Noname manuscript No.
(will be inserted by the editor)

Collaborative Feature Location in Models through
Automatic Query Expansion

Francisca Pérez - Jaime Font -
Lorena Arcega - Carlos Cetina

Received: date / Accepted: date

Abstract Collaboration with other people is a major theme in the information-
seeking process. However, most existing works that address the location of
features during the maintenance or evolution of software do not support col-
laboration, or they are focused on code as the main software artifact. Hence,
collaborative feature location in models has not enjoyed much attention to
date. In this work, we address this concern by proposing an approach, CoFLiM,
that enables the collaboration of several domain experts in order to locate the
model fragment of a target feature. CoFLiM uses the feature descriptions of
the domain experts and their self-rated confidence level to automatically re-
formulate the relevant feature descriptions in a single query. This query guides
the evolutionary algorithm of our approach that finds the model fragment of
the feature being located. We evaluate CoFLiM in a real-world case study
from our industrial partner. We analyze the impact of CoFLiM in terms of
recall, precision, and the F-Measure. Moreover, we compare the reformulation
of CoFLiM with four baselines. We also perform a statistical analysis to show
that the impact of the results is significant. Our results show that collabora-
tion pays off in the location of features in models. The results also show that
the self-rated confidence level can be used to locate features in models. Fi-
nally, the results show that there are no significant improvements when more
than three domain experts are involved, which is relevant in those industrial
contexts where the availability of domain experts is scarce.

Keywords Query expansion - Collaborative Information Retrieval - Feature
Location - Search-Based Software Engineering - Model Driven Engineering

F. Pérez, J. Font, L. Arcega and C. Cetina

SVIT Research Group, Universidad San Jorge.

Autovia A-23 Zaragoza-Huesca Km.299, 50830, Zaragoza, Spain. Tel.: +34 976060100
E-mail: {mfperez, jfont, larcega, ccetina}@usj.es

J. Font and L. Arcega
Department of Informatics, University of Oslo.
Postboks 1080 Blindern, 0316 Oslo, Norway

2 Francisca Pérez et al.

1 Introduction

Feature Location (FL) is one of the most important tasks during the mainte-
nance and evolution of software [Dit et al., 2013]. It is known as the process of
finding the set of software artifacts that realize a specific functionality. How-
ever, most of the existing works in the literature have been focused on code
as the software artifact that materializes the feature to locate [Rubin and
Chechik, 2013; Dit et al., 2013], whereas model artifacts have not received yet
enough attention.

Moreover, collaboration ideas have never been evaluated in the location of
features in models even though collaboration is a useful and often necessary
component of complex projects when the task at hand is difficult or cannot be
carried out by one individual [Shah, 2010; Morris, 2007]. Collaboration needs
to be considered in industrial contexts since a vast amount of software is accu-
mulated over the years and this software has been developed and maintained
by different individuals.

In this work, we propose an approach to achieve collaborative Feature Lo-
cation in Models (CoFLiM). In CoFLiM, several domain experts collaborate
to locate the model fragment that materializes a target feature. First, each
domain expert provides both a feature description and an estimation of con-
fidence level. CoFLiM uses the confidence level to identify relevant feature
descriptions. Then, CoFLiM automatically reformulates the relevant feature
descriptions in a single query using a technique that is based on Rocchio’s
method [Salton, 1971]. The resulting query is used to guide the evolutionary
algorithm of our CoFLiM approach in order to find the model fragment that
realizes the feature being located.

We analyze the impact of CoFLiM in a real-world industrial case study
from the railway domain. Our industrial partner, Construcciones y Auxiliar
de Ferrocarriles (CAF)!, is a worldwide leader in train manufacturing. We
also compare the impact of the automatic query reformulation that CoFLiM
performs with four alternatives as baselines to study the impact on the results.
We also analyze how the number of domain experts collaborating influences
the quality of the solution. Moreover, we analyze whether the inclusion of the
domain experts’ confidence produces an improvement in the solution.

To perform these analyses, we extract a case study from our industrial
partner that includes both the models of software that control and manage
the trains and the oracle (the realization of features validated by our industrial
partner). Then, we involve 19 domain experts from our industrial partner to
obtain feature descriptions and confidence levels as the input of our CoFLiM
approach. We compare the results of CoFLiM with the oracle (which is consid-
ered to be the ground truth) in terms of recall, precision, and the F-measure.
Finally, we perform a statistical analysis (following the guidelines by [Arcuri
and Briand, 2014]) in order to provide quantitative evidence of the impact of
the results and to show that this impact is significant.

1 www.caf .net/en

www.caf.net/en

Collaborative Feature Location in Models through Automatic Query Expansion 3

The results show that collaboration pays off in the location of features in
models. Our CoFLiM approach improves the results of locating features with-
out collaboration by 27.42% in recall and 25.78% in precision. The results also
show that there are no significant improvements when more than three domain
experts collaborate. This challenges the general recommendation [Carpineto
and Romano, 2012], which requires the collaboration of five domain experts.
This is relevant in those industrial contexts where the availability of domain
experts is scarce. Finally, our results suggest that leveraging the self-rated
confidence in CoFLiM leads to improvement in the results obtained without
using the self-rated confidence (an average improvement of 24.11% in recall
and 21.97% in precision).

The rest of the paper is structured as follows: Section 2 provides the re-
quired background. Section 3 presents an overview of our approach. Section
4 presents the automatic query expansion technique. Section 5 describes the
location of relevant model fragments for a given query. Section 6 describes the
evaluation, and Section 7 shows the results. Section 8 describes the threats to
validity. Section 9 reviews the related work. Finally, Section 10 concludes the

paper.

2 Background and motivation

This section introduces the railway domain of our industrial partner and the
Domain Specific Language (DSL) that was used to formalize the products
manufactured as well as an example of model fragment that realizes a feature.
We also motivate the need of an approach to achieve collaborative feature
location in models.

Our industrial partner furnishes train units with multiple pieces of equip-
ment through its vehicles and cabins. These pieces of equipment are often
designed and manufactured by different providers, and their aim is to carry
out specific tasks for the train. Some examples of these devices are: the trac-
tion equipment, the compressors that feed the brakes, the pantograph that
harvests power from the overhead wires, or the circuit breaker that isolates or
connects the electrical circuits of the train. The control software of the train
unit is in charge of making all of the equipment cooperate to achieve the train
functionality while guaranteeing compliance with the specific regulations of
each country.

For example, one of the scenarios from the high voltage connection sequence
is initiated under demand by the train driver through interface devices fitted
inside the cabin. The control software is in charge of raising the pantograph to
harvest power from the overhead wire and of closing the circuit breaker, so the
energy can get to converters that adapt the voltage to charge batteries, which,
in turn, power the traction equipment. Another example of the functionality
is the coupling between train units. The DSL of our industrial partner has
the expressiveness required to describe both the interaction between the main
pieces of equipment installed in a train unit and the non-functional aspects

4 Francisca Pérez et al.

that are related to regulation. For the sake of understandability and legibility
and due to intellectual property rights concerns, we present an equipment-
focused simplified subset of the DSL. This subset of the DSL will be used
throughout the rest of the paper to present a running example.

Fig. 1 depicts an example of a product model from a real-world train.
It shows two separate pantographs (High Voltage Equipment) that collect
energy from the overhead wires and send it to their respective circuit breakers
(Contactors), which, in turn, send it to their independent Voltage Converters.
The converters then power their assigned Consumer Equipment: the HVAC
on the left (the train’s air conditioning system), and the PA (public address
system) and CCTV (television system) on the right.

Product Model

DSL Syntax

Pantograph 2

Pantograph 1

B

>

i

High Voltage Equipment

Circuit Circuit
J
Breaker 1 Breaker 2 S
—,D— Contactor

m
[*)
o
>3
<
0]
&
o
=
N

Converter 1

Voltage Converter

Circuit
Breaker 3

0

Consumer Equipment

Model Fragment

Model Fragment Encoding:
A[B(C|D|E|[F|G|H]I|[J]|K]JL|M[N|O
o|jofofoj1j1f{1fo|jo0ojofo0f1foj0J0f0|1

~

—
—

Fig. 1 Example of a model, a model fragment and its encoding

The elements of Fig. 1 that are highlighted in gray show an example of
a model fragment, which is the realization of the feature: HVAC Assistance.
This model fragment allows the passing of current from one converter to the
HVAC that is assigned to its peer for coverage in case of overload or failure of
the first converter.

The model fragment (which always belongs to a product model) is encoded
using a string of binary values that contains as many positions as elements in
the product model. Each position in the string has two possible values: 0 in
case the element does not appear in the fragment, or 1 in case the element
does appear in the fragment. The lower part of Fig. 1 shows the encoding of
the model fragment that is highlighted in gray. Since elements E, F, G, L, Q,
R and S conform the model fragment, the corresponding values are set to 1 in
its binary string representation.

Collaborative Feature Location in Models through Automatic Query Expansion 5

Although the product model and the model fragment that realizes the
feature of the example of Fig. 1 makes that manual feature location in models
may appear easy, it becomes very complex in the models of our industrial
partner. Suppose we ask the domain experts to manually locate the model
elements that correspond to the 121 features of the data set provided by CAF.
Taking into account that the data set comprises 23 trains and the model of
each train has more than 1200 model elements, at least 27600 model elements
should be evaluated. To assess a model element, it is reasonable to consider its
properties. In the data set, each element has about 15 properties. Therefore,
about 414000 properties of model elements should be considered. Assuming
that a domain expert only needs 1 second to consider a property of a model
element, the domain expert needs 4.79 days to manually locate each feature.
Considering the 121 features and the 19 domain experts, the result is 30.17
years.

Domain experts could make use of simple text search tools in the models,
but these tools would not prevent domain experts from first knowing the mod-
els of the trains. There is no domain expert who knows all models completely in
CAF. Although we ignore that domain experts can forget models that belong
to trains manufactured over two decades as is the case in CAF, the models
have always been created by several different domain experts. Moreover, the
models may have been maintained by other domain experts who have not par-
ticipated in the creation. Time improvements because of the learning effect,
or locating several features simultaneously are not accounted here, but these
improvements could also be source of errors which take time to fix.

In addition, the 30.17 years do not include the time that is necessary to
reach a consensus on 19 solutions for each of the 121 features. In an industrial
environment like in CAF, the domain experts are distributed in three different
cities of Spain (Zaragoza, Beasain and Bizkaia). This geographical distribution
implies that the domain experts are not used to carrying out consensus tasks,
which can negatively influence the time they need to agree on the solutions.

Therefore, feature location in real-world models is not a trivial task. From
the 121 features of the data set, only the model elements of 43 features are
documented in CAF. The documentation of these 43 features is the result of
months of manual work with external consultants to address certification needs
or bugs. Moreover, this data set is made up of tramway models, but the need
to locate features is also present in more CAF models of similar complexity as
subway models, or in more complex models such as suburban and high speed.

3 Overview of the CoFLiM approach

Fig. 2 shows an overview of our proposed CoFLiM approach. First, each do-
main expert involved provides both a feature description and a self-rated con-
fidence level for the feature description as input. Second, feature descriptions
are ordered from the highest to the lowest confidence level. The first feature
description is set as base query, and the & subsequent feature descriptions are

6 Francisca Pérez et al.

set as relevant documents. Third, the base query is automatically reformu-
lated to expand it with the most representative terms found in the relevant
documents. Finally, both the models of a product family and the reformulated
query are taken as input to locate the relevant model fragments. The evo-
lutionary algorithm of CoFLiM explores the model fragments guided by the
similitude of each model fragment with the reformulated query. The result is
a ranking of relevant model fragments that is ordered by the similitude to the
input reformulated query.

Feature
Description
& Confidence

Feature
Description
& Confidence

Feature
Description
& Confidence

Collaborative Feature Location in Models

Automatic Query Reformulation

I Relevant
document;

2
Product ﬂvolutionary Ranking of
Model, & algorithm model fragments

Product Family

Selection of
the base query
and relevant

documents

Automatic

Query Reformulated
Expansion query

Domain Experts

Fig. 2 Overview of our approach for collaborative feature location in models

In the next two sections, we describe the phase that selects the base query
and the relevant documents to automatically obtain the reformulated query,
and the evolutionary algorithm that retrieves the ranking of relevant model
fragments for the reformulated query.

4 Automatic Query Reformulation

Domain experts can just discuss together and collaboratively draft a better
description of the feature but this manual reformulation is time-consuming in
complex projects that accumulates a vast amount of software. This is because
the combination of a set of feature descriptions in a single query requires much
time since domain experts have to both understand all feature descriptions and
discuss about the most adequate terms to locate the target feature. In order
to help domain experts, the combination of a set of feature descriptions in a
single query can be automatically performed.

To enable the collaboration from different domain experts’ feature descrip-
tions, our approach sets one of the feature descriptions as the base query.
Afterwards, the base query is automatically reformulated to expand it with
the most representative terms found in the domain experts’ feature descrip-
tions set as relevant documents.

Collaborative Feature Location in Models through Automatic Query Expansion 7

4.1 Selection of the base query and relevant documents

To determine which feature description is selected as the base query, CoFLiM
sorts the feature descriptions from the highest to the lowest self-rated confi-
dence level in order to select the feature description in the first position (i.e.,
the highest self-rated confidence) as the base query. The self-rated confidence
level is supplied for each feature description using a Likert scale ranging from
7 (the highest self-rated confidence) to 1 (the lowest self-rated confidence). In
case that more than one feature description ties the maximum self-rated con-
fidence level, CoFLiM selects the longest feature description as the base query
since it can include more terms that are relevant to locate the target feature.
CoFLiM then selects k feature descriptions sorted by confidence level, where
k is the number of domain experts who collaborate to reformulate the base
query. Each of the selected feature descriptions is set as a relevant document.

