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Abstract Traceability Links Recovery (TLR) has been a topic of interest for many
years. However, TLR approaches are based on the latent semantics of the software
artifacts, and are not equipped to deal with software artifacts that lack those
inherent semantics, such as BPMN models. The aim of this work is to enhance
TLR approaches in BPMN models by incorporating the linguistic particularities
of BPMN models into the TLR process. Our approach runs through a threefold
contribution: (i) we identify the particularities of BPMN models; (ii) we describe
how to leverage the particularities; and (iii) we build three variants of the best ex-
ploratory TLR approach which specifically cater to BPMN models. The approach
is evaluated through both an academic case study and a real-world industrial case
study. Results show that incorporating the particularities of BPMN into the TLR
process leads the specific approach to improve the traceability results obtained by
generalist approaches, maintaining precision levels and improving recall. The novel
findings of this paper suggest that there is a benefit in researching and taking in
account the particularities of the different kinds of models in order to optimize the
results of TLR between requirements and models, instead of relying on generalist
approaches.
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1 Introduction

Model-Driven Development (MDD) [1] is a software practice where requirements,
understood as natural language representations of the specifications of a system [2],
are used to build models that are then transformed into source code or interpreted
at run-time. Major players in the software engineering field and in the requirements
engineering field foresee a broad adoption of MDD [3, 4], since MDD techniques
improve the productivity, quality, and performance of software in industrial scenar-
ios that demand more abstract approaches than mere coding [1]. MDD has been
applied with success to design novel approaches in model-based engineering [5],
model-based SPL adoption [6], and feature-oriented engineering [7, 8] in several
different domains.

Software engineers from our industrial partner, an international manufacturer
in the railway domain, express system requirements in natural language, and use
them to design BPMN models through the OMG’s BPMN standard, a widespread
model standard used to graphically represent processes [9]. The BPMN models are
then used to design and derive other software artifacts following MDD practices
and guidelines. However, in industrial MDD contexts such as the one from our
industrial partner, companies tend to have a myriad of products with large and
complex models behind, which are created and maintained over long periods of
time by different software engineers, who often lack knowledge over the entirety of
the product details. Under these conditions, maintenance activities consume high
amounts of time and effort without guaranteeing good results. Traceability, defined
as the mapping of the traceability links between the software artifacts, or in other
words, as the mapping of the dependencies and relationships that exist between
the software artifacts, is a key to success in these industrial scenarios. In particular,
traceability between requirements and the models that are derived from them is
considered a good and necessary practice in industrial MDD contexts for many
different factors. Apart from the usefulness of traceability for all kinds of software
maintenance purposes, many kinds of engineering projects require the inclusion of
traceability reports along with the finished products for certification purposes in
major software standards such as CMMI or ISO 15504 [10]. In addition, affordable
traceability can be critical to the success of a project [11], and leads to an increase
in the maintainability and reliability of software systems by making it possible
to verify and trace non-reliable parts [12]. Specifically, more complete traceability
decreases the expected defect rate in developed software [13].

Even though all of these factors vouch for sound traceability, the latter is not
always available, complete, or accurately updated when the need for its existence
arises. Manually establishing and maintaining traceability links has proven to be a
time consuming, error prone, and person-power intensive task [10, 14], and many
companies simply cannot afford the workload derived from manual traceability
efforts in the competitive market of software products. Motivated by the chal-
lenges posed by manual traceability in industrial MDD scenarios, and taking into
account the preeminence of natural language requirements [15], the popularity of
BPMN models [9], and the increase in the adoption of MDD practices in the in-
dustry [1], it becomes necessary to provide automated support to the engineers
during the traceability process between requirements and BPMN models. Trace-
ability Links Recovery (TLