
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JUNE 2020 1

A Systematic Literature Review of Model-Driven
Engineering using Machine Learning
Ana C. Marcén, Antonio Iglesias, Raúl Lapeña, Francisca Pérez, Carlos Cetina

Abstract—Model-driven engineering (MDE) is a software engineering paradigm based on the systematic use of models. Over the past
few years, engineers have significantly increased the use of MDE, which has been reported as a successful paradigm for developing
industrial software. Recently, there have also been remarkable advancements in the Artificial Intelligence (AI) domain, with a significant
increase in advanced Machine Learning (ML) techniques. The advances in both fields have led to a surge in works that dwell within the
intersection of ML and MDE. This work places the focus on systematically reviewing works that leverage ML to solve MDE problems. We
have reviewed a total of 9,194 papers, selecting 98 studies for further analysis. The results of our Systematic Literature Review (SLR)
bring light to the current state of the art and trends in the field, discussing the drift in the usage of the different available ML techniques
along with the remaining research gaps and open challenges. Our SLR has the potential to produce a positive impact in the research
community by steering it towards ML techniques that have been successfully applied to solve MDE challenges.

Index Terms—Model-Driven Engineering, Machine Learning, Systematic Literature Review

✦

1 INTRODUCTION

MOdel-driven engineering (MDE) is a software engi-
neering paradigm based on the systematic use of

models as primary artifacts throughout the software de-
velopment cycle [1]. With the MDE paradigm, models are
used to capture and design the characteristics of software
systems: models can be run and interpreted at run-time,
automatically transformed into code, or used to design and
derive other software artifacts. Major players in the software
engineering field and in the requirements engineering field
foresee a broad adoption of MDE techniques [2, 3], since
they improve the productivity, quality, and performance of
software in industrial scenarios that require more abstract
approaches than mere coding [1].

While models have not replaced source code as a means
of software development so far, MDE has been reported as
a successful paradigm to develop industrial software [1, 4].
Real-world examples can be found in the BSH group, where
models are used to generate the C++ firmware that controls
their induction hobs (sold under the brands of Bosch and
Siemens, among others) [5], and in CAF (www.caf.net/en),
where models serve as a means for developing the software
that controls the trains they manufacture [6]. Another exam-
ple can be found in the area of video games, where models
are used to obtain the software in the video game engines
(for example, Unreal Engine blueprint models).1

This new discipline is gaining traction within the soft-

• Ana C. Marcén, Antonio Iglesias Raúl Lapeña, Francisca Pérez, and
Carlos Cetina are with the SVIT Research Group of Universidad San
Jorge, Zaragoza, Spain.
E-mail: {acmarcen, aiglesias rlapena, mfperez, ccetina@usj.es.

• Carlos Cetina is also with the Computer Science Department of University
College London, London, United Kingdom.

• Antonio Iglesias is also with the Research Center on Software Production
Methods (PROS), Universitat Politècnica de València, Valencia, Spain.

Manuscript received June X, 2020; revised .
1. https://www.unrealengine.com/

ware engineering field and becoming a popular alternative
for industrial software development under the commercial
names of low-code and no-code. While engineers have
placed the focus on evolving model-based technologies,
decreasing the costs for the maintenance and documentation
of MDE-based software systems in the process [7]–[10],
several organizations and companies (including the Object
Management Group, the Eclipse community, IBM, and Mi-
crosoft) are currently proposing a wide variety of different
techniques and environments claiming to support MDE.
However, MDE practices vary depending on the character-
istics of the systems and sectors in which they are applied.
Some stakeholders use MDE for requirements elicitation
and to communicate with colleagues and peers, while others
use them for automated code generation. Different sections
of the same company might use different MDE artifacts
and approaches for different purposes within the software
cycle [11]. Moreover, MDE suffers from largely unresolved
linguistic challenges and search complexity issues caused by
the characteristics inherent to MDE artifacts.

Increasingly, MDE researchers are looking to Artificial
Intelligence (AI) as an opportunity to improve or optimize
their approaches. Various Machine Learning (ML) tech-
niques have been applied with greater or lesser success in
MDE. Decision trees, regression trees, classification trees,
nearest neighbour algorithms, neural nets, bayesian belief
networks, bayesian nets, association rules, support vector
machines, or support vector regression algorithms are just
some of the examples that make up the main current trends
in the literature.

In fact, the number of publications applying ML tech-
niques in MDE has tripled in the last five years. This rapid
growth means that it is still unclear to what extent MDE
problems can be solved with the help of machine learning
techniques. Moreover, MDE is a very broad concept, and
researchers and practitioners focus their work on various

www.caf.net/en

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JUNE 2020 2

models (UML, domain models, conceptual models, etc.) and
diverse tasks using these models (documentation, simula-
tion, verification and validation, testing, code generation,
etc.). While a specific machine learning technique may pro-
vide a remarkable solution for one type of model and task,
a similar solution may not be effectively applied on other
models and tasks due to the way the models are encoded to
apply ML techniques, the presence or absence of text in the
models, or even the size of the models. Also, a holistic view
on what MDE problems are solved using ML techniques,
the ML techniques applied, the types of models, and the
challenges in using ML techniques for MDE is still missing.

The goal of this work is to identify, classify, and under-
stand approaches that support MDE using ML techniques.
To achieve our goal, we have applied a well-established
methodology from the software engineering research com-
munities called Systematic Literature Review (SLR) [12].
In accordance with the SLR steps, we examined 6,255 re-
search studies (9,194 with the snowballing). Of these, 98
were selected based on inclusion and exclusion criteria and
analyzed, in depth.

The main contributions of this study are:
• the identification of the MDE problems that have been

solved using ML techniques. Although we do not ex-
plicitly use the term taxonomy, we classify the studies
based on diverse categories (ML technique, Type of
model, MDE problem, etc.). This can be a reusable
classification framework for understanding, classifying,
and comparing present and future work on the appli-
cation of ML techniques in MDE.

• the presentation of progress in terms of quality, ac-
ceptance, and frequency of use of MDE approaches
leveraging ML techniques.

• the analysis of current limitations and challenges as
well as trends in publications related to MDE ap-
proaches using ML techniques.

This paper presents a systematic literature review, build-
ing towards a complete, comprehensive, and replicable pic-
ture of MDE research leveraging ML techniques and helping
researchers and practitioners identify the state, limitations,
and trends of current research on the topic.

The remainder of this paper is structured as follows:
Section 2 motivates our research and presents the back-
ground for our study. Section 3 presents the related work
in this area. Section 4 describes the research method used.
Section 5 presents the results of the SLR performed based
on the research questions. Section 6 and Section 7 discuss
the results and the threats to validity, respectively. Finally,
Section 8 concludes the paper.

2 BACKGROUND

This section presents the necessary definitions to describe
the framework of our SLR. Furthermore, it also includes a
brief description of pre-processing models for applying ML
techniques.

Model is a key term for this work, and is ambiguous
when combining MDE and ML research areas. In MDE, a
model is an abstraction of a system that is often used to
replace the system under study [13]–[15]. On the other hand,
in ML, a model is a rule-set that is learned when comparing

feature vectors automatically using a ML technique [16]. In
this work, we use the term model to refer to MDE models,
and we adopt a synonym (i.e., classifier) to refer to ML
models.

MDE stands for Model-Driven Engineering, which is a
broader methodology that emphasizes the systematic use
of models in both the development phase and throughout
the entire engineering process. MDE aims to provide a
systematic and efficient way to manage the complexity of
software systems by using models to capture and express
the design and behavior of the system at various levels of
abstraction. While MDE focuses on the entire engineering
process, Model-Driven Development (MDD) is an approach
within MDE that emphasizes the use of models as a primary
artifact throughout the development lifecycle. It includes
activities such as model creation, transformation, analysis,
and code generation. Model-Driven Architecture (MDA),
which is related to MDD, is an initiative by the Object Man-
agement Group (OMG) to provide guidelines and standards
for software development based on models.

Therefore, models are turned into primary artifacts
throughout engineering processes, specifically throughout
the development lifecycle. Although some modeling assets
use a textual syntax (e.g., Object Constraint Language or
ATL model transformations), most of models mainly use
different shapes (e.g., rectangles, ellipses, etc.) to graphically
represent objects, classes, relationships, etc. These shapes are
complemented with text, lines, and arrowheads, forming
diagrams that effectively illustrate the structure, behavior,
or design of software systems. These models have two
main advantages. First, the level of abstraction provided
by the models helps the researchers or developers to easily
understand the system. Second, transforming the models
into source code facilitates the development of new software
systems.

However, the use of models also brings with it certain
problems, for example, how to transform a model into
code or how to correctly specify the models. Some of the
existing problems are addressed by ML techniques. Part
of the contribution of this paper is to identify which MDE
problems are currently being addressed by ML techniques.

ML is a subset of artificial intelligence (AI) that focuses
on the development of algorithms and models that enable
computers to learn and make predictions or decisions with-
out being explicitly programmed. ML systems learn from
data patterns and experiences, allowing them to improve
their performance over time. ML is widely used in tasks
such as image recognition, natural language processing,
recommendation systems, and predictive analytics across
diverse industries. For example, MDE large systems require
complexity, size, and several models for their specifica-
tions. Therefore, engineers need approaches to find elements
within these models, locate errors, validate the models, or
even compare them. An ML classifier can be trained from
correct and incomplete models so that the classifier can
validate other models. Similarly, an ML classifier can be
trained from errors, so that given a part of the model, the
classifier can report whether it contains an error or is correct.

There are various types of ML techniques, including
supervised learning, unsupervised learning, and reinforce-
ment learning. There are different ways to apply ML tech-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JUNE 2020 3

niques depending on these types, the hyperparameters of
the technique, and the input data. We are not going to
detail how to apply each specific technique or how to tune
their hyperparameters. However, we do include a brief
description of the input data for the context of this work.

In our case, the input data is composed of models.
These models must be pre-processed in order to apply ML
techniques. For example, some ML techniques (e.g., support
vector machine) require feature vectors. A feature vector
contains variables to represent the relevant information in
predicting the output [17]. This means that, instead of the
graphical representation of the model, we need to encode
the model as a feature vector. There are two main ways to
achieve this [SLR56]:

• Based on the shape of the model elements (e.g., the
number of connecting lines, the rectangle size, or the
vertical/horizontal alignment of shapes in the model).

• Based on the type of the model elements (e.g., the
number of associations, aggregations, compositions,
and generalizations in a class diagram).

Note that, although the examples are based on counting
the number of occurrences, there are other ways of encoding
features. For example, we could check whether a certain
element is present or not in the model using a Boolean
variable.

In addition, to encode a model into a feature vector,
we can use both the semantics and text of the elements in
the model. For example, we can count the occurrences of a
relationship between an element of type X and an element of
type Y (i.e., semantics), or count the occurrences of a specific
term in the labels of the model elements (i.e., text).

3 RELATED WORK

Our survey contributes to the available Software Engineer-
ing literature by comprehensively examining the landscape
of ML techniques applied to MDE problems. Regarding the
available literature, there is one work in the field that is
close to ours in the form of a 2023 book chapter by Davide
Di Ruscio et. al. [18] summarizing recent applications of ML
approaches to support modeling ecosystems and envision-
ing a roadmap for the deployment of ML techniques in the
MDE domain. While the book chapter puts the focus on
the deployment of ML in MDE ecosystems, our survey goes
beyond by identifying MDE problems addressed through
ML techniques, presenting progress in the field and ana-
lyzing the current trends, limitations, and challenges in a
comprehensive manner.

There are plenty of technical differences between both
studies. Unlike the book chapter, which covers the pe-
riod from 2012 to 2022, our survey incorporates a broader
temporal perspective (with no limit towards the past and
up to December 2023), allowing for a more complete as-
sessment of recent developments. Additionally, while the
book chapter relies only on Scopus for data retrieval, our
survey extends the literature coverage by including data
from multiple repositories, including Scopus, Web of Science
(WOS), ACM, and IEEE. Furthermore, our survey employs a
complete and formally defined query methodology through
PICO, as opposed to the more generic nature of the query
used in the book chapter, which includes broader terms such

as ’Artificial Intelligence’, ’bot’, or ’Machine Learning’. The
generic nature of the query causes the book chapter to omit
older papers that did not include ’Machine Learning’ as a
term in their title, abstract, or keywords. As an example, the
book chapter found 2 papers regarding Bayesian Networks
where we found 8 through our query. In contrast to the
book chapter, we also utilize snowballing techniques, both
backwards and forwards, to ensure a thorough identifica-
tion of relevant literature. Moreover, the book chapter does
not present research questions, whereas our survey defines
research questions through the Goal-Question-Metric ap-
proach, enabling a systematic and structured analysis of the
field. In terms of classification, the book chapter considers
only MDE problems and ML techniques, where our sur-
vey categorizes findings according to types of models, ML
techniques, MDE problems, work maturity, type of tools, SE
activities, and work limitations. Finally, our survey presents
a detailed analysis of threats to validity, tailored specifically
for Systematic Literature Reviews (SLRs), a feature that is
also absent in the book chapter.

Beyond the technical aspects, there are also key differ-
ences in the obtained results and conclusions between the
two works. In the book chapter, less papers are obtained and
analyzed than in our work (34 vs. 98), and the venues under
scrutiny vary significantly from those of our study. While
the book chapter only indicates the number of papers in
conferences and in journals, we detail the number of papers
per conference and per journal. While De Ruscio et. al. only
consider the number of papers regarding tasks and tech-
niques, we also show the yearly trends of both, and provide
additional information by considering the types of models
in use. Our results align with the book chapter statement
that most of the papers regard modeling assistance in the
form of the specification of models, but differ in the number
of papers and research trends in other key MDE categories:
for instance, we consider the classification of models and
metamodels as separate tasks, and found evidence that
supports model analysis as a cornerstone research task for
the community. Overall, we consider that our work provides
a more extensive view of the field and its development and
maturity, revealing works and trends that the previously
existing literature omitted.

Apart from the aforementioned book chapter, to the best
of our knowledge, there are no other systematic reviews
that focus on the application of ML to solve MDE problems.
There is a recent work that explores the intersection of MDE
with ML [19] which focuses on reviewing studies that apply
MDE to systems with ML components. However, our paper
explores the intersection in the opposite direction, reviewing
studies that apply ML techniques to solve MDE problems.

Other works closely related to ours can be found in
systematic reviews that focus on the application of MDE in
Software Engineering. Since MDE is a software engineering
methodology, it is applied to solve different software tasks.
For example, it is used to support the development of
secure systems, to collect the requirements of a system, or
to systematize the software development. Specifically, there
are some reviews that have tackled topics of this kind.

Loniewski et. al. [3] studied how to manage require-
ments during the MDE process while simultaneously stress-
ing the benefits of automation, presenting a systematic

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JUNE 2020 4

review of the use of requirements engineering techniques
in MDE processes and their automation level. Their re-
sults showed that, although MDE techniques are used to
a great extent in platform-independent models, platform-
specific models, and at code level, most MDE approaches
use only partially defined requirements models or even nat-
ural language at the requirements level. They additionally
identified several research gaps such as a need for more
efforts to explicitly deal with requirements traceability and
the provision of better tool support.

Santiago et. al. [20] place the focus on dealing with
traceability in software development, analyzing the state of
the art in traceability management in the context of Model-
Driven Engineering. Their results highlighted that the most
addressed operations at the time were storage, CRUD, and
visualization, while the most immature operations were the
exchange and analysis of traceability information.

Uzun and Tekinerdogan [21] analyzed Model-Driven
Architecture-Based Testing (MDABT) approaches. Their
SLRs show that although MDABT is a generic process,
the available approaches differed in various ways with
different goals, modeling abstractions, and results, and they
concluded that the potential of MDABT had not been fully
exploited yet.

Raibulet et. al. [22] explored and described the state of
the art for model-driven approaches that support reverse
engineering. The solutions were classified according to the
models in use, the transformations applied to the model,
the tools used for model definition, extraction, and trans-
formation, the level of automation that the tools reached,
their genericity, extensibility, automation of the reverse en-
gineering process, and coverage of the full or partial source
artifacts.

Nguyen et. al. [23] focused on Model-Driven Security
(MDS), a specialized Model-Driven Engineering research
area for supporting the development of secure systems. The
results of this SLR showed the overall status and limitations
of the key approaches of MDS, finding that developing
domain-specific languages plays a key role in many MDS
approaches. Their results suggested the need for addressing
multiple security concerns more systematically and simul-
taneously, for tool chains supporting the MDS development
cycle, and for more empirical studies on the application of
MDS methodologies.

Alfraihi and Lano [24] combined agile development and
Model-Driven Engineering, identifying the main character-
istics of Agile Model-Driven Development (Agile MDD)
approaches, as well as the benefits and the problems of
adopting those approaches. Their results showed that agile
development and MDE can coexist and benefit from their
integration.

Tufail et. al. [25] considered Model-Driven Engineering
(MDE) as a significant method to cope with the problems
of mobile application development for cross platform and
chose to analyze and summarize the trends, tools, and
techniques in that particular context, identifying 11 models
and 21 tools in the process.

Finally, Araújo Silva et. al. [26] conducted an SLR on
Model-Driven Engineering (MDE) for systematizing the
software development of robotics. This work aims to pro-
vide a comprehensive overview of existing model-based

approaches in robotics. Their study highlighted that the
self-adaptation of robots has been poorly explored and sug-
gested using the advances in ML approaches for attaining
greater autonomy of robotic software.