Fig. 3 shows an example of selection of the base query and relevant docu-
ments from different domain experts’ feature descriptions and their self-rated
confidence levels which are provided as input. Specifically, the figure shows
three feature descriptions (identified from A-C) and their self-rated confidence
levels. In this example, a total of three domain experts are involved in locating
the target feature: one domain expert provides the base query, and two domain
experts collaborate (k=2).

Domain Feature description Self-rated

Expert confidence

‘ A Passing of current from one converter to the HVAC assigned to its peer for coverage in 6 }_9 Base query

case of overload or failure of the first converter J

[B The circuit breaker changes to another converter in case of failure in the HVAC converter 4 }——> Relevant document;
- N

‘ C In case of failure or overload in the converter that provides energy to the air conditioning 8 ’_9 Relevant document,
(

unit, the circuit breaker provides energy from its converter

Three domain experts are involved in locating the target feature:
The base query from Domain expert A, and two relevant documents from Domain expert B and Domain Expert C (k=2)

Fig. 3 Example of selection of the base query and two relevant documents

In the example of Fig. 3, the feature description provided by Domain ex-
pert A is selected as the base query since it has the highest self-rated confidence
level (6), and each of two subsequent feature descriptions with the highest self-
rated confidence level are set as relevant document (the feature description of
Domain expert B is set as relevant document 1 since its self-rated confidence
level is 4, and the feature description of Domain expert C is set as relevant doc-
ument 2 since its self-rated confidence level is 3). Note that, in our approach,
it is important to discriminate between the base query and the relevant docu-
ments since the terms that are included in the relevant documents can be used
to expand the base query. In contrast, it is not used the number assigned to
each relevant document (1 and 2 in the example of the figure) and we assign
this number for understandability and legibility in the figures.

8 Francisca Pérez et al.

It is important to highlight that when a feature needs to be located at a
point in time, each domain expert provides a feature description and assigns
it a confidence level. In case that only one domain expert provides a feature
description, our approach also works in a solo scenario but the automatic
query expansion is not performed. Hence, the feature description that was
only provided as input is set as query to locate the target feature.

4.2 Automatic Query Expansion

Before the base query is expanded, our approach processes the Natural Lan-
guage (NL) text of the base query and the relevant documents in order to
homogenize the text. The combination of Natural Language Processing (NLP)
techniques, such as the analysis of POS tags, removal of stopwords, and stem-
ming, is a frequent practice [Hulth, 2003] that our approach adopts as follows:

1. The text is tokenized (divided into words). A white space tokenizer can
usually be applied (which splits the strings whenever it finds a white space);
however, for some sources of description, more complex tokenizers need to
be applied. For instance, when the description comes from documents that
are close to the implementation of the product, some words could be using
CamelCase naming.

2. The Parts-of-Speech (POS) tagging technique is applied to analyze the
words grammatically and to infer the role of each word in the text pro-
vided. As a result, each word is tagged, which allows the removal of some
categories that do not provide relevant information. For instance, conjunc-
tions (e.g., or), articles (e.g., a), or prepositions (e.g., at) are words that
are commonly used and do not contribute relevant information to describe
the feature, so they are removed.

3. Stemming techniques are applied to unify the language that is used in the
text. This technique consists of reducing each word to its root, which allows
different words that refer to similar concepts to be grouped together. For
instance, plurals are turned into singulars (doors to door) or verb tenses
are unified (using and used are turned into us).

4. The Domain Term Extraction and Stopword Removal techniques are ap-
plied. In order to carry out these techniques, domain experts provide two
separate lists of terms: one list of both single-word and multiple-word terms
that belong to the domain and must be kept for analysis, and a list of ir-
relevant words that have no analysis value. Both kinds of terms are also
homogenized and they can be automatically filtered in or out of the final

query.

Fig. 4 depicts the result of homogenizing the NL text of the base query
and the NL text of the two relevant documents when each of the NLP tech-
niques previously described above is applied (division into words, analysis of
the words grammatically, root reduction, and domain term extraction and
stopword removal). For example the feature description that is set as the base

Collaborative Feature Location in Models through Automatic Query Expansion

query is processed from the NL text: Passing of current from one converter
to the HVAC assigned to its peer for coverage in case of overload or failure of
the first converter to the homogenized terms: current, convert, hvac, coverag,

overload, failur, convert,

and assign.

Non-Processed feature descriptions

Base query

Relevant Document,

Relevant Document,

Passing of current from one converter to
the HVAC assigned to its peer for coverage
in case of overload or failure of the first
converter

The circuit breaker changes to another
converter in case of failure in the HVAC
converter

In case of failure or overload in the
converter that provides energy to the air
conditioning unit, the circuit breaker
provides energy from its converter

)

1) Division into words

)

l

Non-Processed feature descriptions

Base query

Relevant Document;

Relevant Document,

Passing, of, current, from, one, converter,
to, the, HVAC, assigned, to, its, peer, for,
coverage, in, case, of, overload, or, failure,

The, circuit, breaker, changes, to, another,
converter, in, case, of, failure, in, the,
HVAC, converter

In, case, of, failure, or, overload, in, the,
converter, that, provides, energy, to, the,
air, conditioning, unit, the, circuit, breaker,
provides, energy, from, its, converter

L

of, the, first, converter

2) Analysis of the words grammatically

)

!

POS tagged words

Base query Relevant Document, Relevant Document,
Passing, current, converter, failure, overload,converter,
. . circuit, breaker, converter, . energy, air, conditioning, unit,
Nouns: HVAC, peer, coverage, Nouns: failure, HVAC, converter Nouns: circuit, breaker, energy,
overload, failure, converter converter
Verbs: assigned Verbs: changes Verbs: provides, provides
[3) Root reduction J
Root-reduced tokens
Base query Relevant Document, Relevant Document,
pass, current, convert, hvac, circuit, breaker, convert, fal_lur,_ overl0§d,c0!1ve|_'t, _
Nouns: peer, coverag, overload, Nouns: failur, hvac, convert Nouns: energi, air, condit, unit, circuit,
failur, convert ! 4 breaker, energi, convert
Verbs: assign Verbs: chang Verbs: provid, provid

-

[4) Domain term extraction and stopword removal J

y

Processed feature descriptions

Base query

Relevant Document,

Relevant Document,

current, convert, hvac, coverag, overload,
failur, convert, assign

circuit, breaker, convert, failur, hvac,
convert, chang

failur, overload, convert, energi, air, condit,
unit, circuit, breaker, energi, convert,
provid, provid

Fig. 4 Example of text homogenization using NLP techniques

10 Francisca Pérez et al.

Once the NL text is homogenized, our approach automatically reformulates
the base query to expand it with terms of the relevant documents using a
technique that is based on Rocchio’s method [Salton, 1971], which is perhaps
the most commonly used method for query reformulation [Sisman and Kak,
2013]. Rocchio’s method orders the terms in the top K relevant documents
based on the sum of the importance of each term of the K documents using
the following equation:

Rocchio = _ TfIdf(t,d) (1)

deR

where R is the set of top K relevant documents in the list of retrieved
results, d is a document in R, and t is a term in d. The first component of the
measure is the Term Frequency (T'f), which is the number of times the term
appears in a document; it is an indicator of the importance of the term in the
document compared to the rest of the terms in that document. The second
component is the Inverse Document Frequency (Idf), which is the inverse of
the number of documents that contain that term; it indicates the specificity
of that term for a document that contains it. Once the terms of the relevant
documents are ordered, we consider the first 10 term suggestions to expand
the base query, as is recommended in the domain literature [Carpineto and
Romano, 2012].

Fig. 5 shows an example of terms and the frequency of the base query
and the two relevant documents. Using Rocchio’s method, the terms of the
relevant documents are ordered from highest to lowest sum of importance.
Then, the first 10 terms from the ordered list (convert, energi, provid, overload,
circuit, breaker, failur, hvac, air, condit) are used to reformulate the base
query by adding these terms. Hence, the reformulated query that is output has
the following terms: current, convert, hvac, converag, overload, failur, assign,
energi, provid, circuit, breaker, air, and condit.

5 Evolutionary algorithm guided by the reformulated query

CoFLiM relies on our Evolutionary Algorithm, which is guided by the reformu-
lated query, to retrieve a ranking of model fragments. We use an evolutionary
algorithm to locate features because the search space is too large, thus, it is
impossible to explore the space of possibilities exhaustively. In a previous work
[Font et al., 2015a], we limited the search space by choosing a subset of the
models, or by providing restrictions of elements that do not have to appear
in the solutions. However, the search space was still very large (a model of
500 elements can yield around 10%° potential fragments). In addition, evolu-
tionary algorithms have obtained good results by addressing similar problems
with large search spaces [Font et al., 2016b], hence we have chosen to use an
evolutionary algorithm.

Fig. 6 shows an overview of the evolutionary algorithm. The algorithm
is made up of three steps, which are indicated as a number in Fig. 6: Step 1,

Collaborative Feature Location in Models through Automatic Query Expansion

11

Base query

Term

Frequency

current

1

-

Automatic Query Expansion

convert

hvac

coverag

overload

failur

assign

N

Relevant documents

Ordering the
terms of the
relevant
documents

Ordered terms

Term

convert
energi

terms

Expanding the
base query with
the first 10

~

Relevant document; Relevant document;,
Term Frequency Term Frequency
circuit 1 failur 1

breaker 1 overload 1
convert 2 convert 2
failur 1 energi 2
hvac 1 air 1
chang 1 condit 1
unit 1

circuit 1

breaker 1

provid 2

provid
overload

circuit

breaker
failur

hvac

air

condit

unit

chang

Fig. 5 Automatic Query Expansion example

Reformulated query
Term Frequency
current 0.33
convert 2
hvac 0.67
coverag 033
overload 0.67
failur 1
assign 033
energi 0.67
provid 0.67
circuit 0.67
breaker 0.67
air 0.33
condit 0.33

Initialization of model fragments; Step 2, Genetic operations to generate model
fragments that could realize the provided reformulated query; and Step 3, the
Fitness function to assess the relevance of each generated model fragment
according to the similitude with the reformulated query.

Evolutionary Algorithm

Reformulated Query

Product Model;

Initialization of
Model
Fragments

Initial Model
Fragment
Population

Genetic
Operations

<

)

Model Fragment
Population

Fitness Function:
Model Similitude

]

Product Family

L

Evaluated Model
Fragment
Population

No

Converges?

Fig. 6 Evolutionary algorithm overview

Step 1) Initialization of model fragments.

Model Fragment
Ranking

This step generates an initial model fragment population from the product
models that serves as input for the evolutionary algorithm. To do this, parts
of the models are extracted randomly and added to a collection of model

fragments.

In order to generate random model fragments that are well-formed and cor-
rect, the algorithm starts with the selection of a random initial model element
A to create a new model fragment. Then, another model element B, which is
directly connected to the model element A, is taken. In case there is more than

12 Francisca Pérez et al.

one element directly connected to A, one of the elements is randomly chosen.
Next, a random number of iterations are performed.

Note that this selection process based on direct model element connections
makes that the algorithm returns a model fragment built with a subset of
elements from the parent model which are contiguously connected. Since this
algorithm only produces fragments that are part of the original model, the
resulting model fragments are well-formed and valid (i.e., the model fragments
keep the conformance to the metamodel).

Step 2) Genetic Operations.

This step generates a set of model fragments that could realize the refor-
mulated query provided. The generation of new model fragments is based on
existing model fragments and is done by applying two genetic operators that
are adapted to work on model fragments: crossover and mutation.

— The crossover operation enables the creation of a new individual by

combining the genetic material from both the model fragment and the
referenced product model. Our crossover operation does not use single
point crossover (where a point on both parents is picked randomly and
the bits to the right of that point are swapped between the two parents),
two point (where two points are picked randomly from the parents and
the bits in between the two points are swapped between the parents) or
uniform crossover (where individual bits of the parents are compared and
exchanged with a fixed probability). Instead, our crossover operation is
based on model comparisons to ensure that the new individuals are well-
formed and valid. The crossover operation looks in the second parent for
the model fragment of the first parent.
The upper part of Fig. 7 shows an example of the application of the
crossover operation. The model fragment (from Parent 1) is compared with
the model of Parent 2. Since the model fragment is found in the model of
Parent 2, the process creates a new individual with the model fragment
taken from Parent 1, but referencing the model from Parent 2. Thus, this
operation enables the search space to be expanded to a different product
model, i.e., both model fragments (the one from Parent 1 and the one from
the new individual) will be the same. However, since each of them is refer-
encing a different product model, they will mutate differently and provide
different individuals in further generations. In the case that the compari-
son does not find the model fragment in the second parent, the crossover
returns the first parent (the model fragment) unchanged.

— The mutation operator is used to imitate the mutations that randomly
occur in nature when new individuals are born. Specifically, the mutation
operator is applied to add or remove elements of the model fragment. In
case the operation is applied to add, it is chosen one element of the model
fragment that is directly related to elements that are not included in the
fragment. Next, one of the related elements that are not included in the
fragment is added to the fragment. In case the operation is applied to re-
move, an element of the fragment that is connected with only one other

Collaborative Feature Location in Models through Automatic Query Expansion 13

element of the fragment is removed from the fragment. In the example in
the bottom part of Fig.7, the mutation operation is applied to remove ele-
ments. Hence, the mutation operation takes the offspring that is produced
through the crossover operation and removes one element (Pantograph 1)
and its relationship since it is connected with only one other element of
the fragment (Circuit Breaker 1). The resulting model fragment is a new
candidate in the population for the realization of the input reformulated
query.

