) FN(PY)

FN(PX) FN(PY) FN(PX) FN(PY) FN(PX) FN(PY)

Reimplemented Feature Modified Feature

Adapted Feature Unaltered Feature Ghost Feature

L

L A

1. 2.

3. 4. 5.

Fig. 2. Types of clone-and-own relationships

The identified clone-and-own relationships may assist devel-
opers suggest improvements on feature reuse in the following
ways: (1) Reimplemented Feature relationships help detect
feature reuse barriers, indicating the existence of former
implementations of features that were unrecognized by soft-
ware engineers and therefore recreated from scratch, revealing

3

missed reuse opportunities; (2) Modified Feature and (3)
Adapted Feature relationships aid on the analysis of the cost-
benefit trade-offs of code fragment reuse opposite to code
fragment reimplementation; (4) Unaltered Feature relation-
ships help detect chances to improve the reuse maturity of a
software product family; and (5) Ghost Feature relationships
highlight discrepancies between the requirements and the
implementations, and therefore, the specification should be
amended to refrain software engineers from wasting time
trying to locate the code of those features for reuse.

For instance, Reimplemented Feature relationships may
denote that a software engineer terminated his contract without
transferring his knowledge of the software [13], eventually
causing a fresh development of an already existing feature
by another software engineer in his place. In addition to the
discovery of the situation, the relationship raises awareness
on both implementations, broadening the reuse possibilities.
Furthermore, Unaltered Feature relationships can be utilized
to assemble an implementation framework that can help in
the construction of future developments.

III. THE CLONE-AND-OWN EXTRACTION APPROACH

Our approach takes as input the product models that
specify a family of software products, and the product codes
obtained as a result of either the translation of the models by
developers or the automatic translation using a model-to-text
transformation [14]. Next, our approach extracts Clone-and-
Own Relationships in order to enable developers to understand
and improve how features are reused among the products. Our
approach builds up on feature location at the model level and
code comparisons.

Figure 3 depicts the four main stages of our approach
(Model-based Feature Location, Feature Isolation at model
level, Feature Isolation at code level and Similarity Compari-
son) as well as the inputs and outputs of these stages.

We exemplify our work through the Linked List running
example, based on a software products family where the
variability is undefined. The products of the family have linked
models, in which the code has been manually developed
by a human (see left side of Figure 4). The products are
either singly or doubly linked lists. Each one has a different
mixture of added functionality: functionality that prints the
elements of the list, functionality to sort the list through the
bubble algorithm, and functionality to calculate the amount of
elements of the list.

Each stage of our approach is described in the following
subsections.

A. Model-based Feature Location

In the first stage of our approach, features are extracted from
the models of the products. Given a set of models, already
existing Feature Location techniques can be leveraged to
identify features in the models. Feature Location (identifying a
fragment of source code or software model, corresponding to a
specific functionality) is one of the most frequent maintenance
activities undertaken by developers [15].

Several research works in literature tackle feature location
in models [10], [12], [9]. For our work, we adopted Concep-
tualized Model Patterns to Feature Location (CMP-FL) [11].
CMP-FL identifies model patterns by human-in-the-loop (that
is, through the domain knowledge of experts and engineers
who participate in the process) and then conceptualizes the
extracted patterns as reusable model fragments. We adopted
this technique since it allows humans to be involved in the
extraction process, which improves the results since it makes
that the model fragments obtained are more recognizable for
humans than the model fragments obtained through automatic
approaches [11].

Through CMP-FL, the elements that differ between the
models are considered as alternatives for a feature, and the
elements from a model that do not have a match in the rest
of the models are extracted as optional features. As a result,
the models are broken down into reusable fragments. Each
of these reusable fragments will correspond with one of the
features of the software products family. The output of the first
stage of our approach is a collection of the features located in
the models that belong to each product.

For example, the Linked List example of Figure 4 (see 1 in
the upper-right part of the figure) tags the products (PA, PB,
and PC) with the names associated with the located features
(F1-F5). In the example, five features are identified within the
product family. In product PA, features F1, F2, and F3 are
detected. In product PB, features F1, F2, and F4 are detected.
Finally, in product PC, features F1, F4, and F5 are detected.

Current techniques that locate features at the model level
[10], [12], [9] [11] do not provide meaningful names, only
synthetic names (such as F1 or F2, for instance). We have
decided to add more meaningful names to the features in
order to improve the understanding of the example as the
figure shows: F1 represents the Forward Linking feature,
F2 represents the Sorting feature, F3 represents the Printing
feature, F4 represents the Backwards Linking feature, and F5
represents the Measuring feature.

Notice that some of the features are present in more than
one product: for instance, feature F2 is present in both the
PA and PB products. To avoid ambiguity in the names of the
features, a feature FN that belongs to a product PX will be
referred to as FN(PX). For example, F2(PA) refers to F2 of
PA.

B. Feature Isolation at model level
This second stage takes as input the list of the existing

products and their features (which has been obtained in the
previous stage) in order to perform subtractions between the
different products at the model level, with the aim of isolating
the code of individual features. To that extent, we developed
an algorithm that determines the features that can be isolated
at the model level. Each feature is accompanied by one
operation, which expresses the code subtractions that need
to be carried out between products to isolate the feature.
The implementation of the algorithm is described through the
following paragraphs.

• First of all, the algorithm creates an empty list, used to
save the features that can be isolated.

4

Product
Models

Product
Features

Isolation
Operations

Product
Codes

Code
Fragments

Feature
Similarity

1 - Model-based
Feature Location

2 - Feature Isolation
at model level

4 - Similarity
Comparison

3 - Feature Isolation
at code level

O
u

tp
u

ts

St
ag

es

In
p

u
ts

Fig. 3. Overview of our approach

• Then, the algorithm calculates the Complementary Fea-
ture Set (CFS) for each feature FN of every product
PX. The CFS is a product, combination of products, or
combination of products plus already isolated features,
that contains all the features in PX except for FN. A
CFS that contains features that are not present in PX is
still valid. Subtracting the calculated CFS to PX results
in the isolation of FN. With the definition of the CFS, the
isolation operation is built as FN(PX) = PX − CFS.

• The isolated features are added to the list of isolated fea-
tures along with their isolation operations. The addition
of new features to the list enables for new CFS, and
hence, for new feature isolation possibilities. Therefore,
the algorithm performs iterations while new features are
added to the isolated features list.

