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Abstract

Traceability Link Recovery (TLR) has been a topic of interest for many
years within the software engineering community. In recent years, TLR has
been attracting more attention, becoming the subject of both fundamental
and applied research. However, there still exists a large gap between the
actual needs of industry on one hand and the solutions published through
academic research on the other.

In this work, we propose a novel approach, named Evolutionary Learning
to Rank for Traceability Link Recovery (TLR-ELtoR). TLR-ELtoR recovers
traceability links between a requirement and a model through the combina-
tion of evolutionary computation and machine learning techniques, generat-
ing as a result a ranking of model fragments that can realize the requirement.

TLR-ELtoR was evaluated in a real-world case study in the railway do-
main, comparing its outcomes with five TLR approaches (Information Re-
trieval, Linguistic Rule-based, Feedforward Neural Network, Recurrent Neu-
ral Network, and Learning to Rank). The results show that TLR-ELtoR
achieved the best results for most performance indicators, providing a mean
precision value of 59.91%, a recall value of 78.95%, a combined F-measure
of 62.50%, and a MCC value of 0.64. The statistical analysis of the results
assesses the magnitude of the improvement, and the discussion presents why
TLR-ELtoR achieves better results than the baselines.
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1. Introduction

Traceability Link Recovery (TLR) has been a subject of investigation
for many years within the software engineering community [1, 2]. Research
has shown that affordable traceability can be critical to the success of a
project [3] and leads to increased maintainability and reliability of software
systems by making it possible to verify and to trace non-reliable parts [4].
Specifically, more complete traceability decreases the expected defect rate in
the developed software [5].

In recent years, TLR has been attracting more attention, and re-
establishing the traceability links between software artifacts has become a
subject of both fundamental and applied research [6]. In fact, a few ap-
proaches have been proposed to recover traceability between requirements
and models [7]. However, the support of traceability research for practical
problems in industry is perceived as being rather low [7], and there still exists
a large gap between the needs of industry on one hand and the published
solutions from academic research on the other [8].

In this work, we propose a novel approach, named Evolutionary Learning
to Rank for Traceability Link Recovery (TLR-ELtoR). TLR-ELtoR recov-
ers traceability links between the requirements of a software system and the
models that implement it. Specifically, our approach is based on an Evo-
lutionary Algorithm (EA). Moreover, the EA is guided by a Learning to
Rank algorithm that empowers us to take advantage of the knowledge and
the experience that have been generated in companies for years in order to
automatically perform ranking tasks. In summary, from a requirement and a
model, TLR-ELtoR generates a ranking of model fragments that can realize
the requirement.

The presented approach was evaluated in a real-world case study provided
by our industrial partner, CAF1 (Construcciones y Auxiliar de Ferrocarriles),
a worldwide provider of railway solutions. The outcomes of TLR-ELtoR were
compared with five TLR approaches, these approaches were selected taking
into account the approaches that obtain the best results for recovering trace-
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ability between requirements and models [7], the successful application of
deep learning techniques for TLR in recent works [9], and the size of the
search space to be explored. The first one [10] is a Linguistic Rule-Based
(TLR-Linguistic) approach that is based on Parts-of-Speech (POS) Tagging
and traceability rules. The second one [11, 12] is an Information Retrieval
(TLR-IR) approach that is based on Latent Semantic Indexing (LSI) and Sin-
gular Value Decomposition (SVD). The third one is a Feedforward Neural
Network (TLR-FNN) approach that is based on a traditional neural network
structure. The fourth one is a Recurrent Neural Network (TLR-RNN) ap-
proach that is based on an extension of a Feedforward Neural Network with
feedbaack connections to model the temporal characteristics of the problem
being learned [13]. The fifth one is a Learning to Rank (TLR-LtoR) approach
based on ranking Machine Learning algorithms of the same name.

The results show that TLR-ELtoR achieved the best results for most
the performance indicators, providing a mean precision value of 59.91%, a
recall value of 78.95%, a combined F-measure of 62.50%, and a MCC value
of 0.64. In contrast, the TLR-Linguistic baseline, the TLR-IR baseline, and
the TLR-LtoR baseline had worse results for these same measurements. On
the other hand, although TLR-FNN and TLR-RNN achieved the best results
for recall, they obtained the worst results for the rest of the indicators. The
statistical analysis of the results assesses the magnitude of the improvement,
and the discussion presents two advantages and a limitation of our approach.

The remainder of this paper is structured as follows: Section 2 provides
background on our case study. Section 3 highlights our TLR-ELtoR ap-
proach. Section 4 and Section 5 detail the genetic operations step and the
fitness function step of our approach, respectively. Section 6 details the
means used to evaluate our work and the results of the evaluation. Section
7 analyzes the statistical significance of the obtained results. Section 8 dis-
cusses our approach and the obtained results. Section 9 describes the threats
to the validity of our work. Section 10 introduces the existing works that are
related to our work. Section 11 provides the means to replicate the results.
Finally, Section 12 concludes the paper.

2. Background

This section presents the Train Control and Management Language
(TCML), which is used to formalize the products manufactured by our indus-
trial partner. TCML has the expressiveness required to describe the interac-
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Figure 1: Example of a TCML model and model fragment

tion between the main pieces of equipment installed in a train unit. TCML
also has the required expressiveness to specify non-functional aspects that
are related to regulation, such as the quality of signals from the equipment
or the different levels of installed redundancy. TCML will be used through
the rest of the paper to present a running example. In this work, for the sake
of the understandability and legibility of the running example, we present an
equipment-focused, simplified subset of TCML, with four different kinds of
equipment:

1 High Voltage Equipment, which is in charge of harvesting the energy
that powers the different elements of the train.

2 Contactors, which are in charge of opening or closing the circuits
between the High Voltage equipment and the Voltage Converters.

3 Voltage Converters, which are in charge of transforming the har-
vested electric power into a current that the Consumer Equipment can
work with.

4 Consumer Equipment, which is in charge of carrying out all of the
tasks required for the train to work properly and provide comfort to
the passengers.
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Figure 1 depicts an example that is taken from a real-world train. It
presents a converter assistance scenario. In the example, two separate pan-
tographs (High Voltage Equipment) collect energy from the overhead wires
and send it to their respective circuit breakers (Contactors), which in turn
send it to their independent Voltage Converters. The converters then power
their assigned Consumer Equipment: the left one powers the HVAC (the air
conditioning system of the train) devices, and the right one powers the PA
(public address system) and the CCTV (television system) circuits of the
train.

There is an additional circuit breaker between the second converter and
the HVAC that is connected to the first converter. The part on the right of
Figure 1 shows an example of a model fragment of the product model. The
model fragment includes the additional circuit breaker. This model fragment
is the realization of the ”converter assistance” requirement, which allows the
passing of current from one converter to a piece of Consumer Equipment that
is assigned to its peer. In the case of overload or failure of the first converter,
total or partial functioning (depending on specific conditions) of the HVAC
could be covered by the second converter.

To formalize the model fragments, we use the Common Variability Lan-
guage (CVL) [14]. CVL defines variants of a base model (conforming to
MOF, the OMG metalanguage for defining modeling languages) by replac-
ing variable parts of the base model with alternative model replacements that
are found in a library.

3. Overview of our TLR-ELtoR Approach

This section presents the proposed TLR-ELtoR approach for TLR be-
tween the requirements and the models through an EA, which is based on
genetic operations and a fitness function. The objective of the approach
is to provide the model fragment from a given model that realizes a spe-
cific requirement. To do this, the approach receives as input the model that
implements a specific requirement. The approach relies on an evolutionary
algorithm that iterates over a population of model fragments, evolving them
using genetic operations. Then, the score of each model fragment and its
position in the ranking are calculated through the fitness function that uses
Learning to Rank as its objective. As output, the approach provides a model
fragment ranking where each model fragment is ranked taking into account
how well the model fragment implements the input requirement.
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The top of Figure 2 shows an example of input to our approach: the model
that contains the requirement and the requirement description, which uses
natural language to define the target requirement. The center of Figure 2
shows a simplified representation of the main steps of our approach. Rounded
rectangles represent the different steps of the approach, and straight rectan-
gles represent the inputs and outputs of each of the steps. Our approach has
three steps:

1 Initialization: The first step is to generate a population of model
fragments from the model, which serves as input for the evolutionary
algorithm. In order to generate the population of model fragments,
parts of the model are extracted randomly and added to a collection of
model fragments.

2 Genetic operations: Second, genetic operations are applied to the
model fragment population in order to generate candidate model frag-
ments for the target requirement.

3 Fitness function: Finally, the new model fragment population is as-
sessed through the fitness function, which evaluates each of the gener-
ated model fragments.

The last two steps of the approach are repeated until the solution con-
verges to a certain stop condition. Usually, the stop condition can be a time
slot, a fixed number of generations, or a trigger value of the fitness that makes
the process finish when reached [15]. Since, the stop condition greatly de-
pends on the domain and the problem being solved, it is adjusted depending
on the results being output, taking into account when the fitness values are
converging and no further improvements are being made by new generations
[15]. When the stop condition is met, the evolutionary algorithm provides
a model fragment list, which is ranked according to the objectives for the
requirement (see the bottom of Figure 2).

The following sections describe the genetic operations of TLR-ELtoR for
generating new model fragments and how the fitness of each model fragment
is determined in terms of similarity to the requirement description.

4. Genetic Operations of the TLR-ELtoR Approach

The second step of our approach is to generate and to evolve a set of
model fragments that could realize the requirement. To do this, this step
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Figure 2: Overview of the approach
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Figure 3: Examples of Model Fragment Encoding

deals with the encoding of the model fragments and the selection of genetic
operators.

4.1. Model Fragment Encoding for Genetic Operations

Traditionally, in evolutionary algorithms, each possible solution of the
problem is encoded as a string of binary values. However, encoding each
model fragment as a string of binary values is not straightforward. The
authors in [16] propose an encoding where each model fragment is encoded
as an individual in relation to the model. In other words, each individual is
a set of model elements that are present or absent in a model fragment.

Figure 3 shows two examples of the representation of model fragments.
Each letter labels a model element of the model. Therefore, the individual
contains as many positions as model elements in the model and the binary
value of these positions depends on the presence or absence of the model
elements in the model fragment. If the model element appears in the model
fragment, the value will be 1; if the model element does not appear in the
model fragment the value will be 0.

Figure 3 also shows that the encoding will be different for different models,
even though the model fragment to be encoded is the same. Both of the
examples in Figure 3 represent the same model fragment. However, since
they come from different models, their representations are different.

4.2. Genetic Operators

The generation of new model fragments (based on existing ones) is done
by applying a set of three genetic operators, which are adapted to work on
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model fragments. These genetic operations were introduced for the first time
in [15] to carry out the selection of parents, the crossover, and the mutation
of model fragments.

The selection operator picks the best candidates from the population
as input for the rest of the operators. There are different methods that can
be used to perform the selection of the parents. One of the most widespread
methods (adopted by our work) is to follow the wheel selection mechanism
[17], where each model fragment from the population has a probability of
being selected that is proportional to its fitness score. Candidates with high
fitness values have higher probabilities of being chosen as parents for the next
generation.