Parent 1 Parent2

Pantograph 1 Pantograph 2 Pantograph1 || Pantograph2

[Circuit] [Circuit J Crossover Operation Circuit Circuit
(Model fragment from Parent 1 Breaker 1 Breaker2
Breaker 1 Brea‘kerz in Model of Parent 2)

Converter1 ‘ ‘ Converter2 ‘

Converter 1

l
o) G

\Pa\ntog@§ Pantograph 2
|

Circuit |(* Circuit
Breaker1 Breaker 2

Converter1

Mutation Operator
(Removes Pantograph 1
from the model frarment)

Mutated Offspring

Pantograph 1 || Pantograph2

Circuit } Circuit
Breakerl || Breaker2
|

Fig. 7 Genetic operations example

Both, crossover and mutation operations are designed to produce valid in-
dividuals, by selecting subset of existing models to conform the new model
fragment. For further details of the crossover operation and the mutation op-
erator, we refer the reader to [Font et al., 2016a] and [Font et al., 2016b],
respectively.

Step 3) The Fitness Function.

This step assesses the relevance of each of the produced candidate model
fragments by ranking them according to a fitness function. The objective of

14 Francisca Pérez et al.

the fitness function is the similitude between the model fragment and the
reformulated query. To do this, we apply methods that are based on Informa-
tion Retrieval (IR) techniques. Specifically, we apply Latent Semantic Index-
ing (LSI) [Landauer et al., 1998; Hofmann, 1999] to analyze the relationships
between the model fragments in the population and the reformulated query.
Since the results retrieved by LSI depend greatly on the style in which the NL
is written, it is beneficial to process the NL of the model fragments [Lapena
et al., 2017] the way that the NL of the base query and the relevant documents
query are processed in Subsection 4.2 (i.e., by combining the analysis of POS
tags, removal of stopwords, and stemming).

Then, the LSI technique can be applied taking the terms from the reformu-
lated query and the terms from the model fragments as input. LSI constructs
vector representations of a query and a corpus of text documents by encoding
them as a term-by-document co-occurrence matrix. In other words, this is a
matrix where each row corresponds to terms and each column corresponds to
documents followed by the reformulated query in the last column. Each cell of
the matrix contains the number of occurrences of a term inside a document or
inside the reformulated query. In our approach, the terms are all of the indi-
vidual terms that are extracted from the processed NL of model fragments and
the reformulated query, the documents are the NL representations of model
fragments, and the query is the reformulated query.

Once the matrix is built, it is normalized and decomposed into a set of
vectors using a matrix factorization technique called Singular Value Decom-
position (SVD) [Landauer et al., 1998]. One vector that represents the latent
semantics of the NL texts is obtained for each document and for the refor-
mulated query. Finally, the similarities between each document and the re-
formulated query are calculated as the cosine between both of their vectors,
obtaining values between -1 and 1.

The upper part of Fig. 8 shows an example of a co-occurrence matrix. The
columns are the NL representation of each model fragment in the population
and the reformulated query. Each term row is one of the terms that is extracted
from the NL texts of model fragments and the reformulated query. Each cell
shows the number of occurrences of each of the terms.

The bottom left part of Fig. 8 shows the result of applying the SVD tech-
nique to the matrix. The vector labeled with ’Q’ represents the query, while
the ones labeled as '"MF’ represent the model fragments. The bottom right
part of Fig. 8 shows the scores for each model fragment, which are calculated
by computing the cosine between their associated vector and the query vector.

Once the similitude scores are obtained, if the stop condition is met, the
process will stop returning the model fragment ranking. If the stop condition is
not yet met, the evolutionary algorithm will keep its execution one generation
more.

The next time that the genetic operators are applied, it will be necessary
to select the best candidates as parents for the new generation. This will be
done based on the score obtained by each model fragment. As a result, model
fragments with higher similarities will have more chances to be selected as

Collaborative Feature Location in Models through Automatic Query Expansion 15

Reformulated
Model fragments

query
MF1 | MF2 MFN | Query
" convert 0 2 2 2
g failur 0 2 5 1
F | hvac 3 0 1 0.67
Singular Value Decomposition Scores
Model Fragment
MIEN Similitude Scores
MF2
MF2 =0.93
Q MFN = 0.24
MF1
MF1 =-0.87

Fig. 8 Fitness by means of Model Fragment Similitude

parents of the new generation. Note that being part of more feature candidates
does not guarantee a higher score for the model fragment since the similarity
between a feature candidate and the reformulated query can be negative.

The process of generation of fragments, extraction of feature candidates,
and assessment of those candidates is repeated until the stop condition is met.
Usually, the stop condition can be a time slot, a fixed number of generations, or
a trigger value of the fitness that makes the process terminate when reached.
In addition, it is also possible to monitor the fitness values and determine
when they are converging and no further improvements are being made by
new generations. The stop condition greatly depends on the domain and the
problem being solved; therefore, it is adjusted based on the results being output
by the process.

Once the model fragment ranking is obtained, the inputs of the approach
(i.e., the feature descriptions, their confidence, and the reformulated query) are
discarded and new inputs will be necessary for executing the approach again.
As occurs in other works that retrieve text from an initial query, results depend
on the quality of the queries [Sisman and Kak, 2013; Hill et al., 2009]. As much
as properties and values of the elements are explicitly mentioned in the query,
closer will be the result to the search objective. Therefore, if irrelevant model
fragments are obtained in the ranking, the domain experts can consider these
solutions as a starting point from where solutions can be manually refined, or
they may refine the query to automatically obtain different solutions.

16 Francisca Pérez et al.

6 Evaluation

This section presents the research questions that our work tackles, the baselines
that we use to put the performance of our work in perspective, the data set
of our real-world case study, the planning, and the execution to answer each
research question.

6.1 Definition

There are several aspects that we wanted to evaluate with regard to the inclu-
sion of more than one domain expert’s feature description for locating features
in models. In order to address the evaluation of these aspects, we formulated
the following four research questions:

RQ1: Does the query formulated through automatic query expansion pro-
duce an improvement in terms of solution quality compared to other alterna-
tives?

RQs: Does the inclusion of more than one domain expert’s feature de-
scription when locating features in models produce an improvement in terms
of solution quality?

RQs: If so, what is the influence of the number of domain experts input to
the feature location in the quality of the solution?

RQy: Does the inclusion of the domain experts’ confidence produce an im-
provement in terms of solution quality?

Answering RQ; allows us to compare the performance results (in terms of
recall, precision and the F-measure) of the query formulated through auto-
matic query expansion with the query formulated through different alterna-
tives. A positive answer for RQg implies that more than one domain expert’s
feature description improves the quality of the located model fragment. In this
case, answering RQ3 allows us to determine the number of domain experts that
should input our CoFLiM approach in order to achieve the best result. An-
swering RQy4 allows us to determine whether or not taking into account the
domain experts’ confidence level provided for each feature description improves
the results.

6.2 Baselines

In order to put the performance of our work in perspective, we compare it
with four baselines to study the impact on the results. Each baseline explores
a different alternative to obtain the query that will be used for locating a
target feature. The baselines are the following;:

Baseline 1: Topic modeling. Topic modeling is a widely-used unsupervised
machine learning technique [Asuncion et al., 2010], based on Latent Dirich-
let Allocation (LDA) [Blei et al., 2003] for automatically extracting se-
mantic or thematic topics from a collection of text documents, without

Collaborative Feature Location in Models through Automatic Query Expansion 17

requiring previous training data with training labels. The topics provide
a high-level abstract representation of documents in a corpus, and can be
used for searching, categorizing, and navigating through collections of doc-
uments. Each of the identified topics comprehends a subset of the terms
that appear in the documents. The terms may belong to more than one
topic at the same time. Within each topic, a term has a weight assigned
by LDA, representing its overall contribution of to the topic.

Among the uses and possibilities of topic modeling, the technique has been
leveraged as a means of query expansion for IR purposes [Boyd-Graber
et al., 2017]. The work presented in [Zeng et al., 2012] shows an applica-
tion of topic models for an straightforward query expansion process in the
context of IR in medicine documents. Topic models was applied for query
expansion as follows: (1) extracting topics from the documents through
LDA (along with the terms comprehended by each topic), (2) matching
queries with topics through the terms of the query, (3) ranking the terms
from the matching topics by summing their weights in all matching topics,
and (4) expanding the query with the top 10 ranked terms. This applica-
tion of topic models for query reformulation is a baseline that we explore
in this work.

Baseline 2: Union (K=all). Union is a simple technique for merging the
terms for all information resources in order to insure that there be no loss
of information. In previous works such as [Arens et al., 1996], the union of
information resources was used for query reformulation. The union of the
terms that are included in all feature descriptions provided as input is a
baseline that we explore in this work.

Baseline 3: Union (K=5, c=self-rated). This is a variant of the union
technique that limits the number of feature descriptions that are used for
merging terms. In order to select the feature descriptions, it is used the
self-rated confidence level provided for each feature by the domain experts.
We explore this variant of the union technique as a baseline by limiting
the number of feature descriptions to 5. This decision was made based on
recommendations found in the literature [Carpineto and Romano, 2012].
The results serve to study the impact on the results that has both the
limitation in the number of feature descriptions and the domain experts’
confidence level.

Baseline 4: Domain expert query. This is a manual technique for query
reformulation in which a domain expert is asked to combine the feature
descriptions manually. To do this, the domain expert who has the highest
sum of self-rated confidence of all feature descriptions is selected. Next, this
domain expert takes as input all descriptions of a target feature to create a
feature description that includes the necessary terms to locate the feature.
In this work, we explore this manual technique for query reformulation as
a baseline in order to study its impact in terms of solution quality.

18 Francisca Pérez et al.

6.3 Data set

The data set is provided by our industrial partner, CAF, which is an inter-
national provider of railway solutions all over the world. Their railway solu-
tions can be seen in different types of trains (regular trains, subway, light rail,
monorail, etc.). CAF provided us with 23 trains where each product model
on average is composed of more than 1200 elements. They are built from 121
different features that can be part of a specific product model.

In addition, CAF provided us with the model fragments of 43 features from
different trains. The model fragments have between 5 and 20 model elements,
with an average of 13.55 model elements and a median of 14 model elements.
It is important to highlight that each model element has properties that in-
clude terms, which are used to differentiate among model elements. Nineteen
domain experts from our industrial partner were involved in providing a de-
scription for each feature. Moreover, CAF provided us with lists of domain
terms and stopwords to process the NL. The domain terms list has around
300 domain terms, and the stopwords list has around 60 words. The list of
domain terms and stopwords was obtained from the existing documentation
in CAF. Specifically, it was obtained from the existing documentation that
is used for training new employees. Our approach needs these two lists, but
we believe that in industries similar to CAF will also have documentation for
training new employees in their domain, and this documentation can be used
to generate the two lists. In any case, the lists are not created collaboratively
in our work.

6.4 Implementation details

We have used the Eclipse Modeling Framework to manipulate the models and
CVL [Haugen et al., 2008] to manage the model fragments. The techniques
used to process the NL have been implemented using OpenNLP [ope, 2016]
for the POS-Tagger and the English (Porter2) stemming algorithm [sno, 2017]
for the stemming algorithm (originally created using snowball and then com-
piled to Java). The LSI has been implemented using the Efficient Java Matrix
Library (EJML [ejm, 2016]). The genetic operations are built upon the Watch-
maker Framework for Evolutionary Computation [Dyer, 2016].

The crossover operation is applied with a crossover probability of 0.9. The
mutation operation is applied with a probability of 0.1. The number of gener-
ations (repetitions of the genetic operations and fitness loop) that is allowed
for the algorithm is 2500 since it is the value needed by our case study to
converge (Note that this value is case specific). The rest of the settings are
detailed in Table 1. We have principally chosen values for those settings that
are commonly used in the literature [Sayyad et al., 2013].

As suggested by [Arcuri and Fraser, 2013] and confirmed in [Kotelyan-
skii and Kapfhammer, 2014], tuned parameters can outperform default val-
ues generally, but they are far from optimal in individual problem instances.

Collaborative Feature Location in Models through Automatic Query Expansion 19

Table 1 Configuration parameters

Parameter description Value
Size: Population Size 100
w: Number of Parents 2
A: Number of offspring from p parents 2
r: Solutions replaced at population size 2
Perossover: Crossover probability 0.9
Pmutation: Mutation probability 0.1

Therefore, the objective of this paper is not to tune the values to improve the
performance of our approach but rather to compare it to a different variant of
our approach using default parameter values.

To establish the stop condition, we perform a preliminary study to deter-
mine the time needed for the evolutionary algorithm to converge (point where
there is no changes with further generations). For the searches performed in
this domain the time needed was below 60 seconds for all the features, there-
fore we established the stop condition in 80 seconds (adding a margin to ensure
convergence).

6.5 Planning and execution

Fig. 9 shows an overview of the process that was planned to answer the research
questions. For each of the 43 features, we ask each of the 19 domain experts
for both a feature description and a self-rated confidence level.