In the first iteration, the features that can be isolated by a
CFS built through a single product or through a combination
of products are included into the list. The operations found via
the first iteration establish the base cases of the algorithm. In
the iterations that follow, combinations between products and
already calculated features serve as the CFS. The isolation
operations that are found in this manner form the recursive
cases of the algorithm.

Following the Linked List Example, the right side of
Figure 4, part 2, shows the application of two iterations of
the described algorithm:

• First Iteration: For all the features in PA (that is, features
F1, F2, and F3), the algorithm searches for their CFS,
which is only possible to calculate for F3: by removing
PB and PC from PA, the code from F1, F2, F4, and F5 is
eliminated from PA. Removing F1 and F2 from PA leaves
us with F3, and thus, the first isolation operation is found.
Notice that, while it would be enough to subtract PB from
PA to achieve the same result, the criteria of eliminating
the maximum possible CFS expression is followed, in
order to get a purer result.
The algorithm performs the same operation in all the
products. In PB, it is possible to isolate F2 by eliminating
F1 and F4 from PC, and it is also possible to isolate
F4 by disposing of F1 and F2 through the removal of
PA. In PC, we can isolate F5 in the same way as F3
is isolated from PA. At this point, the algorithm has
gone through all the features of the family of software
products, ending the iteration. As a result of the first
iteration, the algorithm has finally retrieved the operations

for F3(PA), F2(PB), F4(PB), and F5(PC). Since there
are features that still lack an isolation operation, and
since new isolation operations have been discovered in
the iteration, the algorithm performs a new iteration.

• Second Iteration: The algorithm searches for the CFS
that can isolate all the features in PA that lack an isolation
operation. In order to isolate F1(PA), the algorithm re-
moves F2 and F3 through F2(PB) and F3(PA). Moreover,
F2(PA) can be isolated by subtracting PC and F3(PA)
from PA.
The same steps are followed in PB and PC. Through
combinations of the different products and the features
that were previously isolated, it is possible to get the
isolation operations for the features that have not been
isolated yet (F1(PB), F1(PC), F4(PC)).
Therefore, the second iteration of the algorithm has
produced the isolation operations for features F1(PA),
F2(PA), F1(PB), F1(PC), and F4(PC). Therefore, the
algorithm has isolated all the features at this point,
rendering a third iteration unnecessary.

At the end, three tables are returned as output of Stage 2
(Feature Isolation at model level) of the Linked List Example
(see 2 of the right part of Figure 4). Each table contains: the
product name, the features that belong to it, and the isolation
operations found by the algorithm.

C. Feature Isolation at code level

This third stage performs the feature isolation at the code
level so as to isolate the source code of the features in the
products. In a software products family, novel products are
implemented through increments or decrements of already
existing family products. Version control software is really
popular nowadays, and a wide amount of tool support for
calculating differences between two source codes is available.
Moreover, code comparison techniques have been used with
success for large scale systems [16], [17], being the computa-
tional cost of the operation affordable should we scale up our
approach. Due to all these reasons, we use diff techniques
(textual comparisons) to perform code comparisons in this
stage.

Following the Linked List example, features that were
isolated at the model level in the second stage are now isolated
at the code level. Right side of Figure 4, part 3, shows as an
example the isolation of features F2(PB), F3(PA) and F2(PA).
According to operation F2(PB) = PB-PC, F2(PB) can be

5

Pm class Node{
Im int data… Node next…
Mm }…
gm class List{
Bm Node firstNode… int size…
Om public void printList!&{mmm}
-m
Cm public void order!&{
Am boolean ordered q false…
PSm while!7ordered&{
PPm Node previous q null… Node current q firstNode…
PIm while!currentmnext7qnull& ww
PMm currentmdata%qcurrentmnextmdata&{
Pgm previous q current… current q currentmnext… }
PBm if!currentmnext qq null&{ ordered q true…
POm }else if!currentmdata R currentmnextmdata&{
P-m Node aux q currentmnext…
PCm currentmnext q auxmnext… auxmnext q current…
PAm if!previous 7q null& previousmnext q aux…
ISm else firstNode q aux…
IPm }
IIm } }
IMm }

Code PA

Linked List Family of Software Products !Input&

Manual Implementation

Model PA Model PB Model PC

print order

Code PB

Code PC

PA Features

FP

FI

FM

PB Features

FP

FI

Fg

PC Features

FP

Fg

FB

FP q Forward Linking
FI q Sorting
FM q Printing
Fg q Backwards Linking
FB qMeasuring

Model-based Feature LocationP

PA
Feature Operation

FM PA F PB F PC

PC
Feature Operation

FB PC F PB F PA

PB
Feature Operation

FI PB F PC
Fg PB F PA

PA
Feature Operation

FM PA – PB F PC
FP PA F FI!PB& F

FM!PA&
FI PA F PC F

FM!PA&

PC
Feature Operation

FB PC – PB F PA
FP PC F Fg!PB& F

FB!PC&
Fg PC F PA F

FB!PC&

PB
Feature Operation

FI PB F PC
Fg PB F PA
FP PB – FI!PB& –

Fg!PB&

First Iteration

FM!PA& q PA F PB F PC

FI!PB& q PB F PC

FI!PA& q PA F PC F FM!PA&

…

FI!PB& q - statements

FI!PB& – FI!PA& q M
statements

different

FI!PA& q O statements

≈ B-0

…

g
equal

statements

Code comparison

Feature Isolation at model levelI

Second Iteration

Feaure Isola�on at code levelM

Similarity Comparisong

CloneFandFOwn Relationships Extraction

Pm class Node {
Im int data…
Mm Node next…
gm Node previous…
Bm }…
Om
-m class List {
Cm Node firstNode…
Am int size…
PSm
PPm public void size!&{mmm}
PIm }

order size

Pm class Node{
Im int data…
Mm Node next…
gm Node previous…
Bm }…
Om class List{
-m Node firstNode…
Cm int size…
Am public void order!&{
PSm boolean ordered q false…
PPm while!7ordered&{
PIm Node current q firstNode…
PMm while!currentmnext7qnull& ww
Pgm currentmdata%qcurrentmnextmdata&{
PBm current q currentmnext…
POm }
P-m if!currentmnext qq null&{ ordered q true…
PCm }else if!currentmdata R currentmnextmdata&{
PAm Node aux q currentmnext… currentmnext qauxmnext…
ISm aux.previous = current.previous;
IPm if(current.previous (= null){
IIm current.previous.next = aux;
IMm }else{
Igm firstNode = aux;
IBm current.previous = aux;
IOm }
I-m if(aux.next (= null)
ICm aux.next.previous = current;
IAm auxmnext q current…
MSm } } }
MPm } Similarity between FI!PB& and FI!PA&

Fig. 4. The Linked List example to show the extraction of Clone-and-own relationships

6

isolated through subtracting the code of PC from PB (lines
1 to 8). Hence, the approach isolates F2 from PB (lines 9 to
30).