The crossover operation enables the creation of two new individuals
by combining the genetic material from two model fragments. A randomly
generated mask determines how the combination is done, indicating for each
element of the model fragments if the offspring should inherit from one model
fragment or the other. Specifically, the mask is created randomly and all of
the model elements have a 50% probability of belonging to the mask. To do
this, a random number (0 or 1) is generated for each model element. The
elements whose value is 1 belong to the mask and the elements whose value is
0 belong to the inverse of the mask. Moreover, a model fragment is a subset
of the elements that are present in a model. Since both model fragments
are extracted from the same model, their combination will always return a
model fragment that is part of the original product model. As a result of
the crossover operation, two individuals are generated: one by directly
applying the mask, and the other one by applying the inverse of the mask,
as is usually done in genetic algorithms [18].

The mutation operator is used to imitate the mutations that occur
randomly in nature when new individuals are born. In other words, new
individuals have small differences with their parents that could make them
adapt better (or worse) to their living environment. Following this idea, the
mutation operator applied to model fragments [15] takes as input a model
fragment and mutates it into a new one, which is returned as output. Specif-
ically, the mutation operator can perform two kinds of modifications: the
addition of elements to the model fragment, or the removal of elements from
the model fragment. Since the approach is looking for fragments of the model
that realize a specific requirement, the new modified fragment must remain
a part of this model. Therefore, the modifications that can be done to the
model fragment must be driven by the model, which determines the additions
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Figure 4: Example of genetic operations

and subtractions of elements that can be applied to the model fragments in
the population.

After applying the genetic operators, it may be that not all of the ele-
ments of the new individuals are connected. Indeed, the requirement can be
implemented by several model elements that are not directly connected in
the model [15]. Therefore, it is necessary to create fragments of this kind
since they could be the ones realizing the requirement.

Figure 4 shows an example of the application of the two genetic oper-
ations. First, the crossover operation is applied. We select the two model
fragments to which the operator is applied. Then, the first model fragment
(MF1) is combined with the second model fragment (MF2) according to a
mask that contains two sets of elements (one regular and one marked in
black). To create the first of the new individuals, we interpret the mask by
selecting the blackened elements from the first parent (MF1) and the regular
elements from the second parent (MF2). As a result, the new model fragment
(MF3) contains the set of elements that are present in the mask in MF1 and
the set of elements that are absent in the mask in MF2. In addition, the mask
is also interpreted in the opposite way by selecting the blackened elements
from MF2 and the regular elements from MF1, thus producing another new
and distinct model fragment (MF4).

Afterwards, the mutation operator is applied. In this example, the muta-
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tion operation takes the first offspring produced through the crossover oper-
ator and adds one element (the second circuit breaker). Then, the mutation
operation takes the second offspring and removes one element (the first pan-
tograph). The resulting model fragments (MF5 and MF6) are new candidates
in the population for the realization of the input requirement.

5. Fitness of the TLR-ELtoR Approach

In evolutionary algorithms, this step determines what degree of adap-
tation to the environment each individual has. Following this idea, in our
approach, the fitness step is used to assess how suitable each model fragment
is in comparison with the target requirement. To do this, a Learning to
Rank algorithm is used to rank a set of model fragments depending on their
closeness to a requirement.

Learning to Rank (LtoR) is the name given to a family of Machine Learn-
ing algorithms, which automatically address ranking tasks. Specifically, the
LtoR algorithms make possible the construction of a classifier that contains
a set of rules to rank objects. The classifier automatically learns these rules
by comparing the objects within a knowledge base. Then, since the classifier
knows how to rank objects following these learned rules, the classifier can be
used to rank new objects. In other words, Learning to Rank algorithms use
a knowledge base to generate a classifier, which is called training. Then, the
classifier is used to rank new objects, which is called testing [19].

Figure 5 shows the overview of the Fitness Function, where the LtoR
algorithm is applied in our approach. The part on the left of the figure shows
the training process where the classifier learns how well each model fragment
realizes a specific requirement. To do this, the knowledge base contains
traces between requirements and model fragments that are known. The part
on the right of the figure shows the testing process where a population of
model fragments is ranked by means of the classifier, which determines which
model fragment is a better realization of the requirement than another model
fragment. Therefore, the classifier is considered as both an artifact (output
from the training process) and a step (responsible for ranking in the testing
process). For this reason, Figure 5 shows the classifier in a black, rounded
rectangle to point out its double meaning. The following sections provide
a more detailed description of the training and testing processes. However,
since both training and testing have to encode their inputs (see Figure 5),
the encoding is explained before these processes.
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5.1. Model Fragment Encoding for the Fitness Function

Since most of the Machine Learning techniques, such as Learning to Rank
algorithms, are designed to process feature vectors as inputs [20], our model
fragments have to be encoded into feature vectors to be able to use LtoR.
Feature vectors are known as the ordered enumeration of features that char-
acterize the object being observed [21].

However, the set of features that are selected to characterize the object
have to be the same for all of the model fragments. This guarantees that
the feature vectors have the same length and the same features so that the
comparison between feature vectors is fair. Moreover, the fitness function
determines the suitability between the model fragment and the target re-
quirement. Since both the model fragment and the requirement are being
observed, the feature vectors would have to be generated by encoding them
both. For these reasons, the encoding for the fitness function is different
from the encoding for genetic operations where both the length and the val-
ues of the individuals depend on model elements and the requirement is not
considered.

In [22], we proposed an encoding where each model fragment is encoded
as a feature vector taking into account an ontology. Specifically, each concept
and relation in the ontology is represented as a feature in the feature vector.
The value of each feature is computed as the frequency of the concept or
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Figure 6: Examples of Encoding for Model Fragments and Requirements in the Fitness
step

the relation in the model fragment. In the same way, the target requirement
is encoded as part of the feature vector taking into account the ontology.
Specifically, each concept in the ontology is represented as a feature in the
feature vector and the value of each feature is computed as the frequency of
the concept in the requirement.

Since both requirements and model fragments are based on natural lan-
guage, the terms used in the ontology do not always align well with the
terms in the requirements and with the terms in the model fragments. For
this reason, Natural Language Processing (NLP) techniques are used to pro-
cess both the requirements and the model fragments before applying the
encoding. Specifically, the requirements and the model fragments are pro-
cessed by a combination of NLP techniques defined in [23], which consists of
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tokenizing, lowercasing, removal of duplicate keywords, syntactical analysis,
lemmatization, and stopword removal.

Figure 6 shows two examples of the representation of two model frag-
ments and the target requirement. The concepts and relations of the ontology
are features in the feature vector. For example, the concept Pantograph is
mapped as C1, and the relation between the concepts Converter and HVAC
is mapped as R5. On the one hand, these concepts and relations are com-
pared with the model fragments, so their values correspond to the number
of occurrences of each concept or relation in the model fragment. Therefore,
for the first model, the value of the feature C1 is 1 because there is one pan-
tograph in the model fragment, and the value of the feature R5 is 0 because
there is no relation of the type Converter -HVAC in the model fragment. In
fact, both models contain a relation of the type Converter -HVAC, but none
of the model fragments contain this relation. Therefore, the value for R5
is 0 in both feature vectors because each feature vector only contains the
encoding of a model fragment, not the encoding of the whole model. On
the other hand, the concepts are also compared with the target requirement,
so their values correspond to the number of occurrences of each concept in
the requirement. Therefore, the value of the C1 is 1 because the concept
pantograph appears once in the requirement. Figure 6 also shows that the
feature vectors do not depend on whole models because they only represent
the encoding of model fragments and requirements. Therefore, two model
fragments may be result in the same feature vector although their models
are different.

5.2. Training Process

The target of the training process is to produce a classifier from a training
set, which ranks the model fragments generated by the genetic operations.
To do this, the knowledge base has to be encoded to obtain the training set,
which is used in a LtoR algorithm to generate a classifier. Also, before using
this classifier in the testing process, the validation of its performance is a
good practice in order to improve the results.

The knowledge base is composed of traces between requirements and
model fragments that are known. Specifically, the knowledge base consists
of a set of traces that are generated using the domain experts’ experience,
results, and documentation, where each trace of the knowledge base is com-
posed of a requirement, a model fragment, and an assessment. The require-
ment uses natural language to define the requirement. The model fragment
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consists of an element or a set of elements that belongs to a model. The
assessment determines if the model fragment realizes the requirement to a
greater or lesser extent. In other words, the assessment determines the sim-
ilarity between the requirement and the model fragment. Figure 5 shows an
example of the knowledge base for performing requirement traceability.

In order to apply LtoR algorithms in models, the first step consists of
encoding the traces of the knowledge base into the feature vectors. Therefore,
the model fragment and the requirement of each trace are encoded following
the encoding for the fitness function (see Section 5.1), and the assessment
is also included as part of the encoding. Then, the obtained feature vectors
compose the training set.

The training set is used to train a classifier, which learns a rule-set through
the comparison of the feature vectors of the training set [24]. However, be-
fore using this classifier to rank the model fragment in the testing process, it
is worth analyzing the performance of the classifier through cross-validation.
Cross-validation is a statistical method of evaluating and comparing ML algo-
rithms by dividing data into two segments: one used to train a classifier, and
the other used to validate the classifier [25]. Moreover, to reduce variability,
multiple rounds of cross-validation are performed using different partitions,
and the results are averaged over the rounds [26].

The results of the cross-validation provide the performance of the classi-
fier. If this performance is not considered suitable, it is necessary to perform
another training iteration. In this iteration, some artifacts of the training
process (e.g., the encoding, the ontology, the knowledge base, or the LtoR
algorithm) have to be modified in order to improve the classifier. Otherwise,
if the performance is considered suitable, the classifier obtains the go-ahead,
so the classifier trained with the whole knowledge base is used in the testing
process. Once the classifier has been generated, the training process does not
have to be repeated again. The same classifier is used whenever the Fitness
Function is applied. Therefore, the training process is only performed in the
first iteration of the EA, when there is not yet a classifier.

5.3. Testing Process

In our approach, the classifier is used to rank the model fragments that
are generated after each iteration of the EA. Specifically, the classifier assigns
a score to each model fragment based on its closeness to the requirement.
For example, taking into account the requirement of Figure 6, the model
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fragments must contain at least one circuit breaker so that these model frag-
ments are close to this requirement. Therefore, the model fragment with a
circuit breaker would obtain a better fitness score than a model fragment
without a circuit breaker.

However, before ranking the model fragments, both the model fragments
and the requirement have to be encoded into feature vectors (see Section
5.1) so that the classifier can understand them. The feature vectors obtained
from the encoding compose the testing set. Then, each feature vector of the
testing set is tested by the classifier, which used the learned rule-set in the
training process to assign a fitness score to each one of them.

The fitness score is a numerical value that is greater than 0. If the fitness
score is close to 0, the model fragment is not close to the requirement, so
the model fragment is not relevant to the requirement. In contrast, the
greater the fitness score, the more relevant the model fragment is. Taking
into account the fitness scores, the model fragments can be ordered in a
ranking where the top positions are occupied by the model fragments with
the highest relevance to the requirement.

Finally, as a result, this ranking of model fragments is returned by the
Fitness Function, (see Figure 2). Therefore, in each iteration of the EA,
the Fitness Function provides a ranking of model fragments organized by
their fitness score. Then, if the stop condition is satisfied, this ranking of
model fragment is obtained as a result of the approach. However, if the
stop condition is not satisfied, a new iteration is performed. Therefore, the
model fragments are considered as the new population to be evolved; then
the genetic operations select the best model fragments, mutate them, and
create new model fragments from them.

6. Evaluation

This section presents the evaluation of our approach: the experimental
setup, the baselines, a description of the case study where we applied the
evaluation, the implementation details, and the obtained results.

