
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

How theQuality of Maintenance Tasks is Affected by Criteria for Selecting
Engineers for Collaboration

FRANCISCA PÉREZ, RAÚL LAPEÑA, ANA C. MARCÉN, and CARLOS CETINA∗,

SVIT Research Group, Universidad San Jorge, Spain

In industry, software projects might span over decades and many engineers join or leave the company over time. For these reasons,
no single engineer has all of the knowledge when maintenance tasks such as Traceability Link Recovery (TLR), Bug Localization
(BL), and Feature Location (FL) are performed. Thus, collaboration has the potential to boost the quality of maintenance tasks since
the solution of an engineer might be enhanced with contributions of solutions from other engineers. However, assembling a team
of software engineers to collaborate may not be as intuitive as we might think. In the context of a worldwide industrial supplier
of railway solutions, this work evaluates how the quality of TLR, BL, and FL is affected by the criteria for selecting engineers for
collaboration. The criteria for collaboration are based on engineers’ profile information to select the set of search queries that are
involved in the maintenance task. Collaboration is achieved by applying automatic query reformulation, and the location relies on an
evolutionary algorithm. Our work uncovers how software engineers who might be seen as not being relevant in the collaboration can
lead to significantly better results. A focus group confirmed the relevance of the findings.

CCS Concepts: • Software and its engineering → Maintaining software; Search-based software engineering; • General and
reference→ Empirical studies.

Additional KeyWords and Phrases: Collaborative Software Engineering, Search-Based Software Engineering,Model-Driven Engineering

ACM Reference Format:
Francisca Pérez, Raúl Lapeña, Ana C. Marcén, and Carlos Cetina. 2022. How the Quality of Maintenance Tasks is Affected by
Criteria for Selecting Engineers for Collaboration. ACM Trans. Softw. Eng. Methodol. 0, 0, Article 0 (March 2022), 22 pages. https:
//doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Software maintenance is a challenging activity in industrial environments where a vast number of software artifacts
are accumulated over the years and these artifacts have been created and maintained by different software engineers.
Since no single software engineer has a full understanding of the entirety of the software artifacts, several software
engineers can collaborate to complement the knowledge that each one has of the artifacts [19].

Previous works [8, 35, 41, 51, 52] address collaboration using external knowledge to reformulate an individual’s
queries for code location. Specifically, this external knowledge is obtained from the Stack Overflow Q&A site. However,
external knowledge may not be available to obtain relevant information in specific industrial contexts (e.g., due to
intellectual property rights concerns). Therefore, in these contexts, collaboration should be performed among the
∗Also with University College London.

Authors’ address: Francisca Pérez, mfperez@usj.es; Raúl Lapeña, rlapena@usj.es; Ana C. Marcén, acmarcen@usj.es; Carlos Cetina, ccetina@usj.es,
SVIT Research Group, Universidad San Jorge, Villanueva de Gállego (Zaragoza), Spain.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

HTTPS://ORCID.ORG/0000-0001-6371-915X
HTTPS://ORCID.ORG/0000-0003-2660-3080
HTTPS://ORCID.ORG/0000-0002-5054-4618
HTTPS://ORCID.ORG/0000-0001-8542-5515
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/0000-0001-6371-915X
https://orcid.org/0000-0003-2660-3080
https://orcid.org/0000-0002-5054-4618
https://orcid.org/0000-0001-8542-5515

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Francisca Pérez et al.

software engineers who work on maintaining the software products. However, software engineers are confronted
with the following question once they decide to collaborate: Does some criterion work better for selecting the team of
software engineers who collaborate in common maintenance tasks such as feature location?

In this paper, we evaluate how the criteria for the selection of software engineers influence the quality of maintenance
solutions that are obtained as a result of collaboration. In our work, we address the following maintenance tasks:
Traceability Link Recovery (TLR), Bug Localization (BL), and Feature Location (FL). We address these maintenance
tasks because they are among the most common and relevant tasks in the Software Engineering field, especially when
maintaining software products [13, 36, 42, 55].

We have built on industrial experience through the participation of software engineers to address the maintenance
tasks. The software engineers are from three different distributed teams of an industrial partner. Our industrial partner,
Construcciones y Auxiliar de Ferrocarriles (CAF)1, is a worldwide supplier of railway solutions that has developed
a family of PLC software to control the trains they have manufactured for more than 25 years. To develop this
software, the industrial partner uses software models for code generation following the ideas of Model Driven Software
Development [58]. We acknowledge that software models have not replaced source code as a means of software
development, but they have nonetheless been reported as a successful paradigm for developing industrial software [7].

In our evaluation, each engineer (19) produces a search query and a profile for the following: each requirement
for TLR (50), each bug description for BL (42), and each feature name for FL (43). For a total of 2565 search queries
and profiles. The profile is in terms of model ownership, self-rated confidence level, and number of days since the
last modification in the model. The collaboration takes into account the profiles for the selection of the participants’
queries. Once the queries are selected, collaboration is achieved by applying automatic query reformulation [23, 37],
and the search for the relevant model fragment relies on an Evolutionary Algorithm that is guided by similitude to
the resulting query [44, 46]. This Evolutionary Algorithm establishes the model fragment that implements a specific
requirement (TLR), identifies the model fragment that causes a particular error (BL), or identifies the model fragment
that is associated with a specific functionality or characteristic (FL).

To assess the quality of the result, we compare the resulting model fragment with an oracle, which is the ground
truth. From the comparison, we obtain a report with the following performance measures that are widely accepted in
the software engineering research community [57]: recall, precision, and F-measure. Moreover, we provide evidences of
the significance of the results by means of statistical analysis.

After analyzing the results, we have learned that the combination of software engineers who provide the best quality
of the solutions may not be intuitive. Our industrial experience offers a new interpretation of the role that underdogs
(i.e., software engineers who might be seen as not being relevant in the collaboration because of low confidence levels)
can play in the collaboration:

• In TLR, engineers who do not belong to the owner team of the requirement should be involved. When dealing
with non-familiar requirements, an engineer produces a more detailed search query, which mitigates the issue
of tacit knowledge that the engineers who belong to the owner team have.

• In FL, instead of only requesting the confidence level, both the confidence level and an estimated coverage of
the feature should be requested. Even though engineers report low confidence levels when they do not have
knowledge of the whole feature, they have deep knowledge of a small part of the feature. Coverage estimations
help to prevent this feature knowledge from being overlooked.

1www.caf.net/en

Manuscript submitted to ACM

www.caf.net/en

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

How the Quality of Maintenance Tasks is Affected by Criteria for Selecting Engineers for Collaboration 3

In addition, our results confirm the Defect Principle [70]. In BL, engineers who performed the latest modifications
should be prioritized.

A focus group acknowledged that the lessons learned to improve the selection of engineers for collaboration are
counterintuitive, but they do lead to better results. No previous work has reported the positive influence of underdogs
on collaboration. Thus, more software engineers and researchers (as happened with the engineers of the industrial
partner of this work) might be missing the potential of underdogs that this work uncovers.

The remainder of the paper is structured as follows: Section 2 introduces the industrial partner domain and explains
the motivation for our work. Section 3 presents an overview of our work. Section 4 presents the real-world criteria
for performing the selection of participants. Section 5 describes collaborative fragment retrieval on models. Section 6
describes the evaluation, and Section 7 presents the results. Section 8 presents the discussion and lessons learned.
Section 9 describes the threats to validity. Section 10 presents related work. Finally, Section 11 concludes the paper.

2 BACKGROUND ANDMOTIVATION

This section introduces the Domain-Specific Language (DSL) that our industrial partner uses to specify and generate
the implementation code of their products. We also present the motivation for the need of our work. Fig. 1 depicts a
basic example of a model using an equipment-focused, simplified subset of the DSL of our industrial partner. It shows
two separate pantographs (High Voltage Equipment) that collect energy from the overhead wires and send it to their
respective circuit breakers (Contactors), which, in turn, send it to their independent Voltage Converters. The converters
then power their assigned Consumer Equipment: the HVAC shown in the upper-right part of the figure (the train’s air
conditioning system), and the PA (public address system) and CCTV (television system) on the right.

Pr
od

uc
t M

od
el Pantograph 1

Pantograph 2

Circuit
Breaker 3

PA

Converter 2

Converter 1

Model fragment

Circuit
Breaker 2

Circuit
Breaker 1 HVAC

CCTV

DS
L

Sy
nt

ax

High Voltage Equipment Contactors Voltage Converters Consumer Equipment

Fig. 1. Example of a product model and a model fragment

Fig. 1 also depicts (in gray) a set of model elements that belong to the product model. These model elements show an
example of a model fragment, which is the realization of the feature: HVAC Assistance. This model fragment allows
the passing of current from one converter to the HVAC that is assigned to its peer for coverage in case of overload or
failure of the first converter.

At this point, it is important to highlight that a model fragment is not extracted from its parent model as a new isolated
model. The model fragment is used to identify elements of the model that are relevant for a requirement/bug/feature.
This could be understood as highlighting/tagging model elements of the model (that is, no new artifact is created).
Guided by the feature to be located, different combinations of model elements can be highlighted/tagged.

Manuscript submitted to ACM

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Francisca Pérez et al.

In addition, it is important to highlight the differences between a feature and a requirement. They are written in a
different style, in a different phase of development, and with a different goal in mind. Requirements are written before
development, are client-influenced and are for contracts. In contrast, features are written when products already exist,
are internal, and are for reuse.

Although the product model and the model fragment that realizes the feature of the example of Fig. 1 makes feature
location in models appear easy, it can become very complex and time-consuming in models of industrial size. The DSL
of our industrial partner addresses specification and code generation in a domain (software for railway control) where
UML and SysML are also used for these particular tasks. For example, the data set provided by our industrial partner for
feature location comprises 23 trains, and the model of each train has more than 1200 model elements. Therefore, 27600
model elements should be evaluated. In addition, it is reasonable to consider the properties of each model element since
they hold domain knowledge. In the data set, each element has about 15 properties. Therefore, about 414000 properties
of model elements should be considered, which is not viable even when assuming that an engineer only needs one
second to evaluate a property.