Documentation from Industrial Partner

Feat Model
eature Product fragment of
name model; the feature

Baseline

Feature

Ranking of

Description Baseline . Calculation of
— g(p ! technique Evolutionary ‘ Model Confusion R&P Report
A [1-4] algorithm Matrix
Domain Confidence

Expert

CoFLiM_k_c

Ranking of

Calculation of
Model Confusion R&P Report
fragments Matrix

Automatic
Query
Reformulation

Evolutionary
algorithm

RQ; Baseline 1 | Baseline 2 Baseline 3 | Baseline 4

Topic Union Union Domain

modeling K=all k=5 expert

c=self-rated

RQ, k=0 k=5

c=not used c=self-rated
RQ; | Variants of |k=1 k=18

CoFLiM_k_c | c=self-rated c=self-rated

RQ, k=best from RQ, k=best from

c=self-rated RQ2

c=random

Fig. 9 Evaluation process

20 Francisca Pérez et al.

The process entails the execution of four baselines and different variants
of our CoFLiM approach that set both k (number of domain experts who
collaborate) and the type of confidence level (not used, self-rated, or random)
with different values. The lower part of Fig. 9 shows a table with the baselines
and the variants of CoFLiM that we use to answer each of the four research
questions.

When a baseline or a variant of CoFLiM is executed, we obtain as a result
a ranking of model fragments that realize a target feature. Then, we take the
best solution of the ranking (i.e., the model fragment that is at position 1) to
compare it with an oracle as Fig. 9 shows. The oracle is prepared using the
model fragments that realize each target feature provided by our industrial
partner. The oracle will be considered the ground truth and will be used to
calculate a confusion matrix.

The confusion matrix is a table that is often used to describe the perfor-
mance of a classification model on a set of test data (the best solutions) for
which the true values are known (from the oracle). In our case, each solution
obtained is a model fragment that is composed of a subset of the model ele-
ments that are part of the product model. Since the granularity is at the level
of model elements, each model element presence or absence is considered as a
classification. The confusion matrix distinguishes between the predicted values
and the real values classifying them into four categories:

— True Positive (TP): values that are predicted as true (in the solution) and
are true in the real scenario (the oracle).

— False Positive (FP): values that are predicted as true (in the solution) but
are false in the real scenario (the oracle).

— True Negative (TN): values that are predicted as false (in the solution) and
are false in the real scenario (the oracle).

— False Negative (FN): values that are predicted as false (in the solution)
but are true in the real scenario (the oracle).

Finally, some performance measurements are derived from the values in
the confusion matrix. Specifically, we create a report for the confusion ma-
trix including three performance measurements: recall at position 1 (R@1),
precision at position 1 (P@1), and F-measure.

Recall measures the number of elements of the solution that are correctly
retrieved by the proposed solution and is defined as follows:

TP
TP+ FN

Precision measures the number of elements from the solution that are cor-
rect according to the ground truth (the oracle) and is defined as follows:

TP
TP+ FP

The F-measure corresponds to the harmonic mean of precision and recall
and is defined as follows:

Recall =

Precision =

Collaborative Feature Location in Models through Automatic Query Expansion 21

Precision * Recall B 2xTP
Precision + Recall 2TP + FP+ FN

F — measure = 2 *

Recall values can range from 0% (which means that no single model el-
ement obtained from the oracle is present in the solution) to 100% (which
means that all the model elements from the oracle are present in the solu-
tion). Precision values can range from 0% (which means that no single model
fragment from the solution is present in the oracle) to 100% (which means
that all the model fragments from the solution are present in the oracle). A
value of 100% precision and 100% recall implies that both the solution and
the oracle are the same.

6.5.1 Statistical analysis

To properly compare the recall and precision reports obtained from the dif-
ferent baselines and variants of CoFLiM, we use statistical methods following
the guidelines of [Arcuri and Briand, 2014]. This statistical analysis provides
formal and quantitative evidence (statistical significance) that the collabora-
tion in feature location does in fact have an impact on the comparison metrics
(i.e., that the differences in the results were not obtained by mere chance).

To enable statistical analysis, all of the approaches should be run a large
enough number of times (in an independent way) to collect information on the
probability distribution for each approach. A statistical test should then be
run to assess whether there is enough empirical evidence to claim (with a high
level of confidence) that there is a difference between the two techniques (e.g.,
A is better than B). In order to do this, we perform a post hoc analysis, which
performs a pair-wise comparison among the results of each report to deter-
mine whether statistically significant differences exist. The post hoc analysis
provides a probability value, p — value. It is accepted by the research com-
munity [Arcuri and Briand, 2014] that a p — value under 0.05 is statistically
significant.

When comparing techniques with a large enough number of runs, statisti-
cally significant differences can be obtained even if they are so small as to be
of no practical value [Arcuri and Briand, 2014]. Then it is important to assess
if the results of a report are statistically better than another and to assess the
magnitude of the improvement. In this work, we use two non-parametric effect
size measures: Vargha and Delaney’s Ay [Vargha and Delaney, 2000; Grissom
and Kim, 2005] and Cliff’s delta [Cliff, 1993, 1996].

Vargha and Delaney’s Aj, measures the probability that running one ap-
proach yields higher values than running another approach. If the two tech-
niques are equivalent, then Ay5 will be 0.5. For example, Ayy = 0.7 means
that we would obtain better results in 70% of the runs with the first of the
pair of approaches that have been compared, and Ays = 0.3 means that we
would obtain better results in 70% of the runs with the second of the pair of
approaches that have been compared.

22 Francisca Pérez et al.

Cliff’s delta is an ordinal statistic that describes the frequency with which
an observation from one group is higher than an observation from another
group compared to the reverse situation. It can be interpreted as the degree to
which two distributions overlap with values ranging from -1 to 1. For instance,
when comparing distribution x and distribution y: a value of 0 means no
difference between two distributions; a value of -1 means that all samples
in distribution x are lower than all samples in distribution b; a value of 1
means the opposite (all samples in x higher than all samples in y). In addition,
threshold values were defined [Romano et al., 2006] for the interpretation of
Cliff’s delta effect size (|d| < 0.147 — 7negligible”; |d| < 0.33 — ”small”;
|d| < 0.474 — "medium”, |d| > 0.474 — ”large”).

6.5.2 Answering RQ

To answer whether the query formulated through automatic query expansion
produces an improvement in the solution compared to other alternatives, we
execute 30 independent runs (as suggested by [Arcuri and Fraser, 2013]) for
each baseline to locate each of the 43 features, i.e., 43 (target features) x 30
(repetitions) x 4 (baselines) = 5160 independent runs.

Moreover, we execute CoFLiM_5_S (with k=5 and c=Self-rated) to take
as input the 19 domain experts’ feature descriptions to locate each of the 43
target features. We also execute 30 repetitions of CoFLiM for each feature,
i.e., 43 (target features) x 30 (repetitions) = 1290 independent runs. Specifi-
cally, we set k=5 (i.e., one domain expert’s feature description is set as base
query and five domain experts’ feature descriptions are set as relevant docu-
ments for the location of the target features). This decision was made based
on recommendations found in the literature [Carpineto and Romano, 2012].

With the obtained results, we record the mean values and standard devia-
tions for precision, recall, and the F-measure. Also, we record a p — value, an
Aqs value, and a Cliff’s delta value from the comparison of the results between
CoFLiM_5_S and each baseline.

6.5.3 Answering RQo

To answer whether the inclusion of more than one domain experts’ feature
description produces an improvement in the solution, we execute 30 indepen-
dent runs (as suggested by [Arcuri and Fraser, 2013]) of CoFLiM_0_N (with
k=0 and c=Not used) for each of the 43 features and the 19 domain experts
to record the mean recall and precision values, i.e., 43 (features) x 19 domain
experts’ feature descriptions x 30 (repetitions) = 24510 independent runs.

With the obtained results, we record the mean values and standard devia-
tions for precision, recall, and the F-measure. Also, we record a p — value, an
A1y value, and a Cliff’s delta value from the comparison of the results between
CoFLiM_5_S and CoFLiM_0_N.

Collaborative Feature Location in Models through Automatic Query Expansion 23

6.5.4 Answering RQs

To answer what the influence of the number of domain experts input to the
CoFLiM approach is, we execute CoFLiM with a different value of k (from 1
to 18) to set a different number of relevant documents for the location of the
43 features. Hence, 43 (features to locate) x 18 values of k for CoFLiM x 30
(repetitions) = 23220 independent runs.

We record the mean F-measure value of locating the 43 features for each
value of k. The best F-measure value allows us to determine whether k=5
obtains the best result as the literature recommends (i.e., 5 domain experts’
feature descriptions are set as relevant documents to collaborate in the location
of features), or whether a different value of k improves the quality of the
solution.

6.5.5 Answering RQy.

To answer whether the inclusion of the domain experts’ confidence produces
an improvement, we first execute the 30 repetitions of CoFLiM for each of
the 43 features by setting k with the value obtained as answer in the previous
research question, and by selecting the base query and relevant documents
according to their self-rated confidence level as described in Section 4.2.

We also execute the 30 repetitions of CoFLiM for each of the 43 features
by also setting k with the value obtained as answer in the previous research
question but selecting the base query and relevant documents randomly (i.e.,
without using the self-rated confidence level).

With the obtained results, we record the mean values and standard devia-
tions for precision, recall, and the F-measure for the 1290 runs (43 features x
30 repetitions) of CoFLiM using the self-rated confidence and the 1290 runs
of CoFLiM with the random confidence. The set of results were also compared
though statistical analysis recording a p — value, an Ars value, and a Cliff’s
delta value.

7 Results and Discussion

In this section, we present the results obtained to answer each of the four
research questions as well as the discussion of the results.

7.1 Research Question 1

Fig. 10 shows four charts with the recall and precision results of executing each
baseline in the industrial domain. The bottom part of Fig. 11 shows the chart
with the recall and precision results of executing CoFLiM_5_S in the industrial
domain. Each chart shows the recall and precision results of locating each of
the 43 target features. A dot in a chart represents the mean result of precision
and recall of executing the 30 repetitions of a target feature.

24 Francisca Pérez et al.

Baseline 1. Topic Modeling Baseline 2. Union (K=all)
o o
2 S “ept
o _| Qo
© <
g 8 A g 84
[. S
w * K]
3) 3
x A x g
“a.
'
o o
N N
(=R o -
T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Precision (%) Precision (%)
Baseline 3. Union (K=5, c=self-rated) Baseline 4. Domain expert query
o o
S . S
- ' 2
. *)
o | o
© o .
= o | = o - “a
£ © R ©
K] T
o o
x 94 x 94
o _ Q -
N N
o - o -
T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Precision (%) Precision (%)

Fig. 10 Mean Recall and Precision values for each baseline

Table 2 shows the mean values of recall, precision, and the F-measure
of the charts of the baselines and CoFLiIM_5_S. In terms of precision and
the F-measure, CoFLiM_5_S outperforms the four baselines since CoFLiM_5_S
obtained the best result, providing an average value of 91.29% and 89.78%.
89.12%, respectively. In terms of recall, the Baseline 2 obtains the highest value
92.25%, which slightly outperforms the Baseline 3 and CoFLiM_5_S (90.16%
and 89.12%, respectively).

Table 2 Mean values and standard deviations for Precision, Recall, and the F-measure for
the baselines and CoFLiM_5_S in the industrial case study

Recall £ (o) Precision £ (o) F-measure £ (o)
Baseline 1: Topic modeling 40.71 £+ 10.83 14.18 + 10.05 19.45 + 11.57
Baseline 2: Union (K=all) 92.25 £ 6.55 12.25 + 8.26 20.61 £ 12.87
Baseline 3: Union (K=5, c=self-rated) 90.16 + 7.88 75.10 £+ 12.19 81.42 £+ 8.75
Baseline 4: Domain expert query 74.01 £ 11.27 81.84 + 10.49 77.06 £ 8.20

CoFLiM_5_S 89.12 £ 8.87 91.29 £ 7.11 89.78 £ 5.56

Collaborative Feature Location in Models through Automatic Query Expansion 25

Table 3 shows the results of the statistical analysis between CoFLiM_5_S
and each baseline, which comprise the comparison of the mean result of recall,
precision and the F-measure for each of the 43 feature descriptions. Specifi-
cally, the second, third and fourth column of Table 3 shows the p — Values
of Holm’s post hoc analysis for recall, precision and the F-measure. In recall,
two of four p — Values are smaller than the corresponding significance thresh-
old value (0.05). Specifically, the p — Values that comprise the comparison
of CoFLiM_5_S with Baseline 1 and Baseline 4. In precision and F-measure,
all p— Values are smaller than the corresponding significance threshold value
(0.05). Hence, there are significant differences in recall between CoFLiM_5_S
and Baseline 1 and between CoFLiM_5_S and Baseline 4, and there are sig-
nificant differences in precision and F-measure between CoFLiM_5_S and all
baselines.

Table 3 also shows the values of the effect size statistics (12112 and Cliff’s
Delta). In recall, the 12112 value indicates that CoFLiM_5_S outperforms with a
pronounced superiority Baseline 1 and Baseline 4 (100% of the runs CoFLiM _5_S
would obtain better results than the Baseline 1, and 84.69% of the runs
CoFLiM_5_S would obtain better results than Baseline 4). This superiority
of CoFLiM_5_S is also evidenced by the Cliff’s Delta values, which can be in-
terpreted as large according to the magnitude scales [Romano et al., 2006] in
Baseline 1 (with a Cliff’s Delta value of 1) and in Baseline 4 (with a Cliff’s
Delta value of 0.69).

