
Ontological Evolutionary Encoding to Bridge
Machine Learning and Conceptual Models:

Approach and Industrial Evaluation

Ana C. Marcén, Francisca Pérez, and Carlos Cetina

SVIT Research Group, Universidad San Jorge
Autov́ıa A-23 Zaragoza-Huesca Km.299, 50830, Zaragoza, Spain

{acmarcen,mfperez,ccetina}@usj.es

Abstract. In this work, we propose an evolutionary ontological encod-
ing approach to enable Machine Learning techniques to be used to per-
form Software Engineering tasks in models. The approach is based on
a domain ontology to encode a model and on an Evolutionary Algo-
rithm to optimize the encoding. As a result, the encoded model that is
returned by the approach can then be used by Machine Learning tech-
niques to perform Software Engineering tasks such as concept location,
traceability link retrieval, reuse, impact analysis, etc. We have evaluated
the approach with an industrial case study to recover the traceability link
between the requirements and the models through a Machine Learning
technique (RankBoost). Our results in terms of recall, precision, and the
combination of both (F-measure) show that our approach outperforms
the baseline (Latent Semantic Indexing). We also performed a statistical
analysis to assess the magnitude of the improvement.

Keywords: Machine Learning, Traceability Link Recovery, Evolution-
ary Computation, Model Driven Engineering

1 Introduction

Machine Learning (ML) is known as the branch of artificial intelligence that
gathers statistical, probabilistic, and optimization algorithms, which learn em-
pirically. ML has a wide range of applications, including search engines, medical
diagnosis, text and handwriting recognition, image screening, load forecasting,
marketing and sales diagnosis, etc. Even though the research on ML has been
applied in Software Engineering tasks that target source code artifacts [7, 33],
other software artifacts such as conceptual models have been neglected.

Most of the ML techniques are designed to process feature vectors as inputs
[8]. Feature vectors are known as the ordered enumeration of features that char-
acterize the object being observed [10]. Therefore, to apply ML techniques in
models, the first challenge consists in identifying the features from models and
selecting the most suitable ones to encode the models in feature vectors.

In this work, we propose the Ontological Evolutionary Encoding (OnEvEn)
approach, which allows models to be encoded in feature vectors. The approach is



based on a domain ontology to transform each model to a feature vector and on
Evolutionary Computation to perform the selection of the most relevant features.
Once the most relevant features have been selected, the approach generates as
output the feature vectors from the models according to the selected features.
Then the ML techniques can make use of these feature vectors to perform Soft-
ware Engineering tasks.

The presented approach was evaluated in CAF1, a worldwide provider of
railway solutions. Thanks to our OnEvEn approach, their models were encoded,
making it possible for a ML technique (RankBoost [16] that belongs to the family
of Learning to Rank) to took advantage of these encoded models to recover
the traceability between the requirements and the models. The outcome shows
that our approach provides the best results, and proves that the approach can
be applied in a real world environment. The statistical analysis of the results
assesses the magnitude of the improvement.

The contribution of this paper is twofold. First, we show how to encode
models by means of our OnEvEn approach in order to be able to apply ML in
models. Second, we provide evidence that by using our OnEvEn approach, ML
techniques are applicable to Software Engineering tasks such as traceability link
recovery between the requirements and the models.

The remainder of this paper is structured as follows: Section 2 presents our
OnEvEn approach. Section 3 provides the evaluation carried out. Section 4 de-
scribes the threats to validity. Section 5 presents the related work, and Section
6 concludes the paper.

2 The OnEvEn approach

The objective of the OnEvEn approach is to provide the encoding of a model in
the form of a feature vector. To do this, the approach consists of three phases (see
Fig. 1): Ontological Encoding, Evolutionary Encoding, and Feature Selection. In
the first phase, the approach encodes the model based on a domain ontology.
In the second phase, the approach generates a mask, taking advantage of a
knowledge base. In the third phase, the approach applies the mask to the feature
vector that is the result of the Ontological Encoding. As output, the approach
generates a feature vector, which is the encoding of the model.