With the exception of the work by Araújo Silva et.
al. [26], none of the works presented above mention ML or
its potential application for solving MDE problems. Araújo
Silva et. al. [26] mention that research in the field of ML
might impact the intersection of MDE and robotics, but it
does not study the application of ML in MDE. In contrast,
ML is fundamental for this review where the goal consists
of providing a comprehensive overview of ML approaches
and their usage in MDE.

Since MDE is a software engineering methodology [27,
28], we considered related works that focus on the applica-
tion of ML in Software Engineering. We found out that there
are fewer works available, but none of them consider MDE
the main artifact at play.

Subahi [29] places the focus on program synthesis, de-
fined as a software development task that aims at achieving
an automatic process of code generation that is satisfactory
given high-level specifications. Subahi studied ML, Natu-
ral Language Processing (NLP), and Artificial Intelligence
(AI) approaches, concluding that the rise in advanced ML
techniques has been remarkable and arguing that there is a
need to gain greater benefits from these approaches in order
to cognify synthesis processes for building next-generation
model-driven engineering (MDE) approaches.

Rigou et. al. [30] studied ML approaches that are able
to draft a PIM model that describes the functional require-
ments of a system from a textual specification, which is a
prerequisite in the context of MDE and which is used to
automatically or semi-automatically derive the source code
of a system. As a result of the paper, the authors outlined a
deep learning approach to achieve the extraction of a PIM
from the textual specification of a system.

Elmidaoui et. al. [31] reviewed software product main-
tainability prediction (SPMP) techniques for improving soft-
ware maintainability. In their SLR, the authors analyzed
and summarized the empirical evidence on the prediction
accuracy of SPMP techniques, revealing that most studies
were solution proposals using a history-based empirical
evaluation approach and that the most used techniques
were ML techniques. They concluded that developing more
accurate techniques may facilitate their use in industry and
they provided guidelines for improving the maintainability
of software.

These reviews focus on the application of ML techniques
for software engineering. In contrast, our review focuses on
the application of ML techniques for a specific software en-
gineering paradigm: MDE. Even though one of our research
questions considers the software engineering tasks, MDE
concepts are the primary artifacts of study in our review.
In fact, our review provides results that would be hard to
synthesize from processing other studies with orthogonal
or adjacent scope, such as the ones previously described.

4 RESEARCH METHOD

The Systematic Literature Review (SLR) method describes
the formal and reproducible steps to identify, evaluate, and

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JUNE 2020 5

interpret the scientific studies that are related to the desired
subject [12]. Our review method was conducted using the
best practices and guidelines for SLR research [12, 32, 33].
This section describes the review method and how it was
followed to address the research questions raised.

4.1 Research questions
We formulate the goal of this research by using the Goal-
Question-Metric perspectives (i.e., purpose, object, issue,
viewpoint) [34]. The purpose is identify, classify, and un-
derstand, the object is existing approaches that support MDE
using ML techniques, the issue is for the publication of the
state, limitations, and trends, and the viewpoint is from the
researcher’s viewpoint. To achieve the goal of this work, the
SLR aims to answer the following research questions (RQs):
RQ1: What are the existing approaches that solve MDE problems
using ML techniques?

RQ1.1: What ML techniques are most commonly used by these
approaches?

RQ1.2: What types of models do these approaches handle?
RQ1.3: What activities in the software development process are

affected by these approaches?
RQ1 is motivated by the need to provide an overview of
the approaches that solve MDE problems by applying ML
techniques. RQ1 is detailed using three sub-questions that
aim to know what the most common ML techniques are,
what types of models are handled, and what software de-
velopment activities are addressed by current approaches.
The main goal of RQ1 is to identify trends in approaches to
solve MDE problems by applying ML techniques. RQ1 also
serves to identify open problems and possible improve-
ments.

RQ2: What is the current maturity level of approaches that use
ML to solve MDE problems?
RQ2 is motivated by the need to measure the level of
maturity of current approaches that solve MDE problems
by applying ML techniques. We defined the maturity of
an approach as its level of development, acceptance, and
usefulness in the scientific community. Maturity cannot be
assessed by just one indicator, and therefore, we focus
on four specific indicators: quality score, citation count,
type of studies, and evaluation context. The quality score,
the citation count, and the type of study are common
indicators in reviews related to software engineering [35]–
[37]. The evaluation context was included considering the
importance of transferring research advancements to the
industrial world. The main goal of RQ2 is to identify the
extent to which the approaches could be used in practice
and to learn about the maturity of studies published in the
research area.

RQ3: What are the limitations of the existing approaches?
RQ3 is motivated by the interest in identifying future
lines of work. The application of ML techniques to solve
MDE problems is an area of research that has grown a
lot in recent years. Therefore, researchers and practitioners
would benefit greatly from an overview, especially for
current problems and future research directions. The main
objective of RQ3 is to identify trends in MDE approaches
using ML techniques, open problems, and possible future
research directions for improvement.

4.2 Search String
To collect all of the available published literature that is
relevant for the research questions, a database search was
adopted as search strategy. Specifically, database searches
consist of conducting systematic searches in databases using
well-defined search strings to find relevant literature.

In this work, the search string was extracted following
the steps suggested by Kitchenham and Charters [12]. First,
we used PICO (Population, Intervention, Comparison, and
Outcomes) criteria to derive the major terms from the re-
search questions.

• Population: In software engineering, population may
refer to a specific software engineering role, category of
software engineer, an application area, or an industry
group [12]. In our work, the population consists of MDE
studies.

• Intervention: In software engineering, intervention
refers to a software methodology, tool, technology, or
procedure that addresses a specific issue [12]. In our
work, the intervention corresponds to ML techniques.

• Comparison: In software engineering, the comparison
is the software engineering methodology, tool, tech-
nology, or procedure against which the intervention is
being compared [12]. In our work, the comparison is
not applied. The goal of this SLR is to characterize the
MDE studies that apply ML techniques.

• Outcomes: In software engineering, the outcomes
should relate to factors of importance to practition-
ers [12]. In our work, the outcomes are approaches,
methods, tools, frameworks, processes, and guidelines
presented by MDE studies that apply ML techniques.

Taking into account the research questions, the identified
search terms were Model Driven Engineering, MDE, Machine
Learning, and Approach. These terms were grouped into three
sets:

• MDE terms: those search terms directly related to the
population (i.e., Model Driven Engineering and MDE).

• ML terms: those search terms directly related to the
intervention (i.e., Machine Learning).

• Approach terms: those search terms directly related to
the outcomes (i.e., Approach).

Then, we found alternative spellings and/or synonyms.
In the case of MDE terms, we included model-driven and
model driven. In the case of ML terms, no alternative spellings
or synonyms were included. In the case of approach terms,
we included method and process.

Then, we verified the search terms in relevant works.
The MDE terms were extended based on the search terms
used in several works [3, 11, 38, 39]. However, we avoided
including the terms model and model-based, because these
two terms are fundamental and frequently used in both
research areas: MDE and ML. However, the meaning of
these terms is different depending on the area. Therefore,
when considering any of these terms as a search term for
MDE [3, 38], a study would only need to include the term
model or the term model-based and one of the terms for ML to
be selected. Since most of the studies related to ML contain
either the term model or the term model-based, we would
obtain a lot of studies that are only related to ML with
no relation to MDE. In fact, using the term model as part

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JUNE 2020 6

of the search string in Scopus, 594,166 studies were found.
In contrast, 6,255 studies were found without this term.
Similarly, using the term model-based as part of the search
string in Scopus, 47,027 studies were found. In contrast,
6,255 studies were found without this term. Therefore, to
avoid misunderstandings and to simplify the search, the
terms model and model-based were not included among the
MDE terms.

In the case of ML terms, the search terms were ex-
tended based on the search terms used in a different set
of papers [40, 41]. Both Ali et. al. [40] and Wen et. al. [41]
propose a wide range of terms that are not focused only
on ML but also on other related topics such as artificial
intelligence and data mining. In artificial intelligence, ML is
the sub-branch that allows the system to learn without being
explicitly programmed [42, 43]. On the other hand, data
mining combines statistics with ideas, tools, and methods
from computer science, ML, database technology, and other
classical data analytical technologies to discover interesting,
unexpected, or valuable structures in large datasets [44].
Although ML is closely related to artificial intelligence and
data mining, the terms artificial intelligence or data mining
cannot be considered synonyms of Machine Learning nor
valid terms within the ML sub-branch. For this reason, these
terms were not included among the ML terms. We also dis-
carded the terms genetic algorithms and genetic programming
because genetic algorithms and genetic programming are
artificial intelligence algorithms, but they are not considered
ML techniques. Most recent taxonomies do not include these
terms as ML techniques [45]–[48]. In contrast, we included
the names of the ML techniques used as search terms in the
aforementioned papers [40, 41], hence including terms such
as decision tree or neural net.

With regard to approach terms, the search terms were
extended based on the search terms used in [49]. However,
we avoided including the terms technique and model because
these two terms are frequently used in both ML and MDE.

Table 1 shows the search terms for each one of the sets:
MDE terms, ML terms, and approach terms. From this table,
we used boolean operators to construct the search string.
Specifically, all MDE terms were combined by using the
boolean ’OR’ operator; all ML terms were combined by us-
ing the boolean ’OR’ operator; and all approach terms were
combined by using the boolean ’OR’ operator. Then, we
combined the MDE terms, the ML terms, and the approach
iterms by using the Boolean ’AND’ operator, which implies
that, for a study to appear on our search, it needs to include
one of the terms for MDE, one of the terms for ML, and
one of the terms for approach. The search string is reported
below:

((’model-driven engineering’ OR ’MDE’ OR ’model-driven*’
OR ’model driven’ OR ’MDD’ OR ’MDA’ OR ’model-driven
architecture’ OR ’model-driven development’ OR ’UML’ OR
’DSL’ OR ’DSML’) AND (’Machine learning’ OR ’decision tree’
OR ’regression tree’ OR ’classification tree’ OR ’nearest neighbo*’
OR ’neural net*’ OR ’bayesian belief network’ OR ’bayesian net*’
OR ’association rule*’ OR ’support vector machine’ OR ’support
vector regression’ OR ’support vector*’) AND (’approach’ OR
’method’ OR ’tool’ OR ’framework’ OR ’process’ OR ’guide-
lines’))

4.3 Selection Strategy

To search all of the available published studies that are
relevant to our research questions, we followed the study
selection process depicted in Fig. 1. Specifically, the selection
strategy was composed of four steps: (1) Initial search, (2)
Exclusion criteria, (3) Inclusion criteria, and (4) Snowballing.

4.3.1 Initial Search

The search string was used to collect the studies that are
present in multiple sources. Specifically, the sources con-
sidered were IEEE, ACM Digital Library, Scopus, and Web
of Science. These databases were selected based on the
experience reported by Dyba et al. [50] and Kitchenham
and Brereton [32]. Specifically, these works reported that the
use of IEEE and ACM as well as two indexing databases is
sufficient [49].

This search covers from any time in the past through
December 31, 2023. Specifically, we found 6,255 studies
using the search string. Table 2 shows the total number of
studies found in the search per database and the number of
studies selected at the end of the selection process.

Note that this table does not reflect the duplicity of
papers: a paper can be found in several sources, or even
in all four sources. Due to the search process followed in
this work, Scopus papers were selected first, discarding
duplicate papers from the other sources. The search then
continued by orderly selecting Web of Science papers, IEEE
papers, and ACM papers. With regard to the duplicity of
papers, 83% of the 78 selected studies can be found in
Scopus, 46% of the 71 selected studies can be found in Web
of Science, 40% of the 71 selected studies can be found in
IEEE, and 4% of the 71 selected studies can be found in
ACM. Hence, although most of the selected studies were
found in Scopus, it is also possible to find them in other
sources.

4.3.2 Exclusion Criteria

After the search, the retrieved studies were evaluated based
on a series of exclusion criteria. The studies that met one
of the exclusion criteria were discarded for our review. The
following criteria state the conditions for the exclusion of a
study:

• studies that are duplicates of other studies.
• studies presenting summaries of conferences or editori-

als.
• studies that were not written in English.
• studies presenting peer-reviewed research that were not

published in journals, conferences, or workshops (e.g.,
PhD theses or review studies).

• studies presenting non-peer-reviewed material.

The entire list of retrieved studies was filtered to exclude
non-relevant studies. This step was conducted by one au-
thor of this paper, who applied the exclusion criteria taking
into account the title, abstract, and keywords of the retrieved
studies. As a result, 2,700 studies were discarded to satisfy
the exclusion criteria. The remaining studies, 3,555 studies
were selected for the following step.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JUNE 2020 7

TABLE 1: Search terms

MDE terms ML terms Approach terms

Model-driven engineering, MDE, model-
driven, model driven, MDD, MDA,
model-driven architecture, model-driven
development, UML, DSL, DSML

Machine learning, decision tree, regression
tree, classification tree, nearest neighbo*, neu-
ral net*, bayesian belief network, bayesian net*,
association rule*, support vector machine, sup-
port vector regression, support vector*

Approach, method, process, tool, framework,
guidelines

IEEE
(890)

ACM
(53)

Scopus
(3,415)

WoS
(1,897)

Total articles
retrieved
(6,255)

 Selection
(3,555)

Forward
Snowballing

(767)

Backward
Snowballing

(2,172)

 Selection
(78)

Final
Selection

(98)

98 Primary
Studies

Exclusion Criteria
(title, abstract,

keywords)

Inclusion Criteria
(abstract and full

text)

Exclusion &
Inclusion Criteria
(title and keywords)

Quality
Assesment and
Data Collection

S
n
ow
b
al
l

Selection
(9)

Selection
(11)

Fig. 1: Overview of the search process

TABLE 2: Comparison between the total studies found con-
cerning each source (i.e., IEEE, ACM, Scopus, and Web of
Science) or using snowballing and the number of studies
selected at the end of the search process

Source # Total studies found # Primary studies

IEEE 890 8

ACM 53 0

Scopus 3,415 68

Web of Science 1,897 2

Backward Snowballing 2,172 11

Forward Snowballing 767 9

4.3.3 Inclusion Criteria

After the exclusion criteria, the inclusion criteria were ap-
plied to the remaining studies. We define a set of inclusion
criteria to be taken into account for the three ways that ML
and MDE can be combined.

First, MDE artifacts (e.g., models or metamodels) are
used to solve or improve the solution to a challenge stem-
ming from ML (MDE in ML). For instance, the work in [51]
analyzes the architecture of ML software systems. To do
this, their authors apply reverse engineering to build the
UML class diagram of the systems, and then use these
diagrams to study the characteristics of the architectures.
Second, ML techniques are applied to solve MDE problems
(ML in MDE). For example, the work in [SLR17] applies
a long short-term memory neural network to automati-
cally infer model transformations from sets of input-output
model pairs. Third, MDE artifacts and ML techniques are
used to solve a research problem (MDE and ML). For ex-

ample, the work in [52] introduces the notion of context
into rules and decision trees that are used inside concep-
tual models allowing to incorporate context as important
information for personalized web applications. The goal of
this work is to provide travelers on public transport with
personalized information at the right time. The solution
proposed combines conceptual models (MDE) and rules and
decision trees (ML).

Since this work focuses on the second perspective
(ML in MDE), the inclusion criteria are defined to select
the studies that solve MDE problems using ML techniques.
The following criteria state the conditions for the inclusion
of a study:

• studies that were in the field of computer science.
• studies that were focused on software models that

describe how to develop software systems.
• studies that were focused on applying ML techniques

to solve MDE problems.
The studies that met all of the inclusion criteria are the

ones selected for our review (primary studies). This step
was conducted by two authors of this paper, who applied
the inclusion criteria taking into account the abstract and
full-text of the selected studies. The 3,555 studies that were
selected in the previous step were filtered to include only
the relevant studies to answer the research questions. As
a result, 78 studies were included to satisfy the inclusion
criteria, which is about 1.25% of the papers found in the
initial search.

4.3.4 Snowballing

To search for possible missing papers, we applied snow-
balling to identify additional sources [53]. Specifically, from
the 78 selected studies, we performed as many backward
and forward snowballing iterations as necessary until no

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JUNE 2020 8

TABLE 3: Questions for Assessing Study Quality

Question
Q1 Is there a rationale provided for why the study was undertaken?
Q2 Is there an adequate description of the context (industry, lab-

oratory settings, product used, etc.) in which the research was
carried out?

Q3 Is there a justification and description for the research design?
Q4 Is there a clear statement of findings, including data that sup-

ports findings?
Q5 Did the researcher(s) critically examine his/her (their) own role,

potential bias, and influence during the study?
Q6 Are the limitations and credibility of the study discussed explic-

itly?

new studies were found. For each iteration, two authors
reapplied the exclusion/inclusion criteria based on the title
of all of the studies. As a result, 11 studies were found using
backward snowballing, and 9 studies were found using
forward snowballing (see Table 2). In total, 20 studies were
found for further analysis.

To ensure accuracy, the selection process was double-
checked by another author of this paper. In case of disagree-
ment, the first and second authors held a discussion in order
to reach a consensus. Table 2 shows the number of primary
studies selected through snowballing.

At the end of the search process, 98 papers (78 papers
from the initial search and 20 studies from snowballing)
make up the primary studies of this work. Therefore, there
are a total of 98 primary studies in this review, where 79.6%
of the studies were found in databases and 20.4% of the
studies were found by applying snowballing.