Previous works [17, 18, 46] suggest the use of Search-based Software Engineering [24] to alleviate the above effort to
locate model fragments. In these works, an evolutionary algorithm searches the space of model fragments to locate the
relevant model fragments. The similarity between the text of each model fragment and a textual description (that is
produced by a software engineer) guides the evolutionary algorithm. However, in industrial settings where products
have been developed for 25 years (as is the case for the industrial partner), no single software engineer has knowledge
of the entirety of the software models. Collaboration approaches extend the query produced by a software engineer
with the queries of other software engineers. This collaboration by query expansions leads to an improvement in the
quality of the results [44]. Nevertheless, the question of who should participate in the collaboration is still open, and
this work contributes to addressing it.

3 OVERVIEW OF OURWORK

The aim of Fragment Retrieval on Models [46] is to obtain the most relevant model fragment (i.e., set of model elements)
for a specific TLR, BL, or FL query. To leverage collaboration, the query is obtained by automatically reformulating
different software engineers’ search queries [44]. In other words, the idea of collaboration in this paper is that of
leveraging locally crowd-sourced information through mutual collaboration between engineers performing the software
tasks.

This work evaluates the influence of the selection criteria on the quality of the retrieved model fragment. The results
will serve to recommend the profile that software engineers should have in order to be involved in the collaboration of
TLR, BL, and FL tasks. Fig. 2 presents an overview of our work. The left part of the figure shows the inputs from the
industrial partner: 1) requirements for TLR, bug descriptions for BL, and feature names for FL; 2) the software models
that are going to be used as search space; and 3) information input by software engineers.

For each requirement for TLR, bug description for BL, and feature name for FL provided by the industrial partner, each
engineer provides a search query as input information. For each search query, the engineer also provides information
about his/her profile in terms of a self-rated confidence level (Likert scale). We request a self-rated confidence level
to identify relevant search queries. In addition, for each search query, as profile information the engineer provides
the number of days from his/her last modification in the model fragment of the given requirement, feature name, or
bug description. We request this information to identify relevant search queries since the Defect Principle (or Defect

Manuscript submitted to ACM

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

How the Quality of Maintenance Tasks is Affected by Criteria for Selecting Engineers for Collaboration 5

Collaborative Fragment Retrieval on Models

Requirement

Model fragment

Bug Description

Feature Name

Participants’
search
queries

Selection of
participants

for
collaboration
(Criterion 1,
Criterion 2,
Criterion 3, or
Gold criterion) Na

tu
ra

l L
an

gu
ag

e
Pr

oc
es

sin
g

Queries with
homogenized

text

Models with
homogenized

text

1 Automatic Query
Reformulation

2

Fragment Retrieval
on Models

3

Software Engineers

- Search Query
- Profile:
• Team-owner
• Confidence
• Modification

Software models

Reformulated query

From Industrial Partner

Fig. 2. Overview of our work

Localization Principle) states that the most recent modifications to a project are the most relevant for certain Information
Retrieval purposes [25, 62, 70].

Since the industrial partner has different teams of software engineers that perform maintenance tasks on models
across different cities, each engineer also indicates whether his/her team owns the given requirement, feature, or bug.
According to the industrial partner, the engineers consider that their team is the owner if the team has participated in
the specification of the given requirement or feature in the software models.

Once the input information is provided, the engineers who participate in the collaboration are automatically selected
(see the middle part of Fig. 2). After the selection of participants for collaboration, their search queries are used as input
to perform collaborative fragment retrieval on models as Fig. 2, right shows. The result is the most relevant model
fragment for the given type of query (natural language requirements for TLR, bug descriptions for BL, and feature
descriptions for FL). The next two sections describe the selection of participants for collaboration and collaborative
fragment retrieval on models.

4 SELECTION OF PARTICIPANTS FOR COLLABORATION

To perform the selection of participants for collaboration, we relied on real criteria that have been used in industry
when maintenance tasks need to be performed. We selected these real criteria based on the experience of our industrial
partner. Specifically, we conducted interviews with software team leaders as well as brainstorming meetings with
software engineers of our industrial partner to obtain the criteria. Below, we present each selected criterion from the
most used to the least used by the industrial partner:

Criterion 1: Available owners. It selects software engineers who are available and belong to the team that is the
owner of the requirement or feature, which is affected by the given requirement (for TLR), bug description (for BL) or
feature name (for FL). Availability depends on many factors (e.g., work load, holidays, schedules, etc.), and it changes
over time. Therefore, we selected random owners to emulate the real scenario of the industrial partner.

Criterion 2: The most confident engineers. It selects software engineers who have the highest scores in self-rated
confidence for the given requirement, bug description, or feature name. The software engineer provides the self-rated
confidence level from 7 (highest self-rated confidence) to 1 (lowest self-rated confidence).

Criterion 3: The latest modifications. It selects software engineers who have performed the most recent modifi-
cations in the model fragment of the given requirement, bug description, or feature name. The time difference is based
on the number of days and can therefore be very large when the model fragment was modified a long time ago. To
normalize the time difference, mathematical solutions such as square root or logarithm can be used. We used square
roots because it has achieved good results in other works that use time differences [70].

Manuscript submitted to ACM

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Francisca Pérez et al.

Although the next criterion (the Gold criterion) has never been used by the industrial partner, the intuition of the
industrial partner suggests that it would be the criterion that obtains the best results.

Gold criterion: The most confident owners who performed the latest modification. This criterion selects
software engineers who have the highest scores in self-rated confidence, perform the latest modifications in the model
fragment, and belong to the team that is the owner of the given requirement, bug description, or feature name.

The number of engineers to be selected is a configuration parameter (N) ranging from 2 to the maximum number of
engineers who are considered for collaboration.

Other research works [6, 22, 29–32, 38–40, 50, 53, 54] have also reported that these criteria are being used in industry:
available owners [22, 53, 54], confidence [6, 29, 30, 32, 40], and the latest modifications [38, 39]. In other words, the
industrial partner is not the only one that uses these criteria, but they are also relevant for other software developers.
However, previous works have not yet compared these criteria as we have done.

5 COLLABORATIVE FRAGMENT RETRIEVAL ON MODELS

This section describes how the collaborative fragment retrieval on models is done once the participants’ search queries
have been selected. To do this, Natural Language Processing techniques, automatic query reformulation, and fragment
retrieval on models are used.

5.1 Natural Language Processing

The participants’ search queries and all available text in the model elements are homogenized through Natural Language
Processing (NLP) techniques, a frequent and beneficial practice [28], through state-of-the-art NLP techniques. Firstly,
the text is tokenized (i.e., divided into words) using mainly a white space tokenizer. For some of the sources (i.e., those
that use CamelCase naming), more complex tokenizers need to be applied. Secondly, a Parts-of-Speech (POS) tagging
technique is used to analyze the words grammatically, inferring the role of each word in the text. Thanks to POS
tagging, words are tagged in categories, and those that do not provide semantic information (such as prepositions) can
be removed. Then, stemming techniques unify the language by reducing the words to their roots (for instance, plurals
are turned into singulars, such as circuits to circuit), thus enabling the grouping of different words that refer to similar
concepts. Finally, the Domain Term Extraction and Stopwords Removal techniques are applied to automatically filter
terms in or out of the queries. Towards this last step, software engineers provide two separate lists of terms: one list of
both single-word and multiple-word terms that belong to the domain and that must be kept for analysis, and a list of
irrelevant words that have no analysis value whatsoever.

As an example, the following feature description of the industrial partner The breaker changes to another converter in
case of failure in the HVAC converter” is homogenized into the following terms: breaker, convert, failur, hvac, convert,
chang.

5.2 AutomaticQuery Reformulation

Once the participants’ search queries are homogenized, we apply automatic query reformulation to automatically
combine the participants’ search queries in a single query. Several query expansion techniques have been proposed
to expand a query by adding terms [9], but not all of these techniques can be applied in our work because of the
following: they do not support a model-based corpus; they rely on word relationships that exist in Natural Language
(NL) because in software words do not share the same relationships [64]; they rely on external sources such as the
web; or they are based on algorithms with high computational complexity to produce query reformulations for daily
Manuscript submitted to ACM

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

How the Quality of Maintenance Tasks is Affected by Criteria for Selecting Engineers for Collaboration 7

maintenance tasks. The technique that we selected is based on Rocchio’s method, the most commonly used method
for query reformulation [23, 37, 44]. Rocchio’s method orders the terms in the top K relevant documents based on
the sum of the importance of each term of the K documents relative to the corpus by using the following equation:
𝑅𝑜𝑐𝑐ℎ𝑖𝑜 =

∑
𝑑∈𝑅 𝑇 𝑓 𝐼𝑑 𝑓 (𝑡, 𝑑), where 𝑅 is the set of top 𝐾 relevant documents in the list of retrieved results, 𝑑 is a

document in 𝑅, and 𝑡 is a term in 𝑑 . The first component of the measure is the Term Frequency (𝑇 𝑓), which is the number
of times the term appears in a document and which is an indicator of the importance of the term in the document
compared to the rest of the terms in that document. The second component is the Inverse Document Frequency (𝐼𝑑 𝑓),
which is the inverse of the number of documents in the corpus containing that term and which indicates the specificity
of that term for a document containing it.

In our work, Rocchio’s method serves to expand one of the participants’ search queries (i.e., base query) with the
top E terms of the other participants’ search queries. From the N participants’ search queries that are selected for
collaboration (as described in Section 4), the search query that has the highest score according to the selected criterion
is set as the base query. The other participants’ search queries (N-1) are set as relevant documents, whose terms are
ordered, and the top E terms are used for query expansion.

For example, three participants are selected for collaboration in feature location, and the feature description that has
the highest score (i.e., base query) is made up of the homogenized terms of the previous example: “breaker, convert, failur,
hvac, convert, chang”. The other two feature descriptions are set as relevant documents and they have the following
homogenized terms: “current, convert, hvac, coverag, overload, failur, convert, assign” from the feature description
“Passing of current from one converter to the HVAC assigned to its peer for coverage in case of overload or failure of the first

converter”; and the homogenized terms "failur, overload, convert, energi, air condit, unit, circuit, breaker, energi, convert,
provid, provid" from the feature description “In case of failure or overload in the converter that provides energy to the air

conditioning unit, the circuit breaker provides energy from its converter”. By ordering the terms of the relevant documents
(from highest to lowest relevance) the result is “energi, provid, current, coverag, overload, assign, overload, air, condit,
unit, circuit, convert, failur, hvac, breaker”. Afterwards, the base query is reformulated by adding the top five terms of
the relevant documents: “breaker, convert, failur, hvac, convert, chang, energi, provid, current, coverag, overload”.

