
Towards Feature Location in Models
through a Learning to Rank Approach

Ana C. Marcén, Jaime Font
acmarcen@usj.es

jfont@usj.es
SVIT Research Group
Universidad San Jorge

Autovı́a A-23 Zaragoza-Huesca
Km.299

Zaragoza, Spain 50830

Óscar Pastor
opastor@pros.upv.es

Centro de Investigación en Mtodos de
Producción de So�ware

Universitat Politècnica de València
Camino de Vera, s/n

Valencia, Spain 46022

Carlos Cetina
ccetina@usj.es

SVIT Research Group
Universidad San Jorge

Autovı́a A-23 Zaragoza-Huesca
Km.299

Zaragoza, Spain 50830

ABSTRACT
In this work, we propose a feature location approach to discover
so�ware artifacts that implement the feature functionality in a
model. Given a model and a feature description, model fragments
extracted from the model and the feature description are encoded
based on a domain ontology. �en, a Learning to Rank algorithm
is used to train a classi�er that is based on the model fragments
and feature description encoded. Finally, the classi�er assesses
the similarity between a population of model fragments and the
target feature being located to �nd the set of most suitable feature
realizations. We have evaluated the approach with an industrial
case study, locating features with mean precision and recall values
of around 73.75% and 73.31%, respectively (the sanity check obtains
less than 35%).

KEYWORDS
Feature Location, Learning to Rank, Model-based development
ACM Reference format:
Ana C. Marcén, Jaime Font, Óscar Pastor, and Carlos Cetina. 2016. Towards
Feature Location in Models
through a Learning to Rank Approach. In Proceedings of 21st International
Conference on So�ware Product Line, Seville, Spain, 25–29 September, 2017
(SPLC’17), 8 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Feature location is known as the process of �nding the set of so�-
ware artifacts that realize a particular functionality of so�ware
system. No maintenance activity can be completed without locat-
ing in the �rst place the so�ware artifact (e.g., code) that is relevant
to the speci�c functionality [10]. Since Feature Location is one of
the main activities performed during so�ware evolution [14] and
up to an 80% of a system’s lifetime is spent on the maintenance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SPLC’17, Seville, Spain
© 2016 ACM. 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

and evolution of the system [21], there is a great demand for Fea-
ture Location approaches that can help developers to �nd relevant
so�ware artifacts in a family of so�ware products.

Learning to Rank is known as a family of Machine Learning algo-
rithms that automatically address ranking tasks [22]. �e topic has
gained interest in recent years [9], and Learning to Rank has been
applied in a lot of �elds [7] like document retrieval, collaborative
�ltering, expert �nding, anti web spam, sentiment analysis, product
rating, and feature location.

However, most of the research on Feature Location through
Learning to Rank has been directed towards the location of fea-
tures in source code artifacts [5, 10, 33], neglecting other so�ware
artifacts such as models. �erefore, there is a dearth of Feature
Location approaches that research how to apply Learning to Rank
in order to locate the model elements that realize a feature.

In this work we propose LRFL-M (Learning to Rank for Feature
Location in Models), which is an Feature Location approach that
locates features in models through Leaning to Rank. �e approach is
based on Learning to Rank to assess the similarity between a feature
description and the model fragments that could be the realizations
of this feature. Given feature descriptions and model fragments
known beforehand, the LRFL-M approach encodes them based on
a domain ontology. �en, the classi�er is trained based on the
feature descriptions and the model fragments encoded. Finally, the
similarity between a population of model fragments and the target
feature being located are assessed through the classi�er in order
to �nd the set of most suitable feature realizations. �erefore, a
rank allows knowing what model fragments best realize the target
feature as output.

�e presented approach was evaluated in CAF, a worldwide
provider of railway solutions. �eir trains can be found all over the
world in di�erent forms (regular trains, subway, light rail, monorail,
etc.). �e application of the approach shows that the mean values
of precision and recall are 73.75% and 73.31%, respectively, while
the sanity check is around 46% less than the presented approach.

�e contribution of this paper is twofold. First, we show how
to encode model elements and feature descriptions by means of a
domain ontology in order to apply Learning to Rank to models. Sec-
ond, we provide evidence that, with our ontology-based encoding,
Learning to Rank is applicable to the problem of feature location in
industrial models such as the ones from our industrial partner.

SPLC’17, 25–29 September, 2017, Seville, Spain A. C. Marcén et al.

Feature
Description

Model
FragmentOntology

Classifier

Knowledge Base

Fitness
Score

Feature Description
Encoding1

Encoded Feature
Description

Model Fragment
Encoding2

Encoded Model
Fragment

Training Set
Generation3

Classifier Training4

Feature Vectors

Figure 1: Overview of the Learning to Rank phase of LRFL-
M.

�e remainder of this paper is structured as follows: Section 2
presents the details of the approach. Section 3 provides the eval-
uation carried out. Section 4 discusses the approach. Section 5
describes the threats to validity. Finally, Section 6 presents some
related work and the paper is concluded with remarks on future
work.

2 LEARNING TO RANK FOR FEATURE
LOCATION IN MODELS (LRFL-M)

�e approach consists of two phases: Learning to Rank and Feature
Location. In the �rst phase, the approach learns how to rank based
on a set of feature descriptions and model fragments whose similar-
ity with each other is known beforehand. In the second phase, the
approach locates a target feature in a model thanks to the learning
obtained in the �rst phase. As output, some fragments of the model
are ranked taking into account their similarity to the target feature.

2.1 �e Learning to Rank phase of LRFL-M
In the �rst phase, a classi�er is trained by a Learning to Rank
algorithm. Figure 1 shows an overview of the Learning to Rank
phase. Rectangular boxes represent the inputs and outputs, while
rounded boxes represent the di�erent steps to follow in this phase.
Lines indicate that an element is an input or output of one of the
steps.

�e input consists of the knowledge base and a domain ontology
provided by domain experts. Each input is described as follows:

• �e knowledge base is a set of elements that is generated
using the domain experts’ experience, documents, and re-
sults. Each element is composed of a feature description, a
model fragment, and a �tness score. �e feature descrip-
tion uses natural language to de�ne the feature that is
located in the model fragment. �e model fragment con-
sists of an element or a set of elements that belongs to the
model. �e �tness score determines if the model fragment
realizes the feature to a greater or lesser extent. In other
words, the �tness score assesses the similarity between the
feature description and the model fragment.

• �e domain ontology represents the main concepts and
the relation between them in a speci�c domain.

�e Learning to Rank algorithms train classi�ers by using train-
ing sets that are composed of feature vectors [6], so neither the
feature descriptions nor the model fragments can be understood
without encoding them. Each feature vector consists of feature-
value pairs. However, the concept of feature could be confused
in this speci�c context because it has two meanings. On the one
hand, in Feature Location, a feature is a prominent or distinctive
user-visible aspect, quality, or characteristic of a so�ware system
[19]. On the other hand, in Learning to Rank, a feature is an in-
dividual measurable characteristic of the element being observed
[8].To avoid misunderstandings, in this article the concept of fea-
ture in Learning to Rank is replaced by characteristic. �erefore,
each feature vector consists of characteristic-value pairs, and, in
the two �rst steps of this phase, the feature descriptions and the
model fragments are encoded into feature vectors, respectively.

(1) Feature Description Encoding
In this �rst step, each feature description is turned into

a encoded feature description. First, the main terms of the
feature description are extracted using well-established
Information Retrieval (IR) techniques: tokenizer, Parts-of-
Speech (POS) tagging technique, and stemming techniques
[3, 16]. Second, the relevance of these terms is assessed
comparing them with the concepts in the domain ontology.

Figure 2 presents an example of the encoding of a fea-
ture description and a model fragment based on an ontol-
ogy. �e section on the le� shows the ontology provided
by a domain expert. In the center, the �gure shows a fea-
ture description. And, below it, the feature description is
encoded as characteristic-value pairs.

Each concept in the ontology is a characteristic in the
encoded feature description. Its correspondent value is
computed as the frequency of this concept in the feature
description. Speci�cally, the concept is compared against
the terms extracted using the IR techniques. �is step
produces the encoded feature descriptions as output.

(2) Model Fragment Encoding
In this second step, the model fragments are encoded

based on the domain ontology. However, the encoding is
not based only on the concepts of the ontology but also on
its relations.

On the one hand, the main terms of the model frag-
ment are extracted taking into account the elements of the
model fragment and their properties. �en, the same IR

Towards Feature Location in Models
through a Learning to Rank Approach SPLC’17, 25–29 September, 2017, Seville, Spain

Ontology Model FragmentFeature Description

Encoded Model FragmentEncoded Feature Description

DoorC3

CabinC6

CouplingC1

ButtonC4

DeskC5

C2 Car

R1

R2

R3R4

R5

R6
The system will turn on the LED of the
button that closes the doors on one
side of the train if all the doors of the
correspondent coupling are closed or
blocked.

Coupling

Car2

Door3

Button

Door1

Car1 Car3

Door2

C1 C2 C3 C4 C5 C6
1 0 2 1 0 0

C1 C2 C3 C4 C5 C6
1 3 3 1 0 0

R1 R2 R3 R4 R5 R6
3 3 3 0 0 0

Figure 2: Example of the encoding of a feature description and a model fragment based on an ontology.

techniques (tokenizer, POS tagging technique, and stem-
ming techniques) are applied on the extracted terms. �en,
characteristic-value pairs are generated using the concepts
of the ontology. Each concept corresponds to a character-
istic. Its value is the frequency of the concept in the terms
that are extracted from the model fragment.

On the other hand, the relations available in the model
fragments are also encoded as characteristic-value pairs.
Each relation of the ontology corresponds to a characteris-
tic. Its value is the frequency of the relation in the model
fragment. Speci�cally, this frequency is computed automat-
ically taking into account how the metamodel implements
the relations de�ned in the ontology.

�e section on the right of Figure 2 shows a model frag-
ment. On the bo�om-right of this �gure (Encoded Model
Fragment), the le� column represents the characteristic-
value pairs for the concepts and the right column repre-
sents the characteristic-value pairs for the relations. �e
output of this step is the encoded model fragment, which is
composed of the characteristic-value pairs for the concepts
and for the relations.

