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ABSTRACT
Clone-and-Own (CAO) is a common practice in families of
software products consisting of reusing code from methods in
legacy products in new developments. In industrial scenar-
ios, CAO consumes high amounts of time and effort without
guaranteeing good results. We propose a novel approach,
Computer Assisted CAO (CACAO), that given the natu-
ral language requirements of a new product, and the legacy
products from that family, ranks the legacy methods in the
family for each of the new product requirements according
to their relevancy to the new development. We evaluated
our approach in the industrial domain of train control soft-
ware. Without CACAO, software engineers tasked with the
development of a new product had to manually review a
total of 2200 methods in the family. Results show that CA-
CAO can reduce the number of methods to be reviewed,
and guide software engineers towards the identification of
relevant legacy methods to be reused in the new product.

CCS Concepts
•Software and its engineering → Reusability;

Keywords
Clone and Own; Software Reuse; Families of Software Prod-
ucts

1. INTRODUCTION
Clone-and-Own (CAO) [2, 5, 18, 21, 23] is a common

practice in the development of new products in families of
software products. It consists of reusing code from legacy
products, modifying it to comply with the functionality par-
ticularities of the new product. Code reuse enables faster
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software development and easier tracking of projects, and
helps maintain the code style consistent between products.

In the practice, CAO is carried out manually and relies on
the knowledge that software developers have of the family.
In industrial scenarios, families of software products tend
to have a myriad of products with long and complex im-
plementations, coded and maintained over long periods of
time by different developers. In these scenarios, engineers
tasked with new product developments often lack knowledge
over the entirety of the products and their implementation
details. Under these conditions, CAO is a process that con-
sumes high amounts of time and effort without guaranteeing
good results.

In this paper, we propose a novel approach, named Com-
puter Assisted CAO (CACAO), that leverages Part-of-Speech
tagging (POS tagging) [9] and adapts Latent Semantic In-
dexing (LSI) [12] to rank the relevancy of legacy products for
a new development at the requirements level, and to locate
their most significant methods for each of the new product
requirements.

Given the natural language specifications of a new product
in a family of software products, and the legacy products
that belong to it, our approach detects which are the legacy
products that are the closest to the new product in terms
of requirements. In a second step, our approach searches
the code of the closest legacy products for methods that
are relevant for the new product requirements. As a result,
our approach produces a code relevancy ranking for each of
the requirements of the new product. Software engineers
can benefit from the rankings to avoid the mentioned CAO
issues.

We evaluated our approach in the industrial domain of
railway control software. Our industrial partner, Construc-
ciones y Auxiliar de Ferrocarriles (CAF), provided a fam-
ily of five software products used to control the trains they
manufacture. In our evaluation, one product acts as a new
product in the family, and the rest act as legacy products.
The code of the product that acts as the new product is used
as an oracle. We apply our approach to that scenario, and
measure its performance in terms of recall and precision [27]
by comparing the results to the code of the oracle. These
steps are followed five times, having all the products play
the role of the oracle.

Results show that it is likely to find relevant code in the
rankings. With CACAO, the amount of methods that soft-
ware engineers review when developing a requirement for a
new product is reduced: it is only needed to review a per-
centage of the original 2200 methods to build a new product.
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Figure 1: Approach Overview

The remainder of the paper is structured as follows: Sec-
tion 2 presents our approach and shows how to apply it to
a running example. Section 3 shows the evaluation of our
work. Section 4 discusses the results of our work. Section 5
postulates the threats to the validity of our work. Section
6 comprehends the works related to this paper. Section 7
presents the conclusions of our work.

2. APPROACH
The goal of our approach is, given a set of natural language

requirements for a new product, and the legacy products, to
provide code relevancy rankings that enable software engi-
neers to reduce the amount of methods they must review to
develop the new product. To this extent, a series of steps
are followed (see Figure 1):

A. First, the relevant keywords from the new product re-
quirements and the legacy product requirements are
extracted through extended POS Tagging techniques.

B. The second step of our approach performs a Coarse
Grain LSI (CG-LSI) process to detect which of the
legacy products are the closest to the new product in
terms of requirements.

C. The third and last step of our approach is to perform
a Fine Grain LSI (FG-LSI) process at the code level to
detect which of the methods in the close legacy prod-
ucts are related to the new product requirements.