4.4 Quality Assessment
This section describes the quality assessment, which is crit-
ical for SLRs [12]. Since we expected to find both empirical
and non-empirical studies, using a study design hierarchy
(e.g., experimental studies, case control studies) would not
apply to all studies. Therefore, instead of using the study de-
sign hierarchy for software engineering proposed in [54], the
papers were assessed using questions as proposed in [35].
Specifically, each paper was assessed using the six questions
of Table 3, which placed the focus on the overall quality of
a paper.

Similarly to Galster et al. [35] and the three point scale
instrument described in [55], each question was answered
by assigning responses on a three point scale: yes, to some
extent, or no. Each point in the scale is replaced by a nu-
merical value in order to avoid neglecting the papers with
limited information [35]: yes is equal to 1, to some extent is
equal to 0.5, and no is equal to 0. The quality score of a
study is calculated as the sum of the scores that the study
has obtained for each question. The quality scores are used
for quality assessment as an indicator of the maturity level
of the approaches. It was not used for filtering purposes, so
none of the primary studies were included or excluded due
to their quality score.

4.5 Data Collection
Table 4 shows the information collected for each study. To
collect this data, two researchers read the full papers for the

TABLE 4: Data Collection Form

Field Research question
F1 Author n/a
F2 Year n/a
F3 Title n/a
F4 Venue n/a
F5 Keywords n/a
F6 Abstract n/a
F7 ML technique RQ1.1
F8 Type of Models RQ1.2
F9 Type of UML diagrams RQ1.2
F10 MDE problem RQ1.3
F11 Transformation type RQ1.3
F12 Activities addressed RQ1.3
F13 Quality score RQ2
F14 Citation count RQ2
F15 Type of studies RQ2
F16 Evaluation context RQ2
F17 Level of tool support RQ3
F18 Limitations RQ3

selected studies in parallel. The data was extracted by the
one of the researchers and checked against the paper by the
other researcher. In the case of disagreement, the researchers
discussed the data or consulted an additional researcher.

The data collection was divided into four parts: Demo-
graphic information (F1 to F6), Data for RQ1 (F7 to F12),
Data for RQ2 (F13 to F16), and Data for RQ3 (F17 to F18).
The following subsections describe the fields for each of
these parts.

4.5.1 Demographic information
F1 to F6 record the meta-information of papers, such as the
names of the authors, the publication year, the title of the
paper, the venue (i.e., workshop, conference, or journal), the
keywords, and the abstract. This information is collected
for both documentation purposes and for the demographic
study.

Taking into account this information, 14.61% of the pri-
mary studies are published in workshops, 56.18% of the
primary studies are published in conferences, and 29.21%
of the primary studies are published in journals.

Fig. 2a and Fig. 2b show the distribution of primary
studies concerning conferences and journals, respectively.
The conferences and journals with the highest number of
primary studies are, in fact, relevant publication venues
for the MDE community. International Conference on Model-
Driven Engineering Languages and Systems (MODELS) and In-
ternational Conference on Model-Driven Engineering Languages
and Systems Companion (MODELS-C) have been the two
most prominent venues for publishing ML-based papers
for MDE, with MODELS being the main conference and
MODELS-C being a collection of satellite events that accom-
pany the conferences (mainly, associated workshops). Soft-
ware and Systems Modeling (SoSyM) is the most prominent
journal for publishing ML-based papers for MDE.

Moreover, Fig. 3 shows the distribution of the primary
studies regarding type and year of publication. This figure
shows an increasing trend for publishing ML-based papers
in MDE. While the number of studies published in work-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JUNE 2020 9

Fig. 2: Distribution of primary studies for venues

(a) Distribution of primary studies for conferences

(b) Distribution of primary studies for journals

shops remained stable until 2022, the number of papers
published in conferences consistently increased from 2013
onwards. In the case of journals, the number of publications
has consistently been lower than the number of papers pub-
lished in conferences. However, an increase in the number
of papers published in journals from 2019 onwards can be
observed with journals surpassing conferences for the first
time in 2022.

4.5.2 Data for RQ1

F7 to F12 extract the data to answer RQ1. Each of these fields
and their categories are detailed below.

Fig. 3: Distribution of primary studies for type and year of
publication

F7 records the type of ML technique applied on MDE.
We used the terms that were identified during the search
process (see Table 1). This field was used to answer RQ1.1.

F8 reports the type of models in use. If the type of
model is Unified Modeling Language (UML), F9 documents
the types of UML diagrams used in the paper. While the
categories for F8 are identified using natural language,
the categories for F9 are the ones defined by the Object
Management Group (OMG) in the last UML specification
(Version 2.5.1) [56]. These fields were used to answer RQ1.2.

F10 documents the MDE issue addressed by the method.
In the cases where the MDE problem deals with model
transformations, F11 captures the specific transformation
(e.g., from code to model). As for F12, it logs the activi-
ties targeted by the approach, tool, or methodology. While
F10 and F11 were recorded using natural language, F12
is based on the following activities proposed by Galster
et al. [35]: requirements engineering, architecture/design,
implementation, testing and verification, and maintenance.
These fields were used to answer RQ1.3.

4.5.3 Data for RQ2

F13 to F16 extract the data to answer RQ2. Specifically,
the answer to this question is based on four metrics: the
quality score, the citation count, the type of study, and the
evaluation context.

F13 records the quality score. This quality score is mea-
sured using the quality assessment described in Section 4.4.
F14 records the citation count based on Google Scholar (as
of April 2024). F15 records whether a study is empirical or
not.

F16 records the evaluation context, which is used to
study the maturity of the evaluation performed by each
primary study. We adapted the revised classification that
is described in [35], which is based on the levels of study
design proposed by [54]. The classification has five levels:
no evaluation (0), evaluation based on a demonstration or
toy examples (1), evaluation based on expert opinions or
observations (2), evaluation based on academic cases (3),
evaluation based on industrial cases (4), and evaluation
from industrial practices (5). The weakest level is 0 where
the paper does not present any evaluation. The strongest

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JUNE 2020 10

level is 5 where the approach, tool, or method is approved
and adopted by industrial organizations [57].

4.5.4 Data for RQ3
F17 to F18 extract the data to answer RQ3. Specifically, F17
records the level of tool support, considering that the paper
can present an automatic tool, a semi-automatic tool, a manual
tool, or no tool at all. F18 records the limitations of the works
as text.

5 RESULTS

This section presents the final results of the SLR. The results
of the whole search process, step by step, are available
at https://doi.org/10.5281/zenodo.10678163. Specifically,
this website contains the results of the selection process
as well as the results of the quality assessment and data
collection.

5.1 RQ1. What are the existing approaches that solve
MDE problems using ML techniques?
In this section, we outline the results of the studies on
solving MDE problems using ML. The studies are listed in
the Systematic Review References section that comes after
the bibliography of this work.

5.1.1 RQ1.1. What ML techniques are most commonly
used by these approaches?
The answer to this question is based on F13 data from the
data extraction form regarding ML techniques in use. Table 5
shows the number of papers that apply each ML technique.
It also includes the references of the papers.

Overall, neural networks and decision, regression, and
classification trees are the most commonly used techniques
in MDE. Then, we find bayesian networks, followed by clus-
tering and nearest neighbors. The rest of the ML techniques
(e.g., association rules or support vector machine (SVM)) are
less used to solve MDE problems.

Fig. 4 shows the distribution of the most used ML
techniques applied on MDE for years. Note that, neural
networks, which are the most widely used ML technique,
were practically not applied until 2020. However, there
was a pronounced increasing interest in 2021. In contrast,
the other four most applied techniques (i.e., regression
and classification trees, bayesian networks, clustering, and
nearest neighbors) have a similar behavior. They were first
used between 2009 and 2012 and their application remains
more or less uniform. Notably, the recent growth of neural
networks in 2021 coincides with a decline in the application
of the other four techniques. Despite the continuous growth
of neural networks in 2022, these techniques saw a recovery
to their previous levels in 2022. However, this recovery does
not appear to be stable given the 2023 results.

Furthermore, more than 14% of the studies use more
than one ML technique. Generally, studies that apply mul-
tiple ML techniques compare those techniques to determine
which one is best for the proposed approach of a study
[SLR64, SLR67, SLR14, SLR23, SLR38, SLR66, SLR34, SLR77,
SLR54, SLR12, SLR41, SLR40, SLR48]. However, one of the
primary studies uses several ML techniques to address

TABLE 5: ML techniques applied by studies

Techniques # Papers
Neural Networks 40 [SLR3], [SLR12], [SLR13], [SLR17], [SLR18],

[SLR23], [SLR33], [SLR37], [SLR38], [SLR41],
[SLR50], [SLR51], [SLR62], [SLR63], [SLR64],
[SLR72], [SLR76], [SLR81], [SLR85], [SLR84],
[SLR86], [SLR89], [SLR95], [SLR96], [SLR49],
[SLR24], [SLR61], [SLR36], [SLR19], [SLR22],
[SLR70], [SLR43], [SLR92], [SLR40], [SLR52],
[SLR47], [SLR80], [SLR79], [SLR16], [SLR91]

Decision,
regression, and
classification tree

24 [SLR12], [SLR14], [SLR15], [SLR23], [SLR29],
[SLR31], [SLR32], [SLR38], [SLR39], [SLR41],
[SLR44], [SLR46], [SLR45], [SLR53], [SLR64],
[SLR66], [SLR65], [SLR67], [SLR77], [SLR88],
[SLR97], [SLR98], [SLR40], [SLR54]

Bayesian
Networks

13 [SLR14], [SLR34], [SLR35], [SLR38], [SLR41],
[SLR64], [SLR66], [SLR67], [SLR77], [SLR90],
[SLR94], [SLR40], [SLR54]

Clustering 12 [SLR7], [SLR6], [SLR21], [SLR27], [SLR42],
[SLR73], [SLR83], [SLR48], [SLR8], [SLR5],
[SLR4], [SLR20]

Nearest Neighbors 11 [SLR12], [SLR14], [SLR34], [SLR38], [SLR41],
[SLR59], [SLR64], [SLR66], [SLR67], [SLR77],
[SLR40]

SVM 6 [SLR23], [SLR38], [SLR41], [SLR67], [SLR48],
[SLR40]

Association rules 2 [SLR26], [SLR32]
Others 16 [SLR1], [SLR30], [SLR58], [SLR60], [SLR69],

[SLR2], [SLR93], [SLR25], [SLR11], [SLR54],
[SLR10], [SLR28], [SLR82], [SLR55], [SLR56],
[SLR57]

Not specified 7 [SLR9], [SLR68], [SLR71], [SLR74], [SLR75],
[SLR78], [SLR87]

Fig. 4: Most used ML techniques in MDE per year

different parts of the proposed approach. In [SLR32], the
proposed approach uses association rules for obtaining fea-
tures that are then used by a decision tree algorithm to
classify classes, whether it predicts the proneness to change
or not.

5.1.2 RQ1.2. What types of models do these approaches
handle?
To answer this question, we drew on data that was extracted
based on F9 (type of models) and F10 (type of UML dia-
grams) from the data extraction form. Table 6 groups and
counts the papers by type of model.

Most of the primary studies apply ML techniques on
Unified Modeling Language (UML) diagrams. Specifically,
more than 61% of the primary studies applied ML tech-
niques on UML (i.e., 60 papers). To a lesser extent, ML
techniques are also applied on other types of models. Mod-

https://doi.org/10.5281/zenodo.10678163

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JUNE 2020 11

TABLE 6: Type of models by studies: Unified Modeling
Language diagrams (UML), Component State Transition Di-
agram (CSTD), models based on Domain Specific Language
(DSL), etc.

Type of model # Papers
UML 60 [SLR3], [SLR1], [SLR12], [SLR13], [SLR17],

[SLR18], [SLR26], [SLR29], [SLR31], [SLR32],
[SLR33], [SLR34], [SLR35], [SLR37], [SLR38],
[SLR39], [SLR42], [SLR46], [SLR53], [SLR59],
[SLR60], [SLR64], [SLR66], [SLR65], [SLR67],
[SLR68], [SLR69], [SLR71], [SLR72], [SLR75],
[SLR81], [SLR83], [SLR85], [SLR84], [SLR86],
[SLR88], [SLR89], [SLR90], [SLR94], [SLR95],
[SLR96], [SLR24], [SLR93], [SLR36], [SLR19],
[SLR22], [SLR25], [SLR43], [SLR92], [SLR8],
[SLR5], [SLR11], [SLR54], [SLR10], [SLR20],
[SLR82], [SLR80], [SLR79], [SLR16], [SLR91]

DSL 13 [SLR58], [SLR74], [SLR97], [SLR98], [SLR48],
[SLR25], [SLR70], [SLR5], [SLR47], [SLR28],
[SLR55], [SLR56], [SLR57]

Domain models 11 [SLR6], [SLR9], [SLR14], [SLR15], [SLR27],
[SLR41], [SLR77], [SLR76], [SLR78], [SLR4],
[SLR40]

Metamodels 10 [SLR7], [SLR44], [SLR45], [SLR59], [SLR62],
[SLR63], [SLR73], [SLR49], [SLR24], [SLR61]

CSTD 3 [SLR50], [SLR51], [SLR52]
Design models 2 [SLR2], [SLR54]
Relational schema 2 [SLR17], [SLR16]
Others 5 [SLR30], [SLR23], [SLR30], [SLR1], [SLR2]
Not specified 2 [SLR21], [SLR87]

els defined by Domain Specific Language (DSL) are used
in 13.3% of the primary studies, domain models are used
in 11.2% of the primary studies, metamodels are used in
10.2% of the primary studies, component state transition
diagrams are used in 3.1% of the primary studies, design
models are used in 2.0% of the papers, relational schemas
are used in 2.0% of the papers. Other kinds of models, such
as entity-relationship diagrams or conceptual models are
used in less than 1.0% of the papers. We also found two
works where the type of model is not specified [SLR21,
SLR87]. The work in [SLR21] proposes the use of graph
kernels as a general framework for approaching problems in
Model-Driven Engineering. However, this framework will
be evaluated with different graph kernel and model types in
the future. The work in [SLR87] presents ideas on taking the
first steps towards cultivating synergy between MDE, ML,
and software clones. Therefore, none of these two works
focus on one specific type of model.

Since most of the primary studies focus on UML dia-
grams, we also collected the type of UML diagram in use.
To do this, we used the taxonomy of structure and behavior
diagrams defined by the OMG in the last UML specifica-
tion (Version 2.5.1) [56]. According to this taxonomy, there
are two major kinds of diagram types: structure diagrams
and behavior diagrams. In Fig. 5, the structure diagrams
are pointed out with striped bars: profile diagrams, class
diagrams, composite structure diagrams, component dia-
grams, deployment diagrams, object diagrams, and package
diagrams. The behavior diagrams are pointed out with
dotted bars: activity diagrams, interaction diagrams, use
case diagrams, and state machine diagrams. Fig. 5 shows
the number of papers for each type of diagram. Most of

Fig. 5: Distribution of the primary studies on the type of
UML diagram

the primary studies applied ML techniques on structure
diagrams, and more specifically, on class diagrams.

Note that, of the 60 primary studies that apply ML
techniques in UML diagrams, 46 primary studies focus on
class diagrams, i.e., 54.1% of the primary studies applying
ML techniques in MDE focus on class diagrams. However,
some of these primary studies do not focus only on class
diagrams but support other UML diagrams as well (usually
sequence diagrams). It is also remarkable that some primary
studies cite the use of a single type of model as a limitation
of their work or propose to extend their study to other types
of models as future work [SLR24, SLR60, SLR26, SLR7].

As we commented in the background section, models
are based on the shape of the model elements or the type
of model elements. Although both methods are used inde-
pendently of the type of model, shape is always used in
research dealing with images [SLR33, SLR60, SLR89, SLR84,
SLR85, SLR19, SLR43, SLR92]. These works focus on the
recognition of diagrams from images or on the classification
of images by model type. Moreover, all of these works use
UML diagrams.

5.1.3 RQ1.3. What activities in the software development
process are affected by these approaches?
To answer this question, we drew on data extracted based
on F11 (MDE problem), F12 (transformation type), and F16
(activities addressed), with the aim of identifying the soft-
ware development activities and MDE problems addressed
by the approaches, enabling the identification of future lines
of research as well as the application of the approaches to
other software development activities or MDE problems.

TABLE 7: Software engineering (SE) activities addressed by
studies

SE activities # Papers
Requirements en-
gineering

20 [SLR26], [SLR29], [SLR37], [SLR42], [SLR44],
[SLR46], [SLR45], [SLR50], [SLR51], [SLR58],
[SLR68], [SLR69], [SLR72], [SLR90], [SLR94],
[SLR96], [SLR2], [SLR78], [SLR36], [SLR52]

Architect./design 4 [SLR18], [SLR63], [SLR89], [SLR95]
Implementation 2 [SLR32], [SLR20]
Testing 3 [SLR21], [SLR34], [SLR74]
Maintenance 6 [SLR31], [SLR53], [SLR86], [SLR93], [SLR4],

[SLR40]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JUNE 2020 12

Table 7 shows the number of papers per addressed
software engineering activity. This table only categorizes
the primary studies that focus on a specific SE activity.
However, only 39.3% of the primary studies focus on a
specific activity, while 64.3% of the primary studies are
classified as General.

On the other hand, we use F11 (MDE problem) to iden-
tify MDE problems addressed by the primary studies of this
review. The following are the main MDE problems tackled
by them:

• Specification of models, which is focused on the design
of models.