(3) Training Set Generation
�is step generates the training set that is used to train

the classi�er. Learning to Rank algorithms use two di�er-
ent sets: one is to train the classi�er which is known as
the training set; the other one is to perform the ranking by
using the classi�er, which is known as the test set. Both of
them are composed of feature vectors.

In this case, each feature vector is composed of an en-
coded feature description, an encoded model fragment,
and a �tness score. �e encoded feature description comes
from a feature description that is encoded in the �rst step.
�e encoded model fragment comes from a model frag-
ment that is encoded in the second step. �e �tness score
is the value assigned in the knowledge base to determine
the similarity between that feature description and that
model fragment.

Following the example of Figure 2, the feature vector
would be composed of eighteen characteristic-value pairs
and a �tness score. �e �rst six characteristic-value pairs
would belong to the encoded feature description. �en, the
following twelve characteristic-value pairs would belong
to the encoded model fragment. �e �tness score would be
the correspondent numerical value of the knowledge base.

(4) Classi�er Training
In this step, the classi�er is trained by a Learning to

Rank algorithm using the training set that was de�ned in
the previous step. �e Learning to Rank algorithm com-
pares the feature vectors of the training set by assessing
of the similarity between the �tness scores, the encoded
feature descriptions, and the encoded model fragments.
�en, the constraints extracted from these comparisons
are used by the algorithm to generate the classi�er. �is
classi�er is the output of the Learning to Rank phase.

2.2 �e Feature Location phase of LRFL-M
Figure 3 depicts an overview of the Feature Location phase. �e
input consists of the same domain ontology that was used in the
previous phase, the target feature description, and the population
of model fragments where this target feature is going to be located.
First, the target feature description and the model fragments are
encoded by using the same techniques described in the �rst and
second steps of the Learning to Rank phase. �en, the test set is
generated by using the encodings. Each feature vector of the test
set consists of the same encoded feature description and one of the
encoded model fragments. �en, the classi�er assesses the �tness
scores for each feature vector in the the test set. �ese �tness scores
are the output of the Feature Location phase. �ey allow the model
fragments to be ranked according to their similarity to the target
feature description.

In the following sections, we describe the case study that we
designed to address the evaluation of the approach, as well as its
results.

SPLC’17, 25–29 September, 2017, Seville, Spain A. C. Marcén et al.

Target Feature
Description

Ontology
Model Fragment
Population

Model Fragment
Encoding1

Feature Description
Encoding2

Encoded Feature
Description

Encoded Model
Fragment

Classifier3
Ranking

Figure 3: Overview of the Feature Location phase of LRFL-
M.

3 EVALUATION
�is section presents the evaluation that was performed to deter-
mine if the presented approach can be used to locate features. �e
following subsections describe the experimental setup, the case
study where we applied the approach, and the results obtained.

3.1 Experimental Setup
Figure 4 shows an overview of the process that was followed to
evaluate the approach to locate features in the industrial case study.
�e top part shows the ontology, the knowledge base, and the oracle
for the case study. �e ontology represents the main concepts and
the relations with each other in a speci�c domain. �is ontology
was de�ned by a domain expert from the main concepts in the
domain and how they are related. �e knowledge base is a set
of feature descriptions, models fragments that are possible realiza-
tions for that feature description, and the �tness score assigned
to that model fragment. �is knowledge base was constructed by
engineers from our industrial partner and then the �tness scores
were assigned by a domain expert. �e oracle consists of a set
of features whose traceability between their feature descriptions
and model fragments is documented by our industrial partner. �e
oracle will be considered the ground truth and will be used to eval-
uate the solutions provided in terms of precision, recall, and the
F-measure.

�en, the knowledge base is divided into two di�erent sets. �e
�rst one will be encoded to generate the training set in the Learning
to Rank phase of the LRFL-M approach. �e second one will be
encoded to generate the test set in the Feature Location phase of
the LRFL-M approach. �erefore, the knowledge base for training
is used to generate a classi�er following the steps described in the
Learning to Rank phase of the LRFL-M. And, in the Feature Location
phase of LRFL-M, the knowledge base for testing is fed as input
for this classi�er. In addition, the Knowledge base for testing is
also fed as input for a random classi�er (Sanity Check). As a result,
we obtained a solution in the form of a model fragment for each

classi�er. Finally, we computed the precision, recall and F-measure
values for each of these solutions.

Precision measures the number of elements from the solution
that are correct according to the ground truth (the oracle) and is
de�ned as follows:

Precision =
SolutionElements ∩OracleElements

SolutionElements
(1)

Recall measures the number of elements of the solution that are
retrieved by the proposed solution and is de�ned as follows:

Recall =
SolutionElements ∩OracleElements

OracleElements
(2)

Finally, F-measure corresponds to the harmonic mean of preci-
sion and recall and is de�ned as follows:

F −measure = 2 ∗ Precision ∗ Recall
Precision + Recall

(3)

�e presented approach uses the Eclipse Modeling Framework
(EMF) to manipulate the models from our industrial partners and the
Common Variability Language (CVL) [29] to manage the fragments
of models. �e IR techniques that are used to process the language
were implemented using OpenNLP [1] for the POS-Tagger and
Snowball [2] for the stemming. Finally, SVM-Rank is the algorithm
that is used to generate the classi�er [18]. SVM-Rank is a well-
known Learning to Rank algorithm that is based on the Support
Vector Machine (SVM) [26].