In order to isolate F2(PA), it is necessary to isolate F3(PA)
first according to the operation F2(PA)=PA-PC-F3(PA). To do
this, PB and PC are subtracted from PA according to the
operation F3(PA)= PA-PB-PC. The result is the isolation of
the F3 (the Printing feature from PA, declared at line 6). After,
F2(PA) can be isolated by removing the code that is common
between PA and PC from PA, thus removing the F3(PA) code
that we just isolated. As a result, the approach isolates the F2
from PA (Sorting feature, lines 8 to 22). This stage comes to an
end when the code of the features is isolated. The final output
of the algorithm is the retrieved group of code fragments (one
for each isolated feature).

D. Similarity Comparison
In this last stage, the isolated code fragments that implement

the features, which are in more than one product, are compared
one to one in order to calculate the similarity between them.
To do this, our approach performs a comparison between two
fragments of code that implement the same feature.

To avoid the detection of some irrelevant textual dif-
ferences in our approach, we use the technique described
in [18] that computes semantic and textual differences between
two programs. Although this technique does not determine
precisely the set of semantic changes since it is currently
limited to scalar variables, assignment statements, conditional
statements, while loops, and output statements, it could detect
renaming local variables as textual differences and it does not
flag different extra spaces and line breaks as differences.

This technique first tries to match every component of a New
version of a code fragment with an Old version that is both
semantically and textually equivalent. Next, the procedure con-
siders all unmatched components of New, attempting to match
them with unmatched components of Old that are semantically
equivalent but textually different. These components of New
are classified as textual changes. Components of New that
remain unmatched are classified as semantic changes.

Since textual changes are related to program text rather
than program behavior, we only flag the semantic changes
as different parts in the code. Once we obtain the equal
and different parts in the code, we discard the differences
and retain the equal parts of code. Feature similarity is then
measured using a size metric. Size metrics are perhaps the
most frequently used metrics in practice [19]. The simplest and
most commonly used size metric is lines of code (LOC) but
it highly depends on coding style of programmers [19]. There
are other more advanced size metrics such as NIM (Number
of Instance Methods) or TNOS (Total Number Of Statements).
NIM counts the number of instance methods in a class, i.e., all
public, protected and private methods defined in the interface
of instances of a given class. The TNOS is a size metric that
measures code size by counting the number of statements (e.g.
for, if, return, switch, while) in each method. Since TNOS
does not depend on the coding style of programmers and it is
a significant predictor for the maintainability of software [19],
we measure feature similarity in terms of the TNOS [15].

Following the Linked List example of Figure 4, the Sim-
ilarity Comparison (part 4) compares the code of F2(PB)
and F2(PA). As the code shows, the two methods are very
similar, although they do not have the exact same code (the
semantic changes being highlighted from lines 20 to 28 on
product PB). It is reasonable for the code to differ, with PA
implementing a list that is linked in a single fashion and PB
implementing a list that is doubly linked. Even if the lists are
sorted through the same bubble sort algorithm, said algorithm
cannot be implemented in the exact same way considering the
distinct number of links present between elements. From the
example, it is possible to deduct that some the feature has
been somehow modified since its PA implementation until
its PB implementation. As a matter of fact, measuring the
code, F2(PA) presents 6 statements while F2(PB) presents
7 statements. Taking in account that 4 of the 7 statements
are equal, representing the same conditions in the code, the
similarity percentage between F2(PA) and F2(PB) is around
the 57%.

To sum up, our approach is applied to a model-based
software products family with non-formalized variability. In
the first stage, features from the products are identified at
the model level. The second stage calculates all the possible
isolation operations for the features. In the third stage, the code
comparisons dictated by the calculated operations are executed
to isolate the code of the features. Finally, the approach
assesses the similarity degree between the features that appear
in more than one product by performing a comparison in
the fourth stage. The similarity between the features enables
the classification of the clone-and-own relationships in one of
the types described in Section II (Reimplemented, Modified,
Adapted, Unaltered, or Ghost features).

IV. EVALUATION

This section presents the evaluation of our approach and
the baseline, the description of the case studies where we
applied the evaluation, the results obtained, the discussion,
and the limitations. To evaluate the approach, we applied it
to three long-living industrial case studies from two of our
industrial partners: BSH, the leading manufacturer of home
appliances in Europe; and CAF, an international provider of
railway solutions all over the world.

A. Experimental Setup

The goals of this experiment are both measuring the
performance of our approach in terms of precision and recall
and comparing our approach with the baseline.

Figure 5 shows an overview of the process that was followed
to evaluate our approach. The left part of the figure shows the
input for the evaluation process, provided by our industrial
partners, which is the product family that has been specified
through models. The product family is used to run our
approach and the baseline. Although our industrial partners are
not immune to the problem of knowledge vaporization [20],
they provided us with documentation about some clone-and-
own relationships and the identification of each relationship
(reimplemented, modified, adapted, unaltered, or ghost). This

7

Comparison

M
o

d
el

-b
as

ed

P
ro

d
u

ct
 F

am
ily

Product 1

Results

Results Comparison

Oracle

Recall and
Precision Report

Recall and
Precision Report

Approach

Baseline

Fig. 5. Evaluation process

documentation is used to build the oracle, which will be
considered the ground truth and will be used to evaluate the
results of our approach and the baseline.

The baseline is a previous version of our approach [13] that
does not avoid the detection of irrelevant textual differences
during the comparison of the source code of features (as
described in Subsection III-D). We compare the clone-and-own
relationships obtained in both the baseline and our approach
with the oracle in order to obtain precision and recall values.