The input of the approach consists of a model, a domain ontology, and the
knowledge base that is provided by domain experts. Specifically, the knowledge
base consists in a set of triplets that are generated using the domain experts’
experience, results, and documentation. In Fig. 1, each triplet of the knowledge
base is composed of a requirement description, a model whose fragment is marked
by a dashed square with different background, and an assessment.

The requirement description uses natural language to define the requirement.
The model fragment consists of an element or a set of elements that belongs to
a model. To formalize these model fragments, we use the Common Variability

1 www.caf.net/en



Knowledge Base

Model
Fragment

Composition

Car2

Door3

Button

Door1

Car1 Car3

Door2

Requirement
Description

The system turns on
the led of the button
that closes the

doors of one side of
the train if all the
doors of the

correspondent side
are closed or
convicted0

Assessment

305 / 4

1 Ontological
Encoding

2 Evolutionary
Encoding

3 Feature
Selection

Mask

C1 C2 C3 C4 C5 C6 R1 R2 R3 R4 R5 R6

Model

Car1

Composition

Car2

Door3Door1

Button1 Button2

Door2

Control Panel

Button3

Cabin

Feature Vector

C1 C2 C3 C4 C5 C6
1 2 2 2 0 0

R1 R2 R3 R4 R5 R6
2 2 2 0 0 0

Ontology

R1

R2

R3R4

R5

R6

CarC2CabinC6

CompositionC1

DoorC3

ButtonC4

Control PanelC5

OnEvEn

C2 C3 C5
2 2 0

R1 R2 R3 R5 R6
2 2 2 0 0

Feature Vector

Fig. 1. Overview of our OnEvEn approach.

Language (CVL) [27]. The assessment determines if the model fragment realizes
the requirement to a greater or lesser extent. That is, the assessment determines
the similarity between the requirement description and the model fragment.

Fig. 1 shows an example of the knowledge base to perform requirement trace-
ability. However, if we plan to perform concept location [21], the knowledge base
would be composed of concept descriptions, model fragments, and assessments.
Therefore, the knowledge base depends on the Software Engineering task that
is going to be performed.

2.1 Ontological Encoding phase

In this first phase, the model is turned into a feature vector based on the domain
ontology. We consider each concept and relation in the ontology as a feature in
the feature vector. The value of each feature is computed as the frequency of
the concept or the relation in the model. Therefore, the output of this phase is a
feature vector that represents the model, taking into account the concepts and
the relations of the ontology.

The Fig. 1 shows examples of a model, an ontology, and the feature vector
that would be generated by this first phase. Concepts and relations of the ontol-
ogy are features in the feature vector. For example, the concept Door is mapped



as C3, and the relation between the concepts Cabin-Control Panel is mapped
as R5. Moreover, their values correspond to the number of occurrences of these
features in the model. Therefore, the value of the feature C3 is 3 because there
are 3 doors in the model, and the value of the feature R4 is 1 because there is
1 relation of type Cabin-Control Panel.

Once a model is encoded in form of feature vector, ML techniques can use the
feature vector to perform Software Engineering tasks. However, the performance
of the ML techniques is affected by the redundant and useless features, so Feature
Selection is an important step for the approaches that apply ML techniques [23].
For this reason, the following phase performs the selection of the most relevant
features.

2.2 Evolutionary Encoding phase

This section details the Evolutionary Encoding phase of OnEvEn approach.
This phase involves four steps (see Fig.2): Generation Initial Mask Population,
Genetic Operations, Fitness Function, and Top Mask. This phase relies on an
Evolutionary Algorithm that iterates a population of masks and evolves them
using genetic operations. As output, the phase provides the top mask, which
enables only the features that optimize the model encoding.

2.1 Generate Initial
Masks Population

Ontology

Initial Masks
Population

Masks
Population

Rank of Masks

Weighted Masks
Population

yes

no converges?

Knowledge Base

Model
Fragment

Requirement
Description

Assessment

2.2 Genetic
Operations

2.3 Fitness Function

Mask

Evolutionary
Encoding2

2.4 Top Mask

Fig. 2. Details of the Evolutionary Encoding phase of the OnEvEn approach.