3.2 CAF case study
First, we extracted an oracle from our industrial partner models.
Fy, we obtained four di�erent product models of real world trains,
each one of which is composed of around 1200 elements on average.
�e product models are built using 121 di�erent features that can
be present in each product model. Besides the product models, we
also extracted the formalization of the variability, which maps each
feature to the model fragments that realizes the feature (so we can
use it as an oracle).

To create the knowledge base, we selected one feature from
each of the trains and asked 19 di�erent engineers from our indus-
trial partner to create a model fragment that realizes the feature.
�en, each model fragment was assigned a score by a domain expert
to determine its correctness.

Using the knowledge base, we performed four test cases, one for
each of the features present in the knowledge base. Each test case
ranked the model fragments that realized one of the features. �e
model fragments that realized the other features were used to train
the classi�er. Table 1 shows how the knowledge base is divided in
each test case taking into account one feature for testing and using
the other features for training.

�is table also shows the number of elements that the knowledge
base contains for each test case. �ese elements correspond to
concepts and relations of the ontology, which have to be present
so that the feature is realized properly. �erefore, the number of
elements depends of the concepts and relations that the feature
contains.

�en, for each test case, we followed the experimental setup de-
scribed in Figure 4. �e LRFL-M approach followed the two phases
de�ned above. In the Learning to Rank phase, the knowledge base

Towards Feature Location in Models
through a Learning to Rank Approach SPLC’17, 25–29 September, 2017, Seville, Spain

Ontology
Knowledge Base

Model
Fragment

Feature
Description

Fitness
Score

Knowledge Base for Training

Model
Fragment

Feature
Description

Fitness
Score

Knowledge Base for Testing

Model
Fragment

Target Feature
Description

LRFL-M & SVM-Rank Sanity Check

Ranking of Model Fragments

The Best Model Fragment

Calculation of Confusion Matrix & Metrics

Metrics Report

Ranking of Model Fragments

The Best Model Fragment

Calculation of Confusion Matrix & Metrics

Metrics Report

Oracle

Model
Fragment

Feature
Description

Figure 4: Experimental Setup

Table 1: Division of the knowledge base for each test case
(TC) taking into account the features (F), and the number of
elements that these features contain.

Knowledge Base
for Training

Knowledge Base
for Testing

Features #Elements Features # Elements
TC1 F2, F3, F4 14 F1 1
TC2 F1, F3, F4 8 F2 7
TC3 F1, F2, F4 12 F3 3
TC4 F1, F2, F3 11 F4 4

for training was encoded taking into account the ontology and the
format required by the Learning to Rank algorithm. �e ontology
de�ned for this speci�c domain is composed of 12 concepts and
17 relations for these concepts. �erefore, the encoded feature de-
scription was composed of 12 characteristic-value pairs, and the
encoded model fragment was composed of 29 characteristic-value
pairs.

Moreover, SVM-Rank requires a speci�c format for its feature
vectors [18]. First, each feature vector contains a numerical value
which corresponds to our �tness score. �en, it has a numerical
value to identify what feature vectors are related to each other. In
our case, this value represents the feature that is realized in the
feature vector. �erefore, here all the feature vectors that realize
the same feature will have the same identi�er. �en, the feature
vector contains characteristic-value pairs, so the encoded feature
description and the encoded model fragment are included a�er the
identi�er. Finally, it is possible to add a comment, which was not
relevant for the SVM-Rank approach but that may help us to clarify
the understanding of the feature vector.

�en, the training set generated was used to train the classi�er.
In the Feature Location phase of LRFL-M, the knowledge base
for testing was encoded taking into account the ontology and the
format required by the Learning to Rank algorithm. �en, the
testing set was ranked by the classi�er that was generated in the
previous phase. As a result of the LRFL-M approach, we obtained
a ranking of model fragments, and the results were assessed by
comparing them to the oracle.

�erefore, each test case returned two results: one for the SVM-
Rank classi�er, and one for the Sanity Check. Finally, each test case
was run 30 times. As suggested by [4], given the stochastic nature
of the LRFL-M approach, several repetitions are needed to obtain
reliable results.

3.3 Results
�is subsection presents the results obtained for each of the tested
test cases. �e right-hand graph on Figure 5 shows the mean values
of precision and recall achieved for each test case when locating
the features from the CAF case study using the presented approach.
Each point in the chart represents the mean value (for the 30 inde-
pendent executions) of the two performance indicators (precision
on the x axis and recall on the y axis) for one of the test case execu-
tions. Similarly, the le�-hand graph on Figure 5 shows the mean
values of precision and recall achieved for each test case when
locating the features from the CAF case study using the Sanity
Check.