6.1. Experimental Setup

The goal of this experiment is to perform TLR between requirements and
models through TLR-ELtoR and to compare the results with the TLR ap-
proaches that have obtained the best results in the literature. Figure 7 shows
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an overview of the process that was followed to evaluate our approach (TLR-
ELtoR) and the baselines (TLR-Linguistic, TLR-IR, TLR-FNN, TLR-RNN,
TLR-LtoR). The top part of Figure 7 shows the inputs, which are extracted
from the documentation provided by our industrial partner: knowledge base,
ontology, requirements, product models, and approved traceability between
requirements and product models. Each test case is comprised of a require-
ment, a model of a product, the ontology, and the knowledge base. However,
the ontology and the knowledge base are ignored by TLR-Linguistic and
TLR-IR because they do not need it. The Oracle is composed of the ap-
proved traceability between the requirements and the models.

For each test case, our approach generates a ranking of model fragments.
Each model fragment contains the elements of the model that are related
to the requirement, so each model fragment fits the traceability between the
model and the requirement to a greater or lesser extent. Then, we take
the best solution of the ranking and compare it against the oracle, which
is the ground truth. Once the comparison is performed, a confusion matrix
is calculated. The baselines also recover the traceability links between the
requirement and the model in the test cases. As a result, each baseline
generates a model fragment. These model fragments are also compared with
the oracle, and a confusion matrix is calculated for each baseline. Therefore,
we obtain six confusion matrices, one for our TLR-ELtoR approach and one
for each baseline.

A confusion matrix is a table that is often used to describe the perfor-
mance of a classification model (in this case, both the TLR-ELtoR and the
baselines) on a set of test data (the solutions) for which the true values are
known (from the oracle). In our case, each solution that is outputted by the
approaches is a model fragment that is composed of a subset of the model
elements that are part of the product model. Since the granularity is at
the level of model elements, the presence or absence of each model element
is considered as a classification. The confusion matrix distinguishes between
the predicted values and the real values, classifying them into four categories:

• True Positive (TP): values that are predicted as true (in the solution)
and are true in the real scenario (the oracle).

• False Positive (FP): values that are predicted as true (in the solution)
but are false in the real scenario (the oracle).
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Figure 7: Experimental Setup

• True Negative (TN): values that are predicted as false (in the solution)
and are false in the real scenario (the oracle).

• False Negative (FN): values that are predicted as false (in the solution)
but are true in the real scenario (the oracle).

Then, some performance measurements are derived from the values in
the confusion matrix. Specifically, we create a report that includes four per-
formance measurements (recall, precision, the F-measure, and the Matthews
Correlation Coefficient) for the test case for both the TLR-ELtoR and the
baselines.

Recall measures the proportion of elements of the solution that are cor-
rectly retrieved by the proposed solution and is defined as follows:

Recall =
TP

TP + FN

Precision measures the proportion of elements from the solution that are
correct according to the ground truth (the oracle) and is defined as follows:
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Precision =
TP

TP + FP

The F-measure corresponds to the harmonic mean of precision and recall
and is defined as follows:

F −measure = 2 ∗ Precision ∗Recall
Precision+Recall

=
2 ∗ TP

2TP + FP + FN

However, none of these previous measures correctly handle negative exam-
ples (TN). The MCC is a correlation coefficient between the observed and
predicted binary classifications that takes into account all of the observed
values (TP, TN, FP, FN) and is defined as follows:

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

Recall values can range between 0% (i.e., no single model element from
the realization of the requirement obtained from the oracle is present in the
model fragment of the solution) and 100% (i.e., all of the model elements from
the oracle are present in the solution). Precision values can range between
0% (i.e., no single model element from the solution is the oracle) and 100%
(i.e., all of the model elements from the solution are present in the oracle). A
value of 100% precision and 100% recall implies that both the solution and
the requirement realization from the oracle are the same. MCC values can
range between −1 (i.e., there is no correlation between the prediction and
the solution) to 1 (i.e., the prediction is perfect). Moreover, a MCC value of
0 corresponds to a random prediction.

6.1.1. TLR-ELtoR Setup

This section describes the technical details of our TLR-ELtoR approach
taking into account the experimental setup defined. Specifically, four tech-
nical details are addressed: the stop condition, the hyperparameters for the
evolutionary algorithm, the LtoR algorithm with its setting parameters, and
the cross-validation method.

In general, there are two atomic performance measures for evolution-
ary algorithms: one regarding solution quality, and one regarding algorithm
speed or search effort. In this paper, we focus on the solution quality (i.e.,

19



obtaining a solution that is more similar to the one from the oracle in terms of
precision and recall). After running some prior tests to determine the number
of iterations to converge (and adding a margin to ensure convergence), we
allocated a fixed amount of iterations (200 iterations) to stop the execution.

For the settings of the evolutionary algorithm, namely population size,
crossover probability, and mutation probability, we have chosen the values
100, 0.9, and 0.1, respectively. These were selected based on the parame-
ters that are commonly used in the literature [27] and the results of some
preliminary tuning experiments.

With regard to the LtoR algorithm, the selection of this algorithm de-
pends on several aspects, such as the size of the knowledge base. RankBoost
[28] belongs to the family of LtoR and is well known for its efficiency and
effectiveness in different domains [29, 30]. Moreover, Rankboost can benefit
from a small knowledge base together with a small number of features in
the encoding to reduce the overfitting problem [31, 32]. Since this condition
is satisfied by our case study, TLR-ELtoR was guided by Rankboost with
the parameters tuned as in [33]. First, a grid search was built to determine
the values of the parameters: number of iterations, and metric. Then, we
uniformly sampled each of the two parameters in their range and evaluated
all of the combinations of the sampled values. As a result, the parameters
were tuned with iteration = 200 and metric equal to ERR10.

Moreover, even though our approach considers cross-validation as a step
of the Fitness Function, the approach does not restrict the possibilities to
one specific cross-validation method. In this evaluation, TLR-ELtoR used
a k-fold validation with a k value equal to 4. The k-fold validation is the
most popular cross-validation procedure. Specifically, this method consists of
randomly dividing the knowledge base into k-independent partitions. Then,
k − 1 of the partitions are used to train the classifier, and this classifier is
then used to test the partition that is left out. This procedure is repeated k
times, each time leaving out another partition. This produces k estimations
of the classifier, allowing assessment of its central tendency and variance [34].

6.2. Baselines

Winkler et al. [7] classify several approaches that have been created over
the past 15 years that try to optimize the automatic identification of traces.
Based on this classification, as baselines, we selected the two approaches
that obtain the best results for traceability links between requirements and
models: (1) a rule-based approach that deduces traces by applying rules
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(TLR-Linguistic) [10]; and (2) an information retrieval approach that can
detect candidate traceability links through Information Retrieval (TLR-IR)
[11, 12].

Deep learning techniques have also successfully been applied in TLR in
some recent works [9]. Therefore, we decided to compare our approach with
two baselines that apply deep learning: (1) the first one is based on a Feed-
forward Neural Network (TLR-FNN); and (2) the second one is based on a
Recurrent Neural Network (TLR-RNN).

Finally, to check the need for the evolutionary algorithm in our approach,
TLR-ELtoR is also compared to TLR-LtoR, which explores the search space
by means of brute-force. Therefore, the model fragments are generated from
the model and evaluated through LtoR, but the results obtained from the
LtoR process are not used to guide the generation of new model fragments.
Since there is no guide to explore the model, the search for the model frag-
ment that realizes a specific requirement is performed by brute-force.

6.2.1. TLR-Linguistic: Linguistic Rule-Based Baseline

Spanoudakis et al. [10] present a linguistic rule-based approach to sup-
port the automatic generation of traceability links between requirements and
models. Specifically, the traceability links are generated following two stages:

Stage 1: a Parts-of-Speech (POS) tagging technique [35] is applied on the re-
quirements that are defined using natural language.

Stage 2: the traceability links between the requirements and the models are
generated through the requirement-to-object-model rules.

The requirement-to-object-model (RTOM) rules are specified by investi-
gating grammatical patterns in requirements. Moreover, the RTOM rules are
based on two kinds of relations between requirements and models. On one
hand, Overlap relations are understood to be the relation between a sequence
of terms in a requirement and a class, attribute, association, or association-
end in a model. On the other hand, Requires Execution Of relations are
understood to be the relation between a sequence of terms in a requirement
and an operation in a model.

Figure 8 shows an example of both kinds of rules following the syntax that
is defined in [10]. The top rule can establish an Overlap relation between a
requirement and an attribute in a model. The bottom rule can establish a
Requires Execution Of relation between a requirement and an operation in a
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RTOM_RULE Rule-1:
EXISTS
SEQUENCEo<xYP{NNYO NNX}>O<xXP{VBZO VBR}>O<x3P{JJ}>d in Requirement;
<x4PCLASS>O <x5PATTRIBUTE> in Model

SUCH THAT
ATTRIBUTE_OFo<x5>O<x4>d and CONTAINSoNAMEo<x5>dO <x3>d and oCONTAINSoNAMEo<x4>dO <xY>d or
CONTAINSoNAMEo<x4>dO SINGULAR_FORM<xY>d

ACTION GENERATE
OVERLAPSoRequirementO <x5>d

RTOM_RULE_END

RTOM_RULE Rule-2:
EXISTS
SEQUENCEo<xYP{VV0OVVIOVVZ}>O<xXP{AT}>O<x3P{NNYO NNX}>d in Requirement;
<x4PCLASS>O <x5POPERATION> in Model

SUCH THAT
OPERATION_OFo<x5>O<x4>d and MEMBER_OFo<xY>O SYNONYMSoSTEREOTYPEo<x5>dd and
CONTAINSoNAMEo<x4>dO<x3>dd or CONTAINSoNAMEo<x4>dO SINGULAR_FORM<x3>d

ACTION GENERATE
REQUIRES_EXECUTION_OFoRequirementO<x4>d

RTOM_RULE_END

Figure 8: Example of requirement-to-object-model rules

model. These rules generate the traceability links between the requirement
and the model presented in Figure 9.

The first rule in Figure 8 attempts to match a syntactic expression that
consists of a noun (<x1/{NN1, NN2}>), the verb to be in the present form
(<x2/{VBZ, VBR}>), and an adjective (<x3/{JJ}>) with an attribute in
the model. The matching succeeds if: (a) the name of the attribute contains
the adjective and the name of the class that defines the attribute contains
the noun; or (b) the name of the attribute contains the adjective and the
name of the class that defines the attribute contains the singular form of the
noun. Therefore, in Figure 9, the sequence of terms <NN1>button</NN1>
<VBZ>is</VBZ> <JJ>pushed</JJ> in the requirement and the attribute
Pushed of the class Button satisfy the conditions of the rule. As a conse-
quence, an Overlap relation is created between them.