• Model analysis, which is focused on evaluating models
to determine whether a model is valid, detecting defects
on models, or grading models according to specific
quality criteria.

• Model transformation, which is focused on convert-
ing models between different abstraction levels (e.g.,
model-to-model or model-to-code).

• Model-driven reverse engineering, which is focused on
generating relevant model-based artifacts from legacy
systems.

• Classification of models, which is focused on the cate-
gorization of models.

• Model comparison, which is focused on identifying
similarities and differences between models.

• Identification of model elements, which is focused on
finding specific elements in a model.

• Model recognition, which is focused on identifying
models in different sources (e.g., images).

• Classification of metamodels, which is focused on the
categorization of metamodels.

Table 8 shows the distribution of the primary studies
over the identified MDE problems. Model specification is
the most common MDE problem. Nevertheless, there is a
considerable number of studies focusing on model analysis,
classification of models, and model transformation. In ad-
dition, considering the type of model transformation, most
of the primary studies, that focus on model transformation
deal with model-to-model transformation [SLR1, SLR17,
SLR27, SLR30, SLR44, SLR45, SLR2, SLR28]. However, Bur-
gueño et. al address both the transformation from model to
model and the transformation from model to code [SLR16].

When comparing these MDE problems over the years,
we observed three waves of emergence. In the first wave,
between 2010 and 2012, the first papers applying ML tech-
niques for model transformations, model-driven reverse
engineering, model analysis, and specification of models
were published. In the second wave, between 2016 and
2017, the first papers applying ML techniques for model
comparison, classification of models, and identification of
model elements were published. In the third wave, between
2019 and 2020, the first studies applying ML techniques for
classification of metamodels and model recognition were
published.

Fig. 6 shows the distribution of the most common MDE
problems concerning the three waves described. Fig. 6a
shows that there is a higher number of publications on the
MDE problems belonging to the first wave compared to the
two later waves, with one exception classification of models
(Fig. 6b). The classification of models is a special case. The

TABLE 8: MDE problems addressed by studies

MDE problem # Papers
Specification of
models

32 [SLR26], [SLR29], [SLR31], [SLR32], [SLR34],
[SLR37], [SLR42], [SLR46], [SLR50], [SLR68],
[SLR69], [SLR71], [SLR72], [SLR74], [SLR75],
[SLR77], [SLR76], [SLR81], [SLR83], [SLR90],
[SLR94], [SLR96], [SLR97], [SLR98], [SLR24],
[SLR78], [SLR25], [SLR70], [SLR87], [SLR47],
[SLR80], [SLR79]

Model analysis 18 [SLR6], [SLR9], [SLR12], [SLR14], [SLR15],
[SLR18], [SLR23], [SLR35], [SLR38], [SLR53],
[SLR86], [SLR88], [SLR22], [SLR11], [SLR54],
[SLR10], [SLR82], [SLR57]

Model transforma-
tions

9 [SLR1], [SLR17], [SLR27], [SLR30], [SLR44],
[SLR45], [SLR2], [SLR28], [SLR16]

Moden driven re-
verse engineering

7 [SLR39], [SLR64], [SLR66], [SLR65], [SLR95],
[SLR55], [SLR56]

Classification of
models

14 [SLR3], [SLR13], [SLR21], [SLR41], [SLR67],
[SLR85], [SLR84], [SLR89], [SLR49], [SLR93],
[SLR5], [SLR40], [SLR20], [SLR91]

Model comparison 5 [SLR7], [SLR21], [SLR59], [SLR8], [SLR4]
Identification of
model elements

4 [SLR51], [SLR58], [SLR36], [SLR52]

Model recognition 7 [SLR33], [SLR60], [SLR85], [SLR84], [SLR19],
[SLR43], [SLR92]

Classification of
metamodels

5 [SLR62], [SLR63], [SLR73], [SLR61], [SLR48]

first primary study that addressed this problem using ML
dates back to 2002. However, it was not until 2017 that
this problem was addressed again using ML. Furthermore,
although it has only been six years since this problem
resurfaced, there are already more primary studies on model
classification using ML than primary studies addressing
model transformations or model-driven engineering, both
of which emerged in the first wave.

In addition, there is also some relationship between the
emergence of the MDE problems and the ML techniques
used to solve them. To address MDE problems that arose
in the first wave (i.e., model transformations, model-driven
reverse engineering, model analysis, and specification of
models), the main techniques used were decision, regres-
sion, and classification tree, bayesian networks, and nearest
neighbors. However, when the next wave emerged, these
same problems began to be addressed using mostly neural
networks. Similarly, to address the MDE problems that arose
in the second wave (i.e., model comparison, classification of
models, and identification of model elements) mainly clus-
tering was used, but when the next wave arose, they started
to be addressed using mainly neural networks. In contrast,
the MDE problems that emerged in the third wave (i.e.,
classification of metamodels and model recognition) have
been addressed from the beginning and almost exclusively
by neural networks.

5.2 RQ2. What is the current maturity level of ap-
proaches that use ML to solve MDE problems?

In this section, we study the maturity of the approaches
that apply ML techniques in MDE based on four metrics:
the quality score (F13), the citation count (F14), the type of
study (F15), and the evaluation context (F16). We also study
the correlation between these metrics.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JUNE 2020 13

Fig. 6: Distribution of MDE problems over the years

(a) First wave of MDE problems using ML

(b) Second wave of MDE problems using ML

(c) Third wave of MDE problems using ML

5.2.1 Maturity metrics
With regard to quality scores, Fig. 7a shows the distribution
of the primary studies for the total quality scores. The total
quality score of each study is calculated as the sum of
its scores for each quality question. A study achieves the
maximum total quality score (equal to 6) when it reaches a
1 in the six quality questions. Most studies received a score
between 3.5 and 6. The mean quality score of all papers is
4.33, so, although not perfect, this finding indicates that the
authors strive to present research with some rigor. In Table 9,
we list all of the studies with the highest total quality scores.

Fig. 7a also shows the total quality scores based on the

TABLE 9: Studies with the highest total quality score

Paper Venue Quality
score

Citation
Count

Type of
Study

Evaluation
context

[SLR14] Conf. 6 6 Emp. 3
[SLR19] Journal 6 1 Emp. 3
[SLR26] Journal 6 12 Emp. 3
[SLR33] Journal 6 10 Emp. 3
[SLR51] Conf. 6 2 NonE. 3
[SLR62] Journal 6 16 Emp. 3
[SLR63] Journal 6 1 Emp. 3
[SLR65] Work. 6 11 NonE. 3
[SLR97] Conf. 6 13 Emp. 3
[SLR98] Journal 6 3 Emp. 3
Venue: Work.-Workshop, Conf.-Conference, Journal-Journal
Type of Study: Emp.-Empirical, NonE.-Non-Empirical
Evaluation Context: 0-No evaluation, 1-Evaluation based on a
demonstration or toy examples, 2-Evaluation based on expert
opinions or observations, 3-Evaluation based on academic cases,
4-Evaluation based on industrial cases, 5-Evaluation from indus-
trial practices.

type of publication venue. The number of papers published
in workshops is outlined using solid bars, the number of
papers published in conferences is outlined using dotted
bars, and the number of papers published in journals is out-
lined using striped bars. The mean of the total quality score
is 3.50 for studies published in workshops, 3.65 for studies
published in conferences, and 4.70 for studies published in
journals. In Table 9, we also include the citation count, the
type of study, and the evaluation context for the studies
with the highest total quality scores. Most of the studies that
achieve high total quality scores (5.5 and 6) are empirical
papers whose evaluation is based on academic cases and
are published in journals.

With regard to citation counts, Fig. 7b shows the distri-
bution of the primary studies for the number of citations.
The paper with the highest number of citations has 90
citations. The mean citation count of all of the papers is
13.33.

In Table 10, we list the studies with at least 16 citations.
This threshold for the citation count is chosen to select
the top 15% papers as in [35]. This table also includes the
quality score, the type of study, and the evaluation context
for the studies with the highest citation count. Most of the
studies that achieve a high number of citations are evaluated
using academic cases. There is no clear relation between the
number of citations and the other two metrics (quality score
and type of study).

Nevertheless, only 23.47% of the primary studies have
more than 20 citations. Most of the studies have less than 10
citations. There are even seven papers that have no citations.
Six of these seven papers are of recent publication (2022
onwards), while the remaining paper is a non-empirical
study published at a conference in 2018 [SLR29]. This study
presents a preliminary approach for a system in which the
requirements taken as input are processed using advanced
methods and decision trees to determine the requirements
efficiently. The authors have not yet presented further work
to continue this preliminary approach. We acknowledge that
any direct conclusion regarding citation count may not be
completely fair because the citation count of more recently

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JUNE 2020 14

Fig. 7: Distribution of the primary studies over the four metrics and the venue.

(a) Distribution of primary studies for Quality Score (b) Distribution of primary studies for Citation Count

(c) Distribution of primary studies for Type of Study (d) Distribution of primary studies for Evaluation Context

TABLE 10: Studies with the highest number of citations

Paper Venue Citation
Count

Quality
Score

Type of
Study

Evaluation
Context

[SLR12] Journal 32 5.5 NonE. 2
[SLR17] Conf 44 5 Emp. 3
[SLR21] Work. 26 2.5 NonE. 0
[SLR27] Work. 34 1.5 NonE. 1
[SLR33] Journal 32 6 Emp. 3
[SLR39] Conf 52 2.5 NonE. 3
[SLR62] Journal 34 6 Emp. 3
[SLR64] Conf 53 4.5 Emp. 3
[SLR69] Journal 53 5.5 Emp. 4
[SLR86] Journal 38 4.5 NonE. 1
[SLR24] Conf 31 4 Emp. 3
[SLR61] Conf 39 5 Emp. 3
[SLR93] Conf 33 3 NonE. 3
[SLR5] Conf 30 4 Emp. 3
[SLR54] Conf 90 3.5 Emp. 3
Venue: Work.-Workshop, Conf.-Conference, Journal-Journal
Type of Study: Emp.-Empirical, NonE.-Non-Empirical
Evaluation Context: 0-No evaluation, 1-Evaluation based on a
demonstration or toy examples, 2-Evaluation based on expert
opinions or observations, 3-Evaluation based on academic cases,
4-Evaluation based on industrial cases, 5-Evaluation from indus-
trial practices.

published papers will always be significantly lower than the
citation count of older primary studies.

With regard to type of study, Fig. 7c shows the distri-
bution of the primary studies for the type of study. Most of

TABLE 11: Studies classified by type of study: Non-
Empirical and Empirical

Non-Empirical Emprirical
[SLR3], [SLR1], [SLR6],
[SLR12], [SLR13], [SLR15],
[SLR18], [SLR21], [SLR23],
[SLR27], [SLR29], [SLR31],
[SLR32], [SLR35], [SLR37],
[SLR38], [SLR39], [SLR41],
[SLR44], [SLR45], [SLR51],
[SLR65], [SLR68], [SLR71],
[SLR72], [SLR74], [SLR75],
[SLR81], [SLR86], [SLR90],
[SLR94], [SLR95], [SLR96],
[SLR93], [SLR36], [SLR22],
[SLR4], [SLR40], [SLR11],
[SLR87], [SLR80]

[SLR7], [SLR9], [SLR8], [SLR5], [SLR2],
[SLR14], [SLR17], [SLR26], [SLR30],
[SLR33], [SLR34], [SLR42], [SLR46],
[SLR50], [SLR53], [SLR58], [SLR59],
[SLR60], [SLR62], [SLR63], [SLR64],
[SLR66], [SLR67], [SLR69], [SLR73],
[SLR77], [SLR76], [SLR83], [SLR85],
[SLR84], [SLR88], [SLR89], [SLR97],
[SLR98], [SLR49], [SLR24], [SLR78],
[SLR61], [SLR19], [SLR48], [SLR25],
[SLR70], [SLR43], [SLR92], [SLR52],
[SLR54], [SLR10], [SLR20], [SLR47],
[SLR28], [SLR82], [SLR79], [SLR16],
[SLR91], [SLR55], [SLR56], [SLR57]

the primary studies are empirical studies. Specifically, there
is a similar number of non-empirical and empirical studies
published in workshops and conferences. In contrast, the
number of empirical studies is somewhat greater than the
number of non-empirical studies published in journals. In
Table 11, we list the studies by type of study.

With regard to evaluation context, Fig. 7d shows the
distribution of the primary studies for the evaluation con-
texts. Most of the studies have an evaluation that is based on
academic cases. Moreover, 13.72% of the studies (14 papers)
do not evaluate the work presented. All of these works
are non-empirical studies that present preliminary ideas for
a system, a method, or an approach. Their total quality

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JUNE 2020 15

TABLE 12: Studies with the highest level of evaluation
context (i.e., Evaluation based on industrial cases)

Paper Venue Evaluation
context

Quality
score

Citation
Count

Type of
Study

[SLR42] Conf. 4 5 4 Emp.
[SLR46] Conf. 4 4.5 0 Emp.
[SLR58] Conf. 4 5.5 8 Emp.
[SLR69] Journal 4 5.5 43 Emp.
[SLR96] Conf. 4 3 1 NonE.
[SLR49] Conf. 4 4.5 2 Emp.
[SLR25] Journal 4 4 6 Emp.
[SLR47] Journal 4 4.5 4 Emp.
[SLR16] Journal 4 5 17 Emp.
[SLR55] Journal 4 5.5 24 Emp.
[SLR56] Journal 4 5.5 6 Emp.
[SLR57] Journal 4 5.5 1 Emp.
Venue: Work.-Workshop, Conf.-Conference, Journal-Journal
Type of Study: Emp.-Empirical, NonE.-Non-Empirical
Evaluation Context: 0-No evaluation, 1-Evaluation based on a
demonstration or toy examples, 2-Evaluation based on expert
opinions or observations, 3-Evaluation based on academic cases,
4-Evaluation based on industrial cases, 5-Evaluation from indus-
trial practices.

scores are around 2.5, and, surprisingly, most of them are
published in conferences instead of workshops.

On the other hand, although 12.24% of the primary stud-
ies are evaluated using industrial cases, none of the primary
studies evaluate the work directly in industry. Therefore, the
presented approaches, methods, or tools are not approved
and adopted by industrial organizations. Since evaluations
based on industrial cases are the highest level of evalua-
tion context, these studies are potentially the most relevant
works from researchers. Therefore, we list these papers in
Table 12 with their quality score, citation count, and type
of study. All of these studies were published from 2016 to
2023, particularly in the last three years. Most of them are
empirical studies that are published in both conferences and
journals.

5.2.2 Correlation between metrics
In the previous section, we determined which primary
studies achieve the best quality score (i.e., six points), obtain
the highest number of citations (i.e., more than 20 citations),
present a specific type of study (i.e., empirical or non-
empirical), and evaluate the work based on the highest level
of context (i.e., based on industrial cases). Next, we analyze
whether the metrics are related to each other. For example, if
the number of citations is high, the main study could have a
high-quality score or empirical studies could achieve better
quality scores than non-empirical studies.

To check the correlation among the four metrics, we ap-
plied different statistical analyses depending on the metrics
and the normality of the data. It should be noted that all
of the normality tests performed indicate that the data do
not follow a normal distribution. Therefore, the methods
applied were Spearman’s rank correlation coefficient (when
the two variables do not follow a normal distribution, such
as the quality score and the citation count), the Mann-
Whitney U test (when the two variables do not follow
a normal distribution and one of this variables has two

groups, such as the type of study), and Kruskal Wallis (when
the two variables do not follow a normal distribution and
one of the variables has more than two groups, such as the
evaluation context).

The citation count is not related to the other metrics.
When analyzing the correlation between citation count
and quality score, Spearman’s rank correlation coefficient
(Spearman’s ρ) is equal to 0.25. That means that there is
no correlation between the citation count and the quality
score, or that this correlation is weak. Similarly, there are
no significant differences between the citation count for
empirical and non-empirical studies, and there are no signif-
icant differences between the citation count for the different
evaluation contexts.

In contrast, the quality score is related to the other
two metrics: the type of study and the evaluation context.
Therefore, we performed a deeper analysis of these metrics.
With regard to the type of study, the Mann-Whitney U test
does not show a significant difference between empirical
and non-empirical studies for two of the questions (i.e., Q1
and Q3). Therefore, there are no differences between the ra-
tionale for why the work was undertaken (Q1) in empirical
and non-empirical primary studies. There are no significant
differences between the way to report the research design
(Q3) in empirical and non-empirical primary studies.

However, there are significant differences between the
quality scores of empirical and non-empirical studies for
the other questions (i.e., Q2, Q4, Q5, and Q6). For the way
to describe the context in which the research was carried
out (Q2), the empirical studies significantly achieved better
quality scores than the non-empirical studies. For Q2, 40
of the 57 empirical papers achieved a score equal to 1
(70.2% of the empirical papers), while only 15 of the 41 non-
empirical papers achieved the same score (36.6% of the non-
empirical papers). For presenting data that supports their
findings (Q4), the empirical studies significantly achieved
better quality scores than the non-empirical studies. For Q4,
51 of the 57 empirical papers achieved a score equal to 1
(89.5% of the empirical papers), while only 19 of the 41
non-empirical papers achieved the same score (46.3% of the
non-empirical papers). For critically examining their own
role, potential bias, and influence during the study (Q5), the
empirical studies also significantly achieved better quality
scores than the non-empirical studies. For Q5, 16 of the
57 empirical papers achieved a score equal to 1 (28.1% of
the empirical papers), while only 3 of the 41 non-empirical
papers achieved the same score (7.3% of the non-empirical
papers). For describing the limitations and credibility of the
work (Q6), the empirical studies also significantly achieved
better quality scores than the non-empirical studies. For Q6,
15 of the 57 empirical papers achieved a score equal to 1
(26.3% of the empirical papers), while only 4 of the 41 non-
empirical papers achieved the same score (9.8% of the non-
empirical papers).