In addition, in each of the graphs, the points belonging to each
of the four test cases are displayed using di�erent symbols. In
order words, red squares represent the executions of TC1; blue
asterisks represent the executions of TC2; pink triangles represent
the executions of TC3; and green diamonds represent the executions
of TC4.

SPLC’17, 25–29 September, 2017, Seville, Spain A. C. Marcén et al.

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

SVM-Rank

0

2
0

4
0

6
0

8
0

1
0
0

R
ec
al
l
(%
)

0

20 40 60 80 100
Precision (%)

Sanity Check

*

*

*

*

*

*

*

*

*

*

* *
* *

*

*

*

*

*

*

*

*
*

*

*
*

*

*

*

*
*

*

*
*

*

*

*

*

*

*

0

2
0

4
0

6
0

8
0

1
0
0

R
ec
al
l
(%
)

0

20 40 60 80 100
Precision (%)

Test Case 1 *Test Case 2 Test Case 3 Test Case 4 Test Case 1 *Test Case 2 Test Case 3 Test Case 4

Figure 5: Mean Precision and Recall for the four test cases and both rankings: Sanity Check and SVM-ranking

Table 2: Mean Values and Standard Deviations for Precision,
Recall, and F-Measure for SVM and Sanity Check

TC Measurement SVM-Ranking Sanity Check

TC1
Precision ± (σ) 84.06 ± 9.86 23.00 ± 14.95
Recall ± (σ) 84.12 ± 11.09 19.09 ± 9.77
F-Measure ± (σ) 83.54 ± 8.25 17.42 ± 10.17

TC2
Precision ± (σ) 69.31 ± 14.93 24.91 ± 11.73
Recall ± (σ) 69.95 ± 15.40 34.13 ± 14.84
F-Measure ± (σ) 67.84 ± 11.70 25.78 ± 10.87

TC3
Precision ± (σ) 62.86 ± 17.14 24.93 ± 15.25
Recall ± (σ) 62.25 ± 13.67 21.33 ± 13.11
F-Measure ± (σ) 60.15 ± 10.60 18.21 ± 10.94

TC4
Precision ± (σ) 78.79 ± 13.80 30.18 ± 14.75
Recall ± (σ) 76.94 ± 12.13 30.28 ± 14.39
F-Measure ± (σ) 77.00 ± 10.01 27.06 ± 12.04

Mean
Precision ± (σ) 73.75 ± 16.28 25.76 ± 14.35
Recall ± (σ) 73.31 ± 15.38 26.21 ± 14.46
F-Measure ± (σ) 72.13 ± 13.48 22.11 ± 11.75

In Table 2, we outline the results, which are aggregated for each
classi�er and test case. We also show the F-measure. �e SVM-Rank
classi�er achieves the best results for all the performance indicators
across the four test cases, providing a mean precision value of
73.75%, a recall value of 73.31%, and a combined F-measure of
72.13%. In contrast, the Sanity Check achieves mean values of
around 26%, which is approximately 46% less than the presented
approach.

4 DISCUSSION
�e results reveal that by using our ontology-based encoding, Learn-
ing to Rank can be applied to industrial models such as the models
of CAF. In the following subsections, we discuss some limitations
and the generalization.

4.1 Limitations of our ontology-based encoding
�e presented approach relies on sets of information that are divided
into three components: the feature description, the model fragment,
and the �tness score (which assesses the similarity between the �rst
two components). Speci�cally, the �tness score is given by an expert
in the domain, and it will have an impact on the ranking classi�er
that is produced by the Learning to Rank algorithm. �erefore, it
must be carefully assigned by the domain expert.

Based on the results, the TC1 obtains the best results because
the knowledge base for testing is the simplest testing set, as the
table 1 shows. While the knowledge base for testing contains
only one element, the knowledge base for training contains 14
elements. �erefore, the greater number of elements contained
in the knowledge for training helps to be�er rank the knowledge
base for testing. In contrast, the TC3 obtains the worst results
because the F3 does not contain any element in common with the
other features. While the F1, F2, and F4 have some elements in
common, the elements in the F3 are not present in the other features.
�erefore, ranking this feature is more complex than to rank the
other features. For these reasons, one of the future works will
consist in increasing the knowledge base.

In addition, our encoding is based on the presence or absence
of concepts and relations from the domain ontology in the feature
description and in the model fragment. Although the classi�er
achieves satisfactory results in our evaluation, it is not enough to
capture speci�c details. For example, two di�erent feature descrip-
tions could contain the same relations and concepts: the �rst one
indicates that the doors of the train will be opened when a bu�on
is pressed and the train is stopped, while the other one indicates
that the bu�on will be inhibited when the doors are closed and
the train is in motion. �e two feature descriptions have the same
concepts and relations, but they have a di�erent meaning and the
correspondent model fragments also have noticeable di�erences.
�erefore, our encoding steps could be improved by taking into ac-
count a more complex ontology. In fact, this constitutes our future
work.

