
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Phylogenix: Bringing phylogenetics to Unity
Samuel Navarro, Antonio Iglesias, Francisca Pérez, Carlos Cetina, Jaime Font

{snavarrod,aiglesias,mfperez,ccetina,jfont}@usj.es
Universidad San Jorge. Escuela de Arquitectura y Tecnología

Zaragoza, Spain

ABSTRACT
Game Software Engineering addresses the software part of creating
video games, with game engines like Unity serving as foundational
tools for development. A major challenge in game development is
creating new content, resulting in the exploration of Procedural
Content Generation techniques. However, these techniques often
lack formalized variability, hindering the transition to a Software
Product Line paradigm. This paper presents Phylogenix, a Unity
plugin that leverages phylogenetic analysis for a family of video
game content where variability is not formalized. The resulting
phylogenetic tree has potential to understand the variability and
even release latent family members. A video of the tool is available
at https://youtu.be/TxaQxGXrtqI

CCS CONCEPTS
• Software and its engineering → Software product lines;
Software reverse engineering.

KEYWORDS
Phylogenetics, Software Product Families, Game Software Engi-
neering, Procedural Content Generation
ACM Reference Format:
Samuel Navarro, Antonio Iglesias, Francisca Pérez, Carlos Cetina, Jaime Font.
2024. Phylogenix: Bringing phylogenetics to Unity. In Proceedings of 28th
ACM International Systems and Software Product Lines Conference (SPLC’24).
ACM, New York, NY, USA, 5 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
The video games industry has become the largest entertainment
sector, surpassing in revenue music and cinema together [23]. More-
over, half of the software developers in the world are involved in
video game development [31]. Video games are complex pieces of
software that combine artistic and technical components to deliver
a "fun" experience for players. Game Software Engineering (GSE)
has emerged to address those particularities [1, 11].

Game engines are the main tool used by the industry to create
video games. A game engine is a development environment that
includes the foundations for any game (e.g. graphics and physics
of the game) as reusable components. They also include a set of
tools that help the developer to accelerate the development, and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC’24, September 2-6, 2024, Luxembourg
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

reduce duplication of code and effort [23]. Unity engine1 is one of
the most used game engines in the industry.

One of the bottlenecks in video game development is the creation
of new content and many works from the GSE community propose
Procedural Content Generation (PCG) techniques [15, 28]. However,
those techniques produce variants of existing products, without
formalizing variability among the family, and thus they do not
promote the shift to a Software Product Line (SPL) paradigm.

Recently, Chueca et al. [9] applied the concept of phylogenetics
from biology to the industry of video games to generate new content
from an existing family. They introduced that phylogenetics can
also be used as a form of Domain Analysis [22], which can serve as
a first step towards formalization of the variability. Phylogenetic
analysis results in a tree that offers an ordered and structured
classification of the family of products analyzed.

In this work, we present Phylogenix, a tool developed for the
Unity engine that enables game developers to analyze existing con-
tent using phylogenetics. To this end, Phylogenix analyzes and
compares, pair by pair, all the elements of the given game, to gen-
erate a tree representation of the content family.

The rest of the paper is structured as follows. Section 2 presents
the basics of phylogenetics in biology. Section 3 presents game
engines and particularities of Unity engine. Section 4 presents how
Phylogenix applies phylogenetics to any video game developed
in Unity. Section 5 presents four case studies in which we have
validated our tool. Section 6 presents the related work. Section 7
concludes the paper.

2 PHYLOGENETICS
In biology, authors refer to phylogenetics as the study of phy-
logenetic relationships, and their representations (phylogenetic
trees), to clarify evolutionary phenomena [17]. The relationship
studies concern different species or groups of individuals of the
same species, which are referred to as taxa. Each taxon has a genome
that describes the state of each of the characters of the individual,
meaning each of the traits or features that distinguish one taxon
from another [3]. To elucidate these relationships, it is necessary
to measure the difference among the taxa: their genetic distance.
To this end, each pair of taxa is compared using a Genetic Distance
Matrix, a square matrix that represents the genetic distance among
taxa [30]. Finally, inference techniques are applied, using the ge-
netic distance matrix as input, to produce a phylogenetic tree [3].
This phylogenetic tree allows researchers to study the relationships
in the set of taxa, according to genetics.