5.3 Fragment Retrieval on Models

Once the reformulated query is obtained and the text of the models is homogenized, we rely on an Evolutionary
Algorithm [44, 46] that iterates over model fragments, modifying them using genetic operations. We have chosen to use
an evolutionary algorithm because they have obtained good results by addressing similar problems with large search
spaces [18]. The output of the algorithm is a model fragment ranking for the input query (requirement in TLR, bug in
BL, and feature in FL).

Step 1) Initialization of model fragments. This step randomly generates an initial model fragment population
from the product models, which serves as input for the evolutionary algorithm.

Step 2) Genetic Operations. This step generates a set of model fragments that could realize the reformulated
query provided. The generation of new model fragments is done by applying two genetic operators that are adapted to
work on model fragments: crossover and mutation [44, 46].

• The crossover operation combines the genetic material from two parent model fragments to create a new
individual. The operation looks for the model fragment from Parent 1 in the complete model from Parent 2. If the
comparison does not find the model fragment in Parent 2, the crossover returns Parent 1 (the model fragment)

Manuscript submitted to ACM

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Francisca Pérez et al.

unchanged. However, if the model fragment is found in the complete model from Parent 2, the process creates a
new individual with the model fragment from Parent 1, albeit referencing the complete model from Parent 2.
While both model fragments (the one from Parent 1 and the one from the new individual) will be the same,
since each of them is referencing a different product model, they will mutate differently and provide different
individuals in further generations. This operation enables the expansion of the search space to a different model.

• Themutation operator imitates the random mutations that occur in nature when new individuals are born
by adding or removing elements from the model fragment. If the operator is applied to add an element, one
element directly related to the elements of the model fragment is added to the model fragment. If the operator
is applied to remove an element, a single element of the fragment is removed from the fragment. The resulting
model fragment is a new candidate in the population for the realization of the input reformulated query.

Step 3) The Fitness Function. This step of the approach assesses the relevance of each of the candidate model
fragments by ranking them according to a fitness function. The objective of the fitness function is the similitude between
the model fragment and the reformulated query. To do this, we apply methods based on Information Retrieval (IR)
techniques. Specifically, the relationships between the model fragments in the population and the reformulated query
are analyzed through Latent Semantic Indexing (LSI) [27, 34].

LSI constructs vector representations of a query and a corpus of text documents, encoding them as a term-by-
document co-occurrence matrix where each row corresponds to terms and each column corresponds to documents

followed by the reformulated query in the last column. Each cell of the matrix contains the number of occurrences of
a term inside a document or inside the reformulated query. In our work, the terms are all of the individual terms that
are extracted from the homogenized NL of model fragments and the reformulated query, the documents are the NL
representations of model fragments, and the query is the reformulated query.

Afterwards, the matrix is normalized and decomposed into three matrices using a matrix factorization technique
called Singular Value Decomposition (SVD) [34], with one of the matrices containing a set of vectors that represent the
latent semantics of the NL texts. This way, one vector is obtained for each document and for the reformulated query.

Finally, the similarities between each document and the reformulated query are calculated as the cosine between their
vectors, obtaining values between -1 and 1. The fitness function is as follows: 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 (𝑑1) = cos (𝜃) = 𝐴·𝐵

| |𝐴 | | · | |𝐵 | | . In the
fitness function, 𝑑1 is a document, 𝐴 is the vector representing the latent semantic of 𝑑1, 𝐵 is the vector representing
the latent semantics of the reformulated query, and the angle formed by the vectors 𝐴 and 𝐵 is 𝜃 .

After the similitude scores are obtained, if the stop condition is not yet met, the evolutionary algorithm will keep
iterating. Once the stop condition is met, a ranking of model fragments is obtained as result. The software engineers
can choose one of the model fragments of the ranking, or they can consider the solutions as a starting point that they
can use for creating manually refined solutions. They may also refine the query to automatically obtain altogether
different solutions.

Note that the focus of this work is on how real-world criteria for selecting software engineers for collaboration affect
the quality of maintenance tasks. We do not make claims related to search-based approaches vs. other approaches. We
think the problem is relevant when the reformulated query is used as input by search-based or other approaches.

6 EVALUATION

6.1 Research questions

To address the evaluation, we formulated the following research questions:
Manuscript submitted to ACM

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

How the Quality of Maintenance Tasks is Affected by Criteria for Selecting Engineers for Collaboration 9

RQ1:What is the quality of the retrievedmodel fragment using the different criteria for selecting engineers for collaboration

and the baseline in maintenance tasks (TLR, BL, and FL)?

RQ2: Is the difference in the quality of the retrieved model fragment between the different criteria and the baseline

significant?

RQ3: How much is the quality of the retrieved model fragment influenced using each criterion?

6.2 Planning and execution

Fig. 3 shows an overview of the methodology that was planned to answer the research questions, which is described as
follows. To start with, the data set provided by our industrial partner was taken as input. Our industrial partner, CAF,
is an international provider of railway solutions all over the world. Their railway solutions can be seen in different
types of trains (regular trains, subway, light rail, monorail, etc.). The data set is made up of 23 trains where product
models are specified using a DSL for Train Control and Management, which conforms to MOF (the OMG metalanguage
for defining modeling languages that is widely used in the modelling community). The industrial supplier uses the
product models to generate the firmware that controls their trains. Product models have over 27600 model elements
and about 414000 properties. Each product model on average is composed of more than 1200 elements. Specifically, the
industrial partner provided the following documentation of their railway solutions: 50 requirements for TLR, 42 bug
descriptions for BL, and 43 feature names for FL; the 23 models where the model fragments should be located; and the
model fragment that corresponds to each requirement, bug, and feature, which will be considered to be the ground
truth (oracle). The oracle was randomly extracted from documented examples from the company. They were solutions
accepted by the company that have been present in their software for years. The oracle has 135 model fragments where
each model fragment has from 5 to 42 model elements.

Requirement

Team 1
Team 1

Software Engineers

- Search Query
- Confidence
- Modification

Team 1

Bug Description

Feature Name

From Industrial Partner Selection of participants
for collaboration

Oracle

Criterion 1:
Available

team-owners

Criterion 2:
Most

confident
engineers

Criterion 3:
Latest

modifications

Gold: Most
confident
and latest

modification
team-owners

Baseline: no
collaboration

Statistical
Analysis

Statistical
Significance

Participants’
search
queries

Collaborative
Fragment

Retrieval on
Models

Model
Fragment

Confusion
Matrix

Performance
Measures

Fragment
Retrieval on

Models

Model
Fragment

Confusion
Matrix Performance

Measures

Models

Effect Size

Research
Question 1

Research
Question 2

Research
Question 3

Focus
Group

Fig. 3. Methodology to answer each research question

Nineteen software engineers were randomly selected from 42 software engineers who belong to three geographically
distributed teams (in different cities of Spain: Zaragoza, Beasain, and Bizkaia) of the industrial partner. The selected
engineers have been working from 1 to 15 years (mean of 6.65 years) for an average of 3.68 hours per day developing
software. Each software engineer provided input information (search query, owner team, self-rated confidence and
latest modification) for each requirement, feature name and bug description, as described in Section 3. The engineers’
input information was used to select the participants for collaboration by following a criterion, as presented in Section 4.
The result of applying each criterion is a set of the search queries of the engineers who participated in the collaboration.

Manuscript submitted to ACM

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Francisca Pérez et al.

Afterwards, the participants’ search queries were used to perform collaborative fragment retrieval on models, as
described in Section 5. As a result, a model fragment was obtained for each criterion and for each requirement, feature
name, and bug description.

For perspective, we compared our work with a baseline to study the impact on the results of selecting participants
for collaboration. The baseline does not select participants for collaboration. The baseline takes an engineer’s search
query as input, and it locates the model fragment that realizes the search query using NLP and fragment retrieval on
models, as described in Subsection 5.1 and Subsection 5.3, respectively. For each requirement, bug, and feature, the
retrieval is performed using the engineer’s search query with the highest confidence level. We chose those engineers
with the highest confidence level since the industrial partner states that these engineers are supposed to achieve the
best results in a solo scenario.

6.2.1 Answering RQ1. To assess what the quality of the retrieved model fragment is using the different criteria and
the baseline in TLR, BL, and FL, we executed 30 independent runs for each requirement, bug, feature, criterion (four),
and the baseline as suggested by [5] (i.e., 50 (requirements) x 5 (four criteria and the baseline) x 30 repetitions + 42 (bug
descriptions) x 5 (four criteria and the baseline) x 30 repetitions + 43 (feature names) x 5 (four criteria and the baseline)
x 30 repetitions = 20250 independent runs).

To assess the quality of each retrieved model fragment, a comparison was performed between the best retrieved
model fragment of the ranking (i.e., the model fragment at position 1) and the oracle in order to calculate a confusion
matrix, a table that describes the performance of a classification model on a set of test data (the best solutions) when
the real values are known (from the oracle). In our case, each solution obtained is a model fragment that contains a
subset of the model elements that are part of the original complete product model. Therefore, the granularity for the
performance of the classification model is at the level of the model elements. Hence, the presence or absence of model
elements is considered as a classification for the confusion matrix, which makes distinctions between the predicted
values and the real values by classifying them into four categories: (1) True Positive (TP) values, predicted as true by the
solution and also true in the oracle real scenario; (2) False Positive (FP) values, predicted as true by the solution but false
in the oracle real scenario; (3) True Negative (TN) values, predicted as false by the solution and also false in the oracle
real scenario; and (4) False Negative (FN) values, predicted as false by the solution but true in the oracle real scenario.

From the comparison, we obtain a report that includes the following performance measures, widely accepted in the
software engineering research community [57]: recall = 𝑇𝑃

𝑇𝑃+𝐹𝑁 (measuring the percentage of elements of the oracle
that are correctly retrieved), precision = 𝑇𝑃

𝑇𝑃+𝐹𝑃 (measuring the percentage of elements from the solution that are
correct according to the oracle), and F-measure = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 (harmonic mean of precision and recall). Recall
and precision values can range from 0% to 100%, with values of 100% precision and 100% recall implying that solution
and oracle are identical.

6.2.2 Answering RQ2. Results should be properly compared in order to establish whether the difference in the quality
of the solution between the different criteria and the baseline is significant in TLR, BL, and FL. To that extent, the data
resulting from the empirical analysis was analyzed through statistical methods, following the guidelines presented
by Arcuri et. al. in [4]. The aim of such an analysis is to provide formal and quantitative evidence (that is, statistical
significance) that the criteria and the baseline do in fact have an impact on the comparison metrics (or in other words,
that the differences were not obtained by mere chance).

The statistical tests provide 𝑝-𝑣𝑎𝑙𝑢𝑒 , which obtains values between 0 and 1 representing probability. The lower the
𝑝-𝑣𝑎𝑙𝑢𝑒 of a test, the more likely that we can falsify the null hypothesis 𝐻0 (which states that there is no difference
Manuscript submitted to ACM

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

How the Quality of Maintenance Tasks is Affected by Criteria for Selecting Engineers for Collaboration 11

among the criteria and the baseline). The research community considers that a 𝑝-𝑣𝑎𝑙𝑢𝑒 under 0.05 is statistically
significant towards falsifying the null hypothesis [4].

The test that must be followed depends on the characteristics of the data under study. Our data does not follow a
normal distribution, and hence, our analysis requires the use of non-parametric techniques. There are several tests for
analyzing this kind of data. Among them, the Quade test has proven more powerful when working with real data [20]
and has provided better results than the others when the number of algorithms is as low as 4 or 5 algorithms [12],

To determine whether a criterion has a significant impact in the quality of the solution, its outcome should be
statistically compared against the outcomes from all of the other criteria. In order to do this, we performed an additional
post-hoc analysis (pair-wise comparison among criteria, which also includes the baseline).

6.2.3 Answering RQ3. To determine the influence of each criterion on the quality of the solution, it is important to
assess if a criterion is statistically better than another one, and if so, the magnitude of the improvement. This is achieved
through effect size measures. We chose the non-parametric Vargha and Delaney’s 𝐴12 [21, 65] measure, which measures
the probability that running one criterion yields higher values than running another criterion. If the two criteria are
equivalent, then the 𝐴12 value will be 0.5. For instance, an 𝐴12 value of 0.7 between Criterion 1 and Criterion 2 would
indicate that Criterion 1 obtains better results in 70% of the runs, and an 𝐴12 value of 0.3 would indicate that Criterion 2
obtains better results in 70% of the runs. We recorded an 𝐴12 value for every pair of criteria as well as for every criteria
and the baseline in TLR, BL, and FL.

6.3 Implementation details

We implemented the selection of the engineers’ queries that are involved in the collaboration using Java. The number of
the engineers to be selected for collaboration was set to four (one engineer provided the base query and three engineers
provided relevant queries to reformulate) and we considered the first 10 term suggestions to expand the base query. We
principally chose these values by following the recommendation of the domain literature [9, 44, 46].

We used the Eclipse Modeling Framework to manipulate the models and to manage the model fragments. To
implement the techniques that support Natural Language Processing, we used OpenNLP [1] for the POS-Tagger and
the English (Porter2) stemming algorithm [3] for the stemming algorithm (originally created using snowball and then
compiled to Java). The LSI was implemented using the Efficient Java Matrix Library (EJML [2]).

The genetic operations are built upon the Watchmaker Framework for Evolutionary Computation [14]. The con-
figuration parameters for the algorithm are as follows: the number of generations (i.e., repetitions of the genetic
operations and fitness loop) is 2500 since it is the value needed by our case study to converge, the size of the population
is 100, the number of parents is 2, the number of offspring from 𝜇 parents is 2, the crossover probability is 0.9, and
the mutation probability is 0.1. For those settings, we chose values that are commonly used in the Model Fragment
Retrieval literature [44, 46].

We are limited by the confidentiality agreements that we have with the industrial partner. The implementation and
the data are not available. Implementation of Collaborative Fragment Retrieval is currently being used by the industrial
partner. The trains of the data set are currently operating and under maintenance contracts, or will be released in the
near future. Nevertheless, for purposes of replicability, the csv files used as input in the statistical analysis are available
at: https://svit.usj.es/criteria-for-collaboration/.

Manuscript submitted to ACM

https://svit.usj.es/criteria-for-collaboration/

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Francisca Pérez et al.

7 RESULTS

7.1 ResearchQuestion 1

Table 1 shows the mean values and standard deviations of recall, precision, and F-measure for the 50 requirements
(TLR), the 42 bugs (BL), and the 43 features (FL) of the industrial case study for the four criteria and the baseline.

Table 1. Mean Values and Standard Deviations for Recall, Precision, and F-Measure in the industrial case study

Recall ± (𝜎)

TLR BL FL

Criterion 1 70.58 ± 15.78 46.10 ± 13.60 69.22 ± 12.08
Criterion 2 89.08 ± 6.26 40.93 ± 16.27 90.07 ± 6.76
Criterion 3 53.16 ± 15.28 72.31 ± 13.92 67.58 ± 14.59
Gold criterion 68.50 ± 14.33 64.47 ± 15.53 91.31 ± 6.52
Baseline 48.15 ± 15.08 35.95 ± 14.49 65.83 ± 14.99

Precision ± (𝜎)

TLR BL FL

Criterion 1 71.08 ± 16.74 35.72 ± 17.45 77.52 ± 14.16
Criterion 2 90.59 ± 7.24 33.99 ± 17.41 92.06 ± 5.76
Criterion 3 56.83 ± 13.30 66.34 ± 13.71 72.86 ± 12.70
Gold criterion 69.70 ± 9.60 58.84 ± 14.92 92.69 ± 4.36
Baseline 51.96 ± 14.61 28.12 ± 15.45 68.80 ± 13.86

F-measure ± (𝜎)

TLR BL FL

Criterion 1 68.76 ± 11.54 36.39 ± 13.63 71.81 ± 9.42
Criterion 2 89.58 ± 4.92 33.19 ± 13.00 90.84 ± 4.62
Criterion 3 53.07 ± 11.64 68.01 ± 10.75 68.90 ± 9.98
Gold criterion 68.10 ± 9.48 59.17 ± 11.17 91.83 ± 4.09
Baseline 47.74 ± 10.97 27.55 ± 12.13 66.06 ± 11.11

RQ1 answer. The results revealed that the criterion that obtained the best result is different in TLR, BL, and FL.
In TLR, Criterion 2 (most confident) obtained the best result in terms of recall, precision, and F-measure (89.08%,
90.59%, and 89.58%, respectively). In BL, Criterion 3 (latest modifications) obtained the best result in terms of recall,
precision, and F-measure (72.31%, 66.34%, and 68.01%, respectively). In FL, the Gold criterion (most confident and latest
modification owners) obtained the best result, providing an average value of 91.31% in recall, 92.69% in precision, and
91.83% in F-measure.

7.2 ResearchQuestion 2

The 𝑝-𝑉𝑎𝑙𝑢𝑒𝑠 obtained in the Quade test were lower than 0.05 in all cases, so we reject the null hypothesis. Consequently,
we can state that there are significant differences among the criteria and the baseline in TLR, BL, and FL for all the
performance indicators.

The upper part of Table 2 shows the 𝑝-𝑉𝑎𝑙𝑢𝑒𝑠 of Holm’s post-hoc analysis for pair-wise comparison of criteria
and the baseline in the performance indicators of TLR, BL, and FL. The majority of the 𝑝-𝑉𝑎𝑙𝑢𝑒𝑠 are lower than their
Manuscript submitted to ACM

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

How the Quality of Maintenance Tasks is Affected by Criteria for Selecting Engineers for Collaboration 13

corresponding significance threshold value (0.05), indicating that the differences in performance using the criteria
are significant. However, some values are greater than the threshold, indicating that the differences between those
pair-wise comparisons are not significant.

Table 2. Holm’s post hoc 𝑝-𝑉𝑎𝑙𝑢𝑒𝑠 and 𝐴̂12 statistic for each pair

Holm’s post hoc 𝑝-𝑉𝑎𝑙𝑢𝑒𝑠
TLR BL FL

Recall Precision F-measure Recall Precision F-measure Recall Precision F-measure

C1 vs C2 5.5𝑥10−11 4.2𝑥10−10 7𝑥10−15 0.024 0.45 0.19 8.4𝑥10−13 3.7𝑥10−9 2𝑥10−14
C1 vs C3 7.7𝑥10−8 5.1𝑥10−6 5.2𝑥10−10 7.3𝑥10−11 2.1𝑥10−13 4.1𝑥10−14 0.67 0.07 0.23
C1 vs Gold 0.62 0.76 0.68 1𝑥10−1 1.2𝑥10−1 1.5𝑥10−10 1.3𝑥10−13 3𝑥10−10 2𝑥10−14
C1 vs Baseline 1.7𝑥10−9 8.4𝑥10−8 3.2𝑥10−12 0.0024 0.068 0.0016 0.32 0.004 0.021
C2 vs C3 ≪ 2𝑥10−16 ≪ 2𝑥10−16 ≪ 2𝑥10−16 1.6𝑥10−11 3.5𝑥10−13 3.1𝑥10−14 8.6𝑥10−12 3.9𝑥10−11 5.9𝑥10−14
C2 vs Gold 3.7𝑥10−12 3.6𝑥10−16 3.6𝑥10−16 3𝑥10−10 2.5𝑥10−7 1.5𝑥10−12 0.35 0.53 0.26
C2 vs Baseline ≪ 2𝑥10−16 ≪ 2𝑥10−16 ≪ 2𝑥10−16 0.18 0.36 0.06 2.6𝑥10−13 1.3𝑥10−12 1.5𝑥10−14
C3 vs Gold 7.3𝑥10−7 4𝑥10−7 6.9𝑥10−9 0.036 0.028 0.0016 8.6𝑥10−12 2.6𝑥10−13 2𝑥10−14
C3 vs Baseline 0.13 0.12 0.034 7.1𝑥10−14 3.1𝑥10−14 3.1𝑥10−14 0.48 0.2 0.15
Gold vs Baseline 3.3𝑥10−10 1𝑥10−10 8.5𝑥10−15 2.3𝑥10−11 8.5𝑥10−12 9.4𝑥10−14 3.8𝑥10−12 7.6𝑥10−14 1.3𝑥10−13

𝐴12 statistic
TLR BL FL

Recall Precision F-measure Recall Precision F-measure Recall Precision F-measure

C1 vs C2 0.144 0.1574 0.048 0.6060 0.5368 0.5692 0.0719 0.1650 0.0454
C1 vs C3 0.7812 0.7328 0.8336 0.0811 0.0816 0.0266 0.5376 0.6161 0.5695
C1 vs Gold 0.5478 0.524 0.506 0.1842 0.1593 0.0941 0.0614 0.1366 0.0281
C1 vs Baseline 0.842 0.7904 0.9084 0.6718 0.6378 0.6995 0.5911 0.6836 0.6593
C2 vs C3 0.978 0.9948 0.9988 0.0692 0.0771 0.0153 0.9051 0.9135 0.9832
C2 vs Gold 0.8968 0.9604 0.9788 0.1451 0.1440 0.0646 0.4448 0.5059 0.4299
C2 vs Baseline 0.996 0.9968 1 0.5760 0.6003 0.6332 0.9048 0.9221 0.9773
C3 vs Gold 0.2184 0.2044 0.1464 0.6531 0.6145 0.7177 0.0857 0.0776 0.0092
C3 vs Baseline 0.5944 0.5952 0.6372 0.9632 0.9620 0.9892 0.5473 0.5916 0.5917
Gold vs Baseline 0.8312 0.8484 0.9252 0.9167 0.9155 0.9626 0.9140 0.9259 0.9751

RQ2 answer. From the results, we conclude that the criteria and the baseline have significant differences in TLR,
BL, and FL. In TLR, the F-measure shows that all criteria (Criterion 1, Criterion 2, Criterion 3, and the Gold criterion)
produce a significant improvement compared to the baseline. In BL, the F-measure shows that all of the criteria except
Criterion 2 produce a significant improvement in the quality of the solution with regard to the baseline. In FL, the
F-measure shows that all of the criteria except Criterion 3 produce a significant improvement compared to the baseline.

7.3 ResearchQuestion 3

The lower part of Table 2 shows the values of the effect size statistics between pair-wise comparisons of criteria and the
baseline in TLR, BL, and FL.

RQ3 answer. From the results, we can conclude how much the quality of the solution was influenced using each
criterion in TLR, BL, and FL. In TLR, the largest differences were obtained in comparisons that entail Criterion 2, where
the largest difference is obtained when compared with the baseline (0.996 for recall, 0.9968 for precision, and 1 for
F-measure). Therefore, in TLR, Criterion 2 outperforms the baseline with a pronounced superiority (99.6% of the times
for recall, 99.68% of the times for precision, and 100% of the times for F-measure). In BL, Criterion 3 obtains the largest

Manuscript submitted to ACM

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Francisca Pérez et al.

differences when compared with the baseline. Criterion 3 outperforms the baseline with a pronounced superiority
(96.32% of the times for recall, 96.2% of the times for precision, and 98.92% of the times for F-measure). In FL, Criterion 2
and the Gold criterion show a pronounced superiority over Criterion 1, Criterion 3, and the baseline. The largest
difference is obtained when comparing Criterion 3 and the Gold criterion (0.0857 for recall, 0.0776 for precision, and
0.0092 for F-measure). Therefore, the Gold criterion outperforms Criterion 3 with a pronounced superiority (91.43% of
the times for recall, 92.24% of the times for precision, and 99.08% of the times for F-measure).

8 DISCUSSION AND LESSONS LEARNED

After analyzing the results, we present the following recommendations for TLR, BL, and FL. For TLR, the results reveal
that collaboration should avoid involving software engineers that are only from the owner team. This is because part of
the domain knowledge related to the requirement is often assumed and not embodied when search queries are written
by the members of the owner team. For example, given the requirement: At all stations, the doors are automatically

opened, the engineers understand that the doors have to be opened in all of the stations without being requested by a
passenger. However, this requirement also embodies tacit knowledge that is not written but that is obvious to the owner
engineers: The train has doors on both sides, but only the doors on the side of the platform will be opened while the doors

on the side of the tracks will remain closed, and all the doors of one side will be opened, except the driver’s door in the cabin.
A previous work [15] shows differences in style between requirements that are written by different teams in a

company. Given a requirement, every software engineer of the company can easily determine whether or not the
requirement belongs to his/her team. However, our collaborative model maintenance experience revealed a surprising
turn. When confronting non-familiar requirements, a software engineer produces longer search queries with less
implicit knowledge. A first glance, unfamiliarity to the requirement may be seen as a disadvantage to producing a
search query, but this unfamiliarity also drives the software engineer to produce a detailed search query.

Since the model fragment location depends on the domain knowledge that is encoded in the words of the search
query, the location takes advantage of the explicit information that the engineer from a non-owner team provides.
Therefore, the tacit knowledge issue can be mitigated with collaboration by involving a software engineer from a
non-owner team.

However, involving engineers from different teams also entails disadvantages because each team develops its own
in-house terms. This contributes to a vocabulary mismatch issue (i.e., one concept is specified using different terms). If
the terms that are used in the requirements and the terms that are used in the models are not known synonyms, they
cannot be related, and, therefore, the requirement cannot be correctly related to the elements of the model. Therefore,
the lack of awareness that is caused by the vocabulary mismatch makes it impossible to locate the elements from the
model that are relevant to the requirement. To address this issue, it is necessary to extend the NLP techniques with a
thesaurus that contains the in-house terms of the different teams.

For BL, the results show that collaboration should avoid involving software engineers that only take into account
high confidence levels. A high confidence level suggests that the software engineer has a deep understanding of the
functionality that is intuitively related to the bug. However, this understanding is not always enough. In most of the
cases, bugs were connected to recent modifications to the models.

A high confidence level and the participation in recent modifications sounds like the perfect profile for collaborating
in BL. However, a low confidence level and the participation in recent modifications was also relevant for a significant
number of cases. Therefore, we can only state that participating in recent modifications should be specially considered for

Manuscript submitted to ACM

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

How the Quality of Maintenance Tasks is Affected by Criteria for Selecting Engineers for Collaboration 15

collaboration in the context of BL. This recommendation is aligned with the finding of the Defect Principle, which states
that the most recent modifications of a project are the most relevant for certain Information Retrieval purposes [70].

For FL, the Gold criterion does not achieve perfect values because achieving the maximum number of model elements
takes into account the involvement of software engineers with low confidence levels. For example, in the case of locating
a feature related to the braking equipment, a software engineer with expertise in the train coupling (i.e., two trains
are physically connected and only one of them commands the resulting train unit) declares a low confidence level
in his search query because he is not an expert on the braking equipment, but his query describes what happens to
the braking when two trains are coupled. This information is not produced by an expert on the braking system who
declares a high confidence level.

Our analysis of the results reveals that the confidence level is not powerful enough to assess the software engineers’
participation in FL. Engineers with information that is hard to come by which describes a small part of the feature
declare themselves as low confidence level. Therefore, we should also ask software engineers about the percentage of
coverage that they think their search query may achieve, and, consequently, the confidence level for that coverage.

8.1 Focus group interview

We ran a focus group to obtain qualitative data from the 19 selected software engineers of our industrial partner.
Specifically, the focus group was composed of the following open questions: (1) What do you think about the criteria
for selecting participants for collaboration?; (2) What do you think about the results of each criterion?; and (3) Why
would you choose the results of one criterion over the results of the baseline?

The engineers stated that the criteria were appropriate and complete according to their daily maintenance tasks.
There was a consensus among the engineers that the Gold criterion (the most confident owners who performed the
latest modification) should get the best results in all maintenance tasks.

After checking the results, the engineers highlighted that they did not expect the Gold criterion to not obtain the
best results in all maintenance activities. They found the results to be counter-intuitive because they thought that those
engineers who are not confident (i.e., underdogs) should not be involved in the collaboration. However, the engineers
realized that the results improved because underdogs produced longer queries with details that helped to obtain a
model fragment that was more complete than the model fragment retrieved by confident engineers, who omitted details
in the queries because they were considered to be obvious.

The engineers also acknowledged the importance of collaboration during maintenance tasks after checking the
results. The engineers mentioned that they would choose the results of a criterion (collaboration) instead of the results
of the baseline (without collaboration) since they stated that is difficult to have full knowledge while maintenance tasks
are being performed. Moreover, the engineers highlighted that this work indicates that they were missing the potential
knowledge of underdogs to obtain better results.

9 THREATS TO VALIDITY

To acknowledge the limitations of our evaluation, we use the classification of threats of validity of [56, 68], which
distinguishes four aspects of validity.

Construct Validity: Our evaluation uses three measures to minimize this risk: precision, recall, and F-measure,
which are widely accepted in the software engineering research community [57].

Internal Validity:We used an oracle (obtained from our industrial partner, which is considered the ground truth)
where the expected solution was known beforehand. By doing so, we were able to evaluate the different criteria for

Manuscript submitted to ACM

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Francisca Pérez et al.

the selection of participants for collaboration in TLR, BL, and FL and to compute the recall, precision, and F-measure.
Another threat of this type is poor parameter settings. In this paper, we used values that are commonly used in the
Model Fragment Retrieval literature [44, 46]. For the number of relevant documents and terms used to expand the
query, we used the values of 3 and 10, respectively, as recommended in the literature [9, 44, 46]. As suggested by Arcuri
and Fraser [5], default values are good enough to measure the performance. However, at this stage, we do not know
how using different values would impact the results.

External Validity: To mitigate this threat, our work has been designed not only to be applied to the domain
of the industrial partner but also to different domains. The requisites to apply our work are that the set of models
where requirement, bugs, or features have to be located must conform to MOF (the OMG metalanguage for defining
modeling languages), the queries must be provided as a textual description in natural language, and the engineers’
input information must be provided (owner team, self-rated confidence, and latest modification). We think that natural
language queries and MOF-based models would apply in a wide variety of model driven engineering scenarios.

As occurs in other works [26, 44, 63], the results depend on the quality of the queries. It is also worth noting that the
language used for the textual elements of the models and the feature descriptions in the query provided must be the
same. This language is specific to each domain. Hence, even though our approach can be applied to locate requirements,
bugs, and features on MOF-based models from different domains, our approach should be applied to other domains
before assuring its generalization.

Reliability: To reduce this threat, even though the industrial partner provided the input information (the requirement,
bug and feature descriptions, engineers’ input information, and the product models) they were not involved in this
research.

10 RELATEDWORK

Previous works spent their efforts on improving the systems that could boost an individual’s search effectiveness by
addressing collaborative information retrieval [60, 69]. Yue et al. [69] developed a web search system to investigate
factors that influence query reformulation in the context of explicit Collaborative Information Retrieval based on user
analysis of human subjects. Query reformulation can be automatically performed to add terms that are either similar
or related to a user query [59]. Most existing research is focused on query expansion by finding terms in relevant
documents such as source code and Internet sites [8, 26, 35, 41, 51, 52, 61, 67]. Sirres et al. [61] propose a technique for
finding relevant code using free-form query terms from internet sites such as Q&A posts from Stack Overflow. Hill et
al. [26] extract possible query expansion terms from the code using word context. Cao et al. [8] propose an automated
query reformulation approach for efficient search using query logs provided by Stack Overflow.

In contrast, other approaches propose automatically reformulating the query by removing words to reduce long
queries. Chaparro et al. [10] reduce terms of a low-quality query to only include the terms describing the Observed
behaviour (OB), which describes the current (mis)behaviour (i.e., incorrect or unexpected behaviour) of software.
Chaparro et al. [11] evaluate a set of query reformulation strategies using existing information in bug descriptions
and the removal of irrelevant parts from the original query. Kumaran and Carvalho [33] analyze the most promising
subsets of terms from the original query to reduce queries. Haiduc et al. [23] propose an approach that is trained
with a sample of queries and relevant results in order to automatically recommend an automatic query reformulation
technique (expansion or reduction) to improve the performance. Florez et al. [16] combine query reduction and expansion
techniques to improve the effectiveness of bug localization. Other works have been proposed to improve the effectiveness
of feature location by involving users’ feedback about the relevance of the retrieved results. For example, Wang et
Manuscript submitted to ACM

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

How the Quality of Maintenance Tasks is Affected by Criteria for Selecting Engineers for Collaboration 17

al. [66] propose a code search approach, which incorporates user feedback to refine the query. Despite the effort to
improve the performance of retrieving code by automatically reformulating the queries, it has been neglected in models
and in industry.

Fig. 4 shows the connections and differences between our previously published works and this work. At the bottom
of the figure, it is possible to find our work regarding Search-Based Software Engineering (SBSE) [49]. While [49] also
uses automatic query reformulations, its goal is completely different since it does not address collaboration in SBSE.
It uses automatic query reformulations as operations of the evolutionary algorithm instead of using the widespread
single-point crossover plus random mutation, leveraging the latent semantics that models hold rather than randomly
generating new candidate solutions.

AUSE [44]:

Access [48]:

CoopIS [47]:

TSE-HaFF [45]:

TSE-Ops [49]:

Co
lla

bo
ra

tio
n

iS
BS

E
SB

SE

DKE [43]:

connects collaboration with an evolutionary algorithm and
studies the number of participants and engineers’ confidence.

extends CoopIS [69] with a low-cost approach.

presents the first collaboration approach that does not use an
evolutionary algorithm for perform FL.

proposes deeper interaction in SBSE by using the human as
the fitness function. To avoid human fatigue, collaboration is
needed for sharing the burden of evaluating the solutions in
the fitness.

proposes reformulations as genetic operations in Search-
Based Software Engineering (SBSE) instead of the widespread
single-point crossover plus random mutation.

This work: explores four criteria for selecting engineers for collaboration.
It is the largest in terms of queries and software engineering
tasks, and it uncovers how software engineers with low
confidence levels can lead to significantly better results.

enriches a participant’s query with terms from models, obtaining
negative results for FL in models.

Fig. 4. Comparing this work with our previous works

The middle part of Fig. 4 shows the work in [45], where the human plays the role of the fitness function of the
evolutionary algorithm. As one of its outcomes, the work in [45] motivates the need for collaboration in order to share
the burden of evaluating candidate solutions, which could lead to success in problems where a single human fails.

The upper part of Fig. 4 shows our previously published works addressing collaboration and their differences with
this work. Moreover, Table 3 compares these works with regard to several factors, namely: the number of queries that
the different works evaluate, the criteria for collaboration that they use, the reformulation techniques that are applied,
and the software engineering tasks that are addressed. In [43], an engineer’s query is enriched (adding/removing terms)
using an automatic query reformulation technique, which takes terms of the product models as input. This leads to
negative results since the reformulated queries do not improve the performance in models. The work in [47] was our

Manuscript submitted to ACM

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Francisca Pérez et al.

first approach where the criterion of the most confident engineer is applied to address collaboration among different
engineers (without an evolutionary algorithm to perform the location of features). Through the work presented in [48],
the work in [47] was extended with a low-cost variant, which limits the time that engineers can spend for providing
knowledge. This last work also explores other existing query reformulation techniques. Finally, the work in [44] studies
the impact that the number of engineers that participate in the collaboration has over the quality of the solution, and
whether the inclusion of the engineers’ confidence produces an improvement in the results.

Table 3. Comparing our works that address collaboration

Queries Criteria Reformulation techniques Software
engineering

tasks

This work
2565 C1: Available owners

C2: The most confident engineer
C3: The latest modification
C4: Gold

Rocchio FL
TLR
BL

AUSE [44] 817 C2: The most confident engineer Rocchio FL

Access [48] 817 C2: The most confident engineer Rocchio, RSV, Dice, Reduction FL

CoopIS [47] 817 C2: The most confident engineer Rocchio FL

DKE [43] 217 - Rocchio, RSV, Dice, Reduction FL

In contrast to the above works, the novelty of this work puts the focus on the selection of participants for collaboration,
with the aim of answering the question on who should participate in collaboration. To do this, this paper explores how
the quality of the results is affected by different real-world criteria for selecting participants for collaboration (Available
owners, The most confident engineer, and The latest modification) in different maintenance tasks (TLR, BL, and FL). This
implies using the highest number of queries that we evaluated so far (as the second column of Table 4 shows). Moreover,
the intuition of our industrial partner suggests that a combination of two criteria (The most confident engineer and
The latest modification) should be the criterion that obtains the best results. This new criterion, identified as the Gold
criterion, has never been used before by our industrial partner nor by our previous research, and is explored for the
first time in this paper. Finally, our work uncovers novel recommendations (even some counter-intuitive ones, such as
the inclusion of engineers that might be seen as not relevant) towards assembling a team of engineers for collaboration.

11 CONCLUSION

We have analyzed how collaboration affects maintenance tasks (TLR, BL, and FL) on software models in a real-
world industrial domain. This kind of real-world experience is hard to obtain since the majority of related works on
collaboration use academic data. In any case, it is not for us to claim that collaboration should be systematically applied
to every case. Rather, collaboration becomes necessary when the requirement/bug/feature significantly transcends the
knowledge of a single software engineer. We should mention we do not claim that for every requirement/bug/feature all
engineers should produce a search query to collaborate. Actually, it is the opposite. Our work helps to make decisions
on the selection of engineers for collaboration.
Manuscript submitted to ACM

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

How the Quality of Maintenance Tasks is Affected by Criteria for Selecting Engineers for Collaboration 19

We have also compared four criteria for collaboration: three criteria for collaboration that were used indistinctly in
the industry and a criterion that seemed to be the best but which, counter-intuitively in most cases, has not yielded
the best results. Our results show that collaboration in the maintenance of industrial models pays off. However, to
release the full potential of collaboration, we should challenge our intuition in the selection of participants. The lessons
learned show how to improve real-world criteria for selecting software engineers for collaboration. Therefore, this
work provides a better understanding of the profiles that work best for the three software tasks (TLR, BL, and FL),
which are among the most common and relevant maintenance tasks in the Software Engineering field. Furthermore,
this work raises awareness of the positive role that underdogs (software engineers with low confidence levels) can play
in collaboration.

ACKNOWLEDGMENTS

This work was supported in part by the Ministry of Economy and Competitiveness (MINECO) through the Spanish
National R+D+i Plan and ERDF funds under the Project VARIATIVA under Grant PID2021-128695OB-I00, and in part
by the Gobierno de Aragón (Spain) (Research Group S05_20D).

REFERENCES
[1] 2021. Apache OpenNLP: Toolkit for the processing of natural language text. https://opennlp.apache.org/.
[2] 2021. Efficient Java Matrix Library. http://ejml.org/.
[3] 2021. English (Porter2) stemming algorithm. http://snowball.tartarus.org/algorithms/english/stemmer.html.
[4] Andrea Arcuri and Lionel Briand. 2014. A Hitchhiker’s Guide to Statistical Tests for Assessing Randomized Algorithms in Software Engineering.

Softw. Test. Verif. Reliab. 24, 3 (May 2014), 219–250. https://doi.org/10.1002/stvr.1486
[5] Andrea Arcuri and Gordon Fraser. 2013. Parameter tuning or default values? An empirical investigation in search-based software engineering.

Empirical Software Engineering 18, 3 (2013), 594–623. https://doi.org/10.1007/s10664-013-9249-9
[6] Matthew Bass, James D. Herbsleb, and Christian Lescher. 2007. Collaboration in Global Software Projects at Siemens: An Experience Report. In 2nd

IEEE International Conference on Global Software Engineering, ICGSE 2007, Munich, Germany, 27-30 August, 2007. 33–39. https://doi.org/10.1109/
ICGSE.2007.16

[7] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. 2012. Model-Driven Software Engineering in Practice (1st ed.). Morgan & Claypool Publishers.
[8] Kaibo Cao, Chunyang Chen, Sebastian Baltes, Christoph Treude, and Xiang Chen. 2021. Automated Query Reformulation for Efficient Search

Based on Query Logs From Stack Overflow. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). 1273–1285. https:
//doi.org/10.1109/ICSE43902.2021.00116

[9] Claudio Carpineto and Giovanni Romano. 2012. A Survey of Automatic Query Expansion in Information Retrieval. ACM Comput. Surv. 44, 1, Article
1 (Jan. 2012), 50 pages.

[10] Oscar Chaparro, Juan Manuel Florez, and Andrian Marcus. 2018. Using Observed Behavior to Reformulate Queries during Text Retrieval-based Bug
Localization. In 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME), Vol. 00. 376–387. https://doi.org/10.1109/ICSME.
2017.100

[11] Oscar Chaparro, Juan Manuel Florez, and Andrian Marcus. 2019. Using bug descriptions to reformulate queries during text-retrieval-based bug
localization. Empirical Software Engineering 24, 5 (2019), 2947–3007. https://doi.org/10.1007/s10664-018-9672-z

[12] William Jay Conover. 1999. Practical nonparametric statistics (3. ed ed.). Wiley, New York, NY [u.a.].
[13] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. 2011. Feature Location in Source Code: A Taxonomy and Survey. In Journal

of Software Maintenance and Evolution: Research and Practice.
[14] Daniel Dyer. 2016. The Watchmaker Framework for Evolutionary Computation (evolutionary/genetic algorithms for Java). http://watchmaker.

uncommons.org/. [Online; accessed 7-April-2016].
[15] Jorge Echeverría, Francisca Pérez, José Ignacio Panach, Carlos Cetina, and Oscar Pastor. 2017. The Influence of Requirements in Software Model

Development in an Industrial Environment. In Proceedings of the International Symposium on Empirical Software Engineering and Measurement,
ESEM.

[16] Juan Manuel Florez, Oscar Chaparro, Christoph Treude, and Andrian Marcus. 2021. Combining Query Reduction and Expansion for Text-
Retrieval-Based Bug Localization. In 2021 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). 166–176.
https://doi.org/10.1109/SANER50967.2021.00024

[17] Jaime Font, Lorena Arcega, Øystein Haugen, and Carlos Cetina. 2016. Feature Location in Models Through a Genetic Algorithm Driven by
Information Retrieval Techniques. In Proceedings of the ACM/IEEE 19th International Conference on Model Driven Engineering Languages and Systems

Manuscript submitted to ACM

https://opennlp.apache.org/
http://ejml.org/
http://snowball.tartarus.org/algorithms/english/stemmer.html
https://doi.org/10.1002/stvr.1486
https://doi.org/10.1007/s10664-013-9249-9
https://doi.org/10.1109/ICGSE.2007.16
https://doi.org/10.1109/ICGSE.2007.16
https://doi.org/10.1109/ICSE43902.2021.00116
https://doi.org/10.1109/ICSE43902.2021.00116
https://doi.org/10.1109/ICSME.2017.100
https://doi.org/10.1109/ICSME.2017.100
https://doi.org/10.1007/s10664-018-9672-z
http://watchmaker.uncommons.org/
http://watchmaker.uncommons.org/
https://doi.org/10.1109/SANER50967.2021.00024

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Francisca Pérez et al.

(Saint-malo, France) (MODELS ’16). ACM, New York, NY, USA, 272–282. https://doi.org/10.1145/2976767.2976789
[18] Jaime Font, Lorena Arcega, Øystein Haugen, and Carlos Cetina. 2017. Achieving Feature Location in Families of Models through the use of

Search-Based Software Engineering. IEEE Transactions on Evolutionary Computation PP, 99 (2017), 1–1. https://doi.org/10.1109/TEVC.2017.2751100
[19] Mirco Franzago, Davide Di Ruscio, Ivano Malavolta, and Henry Muccini. 2017. Collaborative Model-Driven Software Engineering: a Classification

Framework and a Research Map. IEEE Transactions on Software Engineering PP, 99 (2017), 1–1. https://doi.org/10.1109/TSE.2017.2755039
[20] Salvador García, Alberto Fernández, Julián Luengo, and Francisco Herrera. 2010. Advanced Nonparametric Tests for Multiple Comparisons in the

Design of Experiments in Computational Intelligence and Data Mining: Experimental Analysis of Power. Inf. Sci. 180, 10 (May 2010), 2044–2064.
https://doi.org/10.1016/j.ins.2009.12.010

[21] Robert Grissom and John J. Kim. 2005. Effect sizes for research: A broad practical approach. Mahwah, NJ: Earlbaum.
[22] Philip J. Guo, Thomas Zimmermann, Nachiappan Nagappan, and Brendan Murphy. 2011. "Not My Bug!" and Other Reasons for Software Bug

Report Reassignments. In Proceedings of the ACM 2011 Conference on Computer Supported Cooperative Work (Hangzhou, China) (CSCW ’11). ACM,
395–404. https://doi.org/10.1145/1958824.1958887

[23] Sonia Haiduc, Gabriele Bavota, Andrian Marcus, Rocco Oliveto, Andrea De Lucia, and Tim Menzies. 2013. Automatic Query Reformulations for
Text Retrieval in Software Engineering. In Proceedings of the 2013 International Conference on Software Engineering (ICSE ’13). 842–851.

[24] Mark Harman and Bryan F. Jones. 2001. Search-based software engineering. Information & Software Technology 43, 14 (2001), 833–839. https:
//doi.org/10.1016/S0950-5849(01)00189-6

[25] Ahmed E. Hassan and Richard C. Holt. 2005. The Top Ten List: Dynamic Fault Prediction. In 21st IEEE International Conference on Software
Maintenance.

[26] Emily Hill, Lori Pollock, and K. Vijay-Shanker. 2009. Automatically Capturing Source Code Context of NL-queries for Software Maintenance and
Reuse. In Proceedings of the 31st International Conference on Software Engineering (ICSE ’09). 232–242. https://doi.org/10.1109/ICSE.2009.5070524

[27] Thomas Hofmann. 1999. Probabilistic Latent Semantic Indexing. In Proceedings of the 22nd Annual International ACM/SIGIR Conference on Research
and Development in Information Retrieval.

[28] Anette Hulth. 2003. Improved automatic keyword extraction given more linguistic knowledge. In Proceedings of the 2003 conference on Empirical
methods in natural language processing. 216–223.

[29] Gaeul Jeong, Sunghun Kim, and Thomas Zimmermann. 2009. Improving Bug Triage with Bug Tossing Graphs. In Proceedings of the 7th Joint
Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of Software Engineering (Amsterdam,
The Netherlands) (ESEC/FSE ’09). ACM, New York, NY, USA, 111–120. https://doi.org/10.1145/1595696.1595715

[30] Huzefa Kagdi and Denys Poshyvanyk. 2009. Who can help me with this change request?. In 2009 IEEE 17th International Conference on Program
Comprehension (ICPC 2009). https://doi.org/10.1109/ICPC.2009.5090056

[31] Muhammad Rezaul Karim, Günther Ruhe, Md. Mainur Rahman, Vahid Garousi, and Thomas Zimmermann. 2016. An empirical investigation of
single-objective and multiobjective evolutionary algorithms for developer’s assignment to bugs. Journal of Software: Evolution and Process 28, 12
(2016), 1025–1060. https://doi.org/10.1002/smr.1777

[32] Katja Kevic, Sebastian C. Müller, Thomas Fritz, and Harald C. Gall. 2013. Collaborative bug triaging using textual similarities and change set
analysis. In 2013 6th International Workshop on Cooperative and Human Aspects of Software Engineering (CHASE). 17–24. https://doi.org/10.1109/
CHASE.2013.6614727

[33] Giridhar Kumaran and Vitor R. Carvalho. 2009. Reducing Long Queries Using Query Quality Predictors. In Proceedings of the 32Nd International
ACM SIGIR Conference on Research and Development in Information Retrieval (Boston, MA, USA) (SIGIR ’09). ACM, New York, NY, USA, 564–571.
https://doi.org/10.1145/1571941.1572038

[34] Thomas K Landauer, Peter W Foltz, and Darrell Laham. 1998. An Introduction to Latent Semantic Analysis. Discourse processes 25 (1998).
[35] Zhixing Li, Tao Wang, Yang Zhang, Yun Zhan, and Gang Yin. 2016. Query Reformulation by Leveraging CrowdWisdom for Scenario-based Software

Search. In Proceedings of Internetware (Beijing, China). 36–44.
[36] Anas Mahmoud, Nan Niu, and Songhua Xu. 2012. A Semantic Relatedness Approach for Traceability Link Recovery. In IEEE 20th International

Conference on Program Comprehension.
[37] Lee Martie, Thomas D. LaToza, and André van der Hoek. 2015. CodeExchange: Supporting Reformulation of Internet-Scale Code Queries in Context.

In 30th IEEE/ACM International Conference on Automated Software Engineering, ASE. 24–35. https://doi.org/10.1109/ASE.2015.51
[38] David W. McDonald and Mark S. Ackerman. 2000. Expertise recommender: a flexible recommendation system and architecture.. In CSCW. ACM,

231–240.
[39] Audris Mockus and James D. Herbsleb. 2002. Expertise browser: a quantitative approach to identifying expertise. In Proceedings of the 24th

International Conference on Software Engineering, ICSE 2002, 19-25 May 2002, Orlando, Florida, USA. 503–512. https://doi.org/10.1145/581339.581401
[40] Kumiyo Nakakoji. 2006. Supporting Software Development as Collective Creative Knowledge Work. In 2nd International Workshop on Supporting

Knowledge Collaboration in Software Development.
[41] Liming Nie, He Jiang, Zhilei Ren, Zeyi Sun, and Xiaochen Li. 2016. Query Expansion Based on Crowd Knowledge for Code Search. IEEE Transactions

on Services Computing 9, 5 (2016), 771–783. https://doi.org/10.1109/TSC.2016.2560165
[42] Rocco Oliveto, Malcom Gethers, Denys Poshyvanyk, and Andrea De Lucia. 2010. On the Equivalence of Information Retrieval Methods for

Automated Traceability Link Recovery. In IEEE 18th International Conference on Program Comprehension.