Generate Initial Masks Population The first step is to generate randomly
a population of masks. Fig.1 shows an example of a mask. Each position of the
mask indicates if a concept or relation that belongs to the ontology is enabled o



disabled. In order words, if the concept or the relation should be used or not for
the encoding.

Genetic Operations The second step is to generate a set of masks that could
optimize the model encoding. The generation of masks is done by applying ge-
netic operators that are adapted to work on masks. In other words, new masks
that are based on the existing ones are generated through the use of two genetic
operators: the mutation and the crossover.

I. The crossover operator is used to imitate the sexual reproduction that is
followed by some living beings in nature to breed new individuals. In other
words, two individuals mix their genomic information to give birth to a new
individual that holds some genetic information from one parent and some
from the other one. This could make that the new individual adapt better
(or worse) to its living environment depending on the genetic information
inherited from its parents. Following this idea, our crossover operator that
is applied to masks takes two masks as input and combines them into two
new individuals.

II. The mutation operator is used to imitate the mutations that randomly occur
in nature when new individuals are born. In other words, a new individual
has a small difference with respect to its parents that could make it adapt
better (or worse) to its living environment. Following this idea, the mutation
operator that is applied to masks takes a mask as input and mutates it into
a new one that is produced as output. Specifically, the mutation operator
can perform randomly two kinds of modifications based on the features, to
enable a feature that is disabled in the mask, or vice versa, to disable a
feature that is enabled in the mask.

Fitness Function The third step of the process consists of the assessment of
each candidate mask that is produced according to a fitness function. The fitness
score of each mask in the population is calculated as follows:

I. Knowledge Base Encoding generates a set of feature vectors, which cor-
respond to the triplets of the knowledge base. To encode a triplet, the
main terms of the requirement description and the model fragment are ex-
tracted using well-established Information Retrieval (IR) techniques: tok-
enizer, Parts-of-Speech (POS) tagging technique, and stemming techniques.
Then, these terms are used to generate the feature vector as the Section 2.1
describes.

II. Training and Testing are performed by means of cross-validation [20]. Cross-
validation consists of randomly dividing the knowledge base into k-independent
partitions. Then, k − 1 of the partitions are used to train a classifier, which
consists in a rule-set that is learnt from a given knowledge base [26]. Then,
this classifier is used to test the partition that is left out. This procedure is
repeated k times, each time leaving out another partition. This produces k



estimations of the classifier, allowing assessment of its central tendency and
variance [18].

III. Assignment of the Fitness Score is performed according to the central ten-
dency and variance that are obtained for the classifier. Therefore, the fitness
score assesses the relevance of each mask candidate based on how much the
results are optimized by using this mask.

IV. Loop At this point, if the stop condition is met, the process will stop returning
the rank of the masks. If the stop condition has not been met yet, the
Evolutionary Algorithm will keep its execution one generation more.

Top Mask The mask with the highest fitness score will be the top mask. This
step returns the top mask as output, which allows the model encoding to be
optimized by selecting only the most relevant features.

2.3 Feature Selection phase

In the third phase, we apply feature selection on the feature vector that is ob-
tained in the first phase. To do so, the mask that is generated in the second
phase is used to reduce the features of the feature vector. As the Fig. 1 shows,
each disabled feature in the mask is discarded in the feature vector. Therefore,
the feature vector is only composed by the features that are enabled in the mask.
As output, our OnEvEn approach returns this feature vector as encoding of the
model. In fact, taking into account that the mask is generated to select the most
relevant features and avoid the useless and redundant features, the feature vec-
tor obtained is able to optimize the performance of ML technique that is used
to perform Software Engineering tasks in models.

3 Evaluation

This section presents the evaluation of our approach: the experimental setup, a
description of the case study where we applied the evaluation, the implementa-
tion details, the obtained results, and the statistical analysis.

3.1 Experimental Setup

The goal of this experiment is to determine if our OnEvEn approach can be used
to encode models so that the ML techniques can take advantage of the encoding
to perform Software Engineering tasks. In addition, we compare the OnEvEn
approach with a baseline.