Precision measures the number of elements from the solu-
tion (SolutionCAO) that are correct according to the the oracle
(OracleCAO), and recall measures the number of elements of
the solution (SolutionCAO) that are retrieved by the proposed
solution (OracleCAO). A measure that combines both recall
and precision is the harmonic mean of precision and recall,
which is called the F-measure.

The recall and precision are calculated as follows:

Precision =
SolutionCAO ∩OracleCAO

SolutionCAO

Recall =
SolutionCAO ∩OracleCAO

OracleCAO

The F-measure that combines recall and precision is calcu-
lated as follows:

F −measure = 2 ∗ Precision ∗Recall

Precision+Recall

To calculate the precision and recall, we need to compute the
true positives (TP); the number of elements in the solution that
are actually correct according to the ground truth (the oracle),
i.e., the clone-and-own relationships that are classified equal
in both the solution and the ground truth (SolutionCAO ∩
OracleCAO). The precision is calculated by dividing the TP
by the total number of clone-and-own relationships in the
solution (SolutionCAO). The recall is calculated by dividing
the TP by the total number of clone-and-own relationships in
the oracle (OracleCAO). In our case, each identified clone-
and-own relationship that is present in both the results and
the oracle will be a TP.

Precision values can range between 0% (which means that
no single clone-and-own relationship of a given type from the
results is present in the oracle) to 100% (which means that
all the clone-and-own relationships of a given type from the
results are present in the oracle).

Recall values can range between 0% (which means that no
single clone-and-own relationship of a given type obtained
from the oracle is present in the results) to 100% (which means
that all the clone-and-own relationships of a given type from
the oracle are present in the results). A value of 100% precision
and 100% recall implies that both identifications are the same.

1) BSH: The Induction Hobs Domain: One of our industrial
partners, the BSH group (www.bsh-group.com), has produced
firmwares for their Induction Hobs (labeled under the Bosch
and Siemens brands) for the last 15 years. The newest Induc-
tion Hobs (IHs) include the full cooking surface functionality,
which calculates dynamic heating areas in an automatic
fashion, activating or deactivating the areas depending on
factors such as the utilized cookware shape, size, or position.
In addition, more feedback is now provided to the user
during the cooking process, including factors such as the
exact cookware temperature, the temperature of the food being
cooked, or real-time power consumption measurements. All of
these changes have become possible through an increase of
software complexity.

BSH provided us two case studies. The first case study
entails a family of products that was specified using a Domain
Specific Language (DSL) identified as IHDSL. After the
specification, the IH’s firmware was manually implemented
(MI) in ANSI C by software engineers. Since this family of
products belongs to BSH and uses manual implementation,
we refer to this family as BSH-MI. Table I shows the
characteristics of the BSH-MI case study. As the table shows,
this family of products contains a total of 46 products and 81
features. In addition, Table I shows that the extracted oracle
is composed by both 68 clone-and-own relationships that the
features have across the different products of the family, and
the identification of each clone-and-own relationship (e.g., 12
clone-and-own relationships are identified as reimplemented).

The second case study entails a family of products that
was also specified using IHDSL. After the specification, the
IH’s firmware was automatically implemented (AI) using
M2T (model-to-text) transformation. This transformation was
produced by Acceleo [21]. Since this family of products
belongs to BSH and uses automatic implementation, we refer
to this family as BSH-AI. Table II shows the characteristics of
the BSH-AI case study, which has a total of 66 products and
47 features. The oracle has 38 clone-and-own relationships
in total. These relationships are identified as modified (8

www.bsh-group.com

8

TABLE I
CHARACTERISTICS OF THE BSH-MI CASE STUDY

Products 46
Features 81
Total clone-and-own
relationships in the oracle 68

Reimplemented 12
Modified 19
Adapted 21
Unaltered 9
Ghost 7

TABLE II
CHARACTERISTICS OF THE BSH-AI CASE STUDY

Products 66
Features 47
Total clone-and-own
relationships in the oracle 38

Reimplemented 0
Modified 8
Adapted 11
Unaltered 19
Ghost 0

relationships), adapted (11 relationships), or unaltered (19
relationships).

2) CAF: The Train Control Domain: Our other industrial
partner, CAF (www.caf.net/en), has produced a family of
PLC software to control the trains that they have been
manufacturing over more than 25 years. Their different kinds
of trains (regular trains, subway, light rail, monorail, etc.) are
installed all around the globe. Train units are geared with
multiple pieces of equipment through their vehicles and cabins.
Equipments come from different providers that design and
manufacture them with the aim of carrying out specialized
tasks in the train. Some examples are the traction equipment,
the brake compressors, or the power-harvesting pantograph.
The train unit is also equipped with control software, which
is in charge of the cooperation of the installed equipments.
The control software is created with two goals in mind:
(1) orchestrating the equipments to achieve flawless train
functionality, and (2) guaranteeing the compliance of the train
unit with the prevalent regulations of the country where the
train unit is to be installed.

The DSL of CAF has enough expressiveness to describe
both the interactions between the main pieces of equipment
installed in a train unit and the non-functional aspects related
to regulation (such as signal quality or installed redundancy
levels).

An example of the functionality that the DSL can specify is
the coupling between train units. A train unit can physically
connect to a second train unit and control it in order to increase
its passenger capacity or to rescue the second train unit in case
the former suffered any damage while functioning. After the

specification using the DSL, the code is obtained by means of
manual implementation (MI) in C. We refer to the family of
products of this case study as CAF-MI.

Table III shows the characteristics of the CAF-MI case
study. It has a total of 23 products and 121 features, whereas
the oracle has 175 clone-and-own relationships in total. These
relationships are identified as reimplemented (27), modified
(23), adapted (78), unaltered (39), or ghost (8).

TABLE III
CHARACTERISTICS OF THE CAF-MI CASE STUDY

Products 23
Features 121
Total clone-and-own
relationships in the oracle 175

Reimplemented 27
Modified 23
Adapted 78
Unaltered 39
Ghost 8

B. Results

In this section, we present the results obtained for each case
study in our approach and the baseline. Table IV shows the val-
ues of precision, recall, and F-measure for each type of clone-
and-own relationship (reimplemented, modified, adapted, unal-
tered and ghost) for the three case studies (BSH-MI, BSH-AI,
and CAF-MI).