Charles Darwin claimed that life is the product of descent from
common ancestors and, to communicate that idea, Darwin intro-
duced the metaphor of the tree of life [12]. From that analogy, Baum

1https://unity.com/
1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

SPLC’24, September 2-6, 2024, Luxembourg Navarro et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

et al. [4], initiated the Tree-Thinking movement, with the affirma-
tion that anyone, even without knowledge about phylogenetics
or biology, could interpret trees and use them for organizing and
classifying knowledge. From that, the most common representation
for the results of a phylogenetic inference process is a phylogenetic
tree, also known as phylogram. It is an undirected graph represen-
tation with nodes (representing taxa) and links (representing the
ancestry among taxa). It does not only represent the relationships
but also the difference among the taxa using the edges’ length [21].

There are multiple representations in which a phylogram can be
presented. The most common types are rectangular and circular.
The bottom part of Figure 1 shows an example of each type.

3 UNITY ENGINE
Game development comprises a set of complex processes that re-
quire the effort of heterogeneous teams. These processes include
tasks like creating the story, developing behaviors, or designing the
characters and scenarios where the game will take place.

Every element in the game is considered a GameObject (GO).
For example, in a shooter game (i.e. a video game where the player
must shoot at multiple enemies), the development team will need to
create different types of GOs to represent weapons, enemies, ammo,
and war scenarios. GOs are the main building block in Unity, and
enable developers to populate the game easily including both logical
(e.g. how the bullet behaves moving across the scenario) and visual
elements (e.g. the appearance of the bullet). Moreover, GOs are
composed of different types of components, such as Transforms,
Colliders, Meshes, or MonoBehaviours. For example, a GO can
have multiple MonoBehaviours (each MonoBehaviour associates a
script to the GO), and those MonoBehaviours can coincide between
different GOs, or can be specific of a single GO. In addition, multiple
copies of each GO could be needed (e.g. many bullets when shooting,
or many enemies to shoot at).

To reduce the complexity of the creation of GOs, game engines
provide mechanisms like Unity Prefabs, that enable the creation of
collections of reusable, configurable, and modular GOs [27]. Prefabs
are templates for GOs; making an analogy, a Prefab could be consid-
ered like a class. Using a class we can create multiple instances, and
using a Prefab we can create multiple GO instances. Continuing
with the example of the shooter game, we will have a Prefab of
a bullet that will be instantiated every time the player pulls the
trigger of their weapon.

4 PHYLOGENETICS IN UNITY
Phylogenix enables developers to analyze Prefabs and generate a
phylogenetic tree of any video game developed in Unity. Figure 1
shows the flow of such phylogenetic analysis of Prefabs.

First, as shown in Figure 1, Prefabs of the game are analyzed,
searching for the components used in the project. In the Prefabs
of the figure we have Transform, Collider, Mesh, MonoBehaviour
1, MonoBehaviour 2, and MonoBehaviour 3. After that analysis, a
sequence of 1s and 0s is generated for each of the Prefabs, indicating
the presence or absence of components. That sequence represents
the genome of the Prefab.

Second, the genetic distance between each pair of Prefabs is cal-
culated to generate a distance matrix. Phylogenix, uses Manhattan

Figure 1: Representation of a phylogenetic analysis flow of a
set of Prefabs

Distance, as it fits the characteristics of our encoding (same length
in genomes), and enables to count the genes that are different in
each genome [16]. With all of the distances, a distance matrix is
generated, as shown in Figure 1.

Third, the Neighbor-Joinning Method is applied as inference
technique to produce, from the distance matrix, the relationships
of a phylogenetic tree. This inference method is widely used in
biology [25].