In the following pages, we detail the steps of our approach
in the above order. To illustrate them, we use a running
example from our industrial partner, CAF (Construcciones y
Auxiliar de Ferrocarriles, at http://www.caf.net/en). CAF
is a worldwide leader company in the railway industry. Since
its foundation more than 100 years ago, they develop rail
solutions such as high speed trains, regional and commuter
trains, metros, trams and Light Rail Vehicles.

2.1 Keyword Extraction
The first step of our approach extracts keywords from the

natural language requirements of the new product and the
legacy products in the family. There are plenty of techniques
that perform text mining and information retrieval from nat-
ural language requirements such as the ones in [8, 3, 1, 6].
The analysis of POS tags in search for nouns and nominal
structures in documents has shown promising results when
extracting keywords from technical documents [9, 15]. The
removal of stopwords (frequently occurring words meaning-
less to information retrieval) also helps produce more accu-
rate results when mining data in documents [25, 16, 29].

The combination of the analysis of POS tags and removal
of stopwords is a frequent practice that our approach adopts
to extract the most relevant keywords from the requirements
documents. First, our approach searches for domain terms,
provided by the software engineers, in the requirements.
Then, the POS tags of the words that form the require-
ments, domain terms excluded, are analyzed. Afterwards,
the words are filtered by their syntactic role in the sentences,
and finally refined with a set of stopwords, also provided by
the software engineers.

In Figure 2, a requirement from our running example is
provided. This requirement describes part of the function-
ality of the pantograph of a train. The pantograph is the
element that is used to harvest energy from the overhead
wires installed in train lines.

First, the terms from the list of domain terms present in
the requirement are subtracted from the requirement and in-
troduced into the keywords list. Afterwards, the POS tags
of the words that compose the requirement, domain terms
excluded, are extracted. In Figure 2, the result of tagging
the example requirement is shown. In the figure, it is pos-
sible to appreciate words like ’panto’ or ’doors’ as nouns,
and ’inhibit’ or ’close’ as verbs. The rest of the words are
omitted in the figure.

After the POS tagging, a filtering process takes place.
Nouns are taken as keyword candidates due to their im-
portance for keyword extraction [9]. The rest of the words
are discarded. Nouns are filtered with a set of stopwords
provided by the software engineers. The nouns that do not
belong to the list of stopwords are added to the keywords
list. Figure 2 shows a sample of the stopwords provided
by a software engineer, as well as the final list of keywords
extracted from the example requirement.

Keywords from all the requirements in all the documents
are combined into a single set of terms, removing duplicates.
The output of the first step of our approach is a set of terms
with all the keywords extracted. These terms are used in
the next steps of our approach.

2.2 Product Relevancy Analysis
In the second step of our approach, the keywords are used

along with the new product and the legacy products re-
quirements to perform a Coarse Grain LSI (CG-LSI). The
aim of the CG-LSI process is to order the legacy products
in a ranking that reflects their similarity to the new product
development in terms of requirements.

Carrying out this step of our approach is relevant in in-
dustrial domains, where software families are conformed by
a myriad of legacy products. In these scenarios, develop-
ers of a new product may lack knowledge of all the legacy
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products details. Through the product ranking, developers
can appreciate whether the legacy products they know are
relevant for the new development.

LSI [22] is an automatic mathematical/statistical tech-
nique that analyzes relationships between queries and docu-
ments (bodies of text). It constructs vector representations
of both a user query and a corpus of text documents by en-
coding them as a term-by-document co-occurrence matrix,
and analyzes the relationships between those vectors to get
a similarity ranking between the query and the documents.

In the second step of our approach, we adapted LSI to
extract a ranking of the legacy products according to their
similarity to the new product in terms of requirements. In
our adapted CG-LSI, terms are the keywords extracted in
the first step of our approach, documents are the legacy
products requirements documents, and the query column is
formed by the new product requirements document. Val-
ues of term occurrences in both the legacy product require-
ments documents and the new product requirements docu-
ment are counted, and used to build the term-by-document
co-occurrence matrix. The documents and the query are
then transformed into vectors, and the relationships between
the legacy product requirements documents and the new
product requirements document are analyzed to extract the
legacy product relevancy ranking.

Figure 3 shows the term-by-document co-occurrence ma-
trix with the values associated to our running example, the
vectors, and the resulting ranking. In the following para-
graphs, an overview of the elements of the matrix is pro-
vided.

• Each row in the matrix stands for each unique keyword
(term) extracted in the first step of our approach. In
Figure 3, it is possible to appreciate a set of represen-
tative keywords in the domain such as ’PANTO’ or
’DOORS’ as the terms of each row.

• Each column in the matrix stands for the requirements
document of each legacy product. In Figure 3, it is pos-
sible to appreciate the names of the legacy products
in the columns such as ’KAOHSIUNG’ or ’AUCK-
LAND’, representing the requirements documents of
those products.

• The final column stands for the query. In our ap-

proach, the query column stands for the requirements
of the new product. In Figure 3, the name of the new
product in the query column (’CINCINNATI’) repre-
sents its requirements document.

• Each cell in the matrix contains the frequency with
which the term of its row appears in the document
denoted by its column. For instance, in Figure 3,
the term ’PANTO’ appears 114 times in the ’AUCK-
LAND’ legacy product and 150 times in the ’CINCIN-
NATI’ new development.

We obtain vector representations of the documents and
the query by normalizing and decomposing the term-by-
document co-occurrence matrix using a matrix factorization
technique called singular value decomposition (SVD) [12].
SVD is a form of factor analysis, or more properly the math-
ematical generalization of which factor analysis is a special
case. In SVD, a rectangular matrix is decomposed into the
product of three other matrices. One component matrix
describes the original row entities as vectors of derived or-
thogonal factor values, another describes the original col-
umn entities in the same way, and the third is a diagonal
matrix containing scaling values such that when the three
components are matrix-multiplied, the original matrix is re-
constructed.

In Figure 3, a three-dimensional graph of the SVD is pro-
vided. On the graph, it is possible to appreciate each prod-
uct, represented in the form a vector. The graph reflects
the ’Houston’ train vector as the closest to the new product
vector, followed by the ’Budapest’ train vector.

To measure the similarity degree between vectors, our ap-
proach calculates the cosine between the query vector and
the documents vectors. Cosine values closer to one denote a
higher degree of similarity, and cosine values closer to minus
one denote a lower degree of similarity. Similarity increases
as vectors point in the same general direction (as more terms
are shared between documents). Having this measurement,
our approach orders the legacy products according to their
similarity degree to the new product in terms of require-
ments. The most similar legacy products are the ones that
can be of the most relevance to the development process of
the new product.

As the output of the second step of our approach, the
product relevancy ranking (which can be seen in Figure 3)
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is produced according to the calculated similarity degrees.
In our running example, our approach returns the legacy
trains ’Houston’ and ’Budapest’ in the first and second po-
sition of the product relevancy ranking due to the cosines
being ’0.9243’ and ’0.8454’, implying a high similarity de-
gree with the new product in terms of requirements. On the
opposite, the legacy train ’Kaohsiung’ is returned in a latter
position of the ranking due to its cosine being ’-0.7836’, a
lower similarity degree.

The product relevancy ranking enables developers to de-
cide whether to keep the legacy products familiar to them in
the next step of CACAO, making a mixture between known
and unknown products, or disregard them and only involve
non-familiar products. Involving familiar products in the
process is positive, since it is easier for software engineers
to understand and reuse code known to them, but it should
never enforce reusing code from non-relevant products.

2.3 Code Relevancy Analysis
In the third step of our approach, keywords are used along

with the new product requirements, the product relevancy
ranking, and the legacy products code to perform a Fine
Grain LSI (FG-LSI) at the code level. The aim of the FG-
LSI process is to order the methods of the legacy products
in a ranking that reflects how similar they are to each of the
new product requirements.

In the third step of our approach, we adapted LSI to ex-
tract a ranking of the methods in the relevant products that
are of importance to the development of each new product
requirement. In our adapted FG-LSI, terms are the key-
words extracted in the first step of our approach, documents
are the methods of the relevant legacy products, and there
are several query columns, each of them a requirement of
the new product development. Notice that in the third step
of our approach, several instances of the term-by-document
co-occurrence matrix are generated (one per query column).
Values of term occurrences in both the methods and each
of the requirements are counted, and used to build the ma-
trices. The documents and the queries are transformed into
vectors, and the relationships between the documents and
each query are analyzed to extract a code relevancy ranking
for each new product requirement.

For the sake of legibility, Figure 4 shows the LSI term-by-
document co-occurrence matrix in a unified fashion (show-
ing the values of the occurrences of the terms only once and
grouping the queries to the right of the matrix). The figure
also shows the values associated to this step of our running
example and the resulting rankings. In the following para-
graphs, an overview of the elements that a matrix contains

is provided.

• Each row in the matrix stands for each of the unique
keywords (term) extracted in the first step of our ap-
proach. In Figure 4, it is possible to appreciate a
set of representative keywords in the domain such as
’PANTO’ or ’DOORS’ as the terms of each row.

• Each column in the matrix stands for each of the meth-
ods of the most relevant legacy products obtained in
the previous step of our approach. A method document
is composed by the name of the method, its variables,
and the comments that appear in its body. External
comments are not taken in account since we cannot en-
sure their belonging to a certain method. In Figure 4,
columns M1 to MN represent the documents of those
methods. Columns are labeled with method names,
such as ’Detector versions’ or ’Propulsion get TCU’.

• In this step of our approach, there are several query
columns. Each query column stands for each require-
ment of the new product. In Figure 4, columns R1 to
RN represent the requirements of the new ’CINCIN-
NATI’ train. The top part of Fig. 2 shows the R1
requirement of the ’CINCINNATI’ train.

• Each cell in the matrix contains the frequency with
which the keyword of its row appears in the document
denoted by its column. For instance, in Figure 4, the
term ’PANTO’ appears twice in both M1 and R1.

We use the SVD technique presented in the second step
of our approach to calculate the vectors of the documents
and the query for each one of the matrices. The vectors are
represented in graphs similar to the one in Figure 3, that,
for space reasons, were omitted in the figure.

For each graph, our approach calculates the cosines be-
tween the query vector and the document vectors to mea-
sure the similarity degrees between them. Having the mea-
surement of the similarity of the legacy product methods
with each requirement, and reasoning that the most similar
legacy products methods to a particular requirement are the
ones that can be of the most relevance to its development,
we provide an ordered list of the legacy products methods
for each requirement according to their relevance in the new
requirement development.

As the output of the third step of our approach, the code
relevancy rankings for each requirement (which can be seen
in Figure 4) are returned. In our running example, our
approach returns the legacy methods ’m1’ and ’m2’ in the
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first and second position of the code relevancy ranking for
the requirement ’R1’ due to their cosines being ’0.8743’ and
’0.6354’, implying a high similarity degree between the code
of those methods and the requirement. On the opposite,
the legacy method ’mn’ is returned in a latter position of
the code relevancy ranking for the requirement ’R1’ due to
its cosine being ’-0.7891’, a lower similarity degree between
code and requirement. This process is applied to all the
requirements.

Software engineers in the company faced with the devel-
opment of the new product can use these rankings to browse
the most relevant methods for each requirement that they
need to implement, avoiding the CAO issues.

3. EVALUATION
This section evaluates our approach by applying it to a

case study from our industrial partner, comprising a product
family composed by five trains with an average of about 420
requirements each. Requirements have an average of around
50 words. Trains are coded by an average of 550 methods,
with an approximate extension of 310 LOC each. Therefore,
each train is coded in about 170.5 KLOC, and the family
comprehends about 2750 methods that account for around
852.5 KLOC.

3.1 Evaluation Steps
Figure 5 shows the steps followed to evaluate our ap-

proach. We use the products in the roles of either legacy
or new products to perform CACAO and get method rank-
ings. Methods of the legacy products in the rankings are
then compared with the real code of the new product, which
acts as an oracle, to obtain precision and recall values that
enable further analysis of the method rankings.

First, roles are assigned to products in the family. One
product acts as the new product and the rest act as legacy
products. The requirements and code of the products that
act as legacy products, and the requirements of the product
that acts as the new product are used to perform CACAO,
while the code of the latter is kept apart to be used as an
oracle.

CACAO performs the steps described in our approach (see
Section 2) to provide a method ranking for each requirement
of the new product. Notice the dimensions of the rankings
extracted by CACAO. Products, on average, feature 420
requirements and 550 methods. For a new product, on av-
erage, 420 rankings are generated. Taking in account all the
legacy products in our set as relevant products for the new
development, each ranking orders about 2200 methods on
average.

Then, the methods that compose the rankings are com-
pared one by one with the code of the oracle. We perform
the code comparison by carrying out a diff not only because
version control software is really popular, and therefore there
is a wide amount of tool support that calculates differences
between two source codes available, but also because code
comparison techniques have been used successfully for large
scale systems [13, 10], proving the computational cost of the
operation to be affordable for large documents like ours.