In both our approach and the baseline, the BSH-MI case
study obtains the same results for precision and recall in the
following relationships: reimplemented (88.89% of precision
and 66.67% of recall), unaltered (87.5% of precision and
77.78% of recall) and ghost (100% of precision and 42.86%
of recall). Our approach reaches better results for precision in
the modified and adapted relationships, and for recall in the
adapted relationship (see the shaded cells in Table IV).

In the BSH-AI case study, our approach and the baseline
obtain the same results for precision and recall in the unaltered
relationship, whereas our approach outperforms the baseline
for precision in the modified relationship and for recall in the
adapted relationship.

In the CAF-MI case study, our approach and the baseline
obtain the same results for precision and recall in the reimple-
mented and ghost relationships. The baseline outperforms our
approach for precision in the unaltered relationship, whereas
our approach outperforms the baseline for precision in the
modified relationship, precision and recall in the adapted
relationship, and recall in the unaltered relationship.

C. Discussion

The results show that there is no difference between our
approach and the baseline for the reimplemented and ghost
clone-and-own relationships. This is because our approach and
the baseline use the same operations for the isolation of code
fragments, so the code fragments used as input in the similarity

www.caf.net/en

9

TABLE IV
VALUES FOR PRECISION, RECALL, AND F-MEASURE IN THE THREE CASE STUDIES

Precision Recall F-measure

Case Study Relationship Approach Baseline Approach Baseline Approach Baseline

BSH-MI Reimplemented 88.89 88.89 66.67 66.67 76.19 76.19
BSH-MI Modified 70.59 42.86 63.16 63.16 66.67 51.06
BSH-MI Adapted 86.36 81.82 90.48 42.86 88.37 56.25
BSH-MI Unaltered 87.50 87.50 77.78 77.78 82.35 82.35
BSH-MI Ghost 100 100 42.86 42.86 60 60

BSH-AI Reimplemented - - - - - -
BSH-AI Modified 100 77.78 87.5 87.5 93.33 82.35
BSH-AI Adapted 100 100 90.91 72.73 95.24 84.21
BSH-AI Unaltered 100 100 89.47 89.47 94.44 94.44
BSH-AI Ghost - - - - - -

CAF-MI Reimplemented 72.73 72.73 88.89 88.89 80 80
CAF-MI Modified 85.71 20.34 52.17 52.17 64.86 29.27
CAF-MI Adapted 87.50 50 62.82 14.10 73.13 22
CAF-MI Unaltered 66.67 69.23 41.03 23.08 50.79 34.62
CAF-MI Ghost 100 100 75 75 85.71 85.71

step for the code comparison (which is different between our
approach and the baseline) are the same in both approaches.

Reimplemented relationships are features that have been
implemented from scratch, without using the source code as a
template for the target code, and that have been, in some cases,
developed by different teams of software engineers. Hence,
the two codes that implement a reimplemented feature do not
present common code. Since the two codes that implement a
reimplemented feature do not share any code fragment, the
result of the code comparison step is the same in both the
approach and the baseline.

In case of the ghost relationships, since there is no code
that implements the features, our approach and the baseline
always coincide in the results.

In case of the unaltered, adapted, and modified relationships,
our approach improves the results of the baseline. In both our
approach and the baseline, once the source and target codes
of a feature are isolated, they must be compared in order to
determine which code fragments are equal between them. In
case of unaltered features, incorrect code comparisons made
by the baseline cause unaltered relationships to be incorrectly
identified as adapted or modified relationships. In addition,
the incorrect code comparisons made by the baseline cause
adapted relationships to be incorrectly identified as modified.
This makes the precision of the baseline worse with regard to
our approach in all the case studies as follows: 27.73% for
the modified relationship in the BSH manually implemented
case study (BSH-MI), 22.22% for the modified relationship
in the BSH automatically implemented case study (BSH-AI),
and 65.37% for the modified relationship and 37.5% for the
adapted relationship in the CAF manually implemented case
study (CAF-MI).

Comparing the results of the automatically implemented
case study with those of the two manually implemented case
studies, it is possible to appreciate that the recall and precision
values obtained are higher in the automatically implemented

case study for both our approach and the baseline. In this
scenario, the code is obtained by using a code generator,
and in some cases, manually refined afterwards. Automatically
generated code favors code comparisons in both our approach
and the baseline because (1) the source and target code
of a clone-and-own relationship that has not been manually
refined should be identical and (2) when a human introduces
code modifications, the refined code often uses the generated
variables and methods.

D. Limitations

There are some limitations of our approach that must
be acknowledged. To start with, some companies implement
the code directly from requirement specifications, leading to
families of software products implemented without the usage
of models. Our approach, in its current state, is not applicable
to said scenarios. The only stage of our approach that depends
on models is the Model-based Feature Location. In order to
adapt our approach to the mentioned circumstance, it would
be necessary to develop techniques able to carry out feature
location at the requisites level. In addition, if the features of
each product are known beforehand, our approach could be
adapted to start in Stage 2 (Feature Isolation).

Secondly, although in the evaluation we have chosen rela-
tionships for the oracle that can be isolated by our approach,
depending on the products in the family of software products
and on their particular configurations, it may not be possible
for our approach to calculate all the isolation operations, or in
other words, some features from some products may lack an
isolation operation at the end of the execution of the algorithm.
To solve this issue, our approach could suggest a selection
of products with specific feature configurations designed to
allow the algorithm to isolate non-isolated features. A software
engineer could manually add these products to the family,
enhancing the results of the algorithm.

10

Moreover, there is some degree of uncertainty associated
with the disclosing of Clone-and-Own Relationships between
products. In particular, the followed criteria is very rigid for
the reimplementation and feature modification relationships.
For instance, some results in reimplemented features could
be incorrectly classified as modified features due to their
low amounts of common code. The classification in these
borderline cases is yet to be polished, and will be tackled
in future works.

V. RELATED WORK

The works related to the one presented can be found in two
main knowledge areas: feature location at the code level, and
feature location at the model level.

A. Feature Location at the Code Level

In this area, some works apply type systems to obtain
relevant data when building the variability model. As an
example, Typechef [22] supplies an infrastructure to analyze
variability through #ifdef directives. In [23], the authors
enhance Typechef so as to support variability at run-time.

Text similarity techniques build on mathematical methods to
determine textual similarity. Latent Semantic Indexing (LSI)
[2] uses the number of occurrences in a set of words in large
texts to obtain similarity measurements between features and
source code, represented by Vector Space Models (VSM).
These text similarity techniques have also been combined with
dynamic analysis [3].