Therefore, empirical studies achieved significantly better
quality scores than the non-empirical studies for Q2, Q4, Q5,
and Q6. Furthermore, independently of the type of study,
most of the papers scored the lowest on Q5 and a medium-
quality score on Q6.

With regard to the evaluation context, the performed
analysis shows that the quality scores are related to the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JUNE 2020 16

evaluation contexts but that not all of the evaluation con-
texts have significant differences. Specifically, the differences
are only significantly important when we compare the most
distant contexts, i.e., when no evaluation (0) is compared
to an evaluation based on academic cases (3), when no
evaluation (0) is compared to industrial cases (4), when an
evaluation based on a demonstration or toy examples (1)
is compared to an evaluation based on academic cases (3),
and when an evaluation based on a demonstration or toy
examples (1) is compared to industrial cases (4). Specifically,
the primary studies with more basic evaluation contexts
(i.e., no evaluation and an evaluation based on demonstra-
tion or toy examples) achieve worse quality scores than
the superior evaluation contexts (i.e., evaluation based on
academic cases and an evaluation based on industrial cases).
Primary studies with no evaluation achieve a mean quality
score of 2.54, and primary studies with an evaluation based
on demonstration or toy examples achieve a mean quality
score of 3.15. In contrast, primary studies with an evaluation
based on academic cases achieve a mean quality score of
4.19, and primary studies with an evaluation based on
industrial cases achieve a mean quality score of 4.83.

Finally, the analysis also indicates that there is a corre-
lation between the type of study and the evaluation con-
text. Specifically, there is a higher number of non-empirical
studies that do not have an evaluation or have an evalua-
tion based on a demonstration or toy examples. Of the 24
primary studies that do not have an evaluation or have an
evaluation based on a demonstration or toy examples, 21 are
non-empirical studies (87.5% are non-empirical). In contrast,
there is a higher number of empirical studies that have an
evaluation based on academic cases or industrial cases. Of
the 69 primary studies that have an evaluation based on
academic cases or industrial cases, 52 are empirical studies
(75.4% are empirical).

5.3 RQ3. What are the limitations of the existing ap-
proaches?

In this section, we outline the limitations of the existing
approaches based on F17 of the data collection form. We also
identified the existence or non-existence of support tools
(F14). If they do not exist, this would be a limitation for
the practical applicability of the approach. Based on F17,
the following topics are recurrently reported as limitations:

• The size and quality of the datasets is not always
enough or can be improved. To use supervised ML
techniques, a dataset with labelled examples is needed
to perform the training and testing of a classifier. How-
ever, a dataset with the appropriate number of exam-
ples in the datasets is not always available. Moreover,
there is a need for the examples in the datasets to cover
all possible scenarios (balanced datasets). Therefore,
both the size and the quality of the datasets are critical
to successfully apply ML techniques of this kind. If an
appropriate dataset is not available, researchers cannot
use the approaches proposed by some of the primary
studies. Some authors highlight that part of their train-
ing or testing datasets is synthetic. They consider this as
a possible point of future study by comparing synthetic
datasets with real datasets. Furthermore, many authors

point out the need for finding larger balanced datasets
in their studies.

• The vocabulary can lead to limitations when ap-
proaches use the terms in models. Some works take ad-
vantage of the text in model elements to apply ML tech-
niques. These studies, which usually use techniques
to process texts, have to deal with the ambiguities of
natural language. For example, the authors in [SLR77,
SLR76] point out the need for a larger set of vocab-
ulary and word embeddings of higher dimensions.
In [SLR66], the author points out that some words do
not carry any meaning and lead to inaccuracy when
counting the occurrence of the words. In [SLR48], the
authors highlight the out-of-vocabulary (OOV) prob-
lem as a problem for embedding the model terms.

• Different types of models and ML techniques can be
explored. Most of the works focus on one or at most
two types of models. Therefore, many authors propose
extending their research to other models. Similarly,
most authors propose approaches that are based on
a specific ML technique. In this case, in addition to
exploring other ML techniques, some authors highlight
the need to compare their works with other ML-based
approaches.

• The generalization and capacity to scale the approaches
are difficult to guarantee. The authors usually test the
approaches in specific domains, so it is necessary to test
their approaches in other domains in order to verify the
generalization and scalability of their approaches. More
than 20% of the primary studies explicitly highlight
generalization as a limitation or future work.

Other limitations are related to specific problems, such
as the use of a single configuration to tune the parameters,
the presentation of a domain-dependent approach, the use
of few features or features that are unrepresentative for the
training and testing process, or the lack of a support tool
to evaluate the proposed approach. In fact, regarding tool
support, 36 approaches of the primary studies are evaluated
using automatic tools, and 25 approaches are evaluated
using semi-automatic tools. However, most studies do not
make their tools available to other researchers and prac-
titioners, although in some cases they do publish their
datasets. Furthermore, 24 studies do not present a tool.

Note that the collected data highlights issues that are not
limited to solving MDE problems using ML. These include
the availability of appropriate datasets, the selection and
comparison of different techniques, or the generalization of
the findings. In addition, two necessary avenues of research
have been identified: the use of texts in models (vocabulary)
and the design of approaches that do not depend on the
type of model (different types of models). While execution
time is reported as a limitation, almost no study provides
information on execution time costs.

6 DISCUSSION

Through a thorough analysis of the results obtained by our
SLR, we have raised a series of discussion points regarding
the state of the art on MDE using ML. The following
subsections bring forth such a discussion.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JUNE 2020 17

Note that most of the studies are not associated to a
specific software engineering activity. Moreover, some of the
studies tackle more than one MDE problem. These results
confirm that an approach does not necessarily have to have
a single purpose. Therefore, designing approaches that are
independent of the domain, the type of model, or even the
ML technique in use could allow authors to exploit the
approaches for other research areas.

6.1 Usage of ML techniques
From the gathered results, it becomes clear that the last few
years have seen a rise in the usage of neural networks. There
is a lone appearance of the use of neural networks in the first
half of the period under study, a single paper in 2013. Then,
there is an appreciable increase in the number of works that
comprise neural networks from 2017 onwards. However,
there seems to be no tangible evidence regarding the reasons
for this increment in the usage of neural networks. Within
the works that utilize them, we were unable to find a coher-
ent rationale behind the selection of neural networks over
other techniques, nor a comprehensive guide that presents
the pros and cons of using neural networks instead of other
techniques.

Why is it, then, that neural networks have increased
in popularity in such a short period of time? We theo-
rize that this is due to recent advances in hardware (with
increases in GPU and CPU performance), the widespread
access to neural network libraries, and recent developments
in dataset creation and availability. Additionally, while it
is true that the results obtained by neural networks have
been below expectations for many years in different fields
of knowledge, it is also reasonable to say that the hype
surrounding these techniques has not diminished. Many
current research projects and job positions are centered on
the application of neural networks to real-world challenges,
and researchers and developers alike have kept working
on the development of neural network and the necessary
technologies to support them. These factors have led to the
appearance of specific applications that enable the creation
and management of neural networks and the creation of
didactic materials that have made them more accessible to
the general public.

In fact, the rise of neural networks is not a strange or
unusual occurrence. Many recent review articles highlight
the proliferation of neural networks in different research
areas [58]–[60]. However, as in our case, there does not
seem to be a specific cause or motivation for this. Our
hypothesis is that in 2013, the technology (i.e., tools and
datasets for modeling) had not yet reached the necessary
maturity to produce the inertia that we have seen in our
results. In contrast, from 2017 onwards, the combination
of widespread access, ease of use, and the maturity of
neural network techniques has pushed more researchers to
explore the application of neural networks in their works.
In turn, this has translated into an increase in the number
of success stories, producing a call effect and coaxing more
practitioners towards neural networks. It is our belief that
this has produced a virtuous circle that will govern the
direction of research in the next few years.

Finally, the results also show that a percentage of the
community continues to focus on decision, regression, and

classification trees. The number of papers through time has
remained relatively stable, with 24 papers in total over the
full period of time under study. This situation defies the
paradox of the peak of neural networks. It is clear that
an important part of the community is still devoted to
improving and applying other ML techniques to the full
extent of their capabilities. Nonetheless, it remains to be seen
whether the virtuous circle of neural networks produces a
shift in the usage of these techniques in future years.

6.2 Models and their characteristics

Based on the above discussion, we consider ML techniques
to be in vogue. As a result, we automatically think of
Large Language Models (LLMs). Although there are already
several papers investigating the use of LLMs in MDE [61]–
[64], it is not unreasonable to expect more exploration of
LLMs for solving MDE problems in future studies. This
would be a different line of research that could even eclipse
neural networks.

However, we should not lose sight of a differentiating
characteristic of the field under study: in MDE, the main
artifacts in use are software models. The consensus in the
primary studies is that ML techniques understand models
better than other methods due to their innate ability to
detect patterns. However, this not only depends on the ML
technique but also on the type of model.

There are different models and metamodels in the mar-
ket (UML, BPMN, models based on DSL, etc.) with different
characteristics. Some of them contain a high percentage
of elements that only count with graphical representations
and that do not provide textual patterns to be exploited.
Contradictorily, in most studies, models are encoded using
the text of their elements (if they exist).

Perhaps, one way to advance in the application of ML
techniques in models could be to consider the models’
own characteristics as the semantic information, instead of
encoding the models based only on the text. Although there
are some studies on this subject [SLR56, SLR3], this way of
encoding models is still in its early stages.

It is also up to debate whether models present less noise
(i.e., less irrelevant or contradictory information) than other
kinds of input software artifacts, or other models. Models
can be inherently different in nature depending on the role
they play in software projects: while some models are noth-
ing more than diagrams to help organize ideas on paper,
other models are used as blueprints by the developers or
even executed directly as code. In the more informal models,
ML techniques struggle to retrieve information since the
noise level in the models is comparable to and even greater
than that of other artifacts.

This factor is not considered or discussed in the reviewed
literature. We have determined that this is due to the fact
that we are facing a first wave of works that, while success-
ful, are not considering the particularities of the models and
metamodels in use, but rather treating them as code or other
documents with standard natural language in them. Future
research efforts should explore these aspects of models and
take these particularities into consideration.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JUNE 2020 18

6.3 Datasets and replication packages

According to the limitations and future lines of research,
it is still difficult to find datasets to evaluate the approaches
proposed in the research work. It is common knowledge that
certain ML techniques require a larger number of examples
to perform successful training (e.g., neural networks). How-
ever, this seems to be a general problem regardless of the
ML technique.

To minimize this problem, we have compiled a list of
datasets from the reviewed studies. Specifically, this list
contains the public datasets that are being used to apply ML
techniques in MDE (Table 13). Although this information is
relevant for both researchers and practitioners in the field,
we would like to mention a couple of points that have
caught our attention.

First, most of these repositories do not provide informa-
tion about their datasets. In other words, it is complicated
to determine the type of model, the number of models
available, or even the characteristics of these models (i.e.,
their provenance, their size, etc.). Therefore, the researcher
has to browse through the repository to get an idea of its
contents. Perhaps a future opportunity for improvement
would be to improve the way datasets are reported.

Second, some of the primary studies indicate that they
have extended some of the datasets in the list to evaluate
their approaches. Among these studies, some studies have
even used model generators such as RandomEMF [65] or
VIATRA-Generator [66]. However, they have not published
the final dataset, so it may not be possible to replicate their
work or obtain similar results using only the base dataset.

In addition to the previous list of datasets, some studies
use their own datasets. In fact, some studies provide repli-
cation packages containing both the dataset used and other
complementary materials to their work (e.g., the developed
tool). Table 14 presents the replication packs of the reviewed
studies. Specifically, this table highlights the reference study,
the availability of its dataset (i.e., Yes or No), the availability
of complementary artifacts (i.e., Yes or No), and the website
address of the repository where the pack is available.

It is worth mentioning that some researchers publish
complementary material but do not publish the datasets
due to ethical considerations [SLR14]. Others publish only
a sample of their datasets due to legal considerations be-
cause their datasets are industrial and belong to a company
[SLR55, SLR56]. Of course, it is important that the knowl-
edge generated through research can be applied in industry.
In addition, it is clear that legal and ethical considerations
must be taken into account. Perhaps the community could
discuss a way to find a balance between publishing materi-
als to replicate results and exploiting data or materials that
come from industry.

Finally, another problem worth mentioning is outdated
or expired links. Several of the reviewed studies reference
replication packages or datasets in repositories that are no
longer available [SLR52, SLR8, SLR5, SLR61, SLR89, SLR67,
SLR64, SLR66, SLR37, SLR35, SLR30, SLR3]. This problem
leads us to wonder whether in 10 or 20 years the current
references will no longer be available. If this could well be
the case, we have noticed that materials in recent years have
been published in repositories that allow identification by

DOI rather than using personal or university repositories.
From our point of view, this could be a great initiative to
minimize this problem from happening in the future.

6.4 Maturity level of current research

The collected results show that most studies report their
evaluations, data, and results to a greater or lesser extent.
However, there is still room for improvement. Apart from
the fact that many studies do not make their material
available to other researchers and professionals, we also
found papers that do not specify the ML techniques or the
type of models used. This complicates the replication of the
experiments in future academic works and makes their use
in industrial environments impossible.

Specifically, we used four metrics to analyze the maturity
level of current research: quality score, citation count, type
of study (i.e., empirical or non-empirical), and evaluation
context. However, the results suggest that citation counts
may not be fair for studies published in recent years.
Therefore, we recommend researchers take this into account
before drawing conclusions. The only thing that we find
relevant to highlight from this metric is that ML application
in MDE seems to be an attractive topic to investigate,
given the considerable number of citations that continues
to increase.

With regard to the quality score, we noted that authors
typically describe the motivation, context, and research de-
sign. However, supporting conclusions and critical reflec-
tions on the role of the author and the limitations of the
study are usually not sufficiently described. The total quality
score of the studies is moderate, although studies published
in journals usually present a higher quality.

With regard to the type of study, the results indicate
that there is a relevant difference between the empirical
and non-empirical studies. In general, the maturity of em-
pirical studies is better than the maturity of non-empirical
studies. Overall, the non-empirical studies usually provide
preliminary ideas that most of the time are poorly described,
and they are not evaluated or evaluated using toy examples
or expert observations. For these reasons, most of the non-
empirical studies achieve lower quality scores (around 3.1)
than empirical studies (around 4.5). As repeatedly men-
tioned by several researchers, systematic evaluations are
needed [35, 67, 68]. Our results confirm that this observation
also applies to MDE problems solved using ML, especially
for non-empirical studies.

With regard to the evaluation context, our study of the
available literature also brings light to the current state of
the applicability of research results to practice and real-
world scenarios. The gathered distribution of the primary
studies for the evaluation context reveals that a majority
of the works in the field (55.9%) evaluate their approaches
based on academic cases. Remarkably, 14.7% of the works
evaluated their approaches with toy examples or expert ob-
servations, and 13.7% of the works presented no evaluation
whatsoever. In other words, a total of 84.3% of the works do
not consider the applicability in industry. It is also noticeable
that all of the works that evaluate their approaches based on
industrial cases do not provide evidence to suggest or sup-
port their factual standardization and daily usage in their

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JUNE 2020 19

TABLE 13: Public datasets with their names, URLs where a brief description of the dataset is published, and the primary
studies that use them

Datasets URL Description Primary Studies
Alloy Mod-
els

https://github.com/AlloyTools/
models

This repository holds public Alloy models to be used as
entertainment, examples, tutorials, utilities, and proofs.

[SLR20], [SLR24]

Occiware https://github.com/occiware/
ecore/

This repository contains the OCCI meta-model and examples
described with EMF plus OCCI extensions.

[SLR11]

amlMeta-
Model

https://github.com/amlModeling/
amlMetaModel

This repository contains EMF Meta-Models for Automa-
tionML.

[SLR11]

EMF-
Fragments

https://github.com/markus1978/
emf-fragments

This is a framework for EMF-models, thorugh sets of larger
fragments and not based on an object relational mappings.

[SLR11]

MDEForge https://github.com/MDEGroup/
MDEForge

This platform is to foster a community-based repository for
developing, analyzing, and reusing modeling artifacts.

[SLR11]

AtlanMod
Zoo

https://github.com/atlanmod/zoo This is a set of Eclipse Modeling Framework (EMF) Ecore
models.

[SLR94], [SLR35], [SLR44],
[SLR7], [SLR6], [SLR5]

Lindholmen
dataset

http://models-db.com/ The dataset of this initiative includes links to more than
93,000 UML files (spread across more than 24,000 GitHub
repositories).

[SLR71], [SLR13], [SLR12],
[SLR67], [SLR85], [SLR84],
[SLR89], [SLR43]

ModelSet https://modelset.github.io/ ModelSet is a dataset composed of 5,460 Ecore and 5,120 UML
labelled models, making a total of 10,580 models.