The second rule in Figure 8 attempts to match a syntactic expression that
consists of a verb (<x1/{VV0,VVI,VVZ}>), an article (<x2/{AT}>), and a
noun (<x3/{NN1, NN2}>) with an operation in the model. The matching
succeeds if: (a) the name of the operation contains the verb or is a synonym
of the verb and the name of the class of the operation contains the noun;
or (b) the name of the operation contains the verb or is a synonym of the
verb and the name of the class of the operation contains the singular form of
the noun. Therefore, in Figure 9, the sequence of terms <VVI>open</VVI>
<AT>the</AT> <NN1>door</NN1> in the requirement and the operation
Set Open of the class Door satisfy the conditions of the rule. As a conse-
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REQUIREMENT:

<AT>The<vAT> <NN1>system<vNN1> <VM>will<vVM> <VVI>open<vVVI> <AT>the<vAT> <NN1>door<vNN1>

<YCOM>)<vYCOM> <CS>if<vCS> <AT>the<vAT> <NN1>button<vNN1> <VBZ>is<vVBZ> <JJ>pushed<vJJ>

<CC>and<vCC> <AT>the<vAT> <NN1>door<vNN1> <VBZ>is<VBZ> <XX>not<vXX> <JJ>blocked<vJJ>

Pushed
Lighted

<<set>> Set PushedPL
<<set>> Set Turn OnPL
<<set>> Set Turn OffPL

Button

Enabled

<<get>> Get EnablePL
<<set>> Set EnabledPL

Equipment

On
Off

<<set>> Set Turn OnPL
<<Set>> Set Turn OffPL

Train

MODEL

Blocked
Closed
Open

<<set>> Set BlockPL
<<set>> Set ClosePL
<<set>> Set OpenPL

Door

Active

<<set>> Set ActivePL

Desk

installed

Figure 9: Example of traceability links generation based on RTOM rules

quence, a Requires Execution Of relation is created between them.
In [10], there are two different types of traceability rules: RTOM for

traceability relations between requirements and model elements, and inter-
requirement rules for traceability relations between different parts of a re-
quirement statement. In total, the authors propose 26 rules for two domains:
a software-intensive TV system created by Philips, and a university course
management system. Since our approach is focused only on the traceabil-
ity between requirements and model elements, this baseline only tackles the
RTOM traceability rules for our domain. Therefore, based on the guides and
the examples of rules that are provided by [10], a domain expert who was
not involved in the research generated an initial set of rules for our domain.
In addition, to mitigate the dependence on a single domain expert, a second
expert who also was not involved in the research extended the set of rules. In
the end, the extended set contains nine RTOM rules, which is similar to the
number proposed by [10]. However, there is no significant difference between
the results obtained using the initial set and the results obtained using the
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extended set. Specifically, the results described in this work correspond to
the extended set, which are a bit better than those obtained from the ini-
tial set. Nonetheless, in both cases, the results are not as good as the ones
obtained with our approach.

6.2.2. TLR-IR: Information Retrieval Baseline

Information Retrieval (IR) [36, 37, 38] is a sub-field of computer sci-
ence that deals with the automated storage and retrieval of documents. IR
techniques have been successfully used to retrieve traceability links between
different kinds of software artifacts in different contexts [39, 40, 41, 42, 43].
Specifically, in [11] and [12], De Lucia et al. use Latent Semantic Indexing
(LSI) to recover traceability links between requirements and different kinds of
software artifacts, including models in the form of use-case diagrams, among
others. We use LSI to recover traceability links between requirements and
models as one of the baselines for our work.

Specifically, given a certain requirement-model pair as input for LSI, we
use the produced outcome of the technique to build a model fragment from
the model that serves as a candidate for realizing the requirement. The
following paragraphs provide more details on the process.

Latent Semantic Indexing (LSI) [44] is an automatic mathemati-
cal/statistical technique that analyzes relationships between queries and doc-
uments (bodies of text). Since both queries and documents are based on nat-
ural language, Natural Language Processing (NLP) techniques are used to
process them. In fact, NLP has a direct and beneficial impact on the results,
so before applying LSI, the queries and the documents are processed by a
combination of NLP techniques defined in [23], which consists of tokenizing,
lowercasing, removal of duplicate keywords, syntactical analysis, lemmatiza-
tion, and stopword removal. Then, LSI constructs vector representations of
both a user query and a corpus of text documents by encoding them as a
term-by-document co-occurrence matrix and analyzes the relationships be-
tween those vectors to get a similarity ranking between the query and the
documents (see Figure 10).

Figure 10 shows an example term-by-document co-occurrence matrix, with
values associated to our case study, the vectors, and the resulting ranking. An
overview of the elements of the matrix is provided in the following paragraphs:

• Each row in the matrix (term) stands for each of the words that com-
pose the processed requirement and NL representation of the input
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model. The NL representation of the input model is extracted using
the technique presented in [45]. For example, Figure 10 shows a set of
representative words in the domain such as ’pantograph’ or ’door’ as
the terms of each row.

• Each column in the matrix (document) stands for one model element
from one input model, taken from our real-world case study. For exam-
ple, Figure 10 shows identifiers in the columns such as ’ME1’ or ’ME2’,
which stand for the documents of those specific model elements.

• The final column stands for the query, which is a requirement in our
case study.

• Each cell in the matrix contains the frequency with which the term of
its row appears in the document denoted by its column. For instance, in
Figure 10, the term ’pantograph’ appears twice in the ’ME2’ document
and once in the query.

Vector representations of the documents and the query are obtained by
normalizing and decomposing the term-by-document co-occurrence matrix
using a matrix factorization technique called Singular Value Decomposition
(SVD) [44]. SVD is a form of factor analysis, or more properly, it is the math-
ematical generalization of which factor analysis is a special case. In SVD,
a rectangular matrix is decomposed into the product of three other matri-
ces. One component matrix describes the original row entities as vectors of
derived orthogonal factor values, a second one describes the original column
entities in the same way, and the third one is a diagonal matrix containing
scaling values such that when the three components are matrix-multiplied,
the original matrix is reconstructed.

A three-dimensional graph of the SVD is provided in Figure 10. The
graph shows the vectorial representations of some of the matrix columns. For
legibility reasons, only a small set of the columns is represented. To measure
the degree of similarity between vectors, the cosine between the query vector
and the documents vectors is calculated. Cosine values that are closer to 1
denote a higher degree of similarity, and cosine values that are closer to -1
denote a lower degree of similarity. Similarity increases as vectors point in
the same general direction (as more terms are shared between documents).
With this measurement, the model elements are ordered according to their
degree of similarity to the requirement.
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Figure 10: Example of Traceability Link Recovery using Latent Semantic Indexing

The relevancy ranking (which can be seen in Figure 10) is produced ac-
cording to the degrees of similarity calculated. In this example, LSI retrieves
’ME2’ and ’MEN’ in the first and second position of the relevancy ranking
since the query-documents cosines are ’0.9343’ and ’0.8524’, implying a high
degree of similarity between the model elements and the requirement. In
contrast, the ’M1’ model element is returned to a lower position in the rank-
ing since its query-document cosine is ’-0.8736’, implying a lower degree of
similarity.

From the ranking, of all the model elements, only those model elements
that have a degree of similarity greater than x must be taken into account.
A good heuristic that is widely used is x = 0.7. This value corresponds to a
45◦ angle between the corresponding vectors. Even though the selection of
the threshold is an issue under study, the heuristic chosen for this work has
yielded good results in other similar works [46, 47].

Following this principle, the elements with a degree of similarity equal
or greater than to x = 0.7 are taken to conform a model fragment, which
is a candidate for realizing the requirement. In the example provided in
Figure 10, ME2 and MEN are model elements that conform part of the
model fragment that is obtained by this baseline for the requirement because
their cosine values are greater than the 0.7 threshold. The model fragment
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Figure 11: Feedforward Neural Network

generated in this manner is the final output of the TLR-IR baseline.

6.2.3. TLR-FNN: Feedforward Neural Network Baseline

Feedforward Neural Networks (FNNs) represent a traditional neural net-
work structure and lay the foundation for many other structures [48]. Data
flow always moves one direction, from input layer to hidden layer, then to
output layer; it never goes backwards. Figure 11 shows the structure of a
FNN where the FNN receives a vector of I input signals, z = (z1, z2, ..., zI).
The neurons of the hidden layer assign to each input signal, Zi, its respective
weight, vi, to strengthen or deplete the input signal. Weighted inputs are
accumulated at each neuron and then an activation function determines the
output (or firing strength) of each neuron, o. In fact, the strength of the
output is further influenced by a threshold value, which is also referred to as
the bias; thus, the activation function receives both the input signal and the
bias to determine the output of each neuron [13].

While Figure 11 shows only one hidden layer, a FNN can have more than
one hidden layer. However, it has been proved that FNNs with monotonically
increasing differentiable functions can approximate any continuous function
with one layer, provided that the hidden layer has enough hidden neurons
[49]. Specifically, the network architecture of the FNN implemented here
is a dense layer that is followed by the final softmax layer. Moreover, we
performed a hyperparameter optimization based on the random search opti-
mization provided by the Deep Learning for Java library. For all of the layers,
the hyperparameter optimization resulted in an initial learning rate of 0.0035,
and the Gaussian distribution recommended in [50] for weight initialization.
In addition, for the dense layer, the hyperparameter optimization resulted in
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Figure 12: Example of encoding of the knowledge base at the model-level

a layer size of 128 and the randomized rectified linear unit (RRELU) as the
activation function.

In addition, since FNN is a typical kind of supervised machine learning
method, the training process is required to adjust weights and bias for inputs.
Therefore, a training set has to be used to train the FNN and to determine
how well the FNN has learned [51]. Moreover, the testing process is required
to recover the traceability link between a model and a requirement. However,
both the training set and the testing are a bit different from the sets used
in TLR-ELtoR. Since this baseline is not based on a EA, it cannot generate
and evolve model fragments. Therefore, this baseline works at the model-
element level instead of at the model-fragment level. For this reason, both
the training set and the testing set consist of a set of vectors, where each
vector represents the relation between a model element and a requirement.

Figure 12 shows an example of the encoding of the knowledge base at the
model-element level. From a sample of the knowledge base, each element of
the model is encoded by means of a feature vector. Then, the encoding for

28



the requirement is included in all of the feature vectors. Finally, a numerical
value is included as target for the training. This value is equal to 0, if the
model element is not present in the model fragment. Otherwise, this value is
equal to 1, if the model element is present in the model fragment. This value
is used by the FNN to learn relations between the model elements and the
requirements. In summary, each sample of the knowledge base is encoded
using several feature vectors, one for each element in the model.

Likewise, the model and the requirement for the testing set are encoded
at the model-element level. Each model element leads to one feature vector,
and the encoding of the requirement is included in all of the feature vectors.

In addition, Figure 12 also shows a limitation of the encoding proposed
in [22] when it is applied at the model-element level. Several feature vectors
contain the same feature values, but different target values (e.g., both pan-
tographs). Taking into account the ontology in Figure 12, there is no way to
differentiate between two elements of the same type; for example, both pan-
tographs have the same encoding. However, the ontology can be extended to
tackle specific properties of each type of element. For example, the ontology
of Figure 12 can be extended to include the status of each pantograph as an
attribute of the pantograph concept. Therefore, the two pantographs can be
differentiated taking into account if their status is in the up, down, or middle
position. Specifically, in our case study, the ontology was extended with 14
attributes that empowered us to mitigate this threat.

6.2.4. TLR-RNN: Recurrent Neural Network Baseline

Since the number of parameters in a fully connected FNN can grow ex-
tremely large as the width and depth of the network increases, researchers
have proposed other neural network structures targeting different types of
practical problems. Recurrent Neural Networks (RNNs) are particularly
well suited for processing sequential data such as text and audio. While
FNNs have no feedback connections to previous layers, RNNs have these
feedback connections to model the temporal characteristics of the problem
being learned [13]. Moreover, RNNs have successfully been applied in TLR
in some recent works [9].