The effectiveness of information retrieval techniques is
typically measured by recall and precision [27]. For a given
query, recall is defined as the percentage of retrieved doc-
uments that are relevant to the total number of relevant
documents, and precision is defined as the percentage of re-
trieved documents that are relevant to the total number of
retrieved documents. All measures have values between 0
and 1 [26]. We calculate the recall and precision for every
method by analyzing the results of the diff.

In our evaluation, the recall of a certain method represents
the percentage of the oracle that is covered by the method.
The recall of a method is calculated by counting the number
of equal code lines between the method and the oracle code
and measuring it against the total number of code lines of the
oracle. The formula that represents the recall of a method
is as follows:

Recall(Method) =
LOC(Method ∩Oracle)

LOC(Oracle)

The precision of a certain method, on the other hand,
represents the percentage of the method that appears inside
the code of the oracle. The precision of a method is calcu-
lated by counting the number of equal code lines between
the method and the oracle code and measuring it against
the total number of code lines of the method. The formula
that represents the precision of a method is as follows:

Precision(Method) =
LOC(Method ∩Oracle)

LOC(Method)

In both formulas, the LOC function retrieves the number
of lines of the element contained inside the parentheses, and
the intersection between the method and the oracle repre-
sents the lines of code that are common to both the method
and the oracle.

The steps of the evaluation described in the previous para-
graphs are repeated as many times as the number of prod-
ucts in the product family, changing the product that acts
as the new product in every iteration until every product in
the product set has acted as the new product.
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3.2 Implementation Details
The different steps carried out to perform and evaluate

CACAO have been implemented using the following imple-
mentation frameworks:

• For the Keyword Extraction process (see section 2.1),
the POS tags of the words that compose the require-
ments were extracted by using OpenNLP, a Natural
Language Processing library developed by the Apache
Software Foundation (at http://opennlp.apache.org/).
This library provides a POS tagger implementation,
along with POS tags models trained with machine
learning techniques.

• To perform the necessary SVD in Latent Semantic In-
dexing (see Sections 2.2 and 2.3), EJML was used.
EJML is a basic linear algebra package for Java (avail-
able at https://code.google.com/archive/p/efficient-
java-matrix-library/). Along with other features, this
library provides an implementation of SVD.

• In the evaluation of the results of the code rankings
retrieved by CACAO against the oracle, the code diffs
were carried out by leveraging the DiffUtils library.
The DiffUtils library is a Java open source library
which provides methods that enable us to perform
the necessary comparison operations between texts (at
https://code.google.com/archive/p/java-diff-utils/).

For the evaluation of CACAO, we used a Lenovo E330 lap-
top, with a processor Intel(R) Core(TM) i5-3210M@2.5GHz
with 16GB RAM and Windows 10 64-bit.

3.3 Results
Five iterations of the evaluation steps were run, with each

of the five products playing the role of the new product
and therefore being their code used as the oracle. Figure
6 shows two graphs that correspond to recall and precision
results for CACAO when the ’Cincinnati’ (solid line), ’Kaoh-
siung’ (dashed line), ’Budapest’ (discontinuous line), ’Hous-
ton’ (dotted line), and ’Auckland’ (crossed line) trains act
as the new product.

For every requirement in the new product, CACAO gen-
erates one ranking. Each result in a ranking is composed by
a method name, and the recall and precision values associ-
ated to that method. Results in each ranking are ordered by
their relevance to the requirement development, determined
by LSI.

Rankings can be shown with different numbers of results.
For instance, a ranking showing its first result comprises
the name of the most relevant method to the requirement,
its recall value, and its precision value (i.e.: First result: m1
method, 2.76% recall, 63.41% precision). The same ranking,
showing the first three results, comprises the names of three

methods, their recall values, and their precision values (i.e.:
First result: m1 method, 2.76% recall, 63.41% precision,
Second result: m5 method, 3.52% recall, 72.49% precision,
Third result: m8 method, 1.48% recall, 82.2% precision).

The left part of Figure 6 shows recall results of CACAO
for the five new products. The horizontal axis represents the
number of results shown in the rankings for all the require-
ments of the new product. The vertical axis represents the
recall percentage, resulting from adding the recall of all the
rankings generated. The formula for recall for one ranking,
when k results are taken in account, is as follows:

Recall@k =

k∑
i=1

Recall(i)− C

Where C is calculated by adding the recall of the second
and subsequent repetitions of the methods that have already
appeared in the summation once.

For instance, a value of 37 in the horizontal axis, which
returns a value of around the 26% total recall for ’Auckland’
and around the 60% total recall for ’Kaohsiung’ and ’Cincin-
nati’, represents that when 37 results are shown in all the
rankings, the recall of all the methods shown (not counting
duplicate methods), adds up to around the 26% when the
’Auckland’ train is the new product and up to around the
60% when either the ’Kaohsiung’ train or the ’Cincinnati’
train act as the new product.

By looking at recall results, it is possible to appreciate
that the maximum recall (maximum percentage of the or-
acles that CACAO can cover) reaches up to the 67% for
’Cincinnati’, 61% for ’Kaohsiung’, 55% for ’Houston’, 52%
for ’Auckland’, and 34% for ’Budapest’, when each one is
treated as the new product. In the cases of ’Kaohsiung’
and ’Budapest’, taking 60 results would suffice to fulfill the
maximum recall, while in the case of ’Cincinnati’ it would
be necessary to increase the rankings size up to nearly 70
results, and more than 90 would be needed for ’Houston’
and ’Auckland’. In the cases of ’Cincinnati’, ’Budapest’,
and ’Kaohsiung’, with rankings of 40 elements, around the
90% of the maximum recall would be achieved, while in the
cases of ’Houston’ and ’Auckland’ about 80 results would be
needed.

The right part of Figure 6 shows the precision results of
CACAO for the five new trains. The horizontal axis repre-
sents the number of results shown in the rankings. The ver-
tical axis represents the precision percentage associated to
the results shown in the rankings, resulting from calculating
the average precision of all the rankings, including duplicate
methods. The formula for precision for one ranking, when k
results are taken in account, is as follows:

Precision@k =

∑k
i=1 Precision(i)

k



Figure 6: Recall and Precision results of the rankings

For instance, a value of 12 in the horizontal axis, which
is around the 15% precision for ’Auckland’ and around the
21.5% precision for ’Budapest’, represents that when 12 re-
sults are shown in all the rankings, the average precision
of all the rankings shown revolts around the 15% when the
’Auckland’ train is the new product and around the 21.5%
when the ’Budapest’ train is the new product.

Putting the focus on precision results, it can be appreci-
ated that the maximum average precision (maximum aver-
age percentage of the methods that is present in the oracles)
reaches up to around the 21.7% for ’Budapest’, the 21% for
’Cincinnati’, the 19.9% for ’Kaohsiung’ and ’Auckland’, and
16.9% for ’Houston’, when each one is the new product.
Rankings of around 5 positions would have precision values
from around the 80% to almost 90% of the total precision
in all cases except ’Auckland’, where precision descends as
the number of positions in the rankings augments. As more
positions in the rankings are taken in account, values of pre-
cision become stable.

Data shows that it is likely to find relevant code in the
rankings. CACAO results show that by reviewing a reduced
percentage of the products presented, enough code can be
found to cover a percentage of a new product. For instance,
results show that by reviewing the first 37 positions of the
rankings, relevant code can be found to cover between the
26% and the 60% of the new product.

We have pondered about the number of results in the
rankings that software engineers need to look at in order
to achieve useful code results, and we concluded that, in
practice, it will not be necessary to review 37 methods per
requirement to that extent. As pointed out by the second
reviewer of our work, our metrics are affected due to oracles
used in our evaluation being far from optimum. With an or-

acle that reflected all the possible code reuse, our recall and
precision would improve, thus needing less ranking positions
to achieve meaningful results. Further discussion about this
fact can be found in the following section. Besides, it is
reasonable to think that software engineers using CACAO
will stop reviewing methods after finding out the code they
need.

4. DISCUSSION
By means of a Focus Group and semi-structured inter-

views with the software engineers, we compared their cur-
rent CAO practice with the results of CACAO. The software
of the five trains presented was developed by two different
teams of software engineers. The two teams are geograph-
ically separated, but communicate through e-mail, periodic
video-conferences, and weekly physical meetings. One of the
teams (T1) developed the ’Houston’ and ’Auckland’ trains,
while the other team (T2) developed the ’Budapest’, ’Kaoh-
siung’ and ’Cincinnati’ trains.