Other works apply reverse engineering to source code in
order to obtain variability models [4], [5]. In [4], propositional
logic is used to describe dependencies between features. In
[24], Typechef and propositional logic are combined to extract
conditions among features.

Program Dependence Analysis (PDA) is applied by several
Feature Location approaches [25], [26]. PDA can be repre-
sented by Program Dependence Graphs (PDG), where nodes
entail functions or global variables, and edges depict calls to
functions or global variable accesses.

Trace analysis at run-time is used to define variability
models through significant information. Upon execution, the
technique produces traces that indicate which code has been
run. Some authors [27] base their approaches on the analysis
of the traces. In addition, other works mix dynamic and static
analysis, such as LSI [28], PDA [27] or VSM [29].

Apart from isolating the implementations of the features, our
approach also extracts Clone-and-Own Relationships among
features. The relationships can be utilized by software engi-
neers to understand in a better manner the reuse patterns of
said features, and to plan and propose reuse opportunities and
improvements.

Other works enhance code reuse by comparing the source
code of existing product variants. In [6], associations between
artifacts and their modules (i.e., features) are extracted to
provide hints at what features could not be separated, or
for which artifacts there are multiple order options available.
In [7], recurring designs are detected in source code to
extract templates as reuse opportunities. The templates can

be managed and customized to generate code skeleton for the
reusable features. This generated code skeleton contains semi-
implemented code that is annotated with hints and comments
of necessary modifications.

In contrast to the works mentioned above that take as
input source code, our approach leverages models of different
product variants. When companies such as our industrial
partners use models as the main software artifact to develop
software in the context of the Model-Driven Development
(MDD) paradigm, it is necessary to provide feedback to
developers at the model level. The works mentioned above
such as [6] and [7] do not consider the models, so their results
are not applicable for MDD engineers. Instead, our approach
considers the models, so the results are traced to the models
and MDD engineers can make decisions at the model level,
which is the main artifact in MDD.

B. Feature Location at the Model Level

In [9], a framework for legacy product lines mining and
automated refactoring is proposed. The authors contrast the
input elements, matching those with a certain degree of simi-
larity and merging them together. The work presented in [10]
proposes an approach to automatically compare products,
extracting their variability in terms of the Common Variability
Language (CVL) [30], [31]. In [11], the authors present an
approach for automating the formalization of variability in
a given models family. The common and different parts of
the models are specified as a set of placements over a base
model and a library of model replacements. The ensuing
Software Product Line (SPL) enables the derivation of new
product models through the reuse of the extracted model
fragments. Another approach can be found in [12], where
the authors propose comparisons to extract variability from
all the possible kinds of assets. All the mentioned works
target the formalization of the variability inherent to an
SPL. Finally, [32] identifies model patterns in a models set,
conceptualizing the obtained patterns as model fragments that
can be reused.

All of these approaches are limited to finding model
fragments that represent features, with the ultimate goal of
formalizing the variability of a particular SPL. Opposite to
said works, we built an approach that incorporates both feature
location at the model level and comparisons at the code level,
with the goal of isolating the implementations of individual
features. In addition, our work discloses Clone-and-Own
Relationships among the detected features. The relationships
can be used by software engineers to suggest improvements
and reuse opportunities, based on the knowledge about feature
reuse that the relationships expose.

VI. CONCLUSIONS

Identifying the clone-and-own relationships that are inher-
ently present across a family of software products can help
software engineers to suggest reuse improvements, to detect
impediments, to analyze the cost-benefit payoffs of reuse
against reimplementing, and to detect the maturity of the
family.

11

In this paper, we have presented our approach to locate
clone-and-own relationships between features in model-based
families of software products. Our approach proposes an
algorithm that retrieves the code associated with each feature
by taking as input the information that the techniques on
feature location provide. Next, our approach makes feature
isolation at model and code level to obtain the source code
of each feature in a particular product. Finally, our approach
compares the code of the features that belong to more than
one product by avoiding the detection of irrelevant textual
differences in order to locate the clone-and-own relationships
as Reimplemented, Modified, Adapted, Unaltered, or Ghost.

We have also shown the feasibility and generalization of
our approach by applying it to real world environments of
three industrial case studies in two different domains. We have
successfully located the clone-and-own relationships presented
in two product families of induction hob models, and in one
product family of train control software. In the case of the
induction hobs, one of the families had its code implemented
manually and the other one, in an automatic way. In the case
of the train control software, the product family had its code
implemented manually.

When faced with unaltered, adapted, and modified rela-
tionships, our approach improves the results presented by
the baseline. In the case of unaltered features, the baseline
incorrectly classifies some of them as adapted or modified
relationships. In the case of adapted relationships, the baseline
sometimes makes incorrect classifications, flagging them as
modified relationships. The precision of the baseline is worse
than that of our approach in all the case studies: 27.73% for
the modified relationship in the BSH manually implemented
case study (BSH-MI), 22.22% for the modified relationship
in the BSH automatically implemented case study (BSH-AI),
and 65.37% for the modified relationship and 37.5% for the
adapted relationship in the CAF manually implemented case
study (CAF-MI).

ACKNOWLEDGEMENTS

This work has been partially supported by the Ministry of
Economy and Competitiveness (MINECO) through the Span-
ish National R+D+i Plan and ERDF funds under the project
Model-Driven Variability Extraction for Software Product Line
Adoption (TIN2015-64397-R).

REFERENCES

[1] N. H. Pham, T. T. Nguyen, H. A. Nguyen, J. Al-Kofahi, and T. N.
Nguyen, “Clone management for evolving software,” IEEE Transactions
on Software Engineering, vol. 38, no. undefined, pp. 1008–1026, 2012.