Fig. 3 shows an overview of the process that was followed to evaluate the
baseline and our OnEvEn approach. The top part shows the documentation
provided by our industrial partner: the requirements, the product models, and
the approved traceability between requirements and product models. The Test
Cases are prepared from the documentation provided by our industrial part-
ner, and each test case comprises a requirement and a model fragment of each



product model that might be relevant for that requirement. The ontology and
the knowledge base that our approach uses as input are provided by a domain
expert.

On the one hand, the baseline approach (see the dotted red elements of
Fig. 3) uses Latent Semantic Indexing (LSI) to analyze the relevance between
requirements provided in Test Cases and the model fragments. There are many
Information Retrieval techniques, but most research efforts show better results
when applying LSI [24]. On the other hand, our approach (see the solid blue
elements of Fig. 3) encodes the models in both the Test Cases and the knowledge
base in order to enable the application of ML techniques to models. In this
evaluation, we use RankBoost [16] for the ML classifier. RankBoost belongs to
the family of Learning to Rank (LETOR) ML algorithms that automatically
address ranking tasks [31]. LETOR has been successfully applied in a lot of
fields [9] like document retrieval, collaborative filtering, expert finding, anti web
spam, sentiment analysis, product rating, and feature location. Our OnEvEn
approach enables the application of LETOR to models.

Test Cases 

Our 
OnEvEn 

approach 

Ontology 

Knowledge 
Base 

Requirements 
Product 
Models 

Approved 
Traceability 

Documentation From Industrial Partner 

Baseline 
Baseline 
Results 

Calculation 
of Confusion 

Matrix 

Oracle 

OnEvEn 
R&P Report 

Baseline 
R&P Report 

Calculation 
of Confusion 

Matrix 

OnEvEn 
Results 

Encoded 
Test Cases 

Machine 
Learning 
Classifier 

Encoded 
Knowledge 

Base 

Fig. 3. Experimental Setup

We run the baseline and OnEvEn to obtain as results a ranking of relevant
model fragments for each requirement of the Test Cases. Next, we first take
the best solution of the ranking of the baseline approach, and then we take the
best solution of the ranking of the OnEvEn approach. These best solutions are
then compared with an oracle, which is the ground truth. The oracle is prepared
using the approved traceability provided by our industrial partner. Once the
comparison is performed, a confusion matrix for each approach is calculated.

A confusion matrix is a table that is often used to describe the performance
of a classification model (in this case both the baseline and OnEvEn) on a set
of test data (the best solutions) for which the true values are known (from the
oracle). In our case, each solution outputted by the approaches is a model frag-
ment composed of a subset of the model elements that are part of the product
model. Since the granularity is at the level of model elements, each model ele-
ment presence or absence is considered as a classification. The confusion matrix



distinguishes between the predicted values and the real values classifying them
into four categories:

– True Positive (TP): values that are predicted as true (in the solution) and
are true in the real scenario (the oracle).

– False Positive (FP): values that are predicted as true (in the solution) but
are false in the real scenario (the oracle).

– True Negative (TN): values that are predicted as false (in the solution) and
are false in the real scenario (the oracle).

– False Negative (FN): values that are predicted as false (in the solution) but
are true in the real scenario (the oracle).

Then, some performance measurements are derived from the values in the
confusion matrix. In particular, we create a report including three performance
measurements (recall, precision, and F-measure), for each of the test cases for
both the baseline and OnEvEn.

Recall measures the number of elements of the solution that are correctly
retrieved by the proposed solution and is defined as follows:

Recall =
TP

TP + FN

Precision measures the number of elements from the solu- tion that are cor-
rect according to the ground truth (the oracle) and is defined as follows:

Precision =
TP

TP + FP

F-measure corresponds to the harmonic mean of precision and recall and is
defined as follows:

F −measure = 2 ∗ Precision ∗Recall
Precision+Recall

=
2 ∗ TP

2TP + FP + FN

Recall values can range between 0% (which means that no single model ele-
ment from the realization of the requirement obtained from the oracle is present
in any of the model fragments of the solution) to 100% (which means that all the
model elements from the oracle are present in the solution). Precision values can
range between 0% (which means that no single model fragment from the solu-
tion is present in the realization of the requirement obtained from the oracle) to
100% (which means that all the model fragments from the solution are present
in the requirement realization from the oracle). A value of 100% precision and
100% recall implies that both the solution and the requirement realization from
the oracle are the same.