Table 3 Statistical analysis for comparing CoFLiM_5_S with each baseline

Holm’s post hoc Effect size
p — Value Ap Cliff’s Delta.
Recall Precision F-measure Recall Precision F-measure Recall Precision F-measure
CoFLiM_5.S vs Baseline 1~ 1.5z107' 1.5210-* 1.5z10- 1 1 1 1 1 1 1
CoFLiM_5_S vs Baseline 2 0.16 1521071 1521071 0.4064 1 1 -0.19 1 1
CoFLiM_5_S vs Baseline 3 0.34 52210710 2.82z10~° 0.4749 0.8626 0.7810 -0.05 0.73 0.56
CoFLiM_5_S vs Baseline 4~ 1.5210™% 0.00012 2.5210710 0.8469 0.7753 0.8891 0.69 0.55 0.78

In precision and F-measure, the values of the effect size statistics of Ta-
ble 3 show that CoFLiM_5_S outperforms with a pronounced superiority all
baselines. The comparisons that entail the most pronounced superiority entail
Baseline 1 and Baseline 2. This superiority of CoFLiM_5_S in all baselines for
precision and F-measure is also evidenced by the Cliff’s Delta values, which
can be interpreted as large in all baselines.

RQ; answer. From the results, we conclude that the query reformulated
through automatic query expansion produces an improvement in terms of solu-
tion quality compared to the alternatives of the baselines. Moreover, the results
reveal that manual query reformulation does not obtain the best solution.

26 Francisca Pérez et al.

7.2 Research Question 2

The first and the second chart of Fig. 11 shows the recall and precision results
for the industrial domain of the variants of CoFLiM that do not address collab-
oration of domain experts (k=0). A dot in the first chart represents the mean
result of precision and recall of executing the 30 repetitions of CoFLiM_0_N
for each of the 817 feature descriptions (43 feature descriptions for each of the
19 domain experts). The second chart is a view of the first chart that only
shows the dot that has the highest confidence level for each of the 43 fea-
tures (HighestConfidence(CoFLiM_0_N)). We consider it relevant to highlight
these results since, in a solo scenario, those domains experts with the highest
confidence level are supposed to achieve the best results.

Table 4 shows the mean values of recall, precision, and the F-measure
of CoFLiM_0_N with the goal of comparing these results with CoFLiM_5_S.
In terms of recall and precision, CoFLiM_5_S outperforms CoFLiM_0_N since
CoFLiM_5_S obtained the best results in recall and precision, providing an
average value of 89.12% in recall and 91.29% in precision. The second best
results are obtained by HighestConfidence(CoFLiM_0-N) (65.82% in recall and
68.8% in precision), which slightly outperforms CoFLIM_0_N (62.65% in recall
and 66.28% in precision).

Table 4 CoFLiM mean values and standard deviations for Precision, Recall, and the F-
measure in the industrial case study

Recall + (o) Precision + (o) F-measure + (o)
CoFLiM_0_-N 62.651+12.84 66.28+15.94 62.85+10.43
HighestConfidence(CoFLiM_0_N) 65.821+14.99 68.80+13.86 66.06+11.11

Table 5 shows the results of the statistical analysis between CoFLiM_5_S
and HighestConfidence(CoFLiM_0_N), which comprise the comparison of the
mean result of recall, precision and the F-measure for each of the 43 feature
descriptions. Specifically, the second column of Table 5 shows the p — Values
of Holm’s post hoc analysis for recall, precision and the F-measure, which
are smaller than the corresponding significance threshold value (0.05). Hence,
there are significant differences in recall, precision and F-measure between
CoFLiM_5_S and HighestConfidence(CoFLiM_0_N).

Table 5 Statistical analysis for CoFLiM_5_S vs. HighestConfidence(CoFLiM_0_N)

Holm’s post hoc Effect size
p — Value A12 Cliff’s Delta
Recall 2210~ 11 0.9005 0.80
Precision 6.6:10~11 0.9103 0.82

F-measure 1.6210~13 0.9665 0.93

Collaborative Feature Location in Models through Automatic Query Expansion

27

Recall (%)

Recall (%)

Recall (%)

40 60 80 100

20

40 60 80 100

20

40 60 80 100

20

CoFLiM_0_N

ol
. '.-.b- ’5
N l" . .'#‘ik' ‘ '”%.&-
o R i ,,3.%;.. ek
T T T T T T
0 20 40 60 80 100

Precision (%)

HighestConfidence(CoFLiM_0_N): view with the highest confidence of CoFLiM_0_N results

0 20 40 60 80 100
Precision (%)
CoFLiM_5_S
S A
. .
. .
N o o3e
. L34 :.
.
T T T T T T
0 20 40 60 80 100

Precision (%)

Fig. 11 Feature Location without Collaboration (top and center) vs. Feature Location with
Collaboration (bottom)

The third and fourth column of Table 5 show the values of the effect size
statistics. In the third column, the Ay value is 0.9005 for recall, 0.9103 for
precision and 0.9665 for F-measure. This indicates that CoFLiM_5_S outper-
forms HighestConfidence(CoFLiM_0_N) with a pronounced superiority since
CoFLiM_5_S would obtain better results for recall in 90.05% of the runs, for
precision in 91.03% of the runs, and for F-measure in 96.65% of the runs.
This superiority is also evidenced by the Cliff’s Delta, with values of 0.80 for

28 Francisca Pérez et al.

recall, 0.82 for precision and 0.93 for F-measure. According to the magnitude
scales [Romano et al., 2006], these values can be interpreted as large.

RQ, answer. From the results, we can conclude that the inclusion of
more than one domain expert is feature descriptions when locating features in
models produces an improvement in terms of solution quality. Furthermore,
the results also reveal that the domain experts who have the highest self-rated
confidence level do not have the required knowledge to locate all of the elements
of the target feature. This lack of knowledge can be alleviated by collaborating
with other domain experts who do not have the highest self-rated confidence
but who can provide relevant information to locate the feature.

7.3 Research Question 3

Fig. 12 shows a chart in which each dot represents the value of k used to
execute CoFLiM from 1 to 18 and the mean F-measure obtained as result of
locating the 43 features. The chart also shows the standard deviation of each
point using a blue shadow.

As the chart shows, the F-measure value increases until k=3, where it
reaches the best value (90.84). The F-measure values are slightly lower from
k=4 to k=6 (90.38, 89.78, 90.06, respectively). The values decrease down to
70.78 from k=7 to k=9, whereas the F-measure values get worse than the value
obtained for k=1 from k=10 to k=18.

90.84 90.38 89.78 90.06

78.:

.78
693 6903 6783 655 676 6516 655 PP esos geas

Fmeasure
6

5 10 15

Domain experts as relevant documents (k)

Fig. 12 Results of analyzing how the number of domain experts influences the solution

RQ3; answer. From the results, we can conclude that the quality of the
solution is positively influenced by the domain experts up to k=3, where it
reaches the highest F-measure. This result suggests a reduction in the number
of domain experts that are necessary for collaboration in accordance with the
recommendation of the literature (k=>5). This finding is useful in industrial
contexts where domain experts are a scarce asset due to availability restric-
tions.

Collaborative Feature Location in Models through Automatic Query Expansion 29

7.4 Research Question 4

Fig. 13 shows the charts with the recall and precision results of analyzing
whether the inclusion of domain experts’ confidence produces an improvement
in terms of solution quality. A dot in the chart of the upper half of Fig. 13 rep-
resents the mean result of precision and recall of executing the 30 repetitions
of CoFLiM_3_S for each of the 43 features where the base query and the rele-
vant documents are set according to the domain experts’ self-rated confidence
level as described in Section 4.2. We set k=3 because this value reached the
best F-measure value in the results of the previous research question. A dot
in the chart of the lower half of Fig. 13 represents the mean result of precision
and recall of executing the 30 repetitions of CoFLiM_3_R for each of the 43
features by randomly setting the base query and the relevant documents (i.e.,
without taking into account the domain experts’ confidence).

CoFLiM_3_S
8
] o .
- R SR AR Lo
K] ‘e .
g - LooehLe
g 8
T
3
r 9
o |
N
o
T T T T T T
0 20 40 60 80 100
Precision (%)
CoFLiM_3_R
o
S
. . .
.
8 . * .
o4 .
g 81
= . :
3 oo
.
g 9-
o |
(Y]
o
T T T T T T
0 20 40 60 80 100
Precision (%)

Fig. 13 Impact of domain experts’ confidence level

30 Francisca Pérez et al.

Table 6 shows the mean values of recall, precision, and the F-measure
of the graphs. In terms of recall and precision, CoFLIM_3_S yields the best
results, obtaining an average value of 90.07% in recall and 92.06% in precision,
whereas CoFLiIM_3_R obtains an average value of 65.96% in recall and 70.09%
in precision.

Table 6 Mean values and standard deviations for Precision, Recall, and the F-measure
according to the domain experts’ confidence level

Recall £ (o) Precision + (o) F-measure + (o)
CoFLiM k=3 self-rated confidence 90.07+6.76 92.0645.76 90.84+4.62
CoFLiM k=3 random confidence 65.961+11.57 70.09+10.06 67.16+7.69

Table 7 shows the results of the statistical analysis between CoFLiM_3_S
and CoFLiM_3_R. Specifically, the second column of Table 7 shows the p —
Values of Holm’s post hoc analysis for recall, precision and the F-measure,
which are smaller than the corresponding significance threshold value (0.05).
Hence, there are significant differences in recall, precision and F-measure. The
third column of Table 7 shows the values of the effect size statistics. The Ajs
value is 0.9557 for recall, 0.9648 for precision and 0.9978 for F-measure. This
indicates that CoFLiM_3_S outperforms CoFLiM_3_R for recall in 95.57% of
the runs, for precision in 96.48% of the runs, and for F-measure in 99.78% of
the runs. This superiority is also evidenced by the Cliff’s Delta, with values
of 0.91 for recall, 0.93 for precision and 0.99 for F-measure, which can be
interpreted as large according to the magnitude scales [Romano et al., 2006].

Table 7 Statistical analysis for CoFLiM k=3 with self-rated confidence vs. CoFLiM k=3
with random confidence

Holm’s post hoc Effect size
p — Value Aig Cliff’s Delta
Recall 6.7010~13 0.9557 0.91
Precision 1.5210~14 0.9648 0.93
F-measure 1.5210—14 0.9978 0.99

RQ, answer. From the results, we conclude that the domain experts’ self-
rated confidence level produces an improvement in terms of solution quality to
perform collaborative feature location in models. Automatic query expansion
techniques can only work if the base query is reasonably strong enough to
retrieve at least some of the relevant results [Sisman and Kak, 2013]. The
results suggest that we can rely on the self-rated confidence level to determine
the base query and the relevant documents.

Collaborative Feature Location in Models through Automatic Query Expansion 31

7.5 Discussion

In the answers of the four research questions, it is shown that collaboration
through automatic query reformulation pays off in the location of features
in models. Although we explored four alternatives as baselines to obtain the
query that will be used for locating a target feature, they did not outperform
the automatic query reformulation of our approach. We found the following
issues inherent to the baselines:

— Baseline 1 (Topic modeling) did not confirm the good results that the
explored application of topic modeling [Zeng et al., 2012] obtained. In the
previous work, they used long documents (clinical documents) to apply
topic modeling. In contrast, our work identified the topics using the feature
descriptions, which are small (in comparison to clinical documents) and do
not serve to identify topics that improve the quality of the solution.

— Baseline 2 (Union, K=all) obtained the worst results in precision among
the baselines. Although this baseline was a simple technique, the fact of
merging the terms of all feature descriptions made that the model fragment
that was retrieved included many model elements (which improved recall
results) but many of these model elements were not included in the solution
(which worsened precision results).

— Baseline 3 (Union, K=5, c=self-rated) obtained higher results in recall but
it obtained worse results in precision compared to our approach. Similar to
our approach, this baseline limits the number of feature descriptions that
are used for merging terms but it does not limit the number of terms that
are included in the reformulation as our approach does. Hence, more terms
that were not relevant to the target feature were added and therefore, the
precision was worse.

— Baseline 4 (Domain expert query) obtained worse precision and recall re-
sults than our approach. An issue that we found to explain these results
is that the domain expert who manually combined feature descriptions
cannot choose the full set of terms that describe the target feature. This
was because the domain expert did not have the updated knowledge of
the target feature since features are evolved over time by different domain
experts. Hence, the domain expert query included terms that were not in-
cluded in the last version of the feature, or it did not include terms from
other queries since the domain expert thought that these terms did not
belong to the target feature.

Our results also revealed that the domain experts who have the highest
self-rated confidence level do not have the required knowledge to locate all of
the elements of the target feature by themselves. An issue that we found to
explain this result is similar to the issue that we found in Baseline 4. In this
case, domain experts set as a high self confidence level if they have partici-
pated in the development or maintenance of the target feature. However, the
target feature was evolved after by different domain experts, so the terms that
were included in the description were either not complete or different to the

32 Francisca Pérez et al.

terms used in the last version of the feature. In addition, other domain ex-
perts that modified part of a feature after set a lower confidence level because
they thought that their knowledge was not enough to locate the whole feature.
Nevertheless, the knowledge of these experts, who performed the most recent
modifications but do not have high confidence, was important to locate the
target feature.

In order to improve the quality of the solutions, new experiments need to
be performed. It is needed to further study whether domain experts should
provide additional information for each feature description. The results shown
that the self-rated confidence level that domain experts provided contributed
to improve the quality of the solution. However, additional information can
be used to select a different base query, which can influence the quality of the
solutions. For example, domain experts can also provide information about the
time that has elapsed since their last modification. According to the issues that
we have found, it is relevant having knowledge of the most recent modifications
for certain information retrieval purposes. Specifically, our results suggest that
it is important for feature location having knowledge about when a domain
expert has modified a feature. How this information should be collected as well
as new ways of query reformulation or even using a multi-objective version
of the algorithm constitute our future work. This future work comprises the
application of both the lessons learned about the self-rated confidence and
exploring the temporal relationship with the feature.