[2] T. K. Landauer and J. Psotka, “Simulating Text Understanding for
Educational Applications with Latent Semantic Analysis: Introduction
to LSA,” Interactive Learning Environments, 2000. [Online]. Available:
http://dx.doi.org/10.1076/1049-4820(200008)8:2;1-B;FT073

[3] F. Asadi, M. D. Penta, G. Antoniol, and Y.-G. Guéhéneuc, “A Heuristic-
Based Approach to Identify Concepts in Execution Traces,” in 14th
European Conference on Software Maintenance and Reengineering,
CSMR, March ’10, Madrid, Spain, R. Capilla, R. Ferenc, and J. C.
Dueñas, Eds. IEEE Computer Society, 2010. [Online]. Available:
http://dx.doi.org/10.1109/CSMR.2010.17

[4] K. Czarnecki and A. Wasowski, “Feature Diagrams and Logics:
There and Back Again,” in Software Product Lines, 11th
International Conference, SPLC, Kyoto, Japan, September 10-14, 2007,
Proceedings. IEEE Computer Society, 2007. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/SPLINE.2007.24

[5] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki,
“Reverse engineering feature models,” in Proceedings of the 33rd
International Conference on Software Engineering, ICSE 2011, Waikiki,
Honolulu , HI, USA, May 21-28, 2011, R. N. Taylor, H. C.
Gall, and N. Medvidovic, Eds. ACM, 2011. [Online]. Available:
http://doi.acm.org/10.1145/1985793.1985856

[6] S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed,
“Enhancing clone-and-own with systematic reuse for developing
software variants,” in Proceedings of the 2014 IEEE International
Conference on Software Maintenance and Evolution, ser. ICSME ’14.
Washington, DC, USA: IEEE Computer Society, 2014, pp. 391–400.

[7] Y. Lin, G. Meng, Y. Xue, Z. Xing, J. Sun, X. Peng, Y. Liu, W. Zhao, and
J. Dong, “Mining implicit design templates for actionable code reuse,” in
2017 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE), vol. 00, Oct. 2017, pp. 394–404.

[8] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software
Engineering in Practice, 1st ed. Morgan & Claypool Publishers, 2012.

[9] J. Rubin and M. Chechik, “Combining Related Products into Product
Lines,” in Fundamental Approaches to Software Engineering - 15th
International Conference, FASE 2012 Tallinn, Estonia, March 24 -
April 1, 2012. Proceedings, ser. Lecture Notes in Computer Science,
J. de Lara and A. Zisman, Eds., vol. 7212. Springer, 2012, pp. 285–300.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-28872-2_20

[10] X. Zhang, Ø. Haugen, and B. Møller-Pedersen, “Model Comparison to
Synthesize a Model-Driven Software Product Line,” in Software Product
Lines - 15th International Conference, SPLC, Munich, Germany, August
22-26, 2011, E. S. de Almeida, T. Kishi, C. Schwanninger, I. John,
and K. Schmid, Eds. IEEE, 2011, pp. 90–99. [Online]. Available:
http://dx.doi.org/10.1109/SPLC.2011.24

[11] J. Font, L. Arcega, O. Haugen, and C. Cetina, “Building Software
Product Lines from Conceptualized Model Patterns,” in Proceedings
of the 19th International Conference on Software Product Line, ser.
SPLC ’15. New York, NY, USA: ACM, 2015. [Online]. Available:
http://doi.acm.org/10.1145/2791060.2791085

[12] J. Martinez, T. Ziadi, T. F. Bissyandé, J. Klein, and Y. L. Traon,
“Bottom-up adoption of software product lines: a generic and extensible
approach,” in Proceedings of the 19th International Conference on
Software Product Line, SPLC 2015, Nashville, TN, USA, July 20-
24, 2015, D. C. Schmidt, Ed. ACM, 2015. [Online]. Available:
http://doi.acm.org/10.1145/2791060.2791086

[13] M. Ballarín, R. Lapeña, and C. Cetina, “Leveraging feature location
to extract the clone-and-own relationships of a family of software
products,” in Software Reuse: Bridging with Social-Awareness -
15th International Conference, ICSR 2016, Limassol, Cyprus, June
5-7, 2016, Proceedings, 2016, pp. 215–230. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-35122-3_15

[14] B. Selic, “The Pragmatics of Model-Driven Development,” IEEE
Software, 2003. [Online]. Available: http://doi.ieeecomputersociety.org/
10.1109/MS.2003.1231146

[15] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature
location in source code: a taxonomy and survey,” Journal of
Software: Evolution and Process, 2013. [Online]. Available: http:
//dx.doi.org/10.1002/smr.567

[16] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A Multilinguistic
Token-Based Code Clone Detection System for Large Scale Source
Code,” IEEE Trans., 2002. [Online]. Available: http://dx.doi.org/10.
1109/TSE.2002.1019480

[17] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: Finding Copy-Paste
and Related Bugs in Large-Scale Software Code,” IEEE Trans. Software
Eng., 2006. [Online]. Available: http://dx.doi.org/10.1109/TSE.2006.28

[18] S. Horwitz, “Identifying the semantic and textual differences between
two versions of a program,” SIGPLAN Not., vol. 25, no. 6, pp. 234–245,
Jun. 1990. [Online]. Available: http://doi.acm.org/10.1145/93548.93574

[19] M. Dagpinar and J. H. Jahnke, “Predicting maintainability with object-
oriented metrics -an empirical comparison,” in 10th Working Conference
on Reverse Engineering, 2003. WCRE 2003. Proceedings., Nov 2003,
pp. 155–164.

[20] J. Ven, A. Jansen, J. Nijhuis, and J. Bosch, Design decisions: The bridge
between rationale and architecture. Springer Berlin Heidelberg, 2006,
vol. Rationale Management in Software Engineering, pp. 329–348.

[21] I. Corredor, A. M. Bernardos, J. Iglesias, and J. R. Casar, “Model-
Driven Methodology for Rapid Deployment of Smart Spaces Based on

http://dx.doi.org/10.1076/1049-4820(200008)8:2;1-B;FT073
http://dx.doi.org/10.1109/CSMR.2010.17
http://doi.ieeecomputersociety.org/10.1109/SPLINE.2007.24
http://doi.acm.org/10.1145/1985793.1985856
http://dx.doi.org/10.1007/978-3-642-28872-2_20
http://dx.doi.org/10.1109/SPLC.2011.24
http://doi.acm.org/10.1145/2791060.2791085
http://doi.acm.org/10.1145/2791060.2791086
http://dx.doi.org/10.1007/978-3-319-35122-3_15
http://doi.ieeecomputersociety.org/10.1109/MS.2003.1231146
http://doi.ieeecomputersociety.org/10.1109/MS.2003.1231146
http://dx.doi.org/10.1002/smr.567
http://dx.doi.org/10.1002/smr.567
http://dx.doi.org/10.1109/TSE.2002.1019480
http://dx.doi.org/10.1109/TSE.2002.1019480
http://dx.doi.org/10.1109/TSE.2006.28
http://doi.acm.org/10.1145/93548.93574