3.2 CAF case study

The case study where we applied our approach was CAF, a worldwide provider
of railway solutions. Their trains can be found all over the world and in different



forms (regular trains, subway, light rail, monorail, etc.). A train unit is furnished
with multiple pieces of equipment through its vehicles and cabins. These pieces
of equipment are often designed and manufactured by different providers, and
their aim is to carry out specific tasks for the train. Some examples of these
devices are: the traction equipment, the compressors that feed the brakes, the
pantograph that harvests power from the overhead wires, and the circuit breaker
that isolates or connects the electrical circuits of the train. The control software
of the train unit is in charge of making all the equipment cooperate to achieve the
train functionality, while guaranteeing compliance with the specific regulations
of each country.

Our evaluation is made up of 29 test cases, 247 concepts and 161 relationships
in the ontology, and 102 triplet in the knowledge base. It is important to highlight
that the requirements and the models of the knowledge base are different from
the requirements and models of the test cases. The requirements have about 50
words and the models have about 1200 elements. For each test case, we followed
the experimental setup described in Fig. 4. Finally, each test case was run 30
times. As suggested by [6], given the stochastic nature of OnEvEn approach,
several repetitions are needed to obtain reliable results.

3.3 Implementation details

We have used the Eclipse Modeling Framework to manipulate the models and
CVL to manage the model fragments. The IR techniques used to process the
language have been implemented using OpenNLP [1] for the POSTagger and
the English (Porter 2) [3] stemming algorithm. LSI has been implemented using
the Efficient Java Matrix Library (EJML [2]). The genetic operations are built
upon the Watchmaker Framework for Evolutionary Computation [13]. Finally,
RankBoost has been implemented using the library RankLib [11].

For the settings of the evolutionary algorithm of OnEvEn, we have mainly
chosen values that are commonly used in the literature [25]. As suggested by [6],
tuned parameters can outperform default values generally, but they are far from
optimal in individual problem instances. Therefore, the objective of this paper
is not to tune the values to improve the performance of our algorithm.

3.4 Results

This subsection presents the results obtained for each of the Test Cases by both
the baseline and OnEvEn. Fig. 4 shows the charts with the recall and precision
results for the baseline (in the left side of the figure) and OnEvEn (in the right
side of the figure). A dot in the graph represents the average result of precision
and recall for each of the 29 Test Cases for the 30 repetitions.

Table 1 shows the mean values of recall, precision and F- measure of the
graphs for both the baseline and OnEvEn. OnEvEn obtains the best results in
recall and precision, providing an average value of 90.47% in recall and 75.19% in
precision. The baseline obtains an average value of 84.22% in recall and 43.97%
in precision. Hence, OnEvEn outperforms the baseline.



Baseline
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

0 20 40 60 80 100

0
20

40
60

80
10
0

R
ec
al
l(
%
)

Precision (%)

Our OnEvEn Approach
●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

● ●
● ●

●

0
20

40
60

80
10
0

R
ec
al
l(
%
)

0 20 40 60 80 100
Precision (%)

Fig. 4. Mean Recall and Precision values for baseline and OnEvEn approaches

Table 1. Mean Values and Standard Deviations for Precision, Recall, and the F-
Measure for Baseline and OnEvEn

Recall ± (σ) Precision ± (σ) F-measure ± (σ)

Baseline 84.22 ± 9.58 43.97 ± 26.81 52.61±23.35
OnEvEn 90.47 ± 9.68 75.19 ± 22.37 79.99±15.33

3.5 Statistical analysis

Statistically significant differences can be obtained even if they are so small as
to be of no practical value [5]. Then it is important to assess if an approach is
statistically better than another and to assess the magnitude of the improvement.
Effect size measures are needed to analyze this.

For a non-parametric effect size measure, we use Vargha and Delaney’s Â12

[28]. Â12 measures the probability that running one approach yields higher values
than running another approach. If the two approaches are equivalent, then Â12

will be 0.5.
The Â12 value for recall between our OnEvEn approach and the baseline is

0.6938, which means that we would obtain better results for recall in 69.38%
of the runs with OnEvEn. With regard to the precision, the Â12 value between
OnEvEn and the baseline is 0.8056, which shows a superiority of OnEvEn since
its results are better in 80.56% of the runs. Hence, these results confirm that the
use of our OnEvEn approach has impact on the results, specially on the results
for precision.