Finally, as can be seen in Figure 1, a phylogenetic tree is generated
according to the results obtained in the previous step.

Our tool, Phylogenix, is composed of two different parts: a Unity
plugin, which analyzes Prefabs, realizes the phylogenetic inference,
and generates the tree; and a web-based viewer that enables devel-
opers to visualize and explore the tree and export it as an image
using the most common phylogenetic tree representations. The
Unity plugin has been developed in C#, and it is distributed as a
Unity package. It can analyze any Unity video game project. Figure 2
shows the main view of Phylogenix.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Phylogenix: Bringing phylogenetics to Unity SPLC’24, September 2-6, 2024, Luxembourg

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: Phylogenix’ panel included in the plugin

Table 1: Characteristics of case studies

Num. Prefabs Project size Execution time

VTM 84 3,6 GB 1 minute
Grabitoons! 158 6,5 GB 2 minutes
Neon Hat 1319 11 GB 6 minutes
Toy Tactics 2036 134 GB 25 minutes

5 CASE STUDIES
We have validated our tool in a set of four commercial video games:

• Vampire: The Masquerade (VTM)2: It is a Computer
Role-Playing Game in which the player rolls the dice, and
takes decisions to control the story of the main character:
a human with vampire powers.

• Toy Tactics3: Developed by Kraken Empire, Toy Tactics is
a Real Time Strategy in which the player places their toys
in the arena trying to defeat their enemies.

• Neon Hat4: It is a game designed to be played in virtual re-
ality (VR) for PlayStation 4. Entalto Games created a world
full of neon, where you must dodge and shoot, compet-
ing against others in global leaderboards. Neon Hat was
awarded as Best game in VR of 2021 in the DeVuego Awards.

• Grabitoons!5: It is a physics-based galactic party game for
up to four players, in which you must compete with your
friends and beat them over the head.

Table 1 presents the characteristics of the games analyzed as case
studies, and the time taken by Phylogenix to analyze each project.

Figure 3 shows the phylogenetic tree resultant of analyzing the
Unity project of Grabitoons!. This phylogenetic tree shows a struc-
tured view of all of the Prefabs of the game, according to the genetic
relations among them. For example, as can be seen in the zoomed
zone, all Canvas Prefabs are in the same branch of the tree.

Additionally, this tree can be considered as a first step in the for-
malization of the variability process, as it provides an ordered and
2https://store.steampowered.com/app/1926120/Vampire_The_Masquerade__
Heartless_Lullaby/
3https://store.steampowered.com/app/1772530/Toy_Tactics/
4https://store.steampowered.com/app/1908640/NeonHAT/
5https://store.steampowered.com/app/2208820/Grabitoons/

Figure 3: Phylogenetic tree from Grabitoons! video game

structured view of the Prefabs of the game. Also, it has been demon-
strated that this tree can be relevant for latent content generation
in a family of products [9].

6 RELATEDWORK
There are many different tools for Unity game engine focused on
animations, intelligent systems, or simulation and visualization of
terrains, environments, and systems [7, 13, 20, 26]. However, our
focus is to analyze variability using phylogenetics.

Some other efforts in the literature apply SPLs to video games.
Trasobares et al. [29] evaluated the benefits of SPLs, and Chueca
et al. [10] compared SPL vs. Clone and Own in GSE. Castro and
Werner [8] present a prototype of a game that was developed by
applying a dynamic SPL to generate game modifications systemati-
cally. Lima et al. [18] present a work about Product Line Architec-
ture recovery. Debbiche et al. [14] analyzed five Java games, and
migrated three of these into a composition-based SPL implemented
with FeatureHouse [2].

Focused on PCG, Preuss et al. [24] examine the interplay be-
tween quality and diversity in PCG for game development. Melotti
et al. [19] introduce and implement the Deluged Novelty Search

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

SPLC’24, September 2-6, 2024, Luxembourg Navarro et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Local Competition algorithm (D-NSLC), which utilizes morpholog-
ical niches to promote solution diversity in PCG for a game. Blasco
et al. [5, 6] explored the application of Search-Based Software En-
gineering (SBSE) for content generation, using an evolutionary
algorithm steered by simulations that incorporate the generated
content. Neither of the works above-mentioned use phylogenetic
inference for PCG as we are promoting with our tool.