[SLR71], [SLR15], [SLR48],
[SLR25]

A dataset for
clustering

https://zenodo.org/records/2585432
https://zenodo.org/records/2585456

Manually labeled 555 metamodels mined from GitHub in
April 2017.

[SLR73], [SLR41], [SLR6],
[SLR25]

OntoUML/
UFO Catalog

https://github.com/OntoUML/
ontouml-models

This Catalog is a collaborative, structured and open-source
catalog of OntoUML and UFO ontology models.

[SLR3]

TABLE 14: Replication packages for the primary studies:
reference of the study, URL where the pack is published,
the availability of its dataset (DS), the availability of com-
plementary artifacts (CA)

Study URL DS CA
[SLR49] https://github.com/Antolin1/TCRMG-GNN Yes Yes
[SLR24] https://github.com/MDEGroup/MORGAN Yes Yes
[SLR81] https://github.com/MeMartijn/text2uml Yes Yes
[SLR73] https://github.com/Models-Lucene2021/

Metamodel Clustering Classification
Yes Yes

[SLR62] https://github.com/MDEGroup/AURORA Yes Yes
[SLR17] https://github.com/modelia/ann-for-mts/tree/

master
Yes Yes

[SLR14] https://github.com/YounesB-McGill/uml-grader No Yes
[SLR26] https://s-case.github.io/publications/eis2017/ Yes Yes
[SLR55] https://bitbucket.org/svitusj/flame/src/master/ Yes* Yes
[SLR57] https://goo.gl/YRrXSp Yes Yes
[SLR56] https://bitbucket.org/svitusj/flame/src/master/

FLiM ML/
Yes* Yes

[SLR9] https://github.com/MagMar94/
ParmorelRunnable

Yes Yes

[SLR12] https://zenodo.org/records/6645685 Yes Yes
[SLR82] https://github.com/MSharbaf/CoReRL No Yes
[SLR16] https://github.com/modelia/ai-for-model-

manipulation
Yes Yes

[SLR79] https://zenodo.org/records/7007647 Yes Yes
[SLR63] https://github.com/MDEGroup/AURORA/ Yes Yes
[SLR84] https://zenodo.org/records/4595957 Yes No
[SLR94] https://github.com/songyang-dev/uml-classes-

and-specs
Yes No

[SLR48] https://github.com/models-lab/worde4mde No Yes
[SLR25] https://github.com/MDEGroup/MORGAN Yes Yes
[SLR70] https://github.com/AbbasRahimi/netgan/tree/

Ecore model generator
Yes Yes

[SLR43] https://gitlab.univ-lille.fr/emmanuel.renaux/
neural-uml

Yes Yes

[SLR47] https://github.com/Antolin1/M2 Yes Yes
*Only part of the dataset is available due to legal industry considera-
tions.

respective industrial settings. Overall, we can conclude that,
while a part of the community has converged towards in-
dustry, current technology in general is not mature enough
to be applicable in the day-to-day of industrial scenarios.

Nevertheless, the usage of academic cases is not a novel
issue first identified by our work. Rather, it is a common
occurrence in current technological research in general:
the evaluation of approaches and techniques on academic
problems and datasets has been identified as an endemic
problem, mentioned by all previous SLR and survey papers
referenced in the Related Works section. However, in our
particular field of study, the results indicate that the tech-
nology is mature enough to start getting closer to industry
and to achieve success with industrial datasets. While the
technology may not be mature enough to be used on a
daily basis by industrial practitioners, our recommendation
is for the research community to break the current trend and
to shift their progress towards the industrial application of
their approaches and techniques.

7 THREATS TO VALIDITY

In this section, we use the classification of threats to validity
of [69] and the study of threats to validity of systematic
literature reviews in [70] to acknowledge the limitations of
our survey.

Construct validity: This aspect of validity reflects the
extent to which the operational measures that are studied
represent what the researchers have in mind. Examples of
issues are whether the concepts are defined clearly enough
before measurements are defined, and interaction of differ-
ent treatments when persons are involved in more than one
study [71].

• To avoid the threat of non-specification of survey set-
tings and sufficient details, we describe the search
string, the digital sources, the inclusion and exclusion
criteria, and the data collection process.

https://github.com/AlloyTools/models
https://github.com/AlloyTools/models
https://github.com/occiware/ecore/
https://github.com/occiware/ecore/
https://github.com/amlModeling/amlMetaModel
https://github.com/amlModeling/amlMetaModel
https://github.com/markus1978/emf-fragments
https://github.com/markus1978/emf-fragments
https://github.com/MDEGroup/MDEForge
https://github.com/MDEGroup/MDEForge
https://github.com/atlanmod/zoo
http://models-db.com/
https://modelset.github.io/
https://zenodo.org/records/2585432
https://zenodo.org/records/2585456
https://github.com/OntoUML/ontouml-models
https://github.com/OntoUML/ontouml-models
https://github.com/Antolin1/TCRMG-GNN
https://github.com/MDEGroup/MORGAN
https://github.com/MeMartijn/text2uml
https://github.com/Models-Lucene2021/Metamodel_Clustering_Classification
https://github.com/Models-Lucene2021/Metamodel_Clustering_Classification
https://github.com/MDEGroup/AURORA
https://github.com/modelia/ann-for-mts/tree/master
https://github.com/modelia/ann-for-mts/tree/master
https://github.com/YounesB-McGill/uml-grader
https://s-case.github.io/publications/eis2017/
https://bitbucket.org/svitusj/flame/src/master/
https://goo.gl/YRrXSp
https://bitbucket.org/svitusj/flame/src/master/FLiM_ML/
https://bitbucket.org/svitusj/flame/src/master/FLiM_ML/
https://github.com/MagMar94/ParmorelRunnable
https://github.com/MagMar94/ParmorelRunnable
https://zenodo.org/records/6645685
https://github.com/MSharbaf/CoReRL
https://github.com/modelia/ai-for-model-manipulation
https://github.com/modelia/ai-for-model-manipulation
https://zenodo.org/records/7007647
https://github.com/MDEGroup/AURORA/
https://zenodo.org/records/4595957
https://github.com/songyang-dev/uml-classes-and-specs
https://github.com/songyang-dev/uml-classes-and-specs
https://github.com/models-lab/worde4mde
https://github.com/MDEGroup/MORGAN
https://github.com/AbbasRahimi/netgan/tree/Ecore_model_generator
https://github.com/AbbasRahimi/netgan/tree/Ecore_model_generator
https://gitlab.univ-lille.fr/emmanuel.renaux/neural-uml
https://gitlab.univ-lille.fr/emmanuel.renaux/neural-uml
https://github.com/Antolin1/M2

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JUNE 2020 20

• To minimize the threat of inappropriate or incomplete
search terms in automatic search, we used the steps
suggested by Kitchenham and Charters [12]. First, we
used PICO (Population, Intervention, Comparison, and
Outcomes) criteria to derive the major terms from the
RQs. Then, we identified synonyms for these terms.
Finally, we verified the search terms that other relevant
surveys used in their search strings. Despite minimiz-
ing this validation threat, we find two limitations that
impact our search. First, some acronyms proved to
harm the search. None of the primary studies were
included because of the terms: MDE, MDD, MDA. They
only increased the noise of the search. For example,
1,414 studies were found due to the acronym MDD.
However, all of them were discarded because they were
not related to Model Driven Engineering. Most of them
are related to Major Depressive Disorder (MDD) or
Maximal Dry Density (MDD). Second, some terms are
present in both the Population terms (MDE terms) and
the Intervention terms (ML terms). For example, we can
use the term ’model’ to describe the ML classifier gen-
erated from a set of labelled data or we can talk about
the UML model designed for a system. For filtering, the
terms must be identifiers of a single group. If ’model’ is
an MDE term, any paper with an ML technique and the
term model will be selected, even if that paper is not
related to MDE in any way (e.g., supervised learning
model). If ’model’ is an ML term, any paper from MDE
and the term model will be selected, even if that paper
is not related to ML in any way (e.g., model-driven
development). To avoid this problem, we have avoided
including the terms ’technique’ and ’model’ because
these two terms are frequently used in both the ML
and MDE terms. However, this also means that some
papers might be lost in the process. To minimize this
threat, backward and forward snowball iterations were
applied until no new papers were found.

• To avoid the threat of an incorrect search method, our
search strategy is based on the guidelines provided
in [32, 33].

• To avoid the threat of inappropriate exclusion and
inclusion criteria, the exclusion criteria were defined
according to criteria used commonly in surveys, and the
inclusion criteria were defined by domain experts (re-
ducing the probability of not including studies whose
conclusion could be relevant for our research field).

• To minimize the threat of inappropriate research ques-
tions, specific sessions were held with all of the co-
authors to discuss and assess which research questions
were most appropriate in order to provide useful infor-
mation about the research field to both researchers and
practitioners.

Internal Validity: This aspect of validity is of concern
when causal relations are examined. There is a risk that the
factor being investigated may be affected by other neglected
factors. In this work, the outcomes could be affected by how
the primary studies are selected.

• To minimize the threat of misclassifying primary stud-
ies, the studies were classified by two authors of the pa-
per independently. Then, they compared their results,

and, in the case of disagreement, they discussed the
classification in order to reach a consensus.

• To avoid the threat of primary study duplication, the
duplication was included within the exclusion criteria.

• To minimize the threat of bias in study selection, the
selection was conducted by two authors of the paper.
Therefore, the selection process was double-checked.
Moreover, they strictly followed the search strategy
defined for the selection.

• To minimize the threat of bias in data extraction, the
extraction was conducted by two authors of the paper.
Moreover, the features for data extraction were identi-
fied before starting the extraction process.

External Validity: This aspect of validity is concerned
with to what extent it is possible to generalize the findings
and to what extent the findings are of relevance for other
cases. There is a risk that the papers recovered by the search
are not representative of the target population.

• To minimize the threat of incomplete research infor-
mation or conclusions by primary studies, we used
snowballing to avoid missing relevant studies.

• To minimize the threat of generalizability of primary
studies, we consider fields (i.e., MDE and ML) whose
research is sufficiently advanced to draw interesting
implications for researchers and practitioners. In fact,
this work is based on 98 primary studies. However,
it is necessary to keep in mind that the conclusions
are limited to the application of ML in MDE problems.
There may be more MDE problems that have not been
manually identified in this review, either because they
are not being solved by ML or because they are prob-
lems that have begun to be addressed at a later date
than this review.

• To minimize the threat of a restricted timespan, in our
search method, we included papers from a timespan
longer than a decade. For our study, we considered pa-
pers up to the date on which the search was performed
in the digital sources.

Conclusion validity: This aspect is concerned with to
what extent the process can be replicated with the same
results. Researchers may influence the result by looking for
a specific outcome.

• To minimize the threat of a subjective interpretation
about the extracted data, we clearly separate the results
from the discussion. The results show the data that was
extracted to answer the proposed RQs. The discussion
provides different points with regard to the state of the
art in the research field based on the interpretation of
the results made by the authors of the study.

• To avoid the threat of the replication of the study, the
documentation for all of the steps of the whole search
process is publicly available.

8 CONCLUSIONS

MDE is a software engineering methodology based on the
systematic use of models throughout the software develop-
ment cycle to capture and design the characteristics of soft-
ware systems. Major players in the field have significantly
increased their use of model-based technologies to success-
fully develop industrial software. Recently, there have also

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JUNE 2020 21

been remarkable advancements in the AI domain, especially
ML techniques, which have been successfully applied to
solve MDE challenges.

For this work, we have systematically reviewed the
works in the intersection of ML and MDE. We have re-
viewed a total of 9,194 papers, selecting 98 studies for fur-
ther analysis. The results of the SLR shed light on the current
state of the art. Through a detailed analysis of the results, we
discuss the drift in the usage of the different available ML
techniques, the models and their characteristics as a future
line of research, the availability of public datasets and other
materials to replicate and generalize the results, the trends
regarding the study of different MDE problems, the ma-
turity of the ML-based approaches for solving those MDE
problems, and the remaining open challenges considering
the maturity level of the current research.

The general view provided by this paper can be useful
for practitioners and researchers alike when studying the
current state of affairs in the field. Additionally, through
the recommendations provided along with the discussion of
the results, our SLR has the potential to produce a positive
impact on the research community and support its transition
towards ML. This can be beneficial, since compared to
traditional approaches, ML techniques are better equipped
to deal with the innate intricacies of MDE. Nonetheless, our
study places the focus on enhancing the understanding of
those works that leverage ML to solve MDE problems. This
paper could be complemented by analyzing related fields
of research that are left open as interesting opportunities
for future literature exploration in the form of reviews that
tackle either the usage of MDE to improve ML approaches
or the combination of ML and MDE to solve a problem
within other areas of knowledge.

ACKNOWLEDGEMENTS

This work was supported in part by the Ministry of Econ-
omy and Competitiveness (MINECO) through the Spanish
National R+D+i Plan and ERDF funds under the Project
VARIATIVA under Grant PID2021-128695OB-I00, and in
part by the Gobierno de Aragón (Spain) (Research Group
S05 20D). This work was partially supported by the Spanish
Ministry of Science, Innovation and Universities under the
Project VARNETICA (CNS2023-145422), and the Excellence
Network AI4Software (Red2022-134647-T).

REFERENCES

[1] M. Brambilla, J. Cabot, and M. Wimmer, “Model-driven software
engineering in practice,” Synthesis Lectures on Software Engineering,
vol. 1, no. 1, pp. 1–182, 2012.

[2] S. Winkler and J. Pilgrim, “A survey of traceability in requirements
engineering and model-driven development,” Software and Systems
Modeling (SoSyM), vol. 9, no. 4, pp. 529–565, 2010.

[3] G. Loniewski, E. Insfran, and S. Abrahão, “A systematic review of
the use of requirements engineering techniques in model-driven de-
velopment,” in International Conference on Model Driven Engineering
Languages and Systems. Springer, 2010, pp. 213–227.

[4] D. Di Ruscio, R. F. Paige, and A. Pierantonio, “Guest editorial to
the special issue on success stories in model driven engineering,”
Science of Computer Programming, vol. 89, no. PB, pp. 69–70, 2014.

[5] J. Font, L. Arcega, Ø. Haugen, and C. Cetina, “Achieving feature
location in families of models through the use of search-based soft-
ware engineering,” IEEE Transactions on Evolutionary Computation,
vol. 22, no. 3, pp. 363–377, 2017.

[6] F. Pérez, R. Lapeña, A. C. Marcén, and C. Cetina, “Topic modeling
for feature location in software models: Studying both code gener-
ation and interpreted models,” Information and Software Technology,
vol. 140, p. 106676, 2021.

[7] R. France and B. Rumpe, “Model-driven development of complex
software: A research roadmap,” in Future of Software Engineering
(FOSE’07). IEEE, 2007, pp. 37–54.

[8] B. Baudry, T. Dinh-Trong, J.-M. Mottu, D. Simmonds, R. France,
S. Ghosh, F. Fleurey et al., “Model transformation testing chal-
lenges,” in ECMDA workshop on Integration of Model Driven Develop-
ment and Model Driven Testing., 2006.

[9] R. V. D. Straeten, T. Mens, and S. V. Baelen, “Challenges in model-
driven software engineering,” in International conference on model
driven engineering languages and systems. Springer, 2008, pp. 35–47.

[10] G. Mussbacher, D. Amyot, R. Breu, J.-M. Bruel, B. H. Cheng,
P. Collet, B. Combemale, R. B. France, R. Heldal, J. Hill et al., “The
relevance of model-driven engineering thirty years from now,” in
International Conference on Model Driven Engineering Languages and
Systems. Springer, 2014, pp. 183–200.

[11] D. Akdur and O. Demirörs, “Systematic reviews in model-driven
engineering: A tertiary study,” Journal of Aeronautics and Space
Technologies, vol. 13, no. 1, pp. 57–68, 2020.

[12] B. Kitchenham and S. Charters, “Guidelines for performing sys-
tematic literature reviews in software engineering,” 2007.

[13] J.-M. Favre, “Megamodelling and etymology,” in Dagstuhl Seminar
Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik,
2006.

[14] J. Ludewig, “Models in Software Engineering–An Introduction,”
Software and Systems Modeling, vol. 2, no. 1, pp. 5–14, 2003.

[15] T. Kühne, “Matters of (meta-) modeling,” Software & Systems
Modeling, vol. 5, no. 4, pp. 369–385, 2006.

[16] A. Shabtai, R. Moskovitch, Y. Elovici, and C. Glezer, “Detection of
malicious code by applying machine learning classifiers on static
features: A state-of-the-art survey,” information security technical
report, vol. 14, no. 1, pp. 16–29, 2009.

[17] S. Walker, W. Khan, K. Katic, W. Maassen, and W. Zeiler, “Ac-
curacy of different machine learning algorithms and added-value
of predicting aggregated-level energy performance of commercial
buildings,” Energy and Buildings, vol. 209, p. 109705, 2020.

[18] D. D. Ruscio, P. T. Nguyen, and A. Pierantonio, “Machine learning
for managing modeling ecosystems: Techniques, applications, and
a research vision,” in Software Ecosystems: Tooling and Analytics.
Springer, 2023, pp. 249–279.

[19] H. Naveed, C. Arora, H. Khalajzadeh, J. Grundy, and O. Haggag,
“Model driven engineering for machine learning components: A
systematic literature review,” Information and Software Technology, p.
107423, 2024.