We inquired the teams on whether they reviewed the code
of the other team, and if so, on which percentage, when they
develop a new product. T1 reported reviewing just a 5%
of the code developed by T2, being that 5% mostly helper
functions like signal delaying. T2 reported reviewing a 0%
of the code developed by T1. However, the results of the
CG-LSI performed by CACAO indicate that, given a train
produced one team, the trains developed by the other team
should be reviewed to obtain the maximum recall. In other
words, given a new development by one team, the trains
produced by the other team are relevant to perform CAO.

In Figure 3 it is possible to appreciate that for ’Cincin-
nati’ (produced by T2), the most relevant train in terms
of requirements is ’Houston’ (produced by T1). Engineers



confirmed that, with manual CAO, the code from ’Houston’
was not used in the ’Cincinnati’ development, and that it
would never be used for a T2 development. With CACAO,
engineers in T2 are suggested to use ’Houston’ and its meth-
ods for their future products, even if they were not behind
its development.

Through this kind of situations, we noticed that:

1. Since there is an independence between teams, meth-
ods from products developed by one team can be false
positives in the rankings for oracles developed by the
other team. The products of both teams may be sim-
ilar regarding the terms used, but few lines of code
will be actually shared between them since no code
is reused in practice. These false positives appear in
the method rankings, and present low recall and pre-
cision, affecting the metrics of our approach. Finding
the proper way to filter out these false positives re-
mains as future work.

2. We are lacking an ideal evaluation scenario. The ground
truth is that the oracles used through our evaluation
are software products coded through manual CAO.
Due to the CAO limitations mentioned throughout this
work, the code of the products used as oracles is far
from perfection in the reuse aspect.

Therefore, in our evaluation, we are comparing a ver-
sion of code reuse that has been designed attending to
the requirements specifications with oracles that are
not built in this same manner but rather on a manual
fashion and relying on human factors. It is not possi-
ble for developers to perfectly discern how much code
can and should be reused for the development of a new
product.

Comparing the methods extracted by our approach
with scenarios that lack the ideal conditions lowers
our precision and recall. Should we encounter an ora-
cle with the ideal code reuse conditions, where all the
code from legacy products that could and should be
reused has been reused and modified to some extent,
values of recall and precision would increase as more
lines of code would be shared between the methods
and the oracle.

In addition, we analyzed why ’Budapest’ presents much
worse recall results than the rest of the trains presented in
this study when it acts as the oracle. Inspecting the code,
we could note that the variables are coded with a different
naming convention than the one in the rest of the prod-
ucts. When evaluating CACAO, on the diff performed be-
tween the methods and the oracle, code deltas that represent
modifications of the code are treated as completely different
lines such as new lines or deleted lines. As the train vari-
ables are named different, recall levels lower. In the light of
the results, code modifications should be analyzed instead
of directly discarded.

To avoid this issue, we should consider using more Natural
Language Processing techniques in future developments of
CACAO. For instance, stemming [19] should be used at some
point of our approach. Stemming reduces words to their
root. The objective is to unify words to avoid duplicity of
terms. For example, ’coupling’ will be stemmed to ’couple’
or ’brakes’ to ’brake’. This will allow us to retrieve concepts

and keywords in an optimized fashion. As of today, applying
this sort of techniques and analyzing their implications in
our approach remains as future work.

5. THREATS TO VALIDITY
In this section we discuss some of the issues that might

have affected the results of the evaluation and may limit the
generalization of the results. We use the classification of
threats to validity of [24, 30] to acknowledge the limitations
of our approach.

Construct validity: This aspect of validity reflects the
extent to which the operational measures that are studied
represent what the researchers have in mind. To minimize
this risk, we measured the factors of recall and precision.
These measures are widely accepted in the software engi-
neering research community [27, 26].

Internal validity: This aspect of validity is of concern
when causal relations are examined. There is a risk that the
factor being investigated may be affected by other neglected
factors. The number of members in the family of trains
may look small, but the products presented cover a wide
range of railway types, from trams to medium-long distance
trains. Furthermore, the products used in this study have
been developed by different developer teams working for our
industrial partner.

External validity: This aspect of validity is concerned
with to what extent it is possible to generalize the find-
ing, and to what extent the findings are of relevance for
other cases. Software in the railway domain is representative
of safety-critical systems like those present in the automo-
tive domain or the aerospace domain. Nonetheless, CACAO
should be applied to other domains before assuring its gen-
eralization.