Although RNNs are specifically designed to process sequential data,
RNNs have showed great results in some cases of non-sequential input in-
formation, for instance, image captioning [52] or prediction of hospital read-
mission [53]. In these works, even if the input data is not in the form of
sequences, they can make classifiers able to learn so that they process data
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in sequential order only [53]. In our case, even if the models are not se-
quential data, we can order the feature vectors of the model elements so
that a classifier trained by a RNN benefits from the sequential order of the
model elements. For example, taking into account the Figure 12, the three
first feature vectors match the model elements: Pantograph1, the relation
Pantograph1-Circuit Breaker1, and Circuit Breaker1. Taking into account
their order, even if we knew that Pantograph1 is related to the requirement,
we could not determine if the other two model elements are related to the
requirement. However, if we knew that the Pantograph1 and the relation
Pantograph1-Circuit Breaker1 are related to the requirement, it would be
certainly reasonable to assume that the Circuit Breaker1 is related to the
requirement.

Figure 13 shows the structure of an Elman RNN, which is a RNN based
on the extension of a FNN. As illustrated in Figure 13, data flow moves
from an input layer to a hidden layer, but there is a new layer, named
context layer, that makes a copy of the hidden layer. This context layer
serves as an extension of the input layer, feeding signals that represent pre-
vious network states to the hidden layer. Therefore, the input vector is
z = (z1, ..., zII, zI+1, ..., zI+J), where the first I signals are the actual inputs
of the network and the J signals are the context units [13].

A prominent drawback of the standard RNN model is that the network de-
grades when long dependencies exist in the sequence due to the phenomenon
of exploding or vanishing gradients during back-propagation [54]. This makes
a standard RNN model difficult to train. The exploding gradient problem
can be effectively addressed by scaling down the gradient when its norm is
bigger than a preset value (i.e., Gradient Clipping) [54]. To address the van-
ishing gradient problem of the standard RNN model, the RNN network that
is used as baseline in this work applies Long Short Term Memory (LSTM),
which is a variant provided by researchers that has mechanics to preserve
long-term dependencies [9].

LSTM networks include a memory cell vector in the recurrent neuron
to preserve long-term dependencies [55]. LSTM also introduces a gating
mechanism to control when and how to read or write information to the
memory cell. A gate in LSTM usually uses a sigmoid function σ(z) = 1/(1 +
e− z) and controls information throughput using a point-wise multiplication
operation. Specifically, when the sigmoid function outputs 0, the gate forbids
any information from passing, while all information is allowed to pass when
the sigmoid function output is 1 [9]. Each LSTM neuron contains an input
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Figure 13: Elman Simple Recurrent Neural Network

gate, a forget gate, and an output gate. The input gate controls how much
each signal in a candidate vector should be ”remembered”. The forget gate
controls how much each signal in the previous memory neuron state should
be retained, so the neuron ”remembers” information until it is erased by the
forget gate. Finally, the output gate controls when a signal output is used in
the activation function [9].

Specifically, the network architecture of the RNN implemented is a LSTM
layer followed by the final softmax layer. Moreover, we performed a hyper-
parameter optimization based on the random search optimization provided
by the Deep Learning for Java library. For all of the layers, the hyperparam-
eter optimization resulted in an initial learning rate of 0.02 and the Normal
distribution described in [56] for the weight initialization. In addition, for
the LSTM layer, the hyperparameter optimization resulted in a layer size of
223 and the standard sigmoid activation function as the activation function.

Since RNN is also based on supervised learning such as the TLR-FNN
baseline, training and testing processes are also required. Therefore, we have
performed the same encoding as the TLR-FNN baseline (See Figure 12).
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6.2.5. TLR-LtoR: Learning to Rank Baseline

Taking into account this baseline, we want to determine if the better re-
sults of TLR-ELtoR are due to the combination of the evolutionary algorithm
and LtoR, or there is no need to combine the two to get these results. For
this purpose, this baseline is based only on LtoR, and the model fragments
that are used as input for the LtoR process are generated randomly through
a standard random search.

We used this algorithm as outlined in Algorithm 2 (available in [57]). The
algorithm starts with a random initial model fragment, as the best fragment.
A new random model fragment is then generated and assessed using LtoR.
Then, the values provided by LtoR for both fragments, the best one and
the new one, are compared and the model fragment with the greatest value
is selected as the best one. The search then goes back to the second step,
generating and assessing a new model fragment, and this loop is repeated
until a stop condition is met.

Therefore, this baseline does not take advantage of evolving model frag-
ments to guide the exploration of the models, as our approach does thanks
to the evolutionary algorithm. Since there is no a guide to explore the mod-
els, the search for the model fragment that realizes a specific requirement is
performed by brute-force.

Since TLR-LtoR is also based on LtoR such as TLR-ELtoR, training and
testing are also required. Therefore, the same steps that were described for
TLR-ELtoR in Section 5 are applied in TLR-LtoR to encode model fragments
as feature vectors, to train a classifier from the knowledge base, and to test
the test cases. In addition, the technical details, such as the LtoR algorithm
and the cross-validation method, are also the same ones defined in the setup
of TLR-ELtoR (See subsection 6.1.1). However, the stop condition is different
from TLR-ELtoR in order so that the comparison between them is fair.

The stop condition in TLR-ELtoR was set up to perform 200 iterations of
the evolutionary algorithm, where each iteration evaluated 120 model frag-
ments. Therefore, for each test case, the approach evaluated a total of 24000
model fragments. However, TLR-LtoR approach only evaluates one model
fragment for each iteration, so the stop condition was set up to perform 24000
iterations in order to evaluate the same number of model fragments.

6.3. Case Study

The case study where we applied our approach was CAF, a worldwide
provider of railway solutions. Their trains can be found all over the world

32



and in different forms (regular trains, subway, light rail, monorail, etc.). A
train unit is furnished with multiple pieces of equipment in its vehicles and
cabins. These pieces of equipment are often designed and manufactured by
different providers, and their aim is to carry out specific tasks for the train.
Some examples of these devices are: the traction equipment, the compressors
that feed the brakes, the pantograph that harvests power from the overhead
wires, and the circuit breaker that isolates or connects the electrical circuits
of the train. The control software of the train unit is in charge of making
all of the equipment cooperate in order to achieve the train functionality,
while guaranteeing compliance with the specific regulations of each country.
The following video illustrates the CAF models: youtube.com/watch?v=

Ypcl2evEQB8

Our evaluation includes 20 test cases, which are composed of a require-
ment, a product model, a knowledge base, and an ontology. A detailed de-
scription of each of them and how they are used in our approach TLR-ELtoR
is provided below:

• The requirements have about 25 words. In TLR-ELtoR, these re-
quirements and the models are used to generate the testing sets.

• The models have about 650 elements. In TLR-ELtoR, model frag-
ments are generated by the evolutionary algorithm through genetic
operations from these models. Then, these model fragments and the
requirements compose the testing set.

• The knowledge base includes 103 samples. Specifically, each of these
samples contains a requirement, a model fragment that has about 15
elements, and an assessment. In TLR-ELtoR, the entire knowledge
base composes the training set that is used to train the classifier. In
the end, the number of samples in the knowledge base allows the gen-
eration of a suitable, but not perfect, classifier [58]. Figure 14 shows
the distribution of scores in the knowledge base, taking into account
how many samples of the knowledge base are in each scores range.

• The ontology contains a total of 54 elements between concepts and
relations. In TLR-ELtoR, the ontology is used to encode the knowledge
base in the training process, and to encode the requirements and the
models in the testing process.
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Figure 14: Distribution of scores in the knowledge base

For each test case, we followed the experimental setup described in Figure
7. Each test case was run 30 times. As suggested by [59], given the stochastic
nature of the TLR-ELtoR approach, several repetitions are needed to obtain
reliable results. Finally, the results were evaluated and compared to the
oracle. The oracle contains the approved traceability, which consists of
a set of model fragments, where each model fragment contains the model
elements that are required by the requirement. In other words, the oracle
contains the solutions for each test case, so the oracle had 20 model fragments,
one for each test case.

6.4. Implementation details

We used the Eclipse Modeling Framework to manipulate the models and
CVL to manage the model fragments. For the development of the TLR-
Linguistic baseline, the Stanford POS Tagger [60] was utilized. The LSI
technique used within the TLR-IR baseline was implemented using the Effi-
cient Java Matrix Library (EJML [61]). The neural networks in TLR-FNN
and TLR-RNN were developed and tuned by means of the Deep Learning
for Java library [62]. The genetic operations were built upon the Watch-
maker Framework for Evolutionary Computation [63]. Finally, RankBoost
was implemented using the RankLib library [64].

6.5. Results

In Table 1, we outline the results, which are aggregated for each of the
baselines and for our approach. Each row shows the Precision, Recall, F-
measure, and MCC obtained through each technique.
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Table 1: Mean Values and Standard Deviations for Precision, Recall, F-Measure, and
Matthews Correlation Coefficient (MCC) for the baselines and the TLR-ELtoR approach

Precision Recall F-Measure MCC

TLR-Linguistic 37.38 ± 16.18 48.61 ± 19.78 40.41 ± 16.19 0.40

TLR-IR 18.09 ± 25.55 53.45 ± 38.70 21.69 ± 23.95 0.21

TLR-FNN 8.20 ± 0.10 100 ± 0.00 14.06 ± 0.14 -0.84

TLR-RNN 8.37 ± 0.09 100 ± 0.00 14.34 ± 0.14 -0.77

TLR-LtoR 13.01 ± 26.08 11.85 ± 18.24 10.27 ± 17.57 0.07

TLR-ELtoR 59.91 ± 33.39 78.95 ± 15.16 62.50 ± 27.76 0.64

As the table shows, TLR-ELtoR achieves the best results for most per-
formance indicators, providing a mean precision value of 59.91%, a recall
value of 78.95%, a combined F-measure value of 62.50%, and a MCC value
of 0.64. In contrast, the TLR-Linguistic baseline, the TLR-IR baseline, and
the TLR-LtoR baseline present worse results in all of the measurements:
the TLR-Linguistic baseline attains 37.38% precision, 48.61% recall, 40.41%
F-measure, and 0.40 MCC; the TLR-IR baseline achieves 18.09% precision,
53.45% recall, 21.69% F-measure, and 0.21 MCC; and the TLR-LtoR baseline
attains 13.01% precision, 11.85% recall, 10.27% F-measure, and 0.07 MCC.
On the other hand, both the TLR-FNN baseline and the TLR-RNN baseline
achieve the best results for recall, but they present the worst results for the
rest of the indicators: the TLR-FNN attains 8.20% precision, 100% recall,
14.06% F-measure, and -0.84 MCC; and the TLR-RNN baseline achieves
8.37% precision, 100% recall, 14.34% F-measure, and -0.77 MCC.

7. Statistical Analysis

To properly compare the different configurations, the data resulting from
the empirical analysis was analyzed using statistical methods.

7.1. Statistical Significance

A statistical test must be run to assess whether there is enough empirical
evidence to claim that there is a difference between two approaches (e.g.,
A is better than B). To achieve this, two hypotheses are defined: the null
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Table 2: Quade test statistic and p− V alues

Recall Precision

p-Value 2.20× 10−16 1.7× 10−10

Statistic 35.27 14.41

hypothesis H0, and the alternative hypothesis H1. The null hypothesis H0 is
typically defined to state that there is no difference between the approaches,
whereas the alternative hypothesis H1 states that the configurations differ.
In such a case, a statistical test aims to verify whether the null hypothesis
H0 should be rejected.

Statistical tests provide a probability value, p − V alue. The p − V alue
obtains values between 0 and 1. The lower the p − V alue of a test, the
more likely that the null hypothesis is false. It is accepted by the research
community that a p − V alue under 0.05 is statistically significant [65], and
so the hypothesis H0 can be considered false.