Finally, Chueca et al. introduced in [9] a new approach for gen-
erating content for video games. They represent the relationships
among the products of a family (Non-Playable Characters of a game)
in a single tree. Developers use this information as a seed to create
new Latent Content. However, our work presents a generic tool
that can be applied to any video game project developed within the
Unity game engine.

7 CONCLUSIONS
Phylogenix is an approach to introduce phylogenetics to GSE in
Unity, providing developers with a tool that can be integrated in
the environment in which their games are developed.

The tool analyzes the Prefabs of a video game project, performing
a phylogenetic inference process, and generating a tree representa-
tion with the relationships extracted from the inference.

Moreover, the resulting tree can be used for generating new con-
tent, or as a first classification in the process of software variability
formalization.

Future work is focused on uploading the plugin to the Unity
Asset Store to make it available to anyone. We also aim to provide
the tool with more phylogenetic inference methods used in biology.
Improving the visualizer of the trees is planned too.

ACKNOWLEDGMENTS
This work was supported in part through the Spanish National
R+D+i Plan and ERDF funds under the Projects VARNETICA (CNS2023-
145422) and VARIATIVA (PID2021-128695OB-I00), and in part by
the Gobierno de Aragón (Spain) (Research Group S05 20D).

REFERENCES
[1] Apostolos Ampatzoglou and Ioannis Stamelos. 2010. Software engineering

research for computer games: A systematic review. Information and Software
Technology 52, 9 (2010), 888–901.

[2] Sven Apel, Christian Kästner, and Christian Lengauer. 2011. Language-
independent and automated software composition: The FeatureHouse experience.
IEEE Transactions on Software Engineering 39, 1 (2011), 63–79.

[3] David A Baum and Stacey D Smith. 2012. Tree thinking: an introduction to
phylogenetic biology. In Tree thinking: An introduction to phylogenetic biology.
476–476.

[4] David A Baum, Stacey DeWitt Smith, and Samuel SS Donovan. 2005. The tree-
thinking challenge. Science 310, 5750 (2005), 979–980.

[5] Daniel Blasco, Jaime Font, Francisca Pérez, and Carlos Cetina. 2023. Procedural
content improvement of game bosses with an evolutionary algorithm.Multimedia
Tools and Applications 82, 7 (2023), 10277–10309.

[6] Daniel Blasco, Jaime Font, Mar Zamorano, and Carlos Cetina. 2021. An evolu-
tionary approach for generating software models: The case of Kromaia in Game
Software Engineering. Journal of Systems and Software 171 (2021), 110804.

[7] Andreas Brännström and Juan Carlos Nieves. 2022. A framework for developing
interactive intelligent systems in unity. Engineering Multi-Agent Systems (EMAS
2022) (2022).

[8] Diego Castro and Cláudia Werner. 2021. Rebuilding games at runtime. In 2021
36th IEEE/ACM International Conference on Automated Software Engineering
Workshops (ASEW). IEEE, 73–77.

[9] Jorge Chueca, Daniel Blasco, Carlos Cetina, and Jaime Font. 2024. Leveraging
Phylogenetics in Software Product Families: The Case of Latent Content Genera-
tion in Video Games. In Proceedings of the 28th ACM International Systems and

Software Product Line Conference-Volume A.
[10] Jorge Chueca, Jose Ignacio Trasobares, África Domingo, Lorena Arcega, Carlos

Cetina, and Jaime Font. 2023. Comparing software product lines and Clone
and Own for game software engineering under two paradigms: Model-driven
development and code-driven development. Journal of Systems and Software 205
(2023), 111824.