4 Threats to validity

In this section, we use the classification of threats of validity of [29] to acknowl-
edge the limitations of our approach.

Construct validity: This aspect of validity reflects the extent to which the
operational measures that are studied represent what the researchers have
in mind. To minimize this risk, our evaluation is performed using three mea-
sures: precision, recall, and the F-measure. These measures are widely ac-
cepted in the software engineering research community.



Internal Validity: This aspect of validity is of concern when causal relations
are examined. There is a risk that the factor being investigated may be
affected by other neglected factors. RankBoost tend to overfit when the
dataset is not large enough and there are many features [30]. Therefore, the
number of triplets in our knowledge base may look small. However, Feature
Selection in ML enables to avoid overfitting [19] so this threat has been
reduced by Feature Selection through the Evolutionary Algorithm.

External Validity: This aspect of validity is concerned with to what extent
it is possible to generalize the finding, and to what extent the findings are
of relevance for other cases. Our OnEvEn approach is designed to encode
models for using ML techniques, but there must be an ontology and a knowl-
edge. If these conditions are satisfied, the models of any domain could be
encoded using this approach. Nonetheless, OnEvEn should be applied to
other domains before assuring its generalization.

Reliability: This aspect is concerned with to what extent the data and the
analysis are dependent on the specific researchers. To reduce this threat, the
creation of the ontology and the knowledge were performed by a domain
expert who was not involved in the research. Moreover, the requirements
descriptions and the product models were provided by our industrial partner.

5 Related Work

In this section, we present the related works, which are divided into two parts.
First, we overview research on Feature Selection. Second, we overview research
papers on Requirements Traceability.

5.1 Feature Selection

Haiduc et al. [17] perform feature selection among 21 measures using the gain
ratio technique during the retrieval of software artifacts. Ye et al. [34] apply
feature selection in mapping bug reports to identify the features that have the
most impact on the ranking performance. However, our approach makes use of
models instead of other software artifacts such as source code and of a domain
ontology as a basis for identifying the features.

Evolutionary Computation techniques have also recently been applied in Fea-
ture Selection. Xue et al. [32] present a survey of the state-of-art work on Evo-
lutionary Computation for feature selection in different fields such as image
analysis, text mining, and gene analysis. Our approach also takes advantage
of Evolutionary Computation to perform feature selection, but it focuses on a
domain ontology to encode models and on these encoded models to perform
Software Engineering tasks.

5.2 Requirements Traceability

CERBERUS [15] provides a hybrid technique that combines information re-
trieval, execution tracing, and prune dependency analysis allowing to trace re-
quirements to source code. Eaddy et al. [14] presents a systematic methodology



for identifying which code is related to which requirement, and a suite of met-
rics for quantifying the amount of crosscutting code. Antoniol et al. [4] propose
a method based on information retrieval to recover traceability links between
source code and free text documents, such as, requirement specifications, design
documents, manual pages, system development journals, error logs, and related
maintenance reports. Zisman et al. [35] automate the generation of traceability
relations between textual requirement artifacts and object models using heuristic
rules. These approaches recover the traceability between source code and require-
ments. In contrast, our work recovers the traceability between requirements and
models instead of source code.

Some works rely on models as the software artifacts to perform traceability.
De Lucia et al. [12] present a traceability recovery method and tool based on LSI
in the context of an artifact management system. Marcus and Maletic [22] use
LSI for recovering the traceability relations between source code and documenta-
tion (manual, design documentation, requirement documents, test suites, etc.).
Our approach makes it possible for a ML technique (Rank Boost) to take advan-
tage of encoded models to recover traceability links between the requirements
and the models. Our results show that Rank Boost significantly outperforms
LSI in traceability link recovery between the requirements and the models of
our industrial partner.