The test carried out depends on the properties of the data. Since our data
does not follow a normal distribution in general, our analysis required the
use of nonparametric techniques. There are several tests for analyzing this
kind of data; however, the Quade test is the most powerful one when working
with real data [66]. In addition, according to Conover [67], the Quade test is
the one that has shown the best results for a low number of approaches (no
more than 4 or 5 approaches).

Table 2 shows the Quade test statistic and p − V alues for recall and
precision. Since the p − V alues are smaller than 0.05, we rejected the null
hypothesis. Consequently, we can state that there are differences among the
five approaches.

Nevertheles, with the Quade test, we cannot answer the following ques-
tion: Which of the approaches gives the best performance? In this case, the
performance of each approach should be individually compared with all of
the other alternatives. In order to do this, we performed an additional post
hoc analysis. This kind of analysis performs a pair-wise comparison among
the results of each approach, determining whether statistically significant
differences exist among the results of a specific pair of approaches.

Table 3 shows the p − V alues of Holm’s post hoc analysis for each spe-
cific pair of approaches. Almost of all the p − V alues shown in this table
are smaller than 0.05, except for some cases: the recall comparison between
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Table 3: Holm’s Post Hoc p− V alues

Recall Precision

TLR-Linguistic vs TLR-IR 0.49 6.1× 10−04

TLR-Linguistic vs TLR-FNN 1.0× 10−07 3.4× 10−07

TLR-Linguistic vs TLR-RNN 1.0× 10−07 3.4× 10−07

TLR-Linguistic vs TLR-LtoR 1.9× 10−05 2.5× 10−03

TLR-Linguistic vs TLR-ELtoR 3.3× 10−06 8.4× 10−03

TLR-IR vs TLR-FNN 4.2× 10−06 0.04

TLR-IR vs TLR-RNN 4.2× 10−06 0.04

TLR-IR vs TLR-LtoR 1.1× 10−03 0.27

TLR-IR vs TLR-ELtoR 0.041 7.3× 10−05

TLR-FNN vs TLR-RNN 0.0 1.1× 10−03

TLR-FNN vs TLR-LtoR 2.9× 10−08 0.97

TLR-FNN vs TLR-ELtoR 8.3× 10−06 1.9× 10−07

TLR-RNN vs TLR-LtoR 2.9× 10−08 0.97

TLR-RNN vs TLR-ELtoR 8.3× 10−06 1.9× 10−07

TLR-LtoR vs TLR-ELtoR 2.7× 10−07 3.8× 10−06

TLR-Linguistic and TLR-IR, the recall comparison between TLR-FNN and
TLR-RNN, the precision comparison between TLR-IR and TLR-LtoR, the
precision comparison between TLR-FNN and TLR-LtoR, and the precision
comparison between TLR-RNN and TLR-LtoR. Therefore, significant differ-
ences for one of the performance measurements were obtained in all of the
comparisons.

7.2. Effect Size

Statistically significant differences can be obtained even if they are so
small as to be of no practical value [65]. It is then important to assess
whether an approach is statistically better than another and to assess the
magnitude of the improvement. Effect size measures are needed to analyze
this.
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Table 4: Â12 statistic for each pair of approaches

Recall Precision

TLR-Linguistic vs TLR-IR 0.45 0.81

TLR-Linguistic vs TLR-FNN 0.0 0.93

TLR-Linguistic vs TLR-RNN 0.0 0.93

TLR-Linguistic vs TLR-LtoR 0.91 0.86

TLR-Linguistic vs TLR-ELtoR 0.17 0.30

TLR-IR vs TLR-FNN 0.13 0.55

TLR-IR vs TLR-RNN 0.13 0.54

TLR-IR vs TLR-LtoR 0.78 0.65

TLR-IR vs TLR-ELtoR 0.32 0.15

TLR-FNN vs TLR-RNN 0.5 0.48

TLR-FNN vs TLR-LtoR 1 0.67

TLR-FNN vs TLR-ELtoR 0.85 0.07

TLR-RNN vs TLR-LtoR 1 0.68

TLR-RNN vs TLR-ELtoR 0.85 0.07

TLR-LtoR vs TLR-ELtoR 0.03 0.11

For a non-parametric effect size measure, we used Vargha and Delaney’s
Â12 [68]. Â12 measures the probability that running one approach yields
higher values than running another approach. If the two approaches are
equivalent, then Â12 will be 0.5.

For example, Â12 = 0.7 means that we would obtain better results in 70%
of the runs with the first of the pair of approaches that have been compared,
and Â12 = 0.3 means that we would obtain better results in 70% of the runs
with the second of the pair of approaches that have been compared. Thus,
we have an Â12 value for every pair of approaches.

Table 4 shows the values of the effect size statistics between every pair of
approaches.
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TLR-Linguistic vs TLR-IR: The Â12 measure value indicates that, of the
two approaches, TLR-Linguistic will obtain better results in 58% of the
cases for recall, while TLR-IR will obtain better precision values in 81%
of the cases.

TLR-Linguistic vs TLR-FNN: The Â12 measure value indicates that, of
the two approaches, TLR-FNN will obtain better results in 100% of
the cases for recall, while TLR-Linguistic will obtain better precision
values in 93% of the cases.

TLR-Linguistic vs TLR-RNN: The Â12 measure value indicates that, of
the two approaches, TLR-RNN will obtain better results in 100% of
the cases for recall, while TLR-Linguistic will obtain better precision
values in 93% of the cases.

TLR-Linguistic vs TLR-LtoR: The Â12 measure value indicates that
TLR-Linguistic will obtain better results than TLR-LtoR in 91% of
the cases for recall, and better precision values in 86% of the cases.

TLR-Linguistic vs TLR-ELtoR: The Â12 measure value indicates that
TLR-ELtoR will obtain better results than TLR-Linguistic in 83% of
the cases for recall, and better precision values in 70% of the cases.

TLR-IR vs TLR-FNN: The Â12 measure value indicates that, of the two
approaches, TLR-RNN will obtain better results in 87% of the cases
for recall, while TLR-IR will obtain better precision values in 55% of
the cases.

TLR-IR vs TLR-RNN: The Â12 measure value indicates that, of the two
approaches, TLR-RNN will obtain better results in 87% of the cases
for recall, while TLR-IR will obtain better precision values in 54% of
the cases.

TLR-IR vs TLR-LtoR: The Â12 measure value indicates that, of the two
approaches, TLR-IR will obtain better results than TLR-LtoR in 78%
of the cases for recall, and better precision values in 65% of the cases.

TLR-IR vs TLR-ELtoR: The Â12 measure value indicates that, of the
two approaches, TLR-ELtoR will obtain better results than TLR-IR in
68% of the cases for recall, and better precision values in 85% of the
cases.
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TLR-FNN vs TLR-RNN: The Â12 measure value indicates that, of the
two approaches, TLR-RNN will obtain better results in 50% of the
cases for recall, and better precision values in 52% of the cases.

TLR-FNN vs TLR-LtoR: The Â12 measure value indicates that, of the
two approaches, TLR-FNN will obtain better results than TLR-LtoR
in 100% of the cases for recall,and better precision values in 68% of the
cases.

TLR-FNN vs TLR-ELtoR: The Â12 measure value indicates that, of the
two approaches, TLR-FNN will obtain better results in 85% of the
cases for recall, while TLR-ELtoR will obtain better precision values
in 93% of the cases.

TLR-RNN vs TLR-LtoR: The Â12 measure value indicates that, of the
two approaches, TLR-RNN will obtain better results than TLR-LtoR
in 100% of the cases for recall,and better precision values in 68% of the
cases.

TLR-RNN vs TLR-ELtoR: The Â12 measure value indicates that, of the
two approaches, TLR-RNN will obtain better results in 85% of the cases
for recall, while TLR-ELtoR will obtain better precision values in 93%
of the cases.

TLR-LtoR vs TLR-ELtoR: The Â12 measure value indicates that, of the
two approaches, TLR-ELtoR will obtain better results than TLR-LtoR
in 97% of the cases for recall,and better precision values in 89% of the
cases.

The obtained Â12 values show that TLR-ELtoR is superior to all of the
baselines for precision. Moreover, TLR-ELtoR is also superior to TLR-
Linguistic, TLR-IR, and TLR-LtoR on recall, meaning that TLR-ELtoR
will obtain better results than these three approaches in most of the cases.
Overall, these measurements confirm that, for recall and precision, TLR-
ELtoR outperforms the baselines (TLR-IR and TLR-Linguistic) that obtain
the best results for TLR between requirements and models. Moreover, these
measurements confirm that, for precision, TLR-ELtoR outperforms the ML
baselines (TLR-FNN and TLR-FNN) that have successfully been applied
recently in TLR. Finally, these measurements confirm that, for recall and
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Table 5: Required artifacts for each approach

Approaches

TLR-Linguistic TLR-IR TLR-FNN TLR-RNN TLR-LtoR TLR-ELtoR

Models X X X X X X

Requirements X X X X X X

Knowledge Base X X X X

Ontology X X X XA
rt

if
ac

ts

Rules X

precision, TLR-ELtoR outperforms the baseline (TLR-LtoR) that explores
the search space by means of brute-force.

8. Discussion

In this section, we discuss what prerequisites are needed by each approach,
what properties affect the results and limit the approaches. We also discuss
why TLR-ELtoR is less sensitive to tacit knowledge and vocabulary mismatch
than the baselines. These advantages lead to the better results of TLR-
ELtoR.

8.1. Prerequisites and Properties

Both our approach and the approaches in the baselines need some pre-
requisites to be applied. If one of their prerequisites is not satisfied, the
approach would not be used in that domain. Table 5 shows what artifacts
are needed to apply each approach.

Table 5 shows that all of the approaches need models and requirements.
Specifically, the models where requirements have to be located must conform
to MOF (the OMG metalanguage for defining modeling languages) and that
requirements must be provided using natural language. Moreover, all of the
approaches that are based on Machine Learning (TLR-ELtoR, TLR-LtoR,
TLR-FNN, and TLR-RNN) need a knowledge base to train and an ontology
to encode the models and requirements. Specifically, the knowledge base
must be composed of a set of feature vectors with the format described in
[69], and the ontology must contain a set of concepts and the relations with
each other (See Figure 6). Finally, the TLR-Linguistic approach needs rules
to identify relations between model elements and requirement words. The
rules have to be defined following the guides and examples in [10].
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Table 6: Artifacts whose properties have an impact on the results

Properties

Homogeneity Completeness Heterogeneity Size Volume

Models X X

Requirements X X

Knowledge Base X X X

Ontology X XA
rt

if
ac

ts

Rules X X

Therefore, even though the training in TLR-ELtoR is beneficial in avoid-
ing to a large extent issues such as tacit knowledge and vocabulary mismatch,
it is necessary to have access to a knowledge base and an ontology to per-
form the training. In industrial domains, especially long-living ones, where
requirements and models have been stored for years, a knowledge base may
be easily available. Also, thanks to the wide experience of the employees in
companies of this kind, the main concepts and relations could be identified
by experts in the domain. However, in other scenarios, such as when only
the first product has been developed, TLR-ELtoR cannot be applied.

In addition, even though we had of all the necessary artifacts to apply
our approach, the results may not be as good as possible. In fact, some
properties of the artifacts have an impact on the results. For example, if
there is not enough information in the knowledge base, TLR-ELtoR would
not train properly, so the results would be worse than expected. Table 6
shows the properties that we have identified in this work and that had an
impact on the obtained results.