[11] Jorge Chueca, Javier Verón, Jaime Font, Francisca Pérez, and Carlos Cetina. 2023.
The consolidation of game software engineering: A systematic literature review
of software engineering for industry-scale computer games. Information and
Software Technology (2023), 107330.

[12] Charles Darwin. 1859. On the origin of species by means of natural selection, or
preservation of favoured races in the struggle for life. John Murray.

[13] Emanuele De Pellegrin and R Petrick. 2023. PDSim: Planning Domain Simula-
tion and Animation with the Unity Game Engine. In ICAPS 2023 Workshop on
Knowledge Engineering for Planning and Scheduling (KEPS).

[14] Jamel Debbiche, Oskar Lignell, Jacob Krüger, and Thorsten Berger. 2019. Migrat-
ing Java-based apo-games into a composition-based software product line. In
Proceedings of the 23rd International Systems and Software Product Line Conference-
Volume A. 98–102.

[15] Mark Hendrikx, Sebastiaan Meijer, Joeri Van Der Velden, and Alexandru Iosup.
2013. Procedural content generation for games: A survey. ACM Transactions on
Multimedia Computing, Communications, and Applications (TOMM) 9, 1 (2013),
1–22.

[16] Eugene F Krause. 1986. Taxicab geometry: An adventure in non-Euclidean geometry.
Courier Corporation.

[17] Philippe Lemey, Marco Salemi, and Anne-Mieke Vandamme. 2009. The phylo-
genetic handbook: a practical approach to phylogenetic analysis and hypothesis
testing. Cambridge University Press.

[18] Crescencio Lima, Ivan do Carmo Machado, Eduardo Santana de Almeida, and
Christina von Flach G. Chavez. 2018. Recovering the product line architecture
of the Apo-Games. In Proceedings of the 22nd International Systems and Software
Product Line Conference-Volume 1. 289–293.

[19] Alexandre Santos Melotti and Carlos Henrique Valerio de Moraes. 2018. Evolv-
ing roguelike dungeons with deluged novelty search local competition. IEEE
Transactions on Games 11, 2 (2018), 173–182.

[20] Michal Pasternak, Nafıseh Kahani, Mojtaba Bagherzadeh, Juergen Dingel, and
James R Cordy. 2018. Simgen: A tool for generating simulations and visualiza-
tions of embedded systems on the unity game engine. In Proceedings of the 21st
ACM/IEEE International Conference on Model Driven Engineering Languages and
Systems: Companion Proceedings. 42–46.

[21] Georgios A Pavlopoulos, Theodoros G Soldatos, Adriano Barbosa-Silva, and
Reinhard Schneider. 2010. A reference guide for tree analysis and visualization.
BioData mining 3 (2010), 1–24.

[22] Klaus Pohl, Günter Böckle, and Frank Van Der Linden. 2005. Software product
line engineering: foundations, principles, and techniques. Vol. 1. Springer.

[23] Cristiano Politowski, Fabio Petrillo, João Eduardo Montandon, Marco Tulio Va-
lente, and Yann-Gaël Guéhéneuc. 2021. Are game engines software frameworks?
A three-perspective study. Journal of Systems and Software 171 (2021), 110846.

[24] Mike Preuss, Antonios Liapis, and Julian Togelius. 2014. Searching for good and
diverse game levels. In 2014 IEEE Conference on Computational Intelligence and
Games. IEEE, 1–8.

[25] Naruya Saitou and Masatoshi Nei. 1987. The neighbor-joining method: a new
method for reconstructing phylogenetic trees. Molecular biology and evolution 4,
4 (1987), 406–425.

[26] Il-Sik Shin, Mohammadamin Beirami, Seok-Je Cho, and Yung-Ho Yu. 2015. De-
velopment of 3D terrain visualization for navigation simulation using a Unity
3D development tool. Journal of Advanced Marine Engineering and Technology
39, 5 (2015), 570–576.

[27] Gangavarapu Sivalaya, Bandaru Mounika, Gangavarapu Sailasya, and N Suresh
Kumar. 2020. Implementation of Augmented Reality Application using Unity
Engine Deprived of Prefab. (2020).