6 Conclusion

Machine Learning (ML) has a wide range of successful applications but current
research efforts have neglected the application of ML to models. In this paper,
we propose OnEvEn approach that encodes models in order to enable the ap-
plication of ML techniques to models. We also show that by using our OnEvEn
approach, ML techniques are applicable to Software Engineering tasks such as
traceability link recovery between the requirements and the models.

We evaluate our OnEvEn approach in terms of precision, recall and F-
measure. To do so, we compared it to a baseline in an industrial domain (firmware
of train PLCS with CAF). We report our evaluation, including: experimental
setup, results, statistical analysis, and threats to validity.

The results show that enabling the application of ML techniques by means
of OnEvEn pays off for traceability link recovery. Results also show that our
approach can be applied in real world environments. The statistical analysis of
the results assesses the magnitude of the improvement of our approach.

Acknowledgments. This work has been partially supported by the Ministry
of Economy and Competitiveness (MINECO) through the Spanish National
R+D+i Plan and ERDF funds under the project Model-Driven Variability Ex-
traction for Software Product Line Adoption (TIN2015-64397-R). We also thank
DataMe (TIN2016-80811-P) from MINECO and IDEO (PROMETEOII/2014/039)
from the Generalitat Valenciana.



References

1. Apache opennlp: Toolkit for the processing of natural language text. https://

opennlp.apache.org/, [Online; accessed April-2017]

2. Efficient java matrix library. http://ejml.org/, [Online; accessed April-2017]

3. The english (porter2) stemming algorithm. http://snowball.tartarus.org/

algorithms/english/stemmer.html, [Online; accessed April-2017]

4. Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.: Recovering trace-
ability links between code and documentation. IEEE transactions on software en-
gineering 28(10), 970–983 (2002)

5. Arcuri, A., Briand, L.: A hitchhiker’s guide to statistical tests for assessing random-
ized algorithms in software engineering. Softw. Test. Verif. Reliab. 24(3), 219–250
(May 2014)

6. Arcuri, A., Fraser, G.: Parameter tuning or default values? an empirical investiga-
tion in search-based software engineering. Empirical Software Engineering 18(3),
594–623 (2013)

7. B Le, T.D., Lo, D., Le Goues, C., Grunske, L.: A learning-to-rank based fault local-
ization approach using likely invariants. In: Proceedings of the 25th International
Symposium on Software Testing and Analysis. pp. 177–188. ACM (2016)

8. Bianchini, M., Maggini, M., Jain, L.C.: Handbook on neural information process-
ing. Springer (2013)

9. Cao, Z., Qin, T., Liu, T.Y., Tsai, M.F., Li, H.: Learning to rank: From pairwise
approach to listwise approach. In: Proceedings of the 24th International Conference
on Machine Learning. pp. 129–136. ICML ’07, ACM, New York, NY, USA (2007)

10. Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Computers
& Electrical Engineering 40(1), 16–28 (2014)

11. Dang, V.: The lemur project - wiki - ranklib. http://sourceforge.net/p/lemur/
wiki/RankLib/ (2013), [Online; accessed April-2017]

12. De Lucia, A., Fasano, F., Oliveto, R., Tortora, G.: Enhancing an artefact manage-
ment system with traceability recovery features. In: Software Maintenance, 2004.
Proceedings. 20th IEEE International Conference on. pp. 306–315. IEEE (2004)

13. Dyer, D.: The watchmaker framework for evolutionary computation (evolution-
ary/genetic algorithms for java). http://watchmaker.uncommons.org/, [Online;
accessed April-2017]

14. Eaddy, M., Aho, A., Murphy, G.C.: Identifying, assigning, and quantifying cross-
cutting concerns. In: Proceedings of the First International Workshop on Assess-
ment of Contemporary Modularization Techniques. p. 2 (2007)

15. Eaddy, M., Aho, A.V., Antoniol, G., Guéhéneuc, Y.G.: Cerberus: Tracing require-
ments to source code using information retrieval, dynamic analysis, and program
analysis. In: ICPC 2008 conference. pp. 53–62. IEEE (2008)

16. Freund, Y., Iyer, R., Schapire, R.E., Singer, Y.: An efficient boosting algorithm
for combining preferences. Journal of machine learning research 4(Nov), 933–969
(2003)