12

Resource-Oriented Architectures,” Sensors, 2012. [Online]. Available:
http://www.mdpi.com/1424-8220/12/7/9286

[22] C. Kästner, P. G. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann, and
T. Berger, “Variability-aware parsing in the presence of lexical macros
and conditional compilation,” in Proceedings of the 26th Annual ACM
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, 2011, C. V. Lopes and K. Fisher, Eds. ACM, 2011.
[Online]. Available: http://doi.acm.org/10.1145/2048066.2048128

[23] C. Kästner, K. Ostermann, and S. Erdweg, “A variability-aware module
system,” in Proceedings of the 27th Annual ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications, USA,
October 21-25, 2012, G. T. Leavens and M. B. Dwyer, Eds. ACM,
2012. [Online]. Available: http://doi.acm.org/10.1145/2384616.2384673

[24] S. Nadi, T. Berger, C. Kästner, and K. Czarnecki, “Mining
configuration constraints: static analyses and empirical results,” in
36th International Conference on Software Engineering, ICSE 14,
Hyderabad, India - May 31 - June 07, 2014, P. Jalote, L. C. Briand,
and A. van der Hoek, Eds. ACM, 2014, pp. 140–151. [Online].
Available: http://doi.acm.org/10.1145/2568225.2568283

[25] N. Walkinshaw, M. Roper, and M. Wood, “Feature Location
and Extraction using Landmarks and Barriers,” in 23rd IEEE
International Conference on Software Maintenance (ICSM 2007),
October 2-5, 2007, Paris, France. IEEE, 2007. [Online]. Available:
http://dx.doi.org/10.1109/ICSM.2007.4362618

[26] M. Trifu, “Improving the Dataflow-Based Concern Identification
Approach,” in 13th European Conference on Software Maintenance
and Reengineering, CSMR 2009, Architecture-Centric Maintenance of
Large-SCale Software Systems, Kaiserslautern, Germany, 24-27 March
2009, A. Winter, R. Ferenc, and J. Knodel, Eds. IEEE Computer
Society, 2009. [Online]. Available: http://dx.doi.org/10.1109/CSMR.
2009.34

[27] A. D. Eisenberg and K. D. Volder, “Dynamic Feature Traces: Finding
Features in Unfamiliar Code,” in 21st IEEE International Conference
on Software Maintenance (ICSM), 25-30 September 2005, Budapest,
Hungary. IEEE Computer Society, 2005, pp. 337–346. [Online].
Available: http://dx.doi.org/10.1109/ICSM.2005.42

[28] D. Poshyvanyk, Y.-G. Guéhéneuc, A. Marcus, G. Antoniol, and
V. Rajlich, “Feature Location Using Probabilistic Ranking of Methods
Based on Execution Scenarios and Information Retrieval,” IEEE Trans.
Software Eng., 2007. [Online]. Available: http://dx.doi.org/10.1109/
TSE.2007.1016

[29] M. Eaddy, A. V. Aho, G. Antoniol, and Y.-G. Guéhéneuc,
“CERBERUS: Tracing Requirements to Source Code Using Information
Retrieval, Dynamic Analysis, and Program Analysis,” in The 16th
IEEE International Conference on Program Comprehension, ICPC,
Amsterdam, The Netherlands, June 10-13, 2008, R. L. Krikhaar,
R. Lämmel, and C. Verhoef, Eds. IEEE Computer Society, 2008, pp.
53–62. [Online]. Available: http://dx.doi.org/10.1109/ICPC.2008.39

[30] Ø. Haugen, B. Møller-Pedersen, J. Oldevik, G. K. Olsen, and
A. Svendsen, “Adding Standardized Variability to Domain Specific
Languages,” in Software Product Lines, 12th International Conference,
SPLC 2008, Limerick, Ireland, September 8-12, 2008, Proceedings.
IEEE Computer Society, 2008, pp. 139–148. [Online]. Available:
http://dx.doi.org/10.1109/SPLC.2008.25

[31] A. Svendsen, X. Zhang, R. Lind-Tviberg, F. Fleurey, Ø. Haugen,
B. Møller-Pedersen, and G. K. Olsen, “Developing a Software
Product Line for Train Control: A Case Study of CVL,” in Software
Product Lines: Going Beyond - 14th International Conference, SPLC,
Jeju Island, South Korea, September 13-17, 2010. Proceedings,
ser. Lecture Notes in Computer Science, J. Bosch and J. Lee,
Eds., vol. 6287. Springer, 2010, pp. 106–120. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-15579-6_8

[32] J. Font, M. Ballarín, Ø. Haugen, and C. Cetina, “Automating the
variability formalization of a model family by means of common
variability language,” in Proceedings of the 19th International
Conference on Software Product Line, SPLC 2015, Nashville,USA, July
20-24, 2015, D. C. Schmidt, Ed. ACM, 2015, pp. 411–418. [Online].
Available: http://doi.acm.org/10.1145/2791060.2793678

http://www.mdpi.com/1424-8220/12/7/9286
http://doi.acm.org/10.1145/2048066.2048128
http://doi.acm.org/10.1145/2384616.2384673
http://doi.acm.org/10.1145/2568225.2568283
http://dx.doi.org/10.1109/ICSM.2007.4362618
http://dx.doi.org/10.1109/CSMR.2009.34
http://dx.doi.org/10.1109/CSMR.2009.34
http://dx.doi.org/10.1109/ICSM.2005.42
http://dx.doi.org/10.1109/TSE.2007.1016
http://dx.doi.org/10.1109/TSE.2007.1016
http://dx.doi.org/10.1109/ICPC.2008.39
http://dx.doi.org/10.1109/SPLC.2008.25
http://dx.doi.org/10.1007/978-3-642-15579-6_8
http://doi.acm.org/10.1145/2791060.2793678

	Introduction
	Background
	The Clone-and-Own Extraction Approach
	Model-based Feature Location
	Feature Isolation at model level
	Feature Isolation at code level
	Similarity Comparison

	Evaluation
	Experimental Setup
	BSH: The Induction Hobs Domain
	CAF: The Train Control Domain

	Results
	Discussion
	Limitations

	Related Work
	Feature Location at the Code Level
	Feature Location at the Model Level

	Conclusions
	References