[20] I. Santiago, A. Jiménez, J. M. Vara, V. De Castro, V. A. Bollati,
and E. Marcos, “Model-driven engineering as a new landscape for
traceability management: A systematic literature review,” Informa-
tion and Software Technology, vol. 54, no. 12, pp. 1340–1356, 2012.

[21] B. Uzun and B. Tekinerdogan, “Model-driven architecture based
testing: A systematic literature review,” Information and Software
technology, vol. 102, pp. 30–48, 2018.

[22] C. Raibulet, F. A. Fontana, and M. Zanoni, “Model-driven reverse
engineering approaches: A systematic literature review,” IEEE Ac-
cess, vol. 5, pp. 14 516–14 542, 2017.

[23] P. H. Nguyen, M. Kramer, J. Klein, and Y. Le Traon, “An extensive
systematic review on the model-driven development of secure
systems,” Information and Software Technology, vol. 68, pp. 62–81,
2015.

[24] H. A. A. Alfraihi and K. C. Lano, “The integration of agile de-
velopment and model driven development: A systematic literature
review,” The 5th International Confrence on Model-Driven Engineeing
and Software Development, 2017.

[25] H. Tufail, F. Azam, M. W. Anwar, and I. Qasim, “Model-driven de-
velopment of mobile applications: A systematic literature review,”
in 2018 IEEE 9th Annual Information Technology, Electronics and Mobile
Communication Conference (IEMCON). IEEE, 2018, pp. 1165–1171.

[26] E. de Araújo Silva, E. Valentin, J. R. H. Carvalho, and
R. da Silva Barreto, “A survey of model driven engineering in
robotics,” Journal of Computer Languages, vol. 62, p. 101021, 2021.

[27] D. C. Schmidt et al., “Model-driven engineering,” Computer-IEEE
Computer Society-, vol. 39, no. 2, p. 25, 2006.

[28] S. Kent, “Model driven engineering,” in International conference on
integrated formal methods. Springer, 2002, pp. 286–298.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JUNE 2020 22

[29] A. F. Subahi, “Cognification of program synthesis—A systematic
feature-oriented analysis and future direction,” Computers, vol. 9,
no. 2, p. 27, 2020.

[30] Y. Rigou, D. Lamontagne, and I. Khriss, “A sketch of a deep
learning approach for discovering UML class diagrams from sys-
tem’s textual specification,” in 2020 1st International Conference on
Innovative Research in Applied Science, Engineering and Technology
(IRASET). IEEE, 2020, pp. 1–6.

[31] S. Elmidaoui, L. Cheikhi, A. Idri, and A. Abran, “Empirical studies
on software product maintainability prediction: A systematic map-
ping and review,” E-Informatica Software Engineering Journal, vol. 13,
no. 1, 2019.

[32] B. Kitchenham and P. Brereton, “A systematic review of systematic
review process research in software engineering,” Information and
software technology, vol. 55, no. 12, pp. 2049–2075, 2013.

[33] B. A. Kitchenham, D. Budgen, and P. Brereton, Evidence-based
software engineering and systematic reviews. CRC press, 2015, vol. 4.

[34] V. R. B. G. Caldiera and H. D. Rombach, “The goal question metric
approach,” Encyclopedia of software engineering, pp. 528–532, 1994.

[35] M. Galster, D. Weyns, D. Tofan, B. Michalik, and P. Avgeriou,
“Variability in software systems—A systematic literature review,”
IEEE Transactions on Software Engineering, vol. 40, no. 3, pp. 282–306,
2013.

[36] J.-D. Kasher, S. Riedle, and N. J. Sardarabady, “Digitization tech-
nologies in transport logistics: A systematic literature review pro-
tocol,” in 2022 IEEE 28th International Conference on Engineering,
Technology and Innovation (ICE/ITMC) & 31st International Association
For Management of Technology (IAMOT) Joint Conference. IEEE, 2022,
pp. 1–13.

[37] N. Ozkan, K. Eilers, and M. Ş. Gök, “Back to the essential: A
literature-based review on agile mindset,” in 2023 18th Conference
on Computer Science and Intelligence Systems (FedCSIS). IEEE, 2023,
pp. 201–211.

[38] F. D. Giraldo, S. España, and O. Pastor, “Analysing the concept
of quality in model-driven engineering literature: A systematic
review,” in 2014 IEEE Eighth International Conference on Research
Challenges in Information Science (RCIS). IEEE, 2014, pp. 1–12.

[39] M. Goulão, V. Amaral, and M. Mernik, “Quality in model-driven
engineering: A tertiary study,” Software Quality Journal, vol. 24,
no. 3, pp. 601–633, 2016.

[40] A. Ali and C. Gravino, “A systematic literature review of software
effort prediction using machine learning methods,” Journal of Soft-
ware: Evolution and Process, vol. 31, no. 10, p. e2211, 2019.

[41] J. Wen, S. Li, Z. Lin, Y. Hu, and C. Huang, “Systematic literature
review of machine learning based software development effort
estimation models,” Information and Software Technology, vol. 54,
no. 1, pp. 41–59, 2012.

[42] C. Virmani, T. Choudhary, A. Pillai, and M. Rani, “Applications
of machine learning in cyber security,” in Handbook of Research
on Machine and Deep Learning Applications for Cyber Security. IGI
Global, 2020, pp. 83–103.

[43] S. Mirjalili, H. Faris, and I. Aljarah, “Introduction to evolutionary
machine learning techniques,” in Evolutionary Machine Learning
Techniques. Springer, 2020, pp. 1–7.

[44] D. J. Hand, “Principles of data mining,” Drug safety, vol. 30, no. 7,
pp. 621–622, 2007.

[45] G. Apruzzese, M. Colajanni, L. Ferretti, A. Guido, and
M. Marchetti, “On the effectiveness of machine and deep learning
for cyber security,” in 2018 10th international conference on cyber
Conflict (CyCon). IEEE, 2018, pp. 371–390.

[46] H. Liu and B. Lang, “Machine learning and deep learning methods
for intrusion detection systems: A survey,” applied sciences, vol. 9,
no. 20, p. 4396, 2019.

[47] R. Shyam and R. Singh, “A taxonomy of machine learning tech-
niques,” J. Adv. Robot, vol. 8, no. 3, pp. 18–25, 2021.

[48] S. M. Asaad, K. Z. Ghafoor, H. Sarhang, A. Mulahuwaish, and
A. M. Ali, “Fingerprinting based positioning techniques using ma-
chine learning algorithms principles, approaches and challenges,”
Trust, Security and Privacy for Big Data, pp. 112–128, 2022.

[49] K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for
conducting systematic mapping studies in software engineering:
An update,” Information and software technology, vol. 64, pp. 1–18,
2015.

[50] T. Dyba, T. Dingsoyr, and G. K. Hanssen, “Applying systematic
reviews to diverse study types: An experience report,” in First
International Symposium on Empirical Software Engineering and Mea-
surement (ESEM 2007). IEEE, 2007, pp. 225–234.

[51] M. Alenezi and M. Akour, “Open-source machine learning soft-
ware systems: Architectural analysis,” ICIC express letters. Part B,
Applications: an international journal of research and surveys, vol. 12,
no. 11, pp. 1019–1026, 2021.

[52] A. Brossard, M. Abed, and C. Kolski, “Taking context into account
in conceptual models using a model driven engineering approach,”
Information and Software Technology, vol. 53, no. 12, pp. 1349–1369,
2011.

[53] C. Wohlin, “Guidelines for snowballing in systematic literature
studies and a replication in software engineering,” in Proceedings
of the 18th international conference on evaluation and assessment in
software engineering, 2014, pp. 1–10.

[54] B. Kitchenham, “Procedures for performing systematic reviews,”
Keele, UK, Keele University, vol. 33, no. 2004, pp. 1–26, 2004.

[55] T. Dybå and T. Dingsøyr, “Empirical studies of agile software
development: A systematic review,” Information and software tech-
nology, vol. 50, no. 9-10, pp. 833–859, 2008.

[56] OMG, “OMG Unified Modeling Language (OMG UML),” https:
//www.omg.org/spec/UML/2.5.1/PDF, December 2012.

[57] V. Alves, N. Niu, C. Alves, and G. Valença, “Requirements engi-
neering for software product lines: A systematic literature review,”
Information and Software Technology, vol. 52, no. 8, pp. 806–820, 2010.

[58] N. Chattopadhyay, C. S. Y. Viroy, and A. Chattopadhyay, “Re-
markable: Stealing watermarked neural networks through synthe-
sis,” in Security, Privacy, and Applied Cryptography Engineering: 10th
International Conference, SPACE 2020, Kolkata, India, December 17–21,
2020, Proceedings 10. Springer, 2020, pp. 46–65.

[59] S. Chaudhuri, D. Ritchie, J. Wu, K. Xu, and H. Zhang, “Learning
generative models of 3d structures,” in Computer Graphics Forum,
vol. 39, no. 2. Wiley Online Library, 2020, pp. 643–666.

[60] A. Aswath, A. Alsahaf, B. N. Giepmans, and G. Azzopardi, “Seg-
mentation in large-scale cellular electron microscopy with deep
learning: A literature survey,” Medical image analysis, p. 102920,
2023.

[61] V. Kulkarni, S. Reddy, S. Barat, and J. Dutta, “Toward a symbiotic
approach leveraging generative ai for model driven engineering,”
in 2023 ACM/IEEE 26th International Conference on Model Driven
Engineering Languages and Systems (MODELS). IEEE, 2023, pp.
184–193.

[62] K. Chen, Y. Yang, B. Chen, J. A. H. López, G. Mussbacher,
and D. Varró, “Automated domain modeling with large language
models: A comparative study,” in 2023 ACM/IEEE 26th Interna-
tional Conference on Model Driven Engineering Languages and Systems
(MODELS). IEEE, 2023, pp. 162–172.

[63] M. B. Chaaben, L. Burgueño, and H. Sahraoui, “Towards using
few-shot prompt learning for automating model completion,” in
2023 IEEE/ACM 45th International Conference on Software Engineering:
New Ideas and Emerging Results (ICSE-NIER). IEEE, 2023, pp. 7–12.

[64] J. Cámara, J. Troya, L. Burgueño, and A. Vallecillo, “On the
assessment of generative ai in modeling tasks: an experience report
with chatgpt and uml,” Software and Systems Modeling, vol. 22, no. 3,
pp. 781–793, 2023.

[65] M. Scheidgen, “RandomEMF,” https://github.com/markus1978/
RandomEMF/, December 2015.

[66] O. Semeráth, “VIATRA-Generator,” https://github.com/viatra/,
April 2022.

[67] C. Zannier, G. Melnik, and F. Maurer, “On the success of empirical
studies in the international conference on software engineering,” in
Proceedings of the 28th international conference on Software engineering,
2006, pp. 341–350.

[68] D. Weyns, M. U. Iftikhar, S. Malek, and J. Andersson, “Claims
and supporting evidence for self-adaptive systems: A literature
study,” in 2012 7th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS). IEEE, 2012, pp.
89–98.

[69] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering. Springer
Science & Business Media, 2012.

[70] X. Zhou, Y. Jin, H. Zhang, S. Li, and X. Huang, “A map of threats to
validity of systematic literature reviews in software engineering,”
in 2016 23rd Asia-Pacific Software Engineering Conference (APSEC).
IEEE, 2016, pp. 153–160.

[71] C. Wohlin, M. Höst, and K. Henningsson, “Empirical research
methods in software engineering,” in Empirical methods and studies
in software engineering. Springer, 2003, pp. 7–23.

https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/spec/UML/2.5.1/PDF
https://github.com/markus1978/RandomEMF/
https://github.com/markus1978/RandomEMF/
https://github.com/viatra/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JUNE 2020 23

SYSTEMATIC REVIEW REFERENCES

[SLR1] H.A. Al-Jamimi and M.A. Ahmed. Knowledge acquisition
in model driven development transformations: An inductive
logic programming approach. volume 2015-January, 2015.

[SLR2] H.A. Al-Jamimi and M.A. Ahmed. Model driven development
transformations using inductive logic programming. Inter-
national Journal of Advanced Computer Science and Applications,
8(11):531–541, November 2017.

[SLR3] S.J. Ali, G. Guizzardi, and D. Bork. Enabling representation
learning in ontology-driven conceptual modeling using graph
neural networks. In International Conference on Advanced Infor-
mation Systems Engineering, pages 278–294. Springer, 2023.

[SLR4] Ö. Babur. Clone detection for ecore metamodels using n-
grams. In MODELSWARD, pages 411–419, 2018.

[SLR5] Ö. Babur and L. Cleophas. Using n-grams for the automated
clustering of structural models. In International Conference on
Current Trends in Theory and Practice of Informatics, pages 510–
524. Springer, 2017.

[SLR6] Ö. Babur, L. Cleophas, and M. Van den Brand. SAMOS-A
framework for model analytics and management. Science of
Computer Programming, 223:102877, 2022.

[SLR7] Ö. Babur. Statistical analysis of large sets of models. pages
888–891, 2016.

[SLR8] Ö. Babur, L. Cleophas, T. Verhoeff, and M. Van Den Brand.
Towards statistical comparison and analysis of models. pages
361–367, 2016.

[SLR9] A. Barriga, L. Iovino, A. Rutle, and R. Heldal. Model repair
with quality-based reinforcement learning. Journal of Object
Technology, 19(2), 2020.

[SLR10] A. Barriga, A. Rutle, and R. Heldal. Automatic model repair
using reinforcement learning. In MoDELS (Workshops), pages
781–786, 2018.

[SLR11] A. Barriga, A. Rutle, and R. Heldal. Personalized and au-
tomatic model repairing using reinforcement learning. In
2019 ACM/IEEE 22nd International Conference on Model Driven
Engineering Languages and Systems Companion (MODELS-C),
pages 175–181. IEEE, 2019.

[SLR12] G. Bergström, F. Hujainah, T. Ho-Quang, R. Jolak, S.A. Ruk-
mono, A. Nurwidyantoro, and M.R.V. Chaudron. Evaluating
the layout quality of uml class diagrams using machine learn-
ing. Journal of Systems and Software, 192:111413, 2022.

[SLR13] N. Bnouni Rhim, S. Cheballah, and M. Ben Mabrouk. Cross
synergetic mobilenet-VGG16 for UML multiclass diagrams
classification. In International Conference on Innovations in Bio-
Inspired Computing and Applications, pages 24–30. Springer,
2022.

[SLR14] Y. Boubekeur, G. Mussbacher, and S. McIntosh. Automatic as-
sessment of students’ software models using a simple heuris-
tic and machine learning. pages 84–93, 2020.

[SLR15] M. Bragilosvki, F. Dalpiaz, A. Sturm, et al. From user sto-
ries to domain models: Recommending relationships between
entities. In Proceedings of the Workshop on Natural Language
Processing in Requirements Engineering (NLP4RE’23), volume
3378, pages 1–11. CEUR Workshop Proceedings, 2023.

[SLR16] L. BurgueÑo, J. Cabot, S. Li, and S. Gérard. A generic LSTM
neural network architecture to infer heterogeneous model
transformations. Software and Systems Modeling, 21(1):139–156,
2022.

[SLR17] L. Burgueño, J. Cabot, and S. Gérard. An LSTM-based neural
network architecture for model transformations. pages 294–
299, 2019.

[SLR18] T. Capuano, H. Sahraoui, B. Frenay, and B. Vanderose. Learn-
ing from code repositories to recommend model classes. Jour-
nal of Object Technology, 21(3):3, 2022.

[SLR19] Alisha Sharma Chapai and Eric J Rapos. SkeMo: Sketch
modeling for real-time model component generation. In
2023 ACM/IEEE 26th International Conference on Model Driven
Engineering Languages and Systems (MODELS), pages 173–183.
IEEE, 2023.

[SLR20] R. Clarisó and J. Cabot. Diverse scenario exploration in
model finders using graph kernels and clustering. In Interna-
tional Conference on Rigorous State-Based Methods, pages 27–43.
Springer, 2020.

[SLR21] R. Clarisó and J. Cabot. Applying graph kernels to model-
driven engineering problems. pages 1–5, 2018.

[SLR22] Guilherme Dalcin, Willian Bolzan, Luan Lazzari, and Kleinner
Farias. Recommendation of UML model conflicts: Unveiling
the biometric lens for conflict resolution. In Proceedings of the
XXXVII Brazilian Symposium on Software Engineering, pages 83–
88, 2023.

[SLR23] A. Del Pino Lino and A. Rocha. Automatic evaluation of
ERD in e-learning environments. volume 2018-June, pages
1–5, 2018.

[SLR24] J. Di Rocco, C. Di Sipio, D. Di Ruscio, and P.T. Nguyen. A
GNN-based recommender system to assist the specification of
metamodels and models. In 2021 ACM/IEEE 24th International
Conference on Model Driven Engineering Languages and Systems
(MODELS), pages 70–81, 2021.

[SLR25] Claudio Di Sipio, Juri Di Rocco, Davide Di Ruscio, and
Phuong T Nguyen. MORGAN: a modeling recommender
system based on graph kernel. Software and Systems Modeling,
22(5):1427–1449, 2023.

[SLR26] T. Diamantopoulos and A. Symeonidis. Enhancing require-
ments reusability through semantic modeling and data mining
techniques. Enterprise Information Systems, 12(8-9):960–981,
2018.

[SLR27] Xavier Dolques, Marianne Huchard, Clémentine Nebut, and
Philippe Reitz. Learning transformation rules from transfor-
mation examples: An approach based on relational concept
analysis. In 2010 14th IEEE International Enterprise Distributed
Object Computing Conference Workshops, pages 27–32. IEEE,
2010.