[28] Julian Togelius, Georgios N Yannakakis, Kenneth O Stanley, and Cameron
Browne. 2011. Search-based procedural content generation: A taxonomy and
survey. IEEE Transactions on Computational Intelligence and AI in Games 3, 3
(2011), 172–186.

[29] Jose Ignacio Trasobares, África Domingo, Lorena Arcega, and Carlos Cetina. 2022.
Evaluating the benefits of software product lines in game software engineering.
In Proceedings of the 26th ACM International Systems and Software Product Line
Conference-Volume A. 120–130.

[30] Grady Weyenberg and Ruriko Yoshida. 2015. Reconstructing the phylogeny:
Computational methods. In Algebraic and Discrete Mathematical methods for
modern Biology. Elsevier, 293–319.

[31] Tom Wijman. 2023. Global Games Market Report. https://newzoo.com/
resources/trend-reports/newzoo-global-games-market-report-2023-free-
version

4

https://newzoo.com/resources/ trend-reports/newzoo-global-games-market-report-2023-free-version
https://newzoo.com/resources/ trend-reports/newzoo-global-games-market-report-2023-free-version
https://newzoo.com/resources/ trend-reports/newzoo-global-games-market-report-2023-free-version

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Phylogenix: Bringing phylogenetics to Unity SPLC’24, September 2-6, 2024, Luxembourg

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

A APPENDIX: PHYLOGENIX
DEMONSTRATION

In this demonstration, the presenter introduces our tool Phylogenix,
a Unity plugin to perform the phylogenetic analysis for a family of
video game content where variability is not formalized. To contex-
tualize the audience, the presenter explains that the video games
industry has become the largest entertainment sector and that half
of the software developers in the world are involved in the creation
of video games. After that, the presenter introduces Game Software
Engineering (GSE), as a recently emerged paradigm to address the
complexity of software in the video games industry.

Next, game engines are presented, explaining their foundations
and main characteristics. Unity engine is introduced as one of
the most used game engines in the industry, and the concept of
GameObject and Prefab are presented too. A simple example illus-
trates these concepts.

Later, the presenter explains that the creation of new content
is one of the bottlenecks of video games industry. The presenter
also introduces that some works from GSE community propose
Procedural Content Generation techniques, but without formalizing
the variability among the family. Moreover, the presenter introduces
a recent work that has applied the concept of phylogenetics from
biology to the industry of video games. The presenter explains that
this approach can be used to create new content from an existing

family, and also can be used as a form of Domain Analysis, as a first
step towards formalization of the variability.

Next, an introduction to phylogenetics is realized, in order to
explain the basic concepts of phylogenetics. The presenter intro-
duces how our tool performs the phylogenetic analysis of a Unity
project. First, the presenter explains how the Prefabs are analyzed
to generate the genome of each one. Second, the presenter explains
how the genomes are compared pair by pair, calculating the genetic
distance (using Manhattan Distance), and producing a distance ma-
trix. Third, the presenter explains how the pairs are joined using the
Neighbor-Joinning method, Finally, the presenter explains how the
pairs are represented in Newick format, and as trees in rectangular
and circular representations.

The presenter provides an overview of the tool presented, com-
posed of two parts: a Unity plugin, that makes the phylogenetic
analysis, and a web-based viewer that enables to view and explore
the trees generated by the plugin.

Then, the presenter opens the tool and makes a demonstration
using a commercial video game, realizing the phylogenetic analysis
using the plugin, and showing the results using the viewer.

The presenter concludes the tutorial by summarizing the idea
behind Phylogenix, and how this tool can leverage the development
process of video games, helping in latent content generation, as
well as in the variability formalization of existing product families.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

5

	Abstract
	1 Introduction
	2 Phylogenetics
	3 Unity engine
	4 Phylogenetics in Unity
	5 Case Studies
	6 Related Work
	7 Conclusions
	Acknowledgments
	References
	A Appendix: Phylogenix demonstration