Moreover, the concepts and the relations de�ned in the ontol-
ogy do not have the same relevance to the encoding. In fact, we
have observed that some of them include a small deviation when

Towards Feature Location in Models
through a Learning to Rank Approach SPLC’17, 25–29 September, 2017, Seville, Spain

the similarity is computed by the classi�er. For example, if a fea-
ture description indicates that the state of the pantograph changes
when a bu�on is pressed, two model fragments can realize this
feature correctly but using di�erent elements. Both of the model
fragments would contain the same basic elements (e.g, a bu�on
or a pantograph) to function properly. However, one of the model
fragments could also have a desk where the bu�on is installed. In
this case, the desk is irrelevant to locate the feature. However, it
would be included automatically in the encoding thereby adding
ambiguity because both model fragments would have the same
�tness score and di�erent elements. To solve this, we could use
Feature Selection techniques that are widely extended in mining
and machine learning applications to simplify the classi�ers and to
reduce over��ing [13].

Another way to improve the performance of the classi�er is by
adjusting the parameters of the Learning to Rank algorithm. �is
approach has been executed using the default parameters [17], but
they could be con�gured to try to improve the results.

4.2 Generalization
�e presented approach has been designed to be applied in a speci�c
domain, taking advantage of the experience and knowledge about
the domain. An expert in the domain designed the ontology and
assigned the �tness scores of the knowledge base. �e approach
could be applied to any domain, but there must be an ontology and
a domain expert to assign the �tness scores for the training.

5 THREATS TO VALIDITY
In this section, we use the classi�cation of threats of validity of
[27, 32] to acknowledge the limitations of our approach.

Construct validity: �is aspect of validity re�ects the extent
to which the operational measures that are studied represent what
the researchers have in mind. To minimize this risk, our evalua-
tion is performed using three measures: precision, recall, and the
F-measure. �ese measures are widely accepted in the so�ware
engineering research community [28].

Internal Validity: �is aspect of validity is of concern when
causal relations are examined. �ere is a risk that the factor being
investigated may be a�ected by other neglected factors. �e number
of model fragments in the knowledge base may look small, but
SVM-Rank performs be�er with small training sets [18]. �erefore,
SVM-Rank was the Learning to Rank algorithm selected to reduce
this threat.

External Validity: �is aspect of validity is concerned with to
what extent it is possible to generalize the �nding, and to what
extent the �ndings are of relevance for other cases. �e LRFL-
M approach was designed to locate features in models, but there
must be an ontology and a domain expert to assign the �tness
scores for the training. If these conditions are satis�ed, the features
of any domain could be located in models using this approach.
Nonetheless, LRFL-M should be applied to other domains before
assuring its generalization.

Reliability: �is aspect is concerned with to what extent the
data and the analysis are dependent on the speci�c researchers. To
reduce this threat, the creation of the ontology and the assignment
of the �tness scores were performed by a domain expert who was

not involved in the research. Moreover, the feature descriptions
and the model fragments were provided by our industrial partner.

6 RELATEDWORK
In this section, we present some related works, which are divided
into two parts. First, we overview some research papers on Feature
Location. Second, we discuss other publications that focus on
Feature Location in Models.

6.1 Feature Location Approaches
Typechef [20] provides an infrastructure to locate the code that
is associated to a given feature by means of analyzing the #ifdef
directives. Trace analysis [11] is a run-time technique that is used
to locate features. When the technique is executed, it produces
traces that indicate which parts of code have been executed. Some
approaches that are related to feature location use LSI to extract
the code associated to a feature [21, 24]. �ese techniques have
generally been applied to search for the code of a feature in a
given individual product. In contrast, our approach searches for
model fragments that implement a feature by means of an ontology-
based encoding that enables the application of Learning to Rank
algorithms to models.

Some works rely on Learning to Rank techniques to locate fea-
tures in the code [5, 33]. Tien-Duy et al. focus on Learning to Rank
through feature vectors that are based on likely invariants. Xin
et al. focus on the terms that are de�ned in a vocabulary to build
the feature vectors. In our approach, we also take advantage of
the knowledge of domain experts to de�ne the feature vectors that
are based on the ontology created by them. Our approach also
performs feature location through Learning to Rank algorithms.
However, our approach locates the features in models instead of in
code.

Some works rely on ontologies to locate features in code. In [31],
a systematic approach is used to locate features by using ontology
fragments. Hayashi et al. [15] propose an ontology-based technique
to locate features that are de�ned by natural language sentences.
Ratiu et al. [25] present a framework to recover the mappings
between entities from an ontology and program elements. Petrenko
et al. [23] perform a study about the performance of programmers
when they locate features by using ontology fragments. In contrast,
our approach locates features in models and the ontology is used
to encode both feature descriptions and model fragments.

6.2 Feature Location in Models
Other works focus on the location of features in models using com-
parisons among models in a family of models [30, 34, 35]. Zhang
et al. [34] propose a generic approach to locate the feature realiza-
tions by exploring the commonality and the variability of models
through their automatic comparison. In [35], the approach is re-
�ned to reduce the manual e�ort required in the formalization of
the feature realizations when new product models are included
in a product line. In the approach of [30], the variability between
models is determined through an exchangeable metric, taking into
account di�erent a�ributes of the models.