The following paragraphs provide more details about the properties iden-
tified in Table 6:

• Models may be developed by several engineers and at different times,
so the terms used to describe model elements may be different (e.g.,
pantograph and panto are two different terms used in our models to
refer to the same concept: pantograph). Therefore, the first model
property that affects to the results is homogeneity. The second one is
the size, which has an impact on the result based on the understanding
of the models [70].
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• Requirements may be defined by different engineers and at different
times, so the homogeneity of the requirements, like the homogeneity of
the models, has an impact on the results. The results are also affected
by the completeness of the requirements. Often, when requirements
are written, part of the domain knowledge related to the requirements
is not embodied in them because tacit knowledge about the domain
is assumed to be known by all of the domain experts. Therefore, the
requirements are more or less complete in accordance with how many
assumptions are made by the engineers. In the end, requirements may
lose part of the information that is required because of these assump-
tions.

• Knowledge Base contains the information necessary to train the clas-
sifier, so this information must be enough to train the classifier. If the
knowledge base only contains the information to recover the traces be-
tween one requirement and one model, the classifier may not learn how
to recover the traces for other requirements or models. Therefore, in-
cluding heterogeneity samples of traces in the knowledge base provides
more complete information for the training. In addition, some Ma-
chine Learning techniques require a larger knowledge base than others
to provide suitable results, so the technique must be selected based on
the available knowledge base.

• Ontology is composed of the main concepts and relations of a domain.
Therefore, if a relevant concept or relation is not present in the ontology,
the encoding for the fitness function will not take it into account and the
training may be incomplete, leading to worse results. For this reason,
the first property to keep in mind for the ontology is completeness.
Moreover, if the ontology contains unnecessary concepts or relations,
the number of features for the encoding would be greater and a great
number of features in the training step leads to overfitting. Therefore,
we must also take into account the size of the ontology.

• Rules are defined by humans through the manual comparison of the
models and requirements. Therefore, the completeness of the rules
depends on how well engineers understand the models and requirements
and how complex these models and requirements are. The volume of
rules also affects the results. If only one rule is defined, the approach
only recovers one type of model element, so the approach may need
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several rules. However, a large number of rules does not guarantee the
best results. Therefore, both completeness and volume must be taken
in account.

8.2. Advantages of TLR-ELtoR

This section discusses why TLR-ELtoR achieves better results than the
baselines regarding three aspects: tacit knowledge, vocabulary mismatch,
and available documentation.

8.2.1. Tacit Knowledge

Often, when requirements are written, part of the domain knowledge
related to the requirements is not embodied in them. The tacit knowledge
about the domain is assumed to be known by all of the domain experts, so it
is never formalized in writing. This behavior has been reported in previous
works [71, 72]. For example, given the requirement: At all stations, the doors
are automatically opened, the engineers understand that the doors have to
be opened in all of the stations, without being requested by a passenger.
However, this requirement also embodies tacit knowledge that is not written
but is obvious to the domain engineers: The train has doors on both sides,
but only the doors on the side of the platform will be opened, while the doors
on the side of the tracks will remain closed, and all of the doors on one side
will be opened, except the driver’s door in the cabin.

The tacit knowledge is not reflected in the text of the requirements. This
tacit knowledge is shared among the engineers that write the requirements
and the engineers that read the requirements. Therefore, both the text of the
requirements and tacit knowledge are used to build the models. As a result,
the model contains elements that are related to text of the requirement, but
the model also contains elements that are related to the tacit knowledge.
However, since part of the knowledge is not reflected in the text of the re-
quirement, recovering the most relevant model fragment for a requirement is
complex.

Both TLR-IR and TLR-Linguistic depend, to a large extent, on the text
of the requirement. TLR-IR evaluates the similarity between the requirement
and the model fragment according to the co-occurrences of terms between
the two. TLR-Linguistic evaluates the similarity between the requirement
and the model fragment according to patterns that relate the terms in the
requirement with the elements in the model fragment. In both cases, the
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lack of terms that is caused by the tacit knowledge makes it impossible to
locate the elements from the model that are relevant to the requirement.

In contrast, TLR-ELtoR is less sensitive to tacit knowledge due to train-
ing. In the training, the requirements of the knowledge base are linked to
the model fragments of the knowledge base. Even though the text of require-
ments is inaccurate due to tacit knowledge, the linked model fragments are
complete. Consequently, the classifier is not only trained from the text of the
requirements, but also from the elements of the model fragments. Therefore,
the classifier learns that certain elements of models are relevant to certain
requirements even though these elements are not described properly in the
text of the requirements. As TLR-ELtoR depends, to a lesser extent, on
the text of the requirement than TLR-IR and TLR-Linguistic, when the re-
quirements have a lack of terms due to tacit knowledge, the results that are
obtained through TLR-ELtoR are better than the results obtained through
TLR-IR and TLR-Linguistic.

8.2.2. Vocabulary Mismatch

Vocabulary mismatch is caused by the use of different terms to reference
the same concept in the requirement and the model. In industrial environ-
ments, sometimes the engineer who is in charge of writing the requirement
is not the same engineer assigned to building the model. Moreover, both the
requirement and the model may be manipulated by different engineers.

Even though TLR-IR, TLR-Linguistic, and even TLR-ELtoR, may use
Natural Language Processing (NLP) to homogenize the terms between re-
quirements and models, vocabulary mismatch continues to be an issue that
must be taken into account. Since the in-house terms that are used in a
specific domain or company are not known synonyms, these in-house terms
may not be included in NLP, causing vocabulary mismatch. For example, the
terms PLC and system may be recognized as synonyms, but the terms PLC
and COSMOS are definitely not known to be synonyms because COSMOS
is an in-house term that is used exclusively by our industrial partner to refer
to PLC.

As in the tacit knowledge issue, TLR-IR and TLR-Linguistic are seri-
ously affected by vocabulary mismatch because both of them depend, to a
large extent, on the text of the requirements. If the terms that are used in
the requirements and the terms that are used in the models are not known
synonyms, they cannot be related, and therefore the requirement cannot be
correctly related to the elements of the model. Therefore, the lack of aware-
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ness that is caused by vocabulary mismatch makes it impossible to locate
the elements from the model that are relevant to the requirement.

In contrast, TLR-ELtoR is less sensitive to vocabulary mismatch for the
same reason described for the tacit knowledge issue. The evaluation of TLR-
ELtoR depends on the information provided by training. If the information
that is extracted through the training indicates that a term of the requirement
is related to a term of an element in the model, the classifier learns that both
terms are related to each other even when they are not considered synonyms.
Therefore, TLR-ELtoR depends, to a lesser extent, on the synonyms than
TLR-IR and TLR-Linguistic, which leads to our approach having better
results than the baselines.

8.2.3. Available Documentation

Since TLR-FNN and TLR-RNN are trained using the same knowledge
base than TLR-ELtoR, they should also be less sensitive to tacit knowledge
and vocabulary mismatch. However, our knowledge base may be unsuitable
for properly training a Neural Network. For example, in [9], the training
set is composed of 45% of the 769,366 artifacts, so this training set contains
about 423,151 feature vectors. However, our training set is composed of the
encoding of the knowledge base that has 103 samples whose model fragments
have around 15 elements. Therefore, since the ending is performed at the
model-element level, the training set contains about 1545 (103 x 15) feature
vectors.

Some works analyze the impact of the number of samples on the perfor-
mance of the neural networks. The authors in [73, 74] suggest the use of
a minimum of 10–30p samples for training, where p is the number of fea-
tures vectors used. However, this rule is often universally enforced in remote
sensing without questioning its relevance to the complexity of the specific
problem [75]. In fact, in some domains, the best result are obtained with 2p
or 4p samples for training [76, 75]. Therefore, a small knowledge base may
be insufficient and a large knowledge base may introduce noise.

On the other hand, the knowledge base may also be affected by the vapor-
ization problem [77]. In fact, some industrial companies do not store enough
information to create a knowledge base with the necessary completeness and
size. However, these domains also need to recover the traceability links, and
our approach can be successfully used even if the knowledge base is small, as
our evaluation proves.

Since TLR-LtoR is based on LtoR as TLR-ELtoR also is, we might ex-
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pect that TLR-LtoR will not have the problems described. However, TLR-
LtoR obtained the worst results because the search space was too big, so the
exploration of this search space randomly required many more iterations.
Therefore, by evaluating the same number of model fragments using the two
approaches, the TLR-ELtoR obtained the best results thanks to the com-
bination of the LtoR, which provides a successful evaluation of the model
fragments, and the evolutionary algorithm, which allows the search space to
be explored in an effective way.

9. Threats to Validity

In this section, we use the classification of threats to validity of [78] to
acknowledge the limitations of our approach.

Construct validity: This aspect of validity reflects the extent to which the
operational measures that are studied represent what the researchers
have in mind. To minimize this risk, our evaluation is performed using
four measures: precision, recall, F-measure, and MCC. These measures
are widely accepted in the software engineering research community.

Internal Validity: This aspect of validity is of concern when causal rela-
tions are examined. There is a risk that the factor being investigated
may be affected by other neglected factors. RankBoost tends to over-
fit when the knowledge base is not large enough and there are many
encoding features [79]. The number of samples in our knowledge base
may look small; however, this threat has been reduced because our
approach uses only 54 encoding features, which is a small number in
machine learning applications [31, 32].

External Validity: This aspect of validity is concerned with to what extent
it is possible to generalize the findings, and to what extent the find-
ings are of relevance for other cases. Both requirements and models
are frequently leveraged to specify all kinds of different software. The
requisites for applying our approach are that the set of models where
the requirements must be located conform to MOF (the OMG meta-
language for defining modeling languages), and that the requirements
must be provided using natural language. Our experiment does not rely
on the specific conditions of our domain. Nevertheless, the experiment
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and its results should be replicated in other domains before assuring
their generalization.

Reliability: This aspect is concerned with to what extent the data and
the analysis are dependent on the specific researchers. To reduce this
threat, the knowledge base, the requirements descriptions, and the
product models were provided by our industrial partner.

10. Related Work

Works that are related to our research are mainly found within the knowl-
edge area of Traceability Link Recovery. In a more general fashion, works in
the knowledge area of Feature Location can be relevant for our research as
well. Feature Location takes a query as input and returns its materialization
as a result. Potentially, the techniques that are applied to locate features
could also be applied to Traceability Link Recovery for requirement queries.
In this section, we analyze some of the existing approaches in both areas and
compare our work with these approaches.

10.1. Traceability Link Recovery

There are several TLR techniques in use that utilize requirement queries.
Most of them deal with source code or focus on the usage and impact of the
specific techniques in use. This section analyzes these kinds of works and
differentiates our work from them.

Most of the existing works focus on Traceability Link Recovery between
requirements and source code. CERBERUS [80] provides a hybrid technique
that combines information retrieval, execution tracing, and prune depen-
dency analysis allowing the tracing of requirements to source code. Eaddy et
al. [81] present a systematic methodology for identifying which code is related
to which requirement, and a suite of metrics for quantifying the amount of
crosscutting code. Marcus and Maletic [82] use LSI for recovering the trace-
ability relations between source code and documentation (manuals, design
documentation, requirement documents, test suites, etc.). Antoniol et al.
[41] propose a method based on information retrieval to recover traceability
links between source code and free text documents, such as requirement spec-
ifications, design documents, manual pages, system development journals,
error logs, and related maintenance reports. Zisman et al. [83] automate the
generation of traceability relations between textual requirement artifacts and
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object models using heuristic rules. These approaches recover the traceabil-
ity between source code and requirements. In contrast, our work recovers
the traceability between requirements and models.