Manuscript submitted to ACM

https://doi.org/10.1145/2976767.2976789
https://doi.org/10.1109/TEVC.2017.2751100
https://doi.org/10.1109/TSE.2017.2755039
https://doi.org/10.1016/j.ins.2009.12.010
https://doi.org/10.1145/1958824.1958887
https://doi.org/10.1016/S0950-5849(01)00189-6
https://doi.org/10.1016/S0950-5849(01)00189-6
https://doi.org/10.1109/ICSE.2009.5070524
https://doi.org/10.1145/1595696.1595715
https://doi.org/10.1109/ICPC.2009.5090056
https://doi.org/10.1002/smr.1777
https://doi.org/10.1109/CHASE.2013.6614727
https://doi.org/10.1109/CHASE.2013.6614727
https://doi.org/10.1145/1571941.1572038
https://doi.org/10.1109/ASE.2015.51
https://doi.org/10.1145/581339.581401
https://doi.org/10.1109/TSC.2016.2560165

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

How the Quality of Maintenance Tasks is Affected by Criteria for Selecting Engineers for Collaboration 21

[43] Francisca Pérez, Jaime Font, Lorena Arcega, and Carlos Cetina. 2018. Automatic Query Reformulations for Feature Location in a Model-based
Family of Software Products. Data & Knowledge Engineering (2018). https://doi.org/10.1016/j.datak.2018.06.001

[44] Francisca Pérez, Jaime Font, Lorena Arcega, and Carlos Cetina. 2019. Collaborative feature location in models through automatic query expansion.
Automated Software Engineering 26, 1 (2019), 161–202. https://doi.org/10.1007/s10515-019-00251-9

[45] Francisca Pérez, Jaime Font, Lorena Arcega, and Carlos Cetina. 2021. Empowering the Human as the Fitness Function in Search-Based Model-Driven
Engineering. IEEE Transactions on Software Engineering 01 (oct 2021), 1–1. https://doi.org/10.1109/TSE.2021.3121253

[46] Francisca Pérez, Raúl Lapeña, Jaime Font, and Carlos Cetina. 2018. Fragment retrieval on models for model maintenance: Applying a multi-objective
perspective to an industrial case study. Information & Software Technology 103 (2018), 188–201. https://doi.org/10.1016/j.infsof.2018.06.017

[47] Francisca Pérez, Ana Cristina Marcén, Raúl Lapeña, and Carlos Cetina. 2017. Introducing Collaboration for Locating Features in Models: Approach
and Industrial Evaluation. In Proceedings of the 25th International Conference on Cooperative Information Systems, CoopIS. 114–131. https:
//doi.org/10.1007/978-3-319-69462-7_9

[48] Francisca Pérez, Ana Cristina Marcén, Raúl Lapeña, and Carlos Cetina. 2020. Evaluating Low-Cost in Internal Crowdsourcing for Software
Engineering: The Case of Feature Location in an Industrial Environment. IEEE Access 8 (2020), 65745–65757. https://doi.org/10.1109/ACCESS.2020.
2985915

[49] Francisca Pérez, Tewfik Ziadi, and Carlos Cetina. 2020. Utilizing Automatic Query Reformulations as Genetic Operations to Improve Feature
Location in Software Models. IEEE Transactions on Software Engineering 01 (jun 2020), 1–1. https://doi.org/10.1109/TSE.2020.3000520

[50] Md. Mainur Rahman, Muhammad Rezaul Karim, Guenther Ruhe, Vahid Garousi, and Thomas Zimmermann. 2015. An Empirical Investigation of a
Genetic Algorithm for Developer’s Assignment to Bugs. In Proceedings of the First North American Search Based Software Engineering Symposium
(Dearborn, Michigan, USA).

[51] Mohammad Masudur Rahman and Chanchal Roy. 2018. Effective Reformulation of Query for Code Search using Crowdsourced Knowledge and
Extra-Large Data Analytics. In Proceedings of the International Conference on Software Maintenance and Evolution (ICSME).

[52] Mohammad Masudur Rahman and Chanchal K. Roy. 2016. QUICKAR: Automatic Query Reformulation for Concept Location Using Crowdsourced
Knowledge. In Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering (Singapore, Singapore). 220–225.

[53] Md. Mainur Rahman, Günther Ruhe, and Thomas Zimmermann. 2009. Optimized assignment of developers for fixing bugs an initial evaluation for
eclipse projects. In Proceedings of the Third International Symposium on Empirical Software Engineering and Measurement, ESEM 2009, October 15-16,
2009, Lake Buena Vista, Florida, USA. 439–442.

[54] Md. Mainur Rahman, S. M. Sohan, Frank Maurer, and Günther Ruhe. 2010. Evaluation of optimized staffing for feature development and bug fixing.
In Proceedings of the International Symposium on Empirical Software Engineering and Measurement, ESEM 2010, 16-17 September 2010, Bolzano/Bozen,
Italy.

[55] Julia Rubin and Marsha Chechik. 2013. A survey of feature location techniques. In Domain Engineering. Springer, 29–58.
[56] Per Runeson and Martin Höst. 2009. Guidelines for conducting and reporting case study research in software engineering. Empirical software

engineering 14, 2 (2009), 131–164.
[57] Gerard Salton and Michael J. McGill. 1986. Introduction to Modern Information Retrieval. McGraw-Hill, Inc., New York, NY, USA.
[58] Bran Selic. 2003. The Pragmatics of Model-Driven Development. IEEE Softw. 20, 5 (Sept. 2003), 19–25. https://doi.org/10.1109/MS.2003.1231146
[59] Chirag Shah. 2010. Collaborative Information Seeking: A Literature Review. Exploring The Digital Frontier Advances In Librarianship 32 (2010).
[60] Chirag Shah and Roberto González-Ibáñez. 2011. Evaluating the Synergic Effect of Collaboration in Information Seeking. In Proceedings of the 34th

International ACM SIGIR Conference on Research and Development in Information Retrieval (Beijing, China) (SIGIR ’11). ACM, New York, NY, USA,
913–922. https://doi.org/10.1145/2009916.2010038

[61] Raphael Sirres, Tegawendé F. Bissyandé, Dongsun Kim, David Lo, Jacques Klein, Kisub Kim, and Yves Le Traon. 2018. Augmenting and structuring user
queries to support efficient free-form code search. Empirical Software Engineering 23, 5 (2018), 2622–2654. https://doi.org/10.1007/s10664-017-9544-y

[62] Bunyamin Sisman and Avinash C. Kak. 2012. Incorporating Version Histories in Information Retrieval Based Bug Localization. In 9th IEEE Working
Conference on Mining Software Repositories.

[63] Bunyamin Sisman and Avinash C. Kak. 2013. Assisting code search with automatic query reformulation for bug localization. In Proceedings of the
10th Working Conference on Mining Software Repositories, MSR. 309–318. https://doi.org/10.1109/MSR.2013.6624044

[64] Giriprasad Sridhara, Emily Hill, Lori L. Pollock, and K. Vijay-Shanker. 2008. Identifying Word Relations in Software: A Comparative Study of
Semantic Similarity Tools.. In ICPC, René L. Krikhaar, Ralf Lämmel, and Chris Verhoef (Eds.). IEEE Computer Society, 123–132.

[65] András Vargha and Harold D. Delaney. 2000. A Critique and Improvement of the CL Common Language Effect Size Statistics of Mc-
Graw and Wong. Journal of Educational and Behavioral Statistics 25, 2 (2000), 101–132. https://doi.org/10.3102/10769986025002101
arXiv:http://jeb.sagepub.com/content/25/2/101.full.pdf+html

[66] Shaowei Wang, David Lo, and Lingxiao Jiang. 2014. Active Code Search: Incorporating User Feedback to Improve Code Search Relevance. In
Proceedings of the 29th ACM/IEEE International Conference on Automated Software Engineering (ASE ’14). 677–682. https://doi.org/10.1145/2642937.
2642947

[67] Wentao Wang, Arushi Gupta, Nan Niu, Li Da Xu, Jing-Ru C. Cheng, and Zhendong Niu. 2018. Automatically Tracing Dependability Requirements
via Term-Based Relevance Feedback. IEEE Trans. Industrial Informatics 14, 1 (2018), 342–349. https://doi.org/10.1109/TII.2016.2637166

[68] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and Anders Wesslén. 2012. Experimentation in software engineering.

Manuscript submitted to ACM

https://doi.org/10.1016/j.datak.2018.06.001
https://doi.org/10.1007/s10515-019-00251-9
https://doi.org/10.1109/TSE.2021.3121253
https://doi.org/10.1016/j.infsof.2018.06.017
https://doi.org/10.1007/978-3-319-69462-7_9
https://doi.org/10.1007/978-3-319-69462-7_9
https://doi.org/10.1109/ACCESS.2020.2985915
https://doi.org/10.1109/ACCESS.2020.2985915
https://doi.org/10.1109/TSE.2020.3000520
https://doi.org/10.1109/MS.2003.1231146
https://doi.org/10.1145/2009916.2010038
https://doi.org/10.1007/s10664-017-9544-y
https://doi.org/10.1109/MSR.2013.6624044
https://doi.org/10.3102/10769986025002101
https://arxiv.org/abs/http://jeb.sagepub.com/content/25/2/101.full.pdf+html
https://doi.org/10.1145/2642937.2642947
https://doi.org/10.1145/2642937.2642947
https://doi.org/10.1109/TII.2016.2637166

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Francisca Pérez et al.

[69] Zhen Yue, Shuguang Han, Daqing He, and Jiepu Jiang. 2014. Influences on Query Reformulation in Collaborative Web Search. Computer 47, 3 (Mar.
2014), 46–53. https://doi.org/10.1109/MC.2014.62

[70] Thomas Zimmermann, Peter Weisgerber, Stephan Diehl, and Andreas Zeller. 2004. Mining Version Histories to Guide Software Changes. In
Proceedings of the 26th International Conference on Software Engineering.

Manuscript submitted to ACM

https://doi.org/10.1109/MC.2014.62

	Abstract
	1 Introduction
	2 Background and motivation
	3 Overview of our work
	4 Selection of participants for collaboration
	5 Collaborative Fragment Retrieval on Models
	5.1 Natural Language Processing
	5.2 Automatic Query Reformulation
	5.3 Fragment Retrieval on Models

	6 Evaluation
	6.1 Research questions
	6.2 Planning and execution
	6.3 Implementation details

	7 Results
	7.1 Research Question 1
	7.2 Research Question 2
	7.3 Research Question 3

	8 Discussion and lessons learned
	8.1 Focus group interview

	9 Threats to validity
	10 Related work
	11 Conclusion
	Acknowledgments
	References