However, all of these approaches are based on the location of
features through comparisons among the models. In contrast, our

SPLC’17, 25–29 September, 2017, Seville, Spain A. C. Marcén et al.

approach is applied to a single product model; it relies on a classi�er
that compares the target feature description with the model.

Font et al. [12] propose a generic approach to locate features
in a single model through the use of a genetic algorithm. First,
their approach clusters the model fragments into feature realization
candidates through Formal Concept Analysis (FCA). �en, Latent
Semantic Analysis (LSA) is used to rank the feature realization
candidates based on the similarity with the feature description. In
contrast to our approach, which bene�ts from legacy products to
train the classi�er, in [12] no ma�er how many legacy products
there are, their techniques do not bene�t from them.

7 CONCLUSION AND FUTUREWORKS
As part of this work, we have presented a Feature Location approach
that targets model fragments as the feature realization artifacts us-
ing Learning to Rank. We propose a novel encoding of feature
descriptions and model fragments based on an ontology. We pro-
pose the use of a Learning to Rank algorithm to learn how to assign
�tness scores based on the similarity between feature descriptions
and model fragments. As a result, the features located using this ap-
proach shows recall rand precision measures of around 73%, while
the sanity check remains below 46%. Taking into account these
results, our next steps involve the increase of our knowledge base
to improve the performance of the classi�er, and the enrichment of
our ontology to capture speci�c details to improve our encoding.

ACKNOWLEDGMENTS
�is work has been developed with the �nancial support of the Span-
ish Ministry of Economy and Competitiveness under the project
TIN2016-80811-P and co-�nanced with ERDF. We also thank the
ITEA3 15010 REVaMP2 Project.

REFERENCES
[1] 2016. Apache OpenNLP: Toolkit for the processing of natural language text.

h�ps://opennlp.apache.org/. (2016). [Online; accessed 7-April-2016].
[2] 2016. Snowball : Snowball is a small string processing language designed for

creating stemming algorithms for use in Information Retrieval. h�p://snowball.
tartarus.org/. (2016). [Online; accessed 7-April-2016].

[3] Vander Alves, Christa Schwanninger, Luciano Barbosa, Awais Rashid, Peter
Sawyer, Paul Rayson, Christoph Pohl, and Andreas Rummler. 2008. An ex-
ploratory study of information retrieval techniques in domain analysis. In So�-
ware Product Line Conference, 2008. SPLC’08. 12th International. IEEE, 67–76.

[4] Andrea Arcuri and Gordon Fraser. 2013. Parameter tuning or default values? An
empirical investigation in search-based so�ware engineering. Empirical So�ware
Engineering 18, 3 (2013), 594–623.

[5] Tien-Duy B Le, David Lo, Claire Le Goues, and Lars Grunske. 2016. A learning-
to-rank based fault localization approach using likely invariants. In Proceedings
of the 25th International Symposium on So�ware Testing and Analysis. ACM,
177–188.

[6] Gautam Biswas, Jerry B Weinberg, and Douglas H Fisher. 1998. ITERATE: A
conceptual clustering algorithm for data mining. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews) 28, 2 (1998), 219–230.

[7] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning
to rank: from pairwise approach to listwise approach. In Proceedings of the 24th
international conference on Machine learning. ACM, 129–136.

[8] Girish Chandrashekar and Ferat Sahin. 2014. A survey on feature selection
methods. Computers & Electrical Engineering 40, 1 (2014), 16–28.

[9] Olivier Chapelle and Yi Chang. 2011. Yahoo! Learning to Rank Challenge
Overview.. In Yahoo! Learning to Rank Challenge. 1–24.

[10] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. 2013.
Feature location in source code: a taxonomy and survey. Journal of so�ware:
Evolution and Process 25, 1 (2013), 53–95.

[11] Andrew David Eisenberg and Kris De Volder. 2005. Dynamic feature traces:
Finding features in unfamiliar code. In 21st IEEE International Conference on
So�ware Maintenance (ICSM’05). IEEE, 337–346.

[12] Jaime Font, Lorena Arcega, Øystein Haugen, and Carlos Cetina. 2016. Feature
location in models through a genetic algorithm driven by information retrieval
techniques. In Proceedings of the ACM/IEEE 19th International Conference on
Model Driven Engineering Languages and Systems. ACM, 272–282.

[13] Isabelle Guyon and André Elissee�. 2003. An introduction to variable and feature
selection. Journal of machine learning research 3, Mar (2003), 1157–1182.

[14] Sonia Haiduc, Gabriele Bavota, Andrian Marcus, Rocco Oliveto, Andrea De Lucia,
and Tim Menzies. 2013. Automatic query reformulations for text retrieval in
so�ware engineering. In So�ware Engineering (ICSE), 2013 35th International
Conference on. IEEE, 842–851.

[15] S. Hayashi, T. Yoshikawa, and M. Saeki. 2010. Sentence-to-Code Traceability
Recovery with Domain Ontologies. In 2010 Asia Paci�c So�ware Engineering
Conference. 385–394.