According to our industrial partner, maintenance contracts are extended
for long periods of time. Specifically, the typical maintenance contracts of our
industrial partner last 25 years and they include software modifications. In this
context, it is relevant the approach for feature location that is presented in this
paper since the domain experts may not be available during the 25 years of
software maintenance. This is because domain experts left the company (due
to retirement or due to the pursue of other job opportunities), or they have
been assigned to another project. Therefore, our industrial partner faces the
challenge of assembling tailored teams for maintenance tasks.

The challenge of assembling tailored teams for maintenance tasks is not
exclusive to our industrial partner. Therefore, tailored teams may need to
be created to perform the software maintenance tasks in other organizations.
To tailor the teams, decisions need to be taken related to how many domain
experts are going to collaborate and whether the self-rated confidence about
the features is important. The answers of the research questions that have
been presented in this paper help to take these decisions. To conclude, our
results in collaborative feature location in models through automatic query
expansion are encouraging, so we think we should further research this field.

Collaborative Feature Location in Models through Automatic Query Expansion 33

8 Threats to validity

In this section, we present some of the threats to the validity of our work. We
follow the guidelines suggested by De Oliveira et. al [de Oliveira Barros and
Neto, 2011] to identify those threats that apply to this work.

Conclusion validity threats: The first identified threat of this type is
not accounting for random variation. To address this threat, we considered
30 independent runs for each feature description and execution. The second
threat is the lack of statistical tests. In this paper, we employed standard
statistical analysis following accepted guidelines [Arcuri and Fraser, 2013] to
avoid this threat. The third threat is the lack of a good descriptive analysis. In
this work, we have used the recall, precision, and F-measure measurements to
analyze the confusion matrix obtained; however, other measurements could be
applied. In addition, some works argue that the use of the Vargha and Delaney
A1 measurement can be misrepresentative [Arcuri and Fraser, 2013] and that
the data should be pre-transformed before applying it. We did not find any
use cases for data pre-transformation that applied to our case study.

Internal validity threats: The first identified threat of this type are
the poor parameter settings. In this paper, we used standard values for the
algorithms. As suggested by Arcuri and Fraser [Arcuri and Fraser, 2013], de-
fault values are good enough to measure the performance of location tech-
niques. These values have been tested in similar algorithms for Feature Loca-
tion [Lopez-Herrejon et al., 2015]. With regard to the parameter of the time
required to produce a solution (stop condition), we used 80 seconds since it
was the time needed by our approach in the real-world industrial context.
Nevertheless, we cannot yet claim how this time scales in other real-world in-
dustrial contexts with a larger size of the search space (models) or a larger
size of the solution to be found (model fragment). In the future, we would like
to reduce these threats by evaluating all of the parameters of our algorithm.
With regard to the number of terms used to expand the base query, we used
10 as recommended in the literature [Carpineto and Romano, 2012]. However,
at this stage, we do not know how using a different value would impact the
results. The second threat is the lack of real problem instances. The evaluation
of this paper was applied in a real-world industrial case study from the railway
domain.

Construct validity threats: The identified threat is the lack of assessing
the validity of cost measures. To address this threat, we performed a fair
comparison among the executions by generating the same number of model
fragments. Also, our evaluation is performed using three measures: precision,
recall, and the F-measure. These measures are widely accepted in the software
engineering research community [Salton and McGill, 1986].

External validity threats: The identified threat of this type is the lack of
a clear object selection strategy. This threat is addressed by using an industrial
case study. Our instances are collected from real-world problems.

With regard to what extent it is possible to generalize the results, we se-
lected 43 different features to locate and 19 domain experts were involved.

34 Francisca Pérez et al.

Even though the number of domain experts (19) might not seem large enough
to generalize results, it is important to note that the involvement of domain
experts in an industrial environment makes an interesting contribution in an
area where most experiments are conducted with students or artificial prob-
lems.

Our approach has been designed to be applied in the domain of our indus-
trial partner as well as in other different domains. The requisites to apply our
approach are that the set of models where features have to be located conform
to MOF (the OMG metalanguage for defining modeling languages) and the
feature description must be provided as a textual description. Furthermore,
the fitness function can also be applied to any MOF-based model. The text el-
ements associated to the models are extracted automatically by the approach
using the reflective methods provided by the Eclipse Modeling Framework.

As occurs in other works [Sisman and Kak, 2013; Hill et al., 2009], results
depend on the quality of the queries. Poor queries assign a high rank to ir-
relevant model fragments. It is also worth noting that the language used for
the textual elements of the models and the feature descriptions in the query
provided must be the same. This language is specific to each domain; how-
ever, as long as both elements are built using the same terminology, the LSA
will work. Eventually, some tweaks can be applied to narrow the gap between
both elements (different tokenizers, stemming, or POS tagging techniques).
For instance, the naming conventions used by companies for model elements,
properties, and functions can follow different formats, but the approach can
be tailored to handle them. In our case study, some model elements follow
the CamelCase convention while others follow the Underscore convention. To
address that, we applied different tokenizers in order to obtain the terms prop-
erly.

Hence, even though our approach can be applied to locate features in MOF-
based models from a real-world industrial context, our approach should be
applied to other domains before assuring its generalization.

9 Related work

Approaches related to the work presented in this paper can be divided into
two areas: collaborative information retrieval and feature location.

9.1 Collaborative information retrieval

A good deal of research that addresses collaborative information retrieval has
focused on reformulating the query of a user [Shah, 2010] based on relevant
documents such as source code and Internet sites. Several approaches have
been proposed to reformulate queries in a semi-automatic or automatic way
by expanding or reducing the terms of the given query.

On the one hand, query expansion is based on the idea that the more query
terms there are, the more documents are retrieved and ranked according to

Collaborative Feature Location in Models through Automatic Query Expansion 35

the similarity to the query. Several approaches propose to automatically ex-
pand the query to add words that are either similar or related in some way to
the query terms. For example, Yang and Tan [Yang and Tan, 2012] reformu-
late the query by extracting synonyms, antonyms, abbreviations, and related
words from the source code. Rivas et al. [Rivas et al., 2014] add relevant terms
from a scientific documental database to a query to improve the documents
initially retrieved. Hill et al. [Hill et al., 2009] also obtain possible query ex-
pansion terms from the code. Lu et al. [Lu et al., 2015] improve code search
by expanding the query with synonyms. Marcus et al. [Marcus et al., 2004]
expand the query using LSI in order to determine the terms from the source
code that are most similar to the query. Gay et al. [Gay et al., 2009] present
a semi-automated approach for concept location in code. Their approach re-
quires the intervention of a developer, which is based on using user relevance
feedback to get the meaning of the query closer to that of relevant documents.
Haiduc et al. [Haiduc et al., 2013] propose an approach that is trained with
a sample of queries and relevant results in order to automatically reformulate
the query to improve the performance.

Other approaches expand the query by adding information from external
sources of information such as public repositories [Dumitru et al., 2011] or
by adding semantically similar words from websites [Tian et al., 2014]. For
example, Dietrich et al. [Dietrich et al., 2013] improved the efficacy of future
queries using feedback captured from a validated set of queries and traceability
links. Lv et al. [Lv et al., 2015] enrich each API with its online documentation
to match the query based on text similarity.

Table 8 compares the above query expansion works with our work. As the
table shows, the base query that is going to be expanded is obtained from
a human, who can play different roles (developer, user, analyst, and domain
expert). The relevant documents used to find the terms to expand the query
are usually source code, online documentation, or text. In contrast, to support
collaboration in our work, we use other domain experts’ feature descriptions as
relevant documents in order to enrich the base query feature description with
the knowledge of other domain experts. Also, the works mentioned above use a
higher k value (i.e., the number of relevant documents used to obtain the terms
to expand the base query), which ranges between the general recommendation
of 5 [Carpineto and Romano, 2012] and the Lines of Code. In contrast, our work
uses a lower k value (3) to obtain the best result, which can be beneficial in
promoting collaboration in industrial contexts where the availability of domain
experts is scarce.

Also, none of the above works have been validated in an industrial domain.
As Ambreen et al. [Ambreen et al., 2016] state, there is a need to conduct em-
pirical studies in industry since the context is not the same as in academia.
Thus, our work aims to cover the dearth of studies of query expansion tech-
niques in industry for supporting collaborative feature location. Finally, the
query expansion works mentioned above retrieve information from code or text
artifacts, whereas our work locates features by using models.

36 Francisca Pérez et al.

Table 8 Comparison with query expansion works

Author Base query Relevant k Value Industrial Artifact
documents domain
[Yang and Tan, 2012] Developer Source code LoC No Code
[Rivas et al., 2014] User Biomedical 10 No Text
articles
[Hill et al., 2009] Developer Source code LoC No Code
[Lu et al., 2015] Developer Internet site 20 No Code
[Marcus et al., 2004] User Source code 5 No Code
[Gay et al., 2009] Developer Source code 1,3,and 5 No Code
[Haiduc et al., 2013] User Source code 5 No Code
[Dumitru et al., 2011] User Internet sites 25 No Product
specifica-
tions
[Tian et al., 2014] User Internet site 10,000 No Text and
code
[Dietrich et al., 2013] Analyst Requirement - No Code and
traces documents
[Lv et al., 2015] User Online docu- 10 No Code
mentation
Our work Domain expert Domain ex- 3 Yes Models
perts

In our previous works [Pérez et al., 2017, 2018], we also performed query
reformulation to locate features in models. In Pérez et al. [Pérez et al., 2017],
we involved a fixed number of domain experts and two cores (IR and Linguistic
rules) to locate the relevant model fragments, instead of using an evolutionary
algorithm and a variable number of domains experts as this work does. Our
previous results shown how the different cores affect the quality of the solution,
which are worse than the results that this work presents using the evolution-
ary algorithm. Furthermore, in contrast to this work, in [Pérez et al., 2017]
was not explored how the quality of the results was affected by: (1) different
alternatives to reformulate the feature descriptions, (2) the number of domain
experts, and (3) the inclusion of the domain experts’ confidence.

In [Pérez et al., 2018], we also reformulated the base query with documents
that are other train models instead of using feature descriptions produced
by domain experts as this work does. In Model-Driven Development, models
are the main software artifact, and these models were used as documents to
reformulate the base query. The results after the reformulation were worse than
without the reformulation. This was because the proposed terms to expand
the base query were always terms from the metamodel. These metamodel
terms encoded very generic domain knowledge and either they were already
present in the base query, or they were not relevant at all for the target feature.
In this paper, we also reformulate the base query but the documents for the

Collaborative Feature Location in Models through Automatic Query Expansion 37

reformulation are feature descriptions produced by domain experts, and on this
occasion the results are better than without the domain experts’ collaboration.

On the other hand, query reduction is based on the idea that long queries
contain both important information as well as words that do not contribute
to the search goal. For example, Bendersky and Croft [Bendersky and Croft,
2008] propose an approach to reduce long queries by learning and identifying
the key concepts. Kumaran and Allan [Kumaran and Allan, 2008] propose an
interactive approach with users to completely drop unnecessary terms from
long queries. Kumaran and Carvalho [Kumaran and Carvalho, 2009] reduce
queries by analyzing the most promising subsets of terms from the original
query.

In contrast to the above approaches for query reduction, our work aims
to expand queries for supporting collaboration among domain experts. Our
results show that collaboration improves precision. However, our results do not
reach 100% in precision. Hence, query reduction techniques can be introduced
as future work to improve the precision by reducing the words that do not
contribute to the location of the feature.

9.2 Feature location

There are many feature location approaches that have been proposed to find
features in code by taking textual information as input [Dit et al., 2013]. Cav-
alcanti et al. [Cavalcanti et al., 2014] used IR techniques to assign change
requests in software maintenance or evolution tasks based on context informa-
tion. Kimmig et al. [Kimmig et al., 2011] proposed an approach for translating
NL queries to concrete parameters of the Eclipse JDT code query engine. Wang
et al. [Wang et al., 2014] proposed a code search approach, which incorporates
user feedback to refine the query. Zou et al.[Zou et al., 2015] investigated the
“answer style” of software questions with different interrogatives and proposed
a re-ranking approach to refine search results.

Even though these approaches improve the effectiveness of feature location,
they require an additional effort to enrich the code, to keep the documenta-
tion synchronized with the changes in the code throughout maintenance and
evolution activities, and to incorporate users’ feedback. In contrast, our work
does not require additional efforts to enrich the models (in our work, we lo-
cate features in models instead of code). Our work leverages the collaboration
among domain experts to improve the quality of the solution.

Some works [Wille et al., 2013; Holthusen et al., 2014; Zhang et al., 2011,
2012; Martinez et al., 2015a; Font et al., 2015b; Martinez et al., 2015b] focus
on the location of features in models by comparing the models with each other
to formalize the variability among them in the form of features of a Software
Product Line (SPL) [Clements and Northrop, 2001]:

— Wille et al. [Wille et al., 2013] present an approach where the similarity
between models is measured following an exchangeable metric, taking into
account different attributes of the models. Then, the approach is further

38 Francisca Pérez et al.

refined [Holthusen et al., 2014] to reduce the number of comparisons needed
to mine the family model.

— The authors in [Zhang et al., 2011] propose a generic approach to automat-
ically compare products and locate the feature realizations in terms of a
CVL model. In [Zhang et al., 2012], the approach is refined to automatically
formalize the feature realizations of new product models that are added to
the system. A similar approach is proposed in [Font et al., 2015b], where
the feature location results are validated against an industrial environment.