[SLR28] M. Eisenberg, H.P. Pichler, A. Garmendia, and M. Wimmer.
Towards reinforcement learning for in-place model transfor-
mations. In 2021 ACM/IEEE 24th International Conference on
Model Driven Engineering Languages and Systems (MODELS),
pages 82–88. IEEE, 2021.

[SLR29] K. El Dahshan, N. Aboalanin, A. Tomoum, and M. Sameh.
Useinator: Requirements collection automation. pages 461–
464, 2018.

[SLR30] M. Essaidi, A. Osmani, and C. Rouveirol. Transformation
learning in the context of model-driven data warehouse: An
experimental design based on inductive logic programming.
pages 693–700, 2011.

[SLR31] D. Godara and R.K. Singh. Improving change proneness
prediction in UML based design models using ABC algorithm.
pages 1296–1301, 2014.

[SLR32] D. Godara and R.K. Singh. Enhancing frequency based change
proneness prediction method using artificial bee colony algo-
rithm. Advances in Intelligent Systems and Computing, 320:535–
543, 2015.

[SLR33] B. Gosala, S.R. Chowdhuri, J. Singh, M. Gupta, and A. Mishra.
Automatic classification of UML class diagrams using deep
learning technique: Convolutional neural network. Applied
Sciences (Switzerland), 11(9), 2021.

[SLR34] A. Halim. Predict fault-prone classes using the complexity of
UML class diagram. pages 289–294, 2013.

[SLR35] S.J.I. Herzig and C.J.J. Paredis. Bayesian reasoning over
models. volume 1235, pages 69–78, 2014.

[SLR36] A.T. Imam. The automatic definition of the intuitive linguistic
heuristics set to recognize the elements of UML analysis and
design models in english. IEEE Access, 2023.

[SLR37] M. Jahan, Z. Shakeri H. Abad, and B. Far. Detecting use
case scenarios in requirements artifacts: A deep learning ap-
proach. In International Conference on Industrial, Engineering and
Other Applications of Applied Intelligent Systems, pages 682–694.
Springer, 2022.

[SLR38] R. Jebli, J. Elbouhdidi, and M.Y. Chkouri. Automatic evalua-
tion of UML class diagrams using the xml schema matching
and the machine learning algorithm. Advances in Intelligent
Systems and Computing, 1105 AISC:149–156, 2020.

[SLR39] S. Kansomkeat, P. Thiket, and J. Offutt. Generating test cases
from UML activity diagrams using the condition-classification
tree method. In 2010 2nd International conference on software
technology and engineering, volume 1, pages V1–62. IEEE, 2010.

[SLR40] A. Khalilipour, F. Bozyigit, C. Utku, and M. Challenger. Cat-
egorization of the models based on structural information
extraction and machine learning. In International Conference
on Intelligent and Fuzzy Systems, pages 173–181. Springer, 2022.

[SLR41] A. Khalilipour, F. Bozyigit, C. Utku, and M. Challenger. Ma-
chine learning-based model categorization using textual and
structural features. In European Conference on Advances in

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JUNE 2020 24

Databases and Information Systems, pages 425–436. Springer,
2022.

[SLR42] T. Kochbati, S. Li, S. Gérard, and C. Mraidha. From user stories
to models: A machine learning empowered automation. pages
28–40, 2021.

[SLR43] Aymeric Koenig, Benjamin Allaert, and Emmanuel Renaux.
NEURAL-UML: Intelligent recognition system of structural el-
ements in UML class diagram. In 2023 ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems
Companion (MODELS-C), pages 605–613. IEEE, 2023.

[SLR44] K. Lano, S. Fang, M.A. Umar, and S. Yassipour-Tehrani. En-
hancing model transformation synthesis using natural lan-
guage processing. In Proceedings of the 23rd ACM/IEEE Inter-
national Conference on Model Driven Engineering Languages and
Systems: Companion Proceedings, pages 1–10, 2020.

[SLR45] K. Lano, S. Kolahdouz-Rahimi, and S. Fang. Model transfor-
mation development using automated requirements analysis,
metamodel matching, and transformation by example. ACM
Transactions on Software Engineering and Methodology (TOSEM),
31(2):1–71, 2021.

[SLR46] K. Lano, S. Yassipour-Tehrani, and M.A. Umar. Automated
requirements formalisation for agile MDE. pages 173–180,
2021.

[SLR47] José Antonio Hernández López and Jesús Sánchez Cuadrado.
Generating structurally realistic models with deep autoregres-
sive networks. IEEE Transactions on Software Engineering, 2022.

[SLR48] José Antonio Hernández López, Carlos Durá, and
Jesús Sánchez Cuadrado. Word embeddings for model-
driven engineering. In 2023 ACM/IEEE 26th International
Conference on Model Driven Engineering Languages and Systems
(MODELS), pages 151–161. IEEE, 2023.

[SLR49] J.A.H. López and J.S. Cuadrado. Towards the characterization
of realistic model generators using graph neural networks. In
2021 ACM/IEEE 24th International Conference on Model Driven
Engineering Languages and Systems (MODELS), pages 58–69,
2021.

[SLR50] K. Madala, D. Gaither, R. Nielsen, and H. Do. Automated
identification of component state transition model elements
from requirements. pages 386–392, 2017.

[SLR51] K. Madala, S. Piparia, E. Blanco, H. Do, and R. Bryce. Model
elements identification using neural networks: A comprehen-
sive study. Requirements Engineering, 26(1):67–96, 2021.

[SLR52] K. Madala, S. Piparia, H. Do, and R. Bryce. Finding component
state transition model elements using neural networks: An
empirical study. In 2018 5th international workshop on artificial
intelligence for requirements engineering (AIRE), pages 54–61.
IEEE, 2018.

[SLR53] M. Maddeh, S. Ayouni, S. Alyahya, and F. Hajjej. Decision tree-
based design defects detection. IEEE Access, 9:71606–71614,
2021.

[SLR54] N. Maneerat and P. Muenchaisri. Bad-smell prediction from
software design model using machine learning techniques. In
2011 Eighth international joint conference on computer science and
software engineering (JCSSE), pages 331–336. IEEE, 2011.

[SLR55] A.C. Marcén, R. Lapeña, Ó. Pastor, and C. Cetina. Traceability
link recovery between requirements and models using an evo-
lutionary algorithm guided by a learning to rank algorithm:
Train control and management case. Journal of Systems and
Software, 163:110519, 2020.

[SLR56] A.C. Marcén, F. Pérez, Ó. Pastor, and C. Cetina. Enhanc-
ing software model encoding for feature location approaches
based on machine learning techniques. Software and Systems
Modeling, 21(1):399–433, 2022.

[SLR57] A.C. Marcén, F. Pérez, Ó. Pastor, and C. Cetina. Evaluating
the benefits of empowering model-driven development with
a machine learning classifier. Software: Practice and Experience,
52(11):2439–2455, 2022.

[SLR58] A.C. Marcén, F. Pérez, and C. Cetina. Ontological evolutionary
encoding to bridge machine learning and conceptual models:
Approach and industrial evaluation. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 10650 LNCS:491–505, 2017.

[SLR59] S. Martı́nez, M. Wimmer, and J. Cabot. Efficient plagiarism de-
tection for software modeling assignments. Computer Science
Education, 30(2):187–215, 2020.

[SLR60] V. Moreno, G. Génova, M. Alejandres, and A. Fraga. Auto-
matic classification of web images as UML static diagrams

using machine learning techniques. Applied Sciences (Switzer-
land), 10(7), 2020.

[SLR61] P.T. Nguyen, J. Di Rocco, D. Di Ruscio, A. Pierantonio, and
L. Iovino. Automated classification of metamodel reposito-
ries: A machine learning approach. In 2019 ACM/IEEE 22nd
International Conference on Model Driven Engineering Languages
and Systems (MODELS), pages 272–282, 2019.

[SLR62] P.T. Nguyen, D. Di Ruscio, A. Pierantonio, J. Di Rocco, and
L. Iovino. Convolutional neural networks for enhanced clas-
sification mechanisms of metamodels. Journal of Systems and
Software, 172, 2021.

[SLR63] P.T. Nguyen, J. Di Rocco, L. Iovino, D. Di Ruscio, and
A. Pierantonio. Evaluation of a machine learning classifier for
metamodels. Software and Systems Modeling, 20(6):1797–1821,
2021.

[SLR64] M.H. Osman, M.R.V. Chaudron, and P. Van Der Putten. An
analysis of machine learning algorithms for condensing re-
verse engineered class diagrams. pages 140–149, 2013.

[SLR65] M.H. Osman, M.R.V. Chaudron, and P. Van Der Putten. In-
teractive scalable abstraction of reverse engineered UML class
diagrams. volume 1, pages 159–166, 2014.

[SLR66] M.H. Osman, M.R.V. Chaudron, P. Van Der Putten, and
T. Ho-Quang. Condensing reverse engineered class diagrams
through class name based abstraction. pages 158–163, 2014.

[SLR67] M.H. Osman, T. Ho-Quang, and M.R.V. Chaudron. An
automated approach for classifying reverse-engineered and
forward-engineered UML class diagrams. pages 396–399,
2018.

[SLR68] M.S. Osman, N.Z. Alabwaini, T.B. Jaber, and T. Alrawashdeh.
Generate use case from the requirements written in a natural
language using machine learning. pages 748–751, 2019.

[SLR69] A. Rago, C. Marcos, and J.A. Diaz-Pace. Identifying duplicate
functionality in textual use cases by aligning semantic actions.
Software and Systems Modeling, 15(2):579–603, 2016.

[SLR70] Abbas Rahimi, Massimo Tisi, Shekoufeh Kolahdouz Rahimi,
and Luca Berardinelli. Towards generating structurally re-
alistic models by generative adversarial networks. In 2023
ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems Companion (MODELS-C), pages 597–
604. IEEE, 2023.

[SLR71] G.J. Ramackers, P.P. Griffioen, M.B.J. Schouten, and M.R.V.
Chaudron. From prose to prototype: Synthesising executable
UML models from natural language. pages 380–389, 2021.

[SLR72] Y. Rigou and I. Khriss. A deep learning approach to UML class
diagrams discovery from textual specifications of software
systems. In Proceedings of SAI Intelligent Systems Conference,
pages 706–725. Springer, 2022.

[SLR73] R. Rubei, J.D. Rocco, D.D. Ruscio, P.T. Nguyen, and A. Pieran-
tonio. A lightweight approach for the automated classification
and clustering of metamodels. pages 477–482, 2021.

[SLR74] A. Sadovykh, G. Widforss, D. Truscan, E.P. Enoiu, W. Mallouli,
R. Iglesias, A. Bagnto, and O. Hendel. VeriDevOps: Auto-
mated protection and prevention to meet security require-
ments in DevOps. volume 2021-February, pages 1330–1333,
2021.

[SLR75] R. Saini, G. Mussbacher, J.L.C. Guo, and J. Kienzle. Teaching
modelling literacy: An artificial intelligence approach. pages
714–719, 2019.

[SLR76] R. Saini, G. Mussbacher, J.L.C. Guo, and J. Kienzle. A neural
network based approach to domain modelling relationships
and patterns recognition. pages 78–82, 2020.

[SLR77] R. Saini, G. Mussbacher, J.L.C. Guo, and J. Kienzle. To-
wards queryable and traceable domain models. volume 2020-
August, pages 334–339, 2020.

[SLR78] R. Saini, G. Mussbacher, J.L.C. Guo, and J. Kienzle. DoMoBOT:
An AI-empowered bot for automated and interactive domain
modelling. In 2021 ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems Companion
(MODELS-C), pages 595–599, 2021.

[SLR79] R. Saini, G. Mussbacher, J.L.C. Guo, and J. Kienzle. Machine
learning-based incremental learning in interactive domain
modelling. In Proceedings of the 25th International Conference
on Model Driven Engineering Languages and Systems, pages 176–
186, 2022.

[SLR80] A. Sajji, Y. Rhazali, and Y. Hadi. A methodology of automatic
class diagrams generation from source code using model-
driven architecture and machine learning to achieve energy

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JUNE 2020 25

efficiency. In E3S Web of Conferences, volume 412, page 01002.
EDP Sciences, 2023.

[SLR81] M.B.J. Schouten, G.J. Ramackers, and S. Verberne. Preprocess-
ing requirements documents for automatic UML modelling.
In International Conference on Applications of Natural Language
to Information Systems, pages 184–196. Springer, 2022.

[SLR82] M. Sharbaf, B. Zamani, and G. Sunyé. Automatic resolution
of model merging conflicts using quality-based reinforcement
learning. Journal of Computer Languages, 71:101123, 2022.

[SLR83] N. Sharma and P. Yalla. A hybrid weighted probabilistic based
source code graph clustering algorithm for class diagram
and sequence diagram visualization. International Journal of
Scientific and Technology Research, 9(4):3142–3158, 2020.

[SLR84] S. Shcherban, P. Liang, Z. Li, and C. Yang. Multiclass classifi-
cation of four types of UML diagrams from images using deep
learning. volume 2021-July, pages 57–62, 2021.

[SLR85] S. Shcherban, P. Liang, Z. Li, and C. Yang. Multiclass classi-
fication of UML diagrams from images using deep learning.
International Journal of Software Engineering and Knowledge En-
gineering, 31(11-12):1683–1698, 2021.

[SLR86] B. Kaur Sidhu, K. Singh, and N. Sharma. A machine learning
approach to software model refactoring. International Journal
of Computers and Applications, 44(2):166–177, 2022.

[SLR87] Matthew Stephan. Towards a cognizant virtual software
modeling assistant using model clones. In 2019 IEEE/ACM
41st International Conference on Software Engineering: New Ideas
and Emerging Results (ICSE-NIER), pages 21–24. IEEE, 2019.

[SLR88] D.R. Stikkolorum, P. Van Der Putten, C. Sperandio, and M.R.V.
Chaudron. Towards automated grading of UML class dia-
grams with machine learning. volume 2491, 2019.

[SLR89] J.F. Tavares, Y.M.G. Costa, and T.E. Colanzi. Classification of
UML diagrams to support software engineering education.
pages 102–107, 2021.

[SLR90] K.V. Vineetha and P. Samuel. A multinomial naı̈ve bayes
classifier for identifying actors and use cases from software
requirement specification documents. In 2022 2nd International

Conference on Intelligent Technologies (CONIT), pages 1–5. IEEE,
2022.

[SLR91] F. Wang. UML diagram classification model based on convo-
lution neural network. Optik, page 170463, 2022.

[SLR92] Kai Wang, Wei Liu, Yongan Mu, and Sheng Gao. Automatic
extraction of sequence diagram semantic information. In 2023
5th International Conference on Machine Learning, Big Data and
Business Intelligence (MLBDBI), pages 315–318. IEEE, 2023.

[SLR93] H.G. Woo and W.N. Robinson. Reuse of scenario specifica-
tions using an automated relational learner: A lightweight
approach. In Proceedings IEEE Joint International Conference on
Requirements Engineering, pages 173–180. IEEE, 2002.

[SLR94] S. Yang and H. Sahraoui. Towards automatically extracting
UML class diagrams from natural language specifications.
In Proceedings of the 25th International Conference on Model
Driven Engineering Languages and Systems: Companion Proceed-
ings, pages 396–403, 2022.

[SLR95] X. Zhang, H. Washizaki, N. Yoshioka, and Y. Fukazawa. De-
tecting design patterns in UML class diagram images using
deep learning. In 2022 IEEE/ACIS 23rd International Confer-
ence on Software Engineering, Artificial Intelligence, Networking
and Parallel/Distributed Computing (SNPD), pages 27–32. IEEE,
2022.

[SLR96] R. Zhu, W. Li, and C. Jin. TAG: UML activity diagram deeply
supervised generation from business textural specification. In
2023 IEEE International Conference on Software Analysis, Evolu-
tion and Reengineering (SANER), pages 956–961. IEEE, 2023.

[SLR97] A. Zolotas, N. Matragkas, S. Devlin, D.S. Kolovos, and R.F.
Paige. Type inference in flexible model-driven engineering.
Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
9153:75–91, 2015.

[SLR98] A. Zolotas, N. Matragkas, S. Devlin, D.S. Kolovos, and R.F.
Paige. Type inference in flexible model-driven engineering
using classification algorithms. Software and Systems Modeling,
18(1):345–366, 2019.

	Introduction
	Background
	Related Work
	Research Method
	Research questions
	Search String
	Selection Strategy
	Initial Search
	Exclusion Criteria
	Inclusion Criteria
	Snowballing

	Quality Assessment
	Data Collection
	Demographic information
	Data for RQ1
	Data for RQ2
	Data for RQ3

	Results
	RQ1. What are the existing approaches that solve MDE problems using ML techniques?
	RQ1.1. What ML techniques are most commonly used by these approaches?
	RQ1.2. What types of models do these approaches handle?
	RQ1.3. What activities in the software development process are affected by these approaches?

	RQ2. What is the current maturity level of approaches that use ML to solve MDE problems?
	Maturity metrics
	Correlation between metrics

	RQ3. What are the limitations of the existing approaches?

	Discussion
	Usage of ML techniques
	Models and their characteristics
	Datasets and replication packages
	Maturity level of current research

	Threats to validity
	Conclusions
	References
	Systematic Review References