Reliability: This aspect is concerned with to what ex-
tent the data and the analysis are dependent on the spe-
cific researcher. For our research, the data was recovered
from trains chosen and provided by our industrial partner.
The evaluation is performed by comparing the data with the
trains themselves, acting as oracles.

6. RELATED WORK
Approaches related to the one presented in this paper

comprehend feature location techniques carried out at the
code level. Typechef [11] provides an infrastructure to locate
the code associated to a given feature by means of analyz-
ing the #ifdef directives. Trace analysis [7] is a run-time
technique used to locate features. When the technique is
executed, it produces traces indicating which parts of code
have been executed.

Some approaches related to feature location use LSI to
extract the code associated to a feature. Poshyvanyk et al.
[20] combine a scenario-based probabilistic ranking of events
and information retrieval via LSI. Given a query formulated
by the user to identify the feature and two sets of scenar-
ios (one that exercises the feature and other that do not),
their system ranks the program methods using LSI. They
rank each executed method based on the frequency of its
appearance in the trace. Liu et al. [14] combine information
from an execution trace and from the comments and identi-
fiers from the source code. They executed a single scenario,
which exercises the desired feature, and all executed meth-
ods are identified based on the collected trace using LSI.



The prior techniques have been generally applied to search-
ing the code of a feature that has to be extended or is in-
volved in the fixing of a bug. Our approach extends the ideas
of the previous works by involving the analysis of require-
ments and leveraging the fact that products form a family,
instead of treating them as independent items. Unlike the
previous works, our approach analyzes the requirements of
the family of software products to determine which are the
most relevant for reuse in the scenario of a new development,
and later calculate rankings of the most relevant methods in
the legacy products for the implementation of each require-
ment in the new product.

Feature location approaches in a product family such as
the one presented in [31] center their efforts in finding the
code that implements a feature between the different prod-
ucts by combining techniques such as FCA and LSI. In our
approach, we are not interested in the best representation
of a feature in the family, but in locating the most rele-
vant methods that implement a requirement (regardless of
whether it represents a feature, a fragment of a feature, or
several features). Since engineers must review the proposed
methods to decide what to reuse, our approach also differ-
entiates from [31] by introducing a step (Product Relevancy
Analysis) where engineers decide over which products the
location is made, balancing product relevancy and knowl-
edge about the family: potentially, more code can be found
on relevant products, but with a good level of knowledge of
a product, it becomes easier for engineers to reuse code.

Other work [28] focuses on applying reverse engineering
to the source code to obtain the variability model. In [4]
the authors use propositional logic which describes the de-
pendencies between features. In [17] the authors combine
Typechef techniques and propositional logic to extract con-
ditions among a collection of features.

These works engage explicitly the variability of the legacy
products, but do not indicate the most relevant methods in
the legacy products for the development of each requirement
in the new product, as our work does.

7. CONCLUSIONS
To keep pace with the increasing demand for custom-

tailored software systems, companies often apply the Clone-
and-Own practice, through which a new product in a soft-
ware product family is built by copying and adapting code
from other family products. Clone-and-Own is imperfect
and in industrial scenarios, it can be a time and effort-
consuming process without guaranteeing good results.

In this work, we show our approach, named Computer
Assisted CAO (CACAO). Given a set of natural language
requirements for a new product in a software product fam-
ily, and the requirements and code of the legacy products,
CACAO leverages Part-of-Speech tagging and Latent Se-
mantic Indexing to rank the most relevant products to the
new development at the requirements level first, and to lo-
cate the most relevant methods to each requirement of the
new product in the second place. CACAO produces, for
each requirement of the new product, a ranking of the most
relevant methods in the family for the development of the re-
quirement. Software engineers can use the rankings to avoid
the mentioned CAO issues.

We have evaluated our approach on the railway domain
with our industrial partner, Construcciones y Auxiliar de
Ferrocarriles (CAF), who provided a family of five train con-

trol software products. The results of CACAO show that it
is likely to find relevant code in the rankings. Furthermore,
CACAO revealed products that were not considered to be
reusable by the software engineers to be relevant for code
reuse, as in the case of the ’Houston’ train for the ’Cincin-
nati’ train development. Finally, as future work, we plan to
apply more Natural Language Processing techniques such
as stemming to avoid the issues related to different naming
conventions as seen in the ’Budapest’ train, which achieved
the lower recall values in our evaluation.
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