— Martinez et al. [Martinez et al., 2015a] propose an extensible approach that
is based on comparisons to extract the feature formalization in a family of
models. In addition, they provide means to extend the approach to locate
features in any kind of asset based on comparisons.

— The MoVaPL approach [Martinez et al., 2015b] considers the identification
of variability and commonality in model variants as well as the extraction of
a Model-based Software Product Line (MSPL) from the features identified
on these variants. MoVaPL builds on a generic representation of models,
making it suitable for any MOF-based models.

Nevertheless, all of these approaches are based on mechanical comparisons
among the models, classifying the elements based on their similarity and iden-
tifying the dissimilar elements as the features realizations. In contrast, our
work does not rely on model comparisons to locate the features. Specifically,
in our work, humans are involved in the search. Domain experts become part
of the process by contributing their knowledge of the domain in order to tailor
the approach to the feature description. Model fragments obtained mechani-
cally are less recognizable by software engineers than those obtained with the
participation of domain experts [Font et al., 2015a].

Search-based Software Engineering (SBSE) [Harman, 2010] uses search-
based optimization techniques (mainly those from the evolutionary computa-
tion literature) to automate the search for optimal or near-optimal solutions to
software engineering problems. Our work also uses evolutionary computation
to automate the search of solutions to the feature location problem. Harman
et al. [Harman et al., 2014] performed a survey on the topic of SBSE applied
to SPLs. They present an overview of recent articles that are classified accord-
ing to themes such as configuration, testing, or architectural improvement.
Lopez-Herrejon et al. [Lopez-Herrejon et al., 2014] performed a preliminary
systematic mapping study at the connection of SBSE and SPL. These two
surveys indicate that SBSE is being applied to SPLs. However, these surveys
do not identify works that are focused on finding model fragments that mate-
rialize features as our work does.

Font et al. [Font et al., 2016a] use an evolutive algorithm to locate features
among a family of models in the form of a variation point. Their approach is
refined in [Font et al., 2016b], where the authors use the evolutive algorithm
to find sets of suitable feature realizations. The authors first cluster model
fragments based on their common attributes into feature realization candidates
through Formal Concept Analysis. Then, Latent Semantic Indexing ranks the

Collaborative Feature Location in Models through Automatic Query Expansion 39

candidates based on the similarity with the feature description. In contrast our
approach, locates model fragments instead of variation points. Font et al. [Font
et al., 2017] rely on an Evolutionary Algorithm to automate feature location in
model fragments by comparing the text of each model fragment with the search
query. Our approach also differs from [Font et al., 2016a], [Font et al., 2016b]
and [Font et al., 2017] regarding collaboration. In our approach, automatic
query reformulation enables domain experts’ collaboration to locate the model
fragment that materializes a target feature. Moreover, we also analyze the
impact that the number of domain experts fed to the feature location and the
inclusion of domain experts’ confidence have on the results, which is something
that [Font et al., 2016a], [Font et al., 2016b] and [Font et al., 2017] do not
tackle.

10 Concluding remarks

Because people are searching together on a regular basis, there is a need to
support collaborative feature location during maintenance or evolution of soft-
ware. Supporting collaborative feature location is especially necessary both in
industrial contexts where complex projects require the collaboration of differ-
ent individuals and in software artifacts such as the models that have been
neglected to date.

To address this drawback, we propose CoFLiM, which is an approach to
achieve collaborative feature location in models. CoFLiM automatically refor-
mulates the domain expert’s feature description that has the highest confidence
level to expand it with terms of other relevant domain experts’ feature descrip-
tions. The resulting query is used to guide the evolutionary algorithm of our
CoFLiM approach to find the model fragment that realizes the feature being
located.

We have evaluated our approach in a real-world case study of our industrial
partner, who is a worldwide leader in train manufacturing. We also compare
the impact of the automatic query reformulation that CoFLiM performs with
four alternatives as baselines to study the impact on the results. Moreover,
we had 19 domain experts participate in order to analyze how the number
of domain experts collaborating influences the quality of the solution. We
also analyzed whether or not the inclusion of the domain experts’ confidence
improves the solution. The results show that CoFLiM improved the results
of locating features without collaboration by 27.42% in recall and 25.78% in
precision, and also that taking into account the domain experts’ confidence
obtained an average improvement of 24.11% in recall and 21.97% in precision.
Also, the statistical analysis show that the results of CoFLiM had a significant
impact.

Furthermore, the results reveal four findings that are relevant for collabo-
rative feature location approaches in models:

— Collaborating improves the results obtained by domain experts indepen-
dently of each other.

40 Francisca Pérez et al.

— Even the domain experts that have the highest confidence can benefit from
collaborating with other domain experts that have lower confidence.

— Results are not improved when more than three domain experts collabo-

rate.

The self-rated confidence value is reliable for collaborative feature location.

We hope that these results encourage other researchers to introduce col-
laboration into their feature location approaches, especially in long-living in-
dustrial domains where the location of features is an endeavor that can benefit
from the collaboration of domain experts.

Acknowledgements

This work has been partially supported by the Ministry of Economy and
Competitiveness (MINECO) through the Spanish National R+D+i Plan and
ERDF funds under the project Model-Driven Variability Extraction for Soft-
ware Product Line Adoption (TIN2015-64397-R).

References

Efficient java matrix library. http://ejml.org/, 2016.

Apache opennlp: Toolkit for the processing of natural language text. https:
//opennlp.apache.org/, 2016.

English (porter2) stemming algorithm. http://snowball.tartarus.org/
algorithms/english/stemmer.htm, 2017.

Talat Ambreen, Naveed Ikram, Muhammad Usman, and Mahmood Ni-
azi. Empirical research in requirements engineering: trends and op-
portunities. Requirements FEngineering, pages 1-33, 2016. ISSN 1432-
010X. doi: 10.1007/s00766-016-0258-2. URL http://dx.doi.org/10.
1007/s00766-016-0258-2.

Andrea Arcuri and Lionel Briand. A hitchhiker’s guide to statistical tests for
assessing randomized algorithms in software engineering. Softw. Test. Verif.
Reliab., 24(3):219-250, May 2014. ISSN 0960-0833. doi: 10.1002/stvr.1486.
URL http://dx.doi.org/10.1002/stvr.1486.

Andrea Arcuri and Gordon Fraser. Parameter Tuning or Default Values? An
Empirical Investigation in Search-Based Software Engineering. Empirical
Software Engineering, 18(3), 2013.

Yigal Arens, Craig A. Knoblock, and Wei-Min Shen. Query reformulation for
dynamic information integration. Journal of Intelligent Information Sys-
tems, 6(2):99-130, Jun 1996. ISSN 1573-7675. doi: 10.1007/BF00122124.
URL https://doi.org/10.1007/BF00122124.

Hazeline U Asuncion, Arthur U Asuncion, and Richard N Taylor. Software
traceability with topic modeling. In Proceedings of the 32nd ACM/IEEE
international conference on Software Engineering-Volume 1, pages 95-104.
ACM, 2010.

http://ejml.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
http://snowball.tartarus.org/algorithms/english/stemmer.htm
http://snowball.tartarus.org/algorithms/english/stemmer.htm
http://dx.doi.org/10.1007/s00766-016-0258-2
http://dx.doi.org/10.1007/s00766-016-0258-2
http://dx.doi.org/10.1002/stvr.1486
https://doi.org/10.1007/BF00122124

Collaborative Feature Location in Models through Automatic Query Expansion 41

Michael Bendersky and W. Bruce Croft. Discovering key concepts in verbose
queries. In Proceedings of the 31st Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, SIGIR ’08,
pages 491-498, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-164-
4. doi: 10.1145/1390334.1390419. URL http://doi.acm.org/10.1145/
1390334 .1390419.

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation.
Journal of machine Learning research, 3(Jan):993-1022, 2003.

Jordan Boyd-Graber, Yuening Hu, and David Mimno. Applications of topic
models. Foundations and Trends®in Information Retrieval, 11(2-3):143—
296, 2017. ISSN 1554-0669. doi: 10.1561/1500000030. URL http://dx.
doi.org/10.1561/1500000030.

Claudio Carpineto and Giovanni Romano. A survey of automatic query
expansion in information retrieval. ACM Comput. Surv., 44(1):1:1-1:50,
January 2012. ISSN 0360-0300. doi: 10.1145/2071389.2071390. URL
http://doi.acm.org/10.1145/2071389.2071390.

Yguarata Cerqueira Cavalcanti, Ivan do Carmo Machado, Paulo A. da Mota S.
Neto, Eduardo Santana de Almeida, and Silvio Romero de Lemos Meira.
Combining rule-based and information retrieval techniques to assign soft-
ware change requests. In Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering, ASE 14, pages 325-330,
New York, NY, USA, 2014. ACM. ISBN 978-1-4503-3013-8. doi: 10.1145/
2642937.2642964. URL http://doi.acm.org/10.1145/2642937.2642964.

Paul C. Clements and Linda Northrop. Software Product Lines: Practices and
Patterns. SEI Series in Software Engineering. Addison-Wesley, 2001.

Norman Cliff. Dominance statistics: Ordinal analyses to answer ordinal ques-
tions. Psychological Bulletin, 114(3):494, 1993.

Norman Cliff. Ordinal methods for behavioral data analysis. 1996.

Marcio de Oliveira Barros and Arilo Claudio Dias Neto. Threats to validity
in search-based software engineering empirical studies. Technical Report
0006,/2011, 2011.

Timothy Dietrich, Jane Cleland-Huang, and Yonghee Shin. Learning effective
query transformations for enhanced requirements trace retrieval. In 2013
IEEE/ACM 28th International Conference on Automated Software Engi-
neering (ASE), pages 586-591, Nov 2013. doi: 10.1109/ASE.2013.6693117.

Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. Fea-
ture location in source code: a taxonomy and survey. Journal of Software:
Evolution and Process, 25(1):53-95, 2013. URL http://dblp.uni-trier.
de/db/journals/smr/smr25.htm1#DitRGP13.

Horatiu Dumitru, Marek Gibiec, Negar Hariri, Jane Cleland-Huang, Bamshad
Mobasher, Carlos Castro-Herrera, and Mehdi Mirakhorli. On-demand fea-
ture recommendations derived from mining public product descriptions. In
Proceedings of the 33rd International Conference on Software Engineering,
ICSE ’11, pages 181-190, 2011. ISBN 978-1-4503-0445-0. doi: 10.1145/
1985793.1985819. URL http://doi.acm.org/10.1145/1985793.1985819.

http://doi.acm.org/10.1145/1390334.1390419
http://doi.acm.org/10.1145/1390334.1390419
http://dx.doi.org/10.1561/1500000030
http://dx.doi.org/10.1561/1500000030
http://doi.acm.org/10.1145/2071389.2071390
http://doi.acm.org/10.1145/2642937.2642964
http://dblp.uni-trier.de/db/journals/smr/smr25.html#DitRGP13
http://dblp.uni-trier.de/db/journals/smr/smr25.html#DitRGP13
http://doi.acm.org/10.1145/1985793.1985819

42 Francisca Pérez et al.

Daniel Dyer. The watchmaker framework for evolutionary computation (evo-
lutionary/genetic algorithms for java). http://watchmaker.uncommons.
org/, 2016.

Jaime Font, Lorena Arcega, Oystein Haugen, and Carlos Cetina. Building
software product lines from conceptualized model patterns. In Proceedings
of the 19th International Conference on Software Product Line (SPLC),
pages 46-55, 2015a. doi: 10.1145/2791060.2791085.

Jaime Font, Manuel Ballarin, @ystein Haugen, and Carlos Cetina. Au-
tomating the variability formalization of a model family by means of com-
mon variability language. In Proceedings of the 19th International Con-
ference on Software Product Line (SPLC), pages 411-418, 2015b. doi:
10.1145/2791060.2793678.

Jaime Font, Lorena Arcega, Qystein Haugen, and Carlos Cetina. Feature
Location in Model-Based Software Product Lines Through a Genetic Al-
gorithm. In Proceedings of the 15th International Conference on Software
Reuse: Bridging with Social-Awareness, 2016a.

Jaime Font, Lorena Arcega, @ystein Haugen, and Carlos Cetina. Feature
Location in Models Through a Genetic Algorithm Driven by Information
Retrieval Techniques. In Proceedings of the ACM/IEEE 19th International
Conference on Model Driven Engineering Languages and Systems, 2016b.

Jaime Font, Lorena Arcega, Qystein Haugen, and Carlos Cetina. Achieving
feature location in families of models through the use of search-based soft-
ware engineering. IEEE Transactions on FEvolutionary Computation, PP
(99):1-1, 2017. ISSN 1089-778X. doi: 10.1109/TEVC.2017.2751100.

Gregory Gay, Sonia Haiduc, Andrian Marcus, and Tim Menzies. On the use
of relevance feedback in ir-based concept location. In ICSM, pages 351—
360. IEEE Computer Society, 2009. ISBN 978-1-4244-4897-5. URL http:
//dblp.uni-trier.de/db/conf/icsm/icsm2009.html#GayHMMO9.

Robert J. Grissom and John J. Kim. Effect sizes for research: A broad practical
approach. Mahwah, NJ: Earlbaum, 2005.

Sonia Haiduc, Gabriele Bavota, Andrian Marcus, Rocco Oliveto, Andrea
De Lucia, and Tim Menzies. Automatic query reformulations for text re-
trieval in software engineering. In Proceedings of the 2013 International
Conference on Software Engineering, ICSE ’13, pages 842-851, Piscataway,
NJ, USA, 2013. IEEE Press. ISBN 978-1-4673-3076-3.