In [22], the authors propose an evolutionary ontological encoding ap-
proach to enable Machine Learning techniques to be used to perform Soft-
ware Engineering tasks in models. Their proof of concept consists of recover-
ing traceability links between requirements and model fragments. However,
in the real world whole models are available, rather than model fragments.
Therefore, the application of their approach to a real-world problem may be
impossible or hard. In contrast, our work recovers the traceability links be-
tween requirements and whole models thanks to the evolutionary algorithm
that generates and maintains the population of model fragments from whole
models.

Some other works focus on the impact and application of Linguistics to
TLR problem resolution at several levels of abstraction. Works like [84, 85]
or [86], among many others, use Linguistic approaches to tackle specific TLR
problems and tasks. In [87], the authors use Linguistic techniques to iden-
tify the equivalence between requirements, also defining and using a series
of principles for evaluating their performance when identifying equivalent re-
quirements. The authors of [87] conclude that, in their field, the performance
of Linguistic techniques is determined by the properties of the given dataset
over which they are performed. They measure the properties as a factor
to adjust the Linguistic techniques accordingly and then apply their princi-
ples to an industrial case study. The work presented in [88] uses Linguistic
techniques to study how changes in requirements impact other requirements
in the same specification. In their work, the authors analyze TLR between
requirements and use Linguistic techniques to determine how changes in re-
quirements must propagate.

Our work differs from [89, 84, 85, 86] since our approach is not based or
focused on Linguistic techniques as a means of TLR analysis; instead, we use
an evolutionary algorithm to perform TLR between requirements and models,
using Linguistic techniques only as a baseline for our work. Moreover, we do
not study how Linguistic techniques must be tweaked for specific problems
as [87] does. In addition, in contrast to [88], we do not tackle changes in
requirements on TLR between requirements, but instead focus our work on
TLR between requirements and a set of evolving models.

Some recent works focus on improving TLR results through Neural Net-
works. Guo et al. [9] present a solution to improve the current automated
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techniques, which fail to understand the semantics of the software artifacts
or to integrate domain knowledge into the tracing process. Therefore, they
tend to deliver imprecise and inaccurate results. Specifically, they utilizes
Word Embedding and Recurrent Neural Network (RNN) models to gener-
ate trace links, which contain the requirements artifact semantics and the
domain knowledge. Zhao et al. [90] propose training deep neural networks
for generating text-based knowledge in software repositories to improve the
accuracy of TLR. The authors in [91] present some challenges in traceability
and some of their proposals consider solving these traceability issues through
neural networks. In our work, we do not use Neural Networks to improve
the results or to perform TLR; instead, we use them as a baseline for com-
parison with our main line of work, TLR between requirements and models.
In addition, we do not address the traceability between source codes and
requirements as most of these works do.

Finally, other works target the application of LSI to TLR tasks. De
Lucia et al. [11] present a Traceability Link Recovery method and tool based
on LSI in the context of an artifact management system, which includes
models. The work in [92] takes in consideration the possible configurations
of LSI when using the technique for TLR between requirements artifacts,
namely requirements and test cases. In their work, the authors state that
the configurations of LSI depend on the datasets used, and they expect to
be able to determine automatically an appropriate configuration for LSI for
any given dataset. In our work, we do not use LSI to perform TLR; instead,
we use it as a baseline for comparison with our main line of work, TLR
between requirements and models. In addition, we do not tackle different LSI
configurations or how LSI configurations impact the results of TLR between
requirements and models as [92] does.

10.2. Feature Location

There are several Feature Location techniques and approaches that are
applied to locate features for requirement queries, and, as such, can poten-
tially be used for TLR purposes. This section covers these sorts of works,
and compares our work with those.

Typechef [93] provides an infrastructure to locate the code that is asso-
ciated to a given feature by means of analyzing the #ifdef directives. Trace
analysis [94] is a run-time technique that is used to locate features. When
the technique is executed, it produces traces indicating which parts of code
have been executed. Some approaches related to Feature Location use LSI
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to extract the code that is associated to a feature [95, 96]. These techniques
have generally been applied to search the code of a feature in a given indi-
vidual product. In contrast, our approach searches for model fragments that
implement a requirement.

Feature Location approaches in a product family, such as the one pre-
sented in [97], center their efforts on finding the code that implements a
feature among the different products by combining techniques such as FCA
[98] and LSI. In our approach, we are not interested in the code representation
of a feature in the family but in locating the most relevant model fragments
that implement a requirement. Other works such as [99] focus on applying
reverse engineering to the source code to obtain the variability model. In
[100], the authors use propositional logic, which describes the dependencies
between features. In [101], the authors combine Typechef and propositional
logic to extract conditions among a collection of features. These works ex-
plicitly engage the variability of products, but they do not indicate the most
relevant model fragments for the development of requirements, as our work
does.

In [102], Lapeña et al. use Linguistic techniques in combination with
an adapted two-step LSI to obtain rankings of methods for all of the re-
quirements of a new product in a product family. The scope of our work
is centered around finding model fragments that can be used to implement
a specific requirement, while [102] focuses on finding relevant code for the
implementation methods of all of the new requirements in a new product in
a family.

In addition, even though we had of all the necessary artifacts to apply
our approach, the results may not be as good as possible. In fact, some
properties of the artifacts have an impact on the results. For example, if
there is not enough information in the knowledge base, TLR-ELtoR would
not train properly, so the results would be worse than expected. Table 6
shrequirements.

Font et al. [103] use a Single Objective Evolutionary Algorithm (SOEA)
to locate features among a family of models in the form of a variation point.
Their approach is refined in [15], where the authors use a SOEA to find
sets of suitable feature realizations. The authors first cluster model frag-
ments based on their common attributes into feature realization candidates
through Formal Concept Analysis, and then LSI ranks the candidates based
on the similarity with the feature description. In contrast, our presented ap-
proach locates model fragments for requirements instead of variation points
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for features. In addition, the approaches by Font et al. use FCA and LSI,
while our approach trains a LtoR classifier from legacy products to guide the
evolutionary algorithm.

Several approaches rely on evolutionary Algorithms guided by LSI for
Feature Location. In [57], Font et al. performed a comparison among five
different evolutionary algorithms for feature location in models, showing that
the best results were achieved by a hybrid between an evolutionary algorithm
and a hill climbing technique. In [16], they explored a new direction: taking
advantage of already long-living software systems (designed with sustainabil-
ity in mind) to address the challenge of feature location. Specifically, they
used commonality and modifications fitness through model retrospectives in
order to promote model fragments that have undergone less modification over
time. In constrast, in our approach, the target of the evolutionary algorithm
is TLR instead of Feature Location. Moreover, our algorithm is guided by
LtoR instead of LSI, which according to our results is less sensitive to the
tacit knowledge issues of requirements.

Some approaches rely on LtoR algorithms to locate features in the code
[104, 105]. Tien-Duy et al. focus on LtoR using feature vectors that are
based on likely invariants. Xin et al. focus on the terms that are defined
in a vocabulary to build the feature vectors. In our approach,we use LtoR
as an objective for the evolutionary algorithm and perform TLR between
requirements and models instead of Feature Location in code.

Other works rely on ontologies to locate features in code. In [106], a
systematic approach is used to locate features by using ontology fragments.
Hayashi et al. [107] propose an ontology-based technique to locate features
that are defined by natural language descriptions. Ratiu et al. [108] present
a framework to recover the mappings between entities from an ontology and
program elements. Petrenko et al. [109] perform a study about the perfor-
mance of programmers when they locate features by using ontology frag-
ments. In contrast, our approach performs TLR between requirements and
models, using an evolutionary algorithm that is guided by a LtoR classifier.

Finally, the works presented in [110, 111, 112] focus on the location of
features in models using comparisons among models in a family of models.
Zhang et al. [110] propose a generic approach to locate the feature realiza-
tions by exploring the commonality and the variability of models through
their automatic comparison. In [111], the approach is refined to reduce the
manual effort required in the formalization of the feature realizations when
new product models are included in a product line. In the approach presented

52



in [112], the variability between models is determined using an exchangeable
metric, taking into account different attributes of the models. However, all of
these approaches are based on the location of features through comparisons
among the models, while our approach performs TLR between requirements
and models. In addition, we do so by relying on an evolutionary algorithm
guided by a LtoR classifier.

11. Replication of the Results

The implementation for our approach is available at http://bitbucket.
org/svitusj/flame. We have also made the dataset available in the same
url. The dataset contains the requirements and the models that are used in
our experiment as well as the knowledge base with the requirements and the
model fragments that are used to train the classifier. The implementation
for the five baselines is also available at the same location. Therefore, our
public online repository contains the source code of our approach, the source
code of the two baselines, and the dataset (requirements and models).

12. Conclusions

Both Evolutionary Algorithms and Learning to Rank algorithms have a
wide range of successful applications, but current research efforts have so far
neglected the application of the two on Traceability Link Recovery (TLR)
between requirements and models. In this paper, we propose the TLR-ELtoR
approach, which recovers traceability links between the requirements of a
software system and its models by leveraging the usage of an evolutionary
algorithm (EA) that is guided by a Learning to Rank (LtoR) algorithm.

We evaluated our TLR-ELtoR approach in terms of precision, recall, the
F-measure, and the Matthews Correlation Coefficient. To do this, we com-
pared it to five baselines in an industrial domain (firmware of train PLCs
with CAF). The first baseline is a Linguistic Rule-Based (TLR-Linguistic)
approach that is based on Parts-of-Speech (POS) tagging and traceability
rules. The second one is an Information Retrieval (TLR-IR) approach that
is based on Latent Semantic Indexing (LSI) and Singular Value Decompo-
sition (SVD). The third one is a Feedforward Neural Network (TLR-FNN)
approach that is based on a traditional neural network structure. The fourth
one is a Recurrent Neural Network (TLR-RNN) approach that is based on
an extension of a Feedforward Neural Network with feedbaack connections
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to model the temporal characteristics of the problem being learned [13]. The
fifth one is a Learning to Rank (TLR-LtoR) approach based on ranking Ma-
chine Learning algorithms of the same name. We report our evaluation,
including: experimental setup, results, statistical analysis, and threats to
validity.

The results show that the application of an evolutionary algorithm guided
using the LtoR algorithm by means of TLR-ELtoR pays off for TLR. The re-
sults also show that our approach can be applied in real-world environments.
The statistical analysis of the results assesses the level of the improvement
that our approach offers. Moreover, the discussion shows how our approach
is limited by the available documentation and how our approach may be
beneficial for dealing with issues such as tacit knowledge and vocabulary
mismatch.

We acknowledge that we could have proposed other approaches as base-
lines. For example, instead of using LSI or SVD, we could have used LtoR
or other machine learning technique to support TLR-IR in order to check
the relevance of a model element with a requirement. The baselines were
selected according to their performance, taking into account a classification
of approaches for TLR in models, or their recent successful, taking into ac-
count recent approaches for TLR. However, a future work could consist of a
deeper comparison of our approach with other approaches for TLR, where
the contribution could be not only the comparison with other alternative
baselines but also the discussion of the advantages and limitations of these
alternatives for TLR in models.
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[22] A. C. Marcén, F. Pérez, C. Cetina, Ontological Evolutionary Encod-
ing to Bridge Machine Learning and Conceptual Models: Approach
and Industrial Evaluation, in: International Conference on Conceptual
Modeling, Springer, 2017, pp. 491–505.
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