[16] Ane�e Hulth. 2003. Improved automatic keyword extraction given more lin-
guistic knowledge. In Proceedings of the 2003 conference on Empirical methods in
natural language processing. Association for Computational Linguistics, 216–223.

[17] �orsten Joachims. 1999. Svmlight: Support vector machine. SVM-Light Support
Vector Machine h�p://svmlight. joachims. org/, University of Dortmund 19, 4 (1999).

[18] �orsten Joachims. 2009. Svm-rank: Support vector machine for ranking. (2009).
[19] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and A Spencer Pe-

terson. 1990. Feature-oriented domain analysis (FODA) feasibility study. Technical
Report. DTIC Document.

[20] Christian Kästner, Paolo G Giarrusso, Tillmann Rendel, Sebastian Erdweg, Klaus
Ostermann, and �orsten Berger. 2011. Variability-aware parsing in the presence
of lexical macros and conditional compilation. In ACM SIGPLAN Notices, Vol. 46.
ACM, 805–824.

[21] Dapeng Liu, Andrian Marcus, Denys Poshyvanyk, and Vaclav Rajlich. 2007.
Feature location via information retrieval based �ltering of a single scenario
execution trace. In Proceedings of the twenty-second IEEE/ACM international
conference on Automated so�ware engineering. ACM, 234–243.

[22] Tie-Yan Liu. 2009. Learning to rank for information retrieval. Foundations and
Trends in Information Retrieval 3, 3 (2009), 225–331.

[23] M. Petrenko, V. Rajlich, and R. Vanciu. 2008. Partial Domain Comprehension in
So�ware Evolution and Maintenance. In 2008 16th IEEE International Conference
on Program Comprehension. 13–22.

[24] Denys Poshyvanyk, Yann-Gael Gueheneuc, Andrian Marcus, Giuliano Antoniol,
and Vaclav Rajlich. 2007. Feature Location Using Probabilistic Ranking of Meth-
ods Based on Execution Scenarios and Information Retrieval. IEEE Transactions
on So�ware Engineering 33, 6 (June 2007), 420–432.

[25] Daniel Ratiu and Florian Deissenboeck. 2007. From reality to programs and
(not quite) back again. In Program Comprehension, 2007. ICPC’07. 15th IEEE
International Conference on. IEEE, 91–102.

[26] Marco Tulio Ribeiro, Nivio Ziviani, Edleno Silva De Moura, Itamar Hata, Anisio
Lacerda, and Adriano Veloso. 2015. Multiobjective pareto-e�cient approaches for
recommender systems. ACM Transactions on Intelligent Systems and Technology
(TIST) 5, 4 (2015), 53.

[27] Per Runeson and Martin Höst. 2009. Guidelines for conducting and reporting
case study research in so�ware engineering. Empirical so�ware engineering 14,
2 (2009), 131–164.

[28] Gerard Salton and Michael J. McGill. 1986. Introduction to Modern Information
Retrieval. McGraw-Hill, Inc., New York, NY, USA.

[29] Andreas Svendsen, Xiaorui Zhang, Roy Lind-Tviberg, Franck Fleurey, Øystein
Haugen, Birger Møller-Pedersen, and Gøran K Olsen. 2010. Developing a so�ware
product line for train control: A case study of cvl. In International Conference on
So�ware Product Lines. Springer, 106–120.

[30] David Wille, Sönke Holthusen, Sandro Schulze, and Ina Schaefer. 2013. Inter-
face variability in family model mining. In Proceedings of the 17th International
So�ware Product Line Conference co-located workshops. ACM, 44–51.

[31] L. A. Wilson. 2010. Using ontology fragments in concept location. In 2010 IEEE
International Conference on So�ware Maintenance. 1–2.

[32] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Experimentation in so�ware engineering. Springer Science
& Business Media.

[33] Xin Ye, Razvan Bunescu, and Chang Liu. 2014. Learning to rank relevant �les for
bug reports using domain knowledge. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of So�ware Engineering. ACM, 689–699.

[34] Xiaorui Zhang, Øystein Haugen, and Birger Moller-Pedersen. 2011. Model
comparison to synthesize a model-driven so�ware product line. In So�ware
Product Line Conference (SPLC), 2011 15th International. IEEE, 90–99.

[35] Xiaorui Zhang, Øystein Haugen, and Birger Møller-Pedersen. 2012. Augmenting
product lines. In 2012 19th Asia-Paci�c So�ware Engineering Conference, Vol. 1.
IEEE, 766–771.

https://opennlp.apache.org/
http://snowball.tartarus.org/
http://snowball.tartarus.org/

	Abstract
	1 Introduction
	2 Learning to Rank for Feature Location in Models (LRFL-M)
	2.1 The Learning to Rank phase of LRFL-M
	2.2 The Feature Location phase of LRFL-M

	3 Evaluation
	3.1 Experimental Setup
	3.2 CAF case study
	3.3 Results

	4 Discussion
	4.1 Limitations of our ontology-based encoding
	4.2 Generalization

	5 Threats to Validity
	6 Related Work
	6.1 Feature Location Approaches
	6.2 Feature Location in Models

	7 Conclusion And Future Works
	Acknowledgments
	References