Mark Harman. Why the virtual nature of software makes it ideal for search
based optimization. In Proceedings of the 13th International Conference on
Fundamental Approaches to Software Engineering, FASE’10, pages 1-12,
Berlin, Heidelberg, 2010. Springer-Verlag. ISBN 3-642-12028-8, 978-3-642-
12028-2.

Mark Harman, Yue Jia, Jens Krinke, William B. Langdon, Justyna Petke, and
Yuanyuan Zhang. Search based software engineering for software product
line engineering: A survey and directions for future work. In Proceedings of
the 18th International Software Product Line Conference - Volume 1, SPLC
14, pages 5-18, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2740-
4. doi: 10.1145/2648511.2648513. URL http://doi.acm.org/10.1145/

http://watchmaker.uncommons.org/
http://watchmaker.uncommons.org/
http://dblp.uni-trier.de/db/conf/icsm/icsm2009.html#GayHMM09
http://dblp.uni-trier.de/db/conf/icsm/icsm2009.html#GayHMM09
http://doi.acm.org/10.1145/2648511.2648513

Collaborative Feature Location in Models through Automatic Query Expansion 43

2648511.2648513.

(Oystein Haugen, Birger Mgller-Pedersen, Jon Oldevik, Ggran K. Olsen, and
Andreas Svendsen. Adding standardized variability to domain specific lan-
guages. In Software Product Line Conference, 2008. SPLC "08. 12th Inter-
national, pages 139-148, Sept 2008. doi: 10.1109/SPLC.2008.25.

Emily Hill, Lori Pollock, and K. Vijay-Shanker. Automatically capturing
source code context of nl-queries for software maintenance and reuse. In
Proceedings of the 31st International Conference on Software Engineering,
ICSE 09, pages 232242, Washington, DC, USA, 2009. IEEE Computer
Society. ISBN 978-1-4244-3453-4. doi: 10.1109/ICSE.2009.5070524. URL
http://dx.doi.org/10.1109/ICSE.2009.5070524.

Thomas Hofmann. Probabilistic Latent Semantic Indexing. In Proceedings of
the 22nd Annual International ACM/SIGIR Conference on Research and
Development in Information Retrieval, 1999.

Sonke Holthusen, David Wille, Christoph Legat, Simon Beddig, Ina Schaefer,
and Birgit Vogel-Heuser. Family model mining for function block diagrams
in automation software. In Proceedings of the 18th International Software
Product Line Conference: Volume 2, pages 36-43, 2014. ISBN 978-1-4503-
2739-8. doi: 10.1145/2647908.2655965.

Anette Hulth. Improved automatic keyword extraction given more linguistic
knowledge. In Proceedings of the 2003 conference on Empirical methods in
natural language processing, pages 216-223, 2003.

Markus Kimmig, Martin Monperrus, and Mira Mezini. Querying source code
with natural language. In Proceedings of the 2011 26th IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE 11, pages
376-379, 2011. ISBN 978-1-4577-1638-6. doi: 10.1109/ASE.2011.6100076.
URL http://dx.doi.org/10.1109/ASE.2011.6100076.

Anton Kotelyanskii and Gregory M. Kapfhammer. Parameter tuning for
search-based test-data generation revisited: Support for previous results.
In 2014 14th International Conference on Quality Software, pages 79-84,
Oct 2014. doi: 10.1109/QSIC.2014.43.

Giridhar Kumaran and James Allan. Effective and efficient user interac-
tion for long queries. In SIGIR ’08: Proceedings of the 31st annual in-
ternational ACM SIGIR conference on Research and development in in-
formation retrieval, pages 11-18, New York, NY, USA, 2008. ACM. ISBN
978-1-60558-164-4. doi: http://doi.acm.org/10.1145/1390334.1390339. URL
http://portal.acm.org/citation.cfm?id=1390339.

Giridhar Kumaran and Vitor R. Carvalho. Reducing long queries using query
quality predictors. In Proceedings of the 32Nd International ACM SI-
GIR Conference on Research and Development in Information Retrieval,
SIGIR ’09, pages 564-571, New York, NY, USA, 2009. ACM. ISBN 978-
1-60558-483-6. doi: 10.1145/1571941.1572038. URL http://doi.acm.org/
10.1145/1571941.1572038.

Thomas K Landauer, Peter W Foltz, and Darrell Laham. An Introduction to
Latent Semantic Analysis. Discourse processes, 25, 1998.

http://doi.acm.org/10.1145/2648511.2648513
http://doi.acm.org/10.1145/2648511.2648513
http://dx.doi.org/10.1109/ICSE.2009.5070524
http://dx.doi.org/10.1109/ASE.2011.6100076
http://portal.acm.org/citation.cfm?id=1390339
http://doi.acm.org/10.1145/1571941.1572038
http://doi.acm.org/10.1145/1571941.1572038

44 Francisca Pérez et al.

Rauil Lapena, Francisca Pérez, and Carlos Cetina. On the influence of models-
to-natural-language transformation in traceability link recovery among re-
quirements and conceptual models. In ER FORUM 2017, 2017.

Roberto E. Lopez-Herrejon, Javier Ferrer, Francisco Chicano, Lukas Lins-
bauer, Alexander Egyed, and Enrique Alba. A hitchhiker’s guide to search-
based software engineering for software product lines. CoRR, abs/1406.2823,
2014. URL http://arxiv.org/abs/1406.2823.

Roberto E. Lopez-Herrejon, Lukas Linsbauer, José A. Galindo, José A. Parejo,
David Benavides, Sergio Segura, and Alexander Egyed. An assessment of
search-based techniques for reverse engineering feature models. J. Syst.
Softw., 103(C):353-369, May 2015. ISSN 0164-1212.

Meili Lu, X. Sun, S. Wang, D. Lo, and Yucong Duan. Query expansion via
wordnet for effective code search. In 2015 IEEFE 22nd International Confer-
ence on Software Analysis, Fvolution, and Reengineering (SANER), pages
545-549, March 2015. doi: 10.1109/SANER.2015.7081874.

Fei Lv, Hongyu Zhang, Jian-Guang Lou, Shaowei Wang, Dongmei Zhang,
and Jianjun Zhao. Codehow: Effective code search based on API under-
standing and extended boolean model. In Automated Software Engineering
(ASE2015), 2015.

Andrian Marcus, Andrey Sergeyev, Vaclav Rajlich, and Jonathan I. Maletic.
An information retrieval approach to concept location in source code. In Pro-
ceedings of the 11th Working Conference on Reverse Engineering, WCRE
'04, pages 214-223, Washington, DC, USA, 2004. ISBN 0-7695-2243-2. URL
http://dl.acm.org/citation.cfm?id=1038267.1039053.

Jabier Martinez, Tewfik Ziadi, Tegawendé F. Bissyandé, Jacques Klein, and
Yves Le Traon. Bottom-up adoption of software product lines: a generic and
extensible approach. In Proceedings of the 19th International Conference on
Software Product Line (SPLC), pages 101-110, 2015a. doi: 10.1145/2791060.
2791086.

Jabier Martinez, Tewfik Ziadi, Tegawendé F. Bissyandé, Jacques Klein, and
Yves Le Traon. Automating the extraction of model-based software product
lines from model variants (t). In Automated Software Engineering (ASE),
2015 30th IEEE/ACM International Conference on, pages 396-406, Nov
2015b. doi: 10.1109/ASE.2015.44.

Meredith R. Morris. Interfaces for Collaborative Exploratory Web Search:
Motivations and Directions for Multi-User Designs. In CHI 2007 Workshop
on Ezxploratory Search and HCI, 2007.

Francisca Pérez, Ana Cristina Marcén, Rail Lapena, and Carlos Cetina. In-
troducing collaboration for locating features in models: Approach and in-
dustrial evaluation. In Proceedings of the 25th International Conference
on Cooperative Information Systems, CooplS, pages 114-131, 2017. doi:
10.1007/978-3-319-69462-7_9.

Francisca Pérez, Jaime Font, Lorena Arcega, and Carlos Cetina. Automatic
query reformulations for feature location in a model-based family of software
products. Data & Knowledge Engineering, 2018. ISSN 0169-023X. doi:
https://doi.org/10.1016/j.datak.2018.06.001.

http://arxiv.org/abs/1406.2823
http://dl.acm.org/citation.cfm?id=1038267.1039053

Collaborative Feature Location in Models through Automatic Query Expansion 45

Andreia R. Rivas, E.L. Iglesias, and L. Borrajo. Study of query expansion
techniques and their application in the biomedical information retrieval.
The Scientific World Journal, 2014.

Jeanine Romano, Jeffrey D Kromrey, Jesse Coraggio, and Jeff Skowronek.
Appropriate statistics for ordinal level data: Should we really be using t-test
and cohensd for evaluating group differences on the nsse and other surveys.
In annual meeting of the Florida Association of Institutional Research, pages
1-33, 2006.

Julia Rubin and Marsha Chechik. A survey of feature location techniques. In
Domain Engineering, pages 29-58. Springer, 2013.

Gerard Salton. The SMART Retrieval System—FEzperiments in Automatic
Document Processing. Prentice-Hall, Inc., 1971.

Gerard Salton and Michael J. McGill. Introduction to Modern Information
Retrieval. McGraw-Hill, Inc., 1986. ISBN 0070544840.

Abdel Salam Sayyad, Joseph Ingram, Tim Menzies, and Hany Ammar. Scal-
able product line configuration: A straw to break the camel’s back. In Au-
tomated Software Engineering (ASE), 2013 IEEE/ACM 28th International
Conference on, pages 465-474, Nov 2013. doi: 10.1109/ASE.2013.6693104.

Chirag Shah. Collaborative information seeking: A literature review. Ezploring
The Digital Frontier Advances In Librarianship, 32, 2010. ISSN 0065-2830.

Bunyamin Sisman and Avinash C. Kak. Assisting code search with automatic
query reformulation for bug localization. In Proceedings of the 10th Work-
ing Conference on Mining Software Repositories, MSR 18, San Francisco,
CA, USA, May 18-19, 2013, pages 309-318, 2013. doi: 10.1109/MSR.2013.
6624044.

Yuan Tian, David Lo, and Julia Lawall. Automated construction of a software-
specific word similarity database. In IEEE Conference on Software Mainte-
nance, Reengineering and Reverse Engineering (CSMR-WCRE), pages 44—
53, 2014. doi: 10.1109/CSMR-WCRE.2014.6747213.

Andras Vargha and Harold D. Delaney. A critique and improvement of the
cl common language effect size statistics of mcgraw and wong. Journal of
Educational and Behavioral Statistics, 25(2):101-132, 2000. doi: 10.3102/
10769986025002101.

Shaowei Wang, David Lo, and Lingxiao Jiang. Active code search: Incorpo-
rating user feedback to improve code search relevance. In Proceedings of
the 29th ACM/IEEE International Conference on Automated Software En-
gineering, ASE ’14, pages 677—682, 2014. ISBN 978-1-4503-3013-8. doi:
10.1145/2642937.2642947. URL http://doi.acm.org/10.1145/2642937.
2642947.

David Wille, Sénke Holthusen, Sandro Schulze, and Ina Schaefer. Interface
variability in family model mining. In Proceedings of the 17th Interna-
tional Software Product Line Conference: Co-located Workshops, pages 44—
51, 2013. ISBN 978-1-4503-2325-3. doi: 10.1145/2499777.2500708.

Jingiu Yang and Lin Tan. Inferring semantically related words from software
context. In Mining Software Repositories (MSR), pages 161-170, 2012. doi:
10.1109/MSR.2012.6224276.

http://doi.acm.org/10.1145/2642937.2642947
http://doi.acm.org/10.1145/2642937.2642947

46 Francisca Pérez et al.

Qing T Zeng, Doug Redd, Thomas Rindflesch, and Jonathan Nebeker. Syn-
onym, topic model and predicate-based query expansion for retrieving clin-
ical documents. In AMIA Annual Symposium Proceedings, volume 2012,
page 1050. American Medical Informatics Association, 2012.

Xiaorui Zhang, (Jystein Haugen, and Birger Moller-Pedersen. Model compari-
son to synthesize a model-driven software product line. In Proceedings of the
2011 15th International Software Product Line Conference (SPLC), pages
90-99, 2011. ISBN 978-0-7695-4487-8. doi: 10.1109/SPLC.2011.24.

Xiaorui Zhang,). Haugen, and B. Mgller-Pedersen. Augmenting product
lines. In Software Engineering Conference (APSEC), 2012 19th Asia-
Pacific, volume 1, pages 766-771, Dec 2012. doi: 10.1109/APSEC.2012.76.

Yanzhen Zou, Ting Ye, Yangyang Lu, John Mylopoulos, and Lu Zhang. Learn-
ing to rank for question-oriented software text retrieval. In Proceedings of
the 30th IEEE/ACM International Conference on Automated Software En-
gineering (ASE 2015), pages 1-11, 2015. ISBN 978-1-5090-0025-8. URL
http://dblp.uni-trier.de/db/conf/kbse/ase2015. html#ZouYLMO15.

http://dblp.uni-trier.de/db/conf/kbse/ase2015.html#ZouYLM015

	Introduction
	Background and motivation
	Overview of the CoFLiM approach
	Automatic Query Reformulation
	Evolutionary algorithm guided by the reformulated query
	Evaluation
	Results and Discussion
	Threats to validity
	Related work
	Concluding remarks