17. Haiduc, S., Bavota, G., Oliveto, R., De Lucia, A., Marcus, A.: Automatic query
performance assessment during the retrieval of software artifacts. In: International
Conference on Automated Software Engineering. pp. 90–99. ACM (2012)

18. Hirzel, A.H., Le Lay, G., Helfer, V., Randin, C., Guisan, A.: Evaluating the abil-
ity of habitat suitability models to predict species presences. ecological modelling
199(2), 142–152 (2006)



19. Joachims, T.: Text categorization with support vector machines: Learning with
many relevant features. Machine learning: ECML-98 pp. 137–142 (1998)

20. Kohavi, R., et al.: A study of cross-validation and bootstrap for accuracy estimation
and model selection. In: Ijcai. vol. 14, pp. 1137–1145. Stanford, CA (1995)

21. Marcus, A., Sergeyev, A., Rajlich, V., Maletic, J.: An information retrieval ap-
proach to concept location in source code. In: Proceedings of the 11th Working
Conference on Reverse Engineering. pp. 214–223 (Nov 2004)

22. Marcus, A., Maletic, J.I.: Recovering documentation-to-source-code traceability
links using latent semantic indexing. In: Software Engineering, 2003. Proceedings.
25th International Conference on. pp. 125–135. IEEE (2003)

23. Navot, A., Shpigelman, L., Tishby, N., Vaadia, E.: Nearest neighbor based feature
selection for regression and its application to neural activity. Advances in Neural
Information Processing Systems 18, 995 (2006)

24. Poshyvanyk, D., Gueheneuc, Y.G., Marcus, A., Antoniol, G., Rajlich, V.: Feature
location using probabilistic ranking of methods based on execution scenarios and
information retrieval. IEEE Transactions on Software Engineering 33(6), 420–432
(Jun 2007)

25. Sayyad, A.S., Ingram, J., Menzies, T., Ammar, H.: Scalable product line config-
uration: A straw to break the camel’s back. In: Automated Software Engineering
(ASE), 2013 IEEE/ACM 28th International Conference on. pp. 465–474 (Nov 2013)

26. Shabtai, A., Moskovitch, R., Elovici, Y., Glezer, C.: Detection of malicious code by
applying machine learning classifiers on static features: A state-of-the-art survey.
information security technical report 14(1), 16–29 (2009)

27. Svendsen, A., Zhang, X., Lind-Tviberg, R., Fleurey, F., Haugen, Ø., Møller-
Pedersen, B., Olsen, G.K.: Developing a software product line for train control:
A case study of cvl. In: International Conference on Software Product Lines. pp.
106–120. Springer (2010)

28. Vargha, A., Delaney, H.D.: A critique and improvement of the cl common language
effect size statistics of mcgraw and wong. Journal of Educational and Behavioral
Statistics 25(2), 101–132 (2000)

29. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Ex-
perimentation in software engineering. Springer Science & Business Media (2012)

30. Wolf, L., Martin, I.: Robust boosting for learning from few examples. In: Computer
Vision and Pattern Recognition, 2005. vol. 1, pp. 359–364. IEEE (2005)

31. Xuan, J., Monperrus, M.: Learning to Combine Multiple Ranking Metrics for Fault
Localization. In: Proceedings of the 30th International Conference on Software
Maintenance and Evolution (2014)

32. Xue, B., Zhang, M., Browne, W.N., Yao, X.: A survey on evolutionary computation
approaches to feature selection. IEEE Transactions on Evolutionary Computation
20(4), 606–626 (2016)

33. Ye, X., Bunescu, R., Liu, C.: Learning to rank relevant files for bug reports us-
ing domain knowledge. In: Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering. pp. 689–699. ACM (2014)

34. Ye, X., Bunescu, R., Liu, C.: Mapping bug reports to relevant files: A ranking
model, a fine-grained benchmark, and feature evaluation. IEEE Transactions on
Software Engineering 42(4), 379–402 (2016)

35. Zisman, A., Spanoudakis, G., Pérez-Miñana, E., Krause, P.: Tracing software re-
quirements artifacts. In: Software Engineering Research and Practice. pp. 448–455
(2003)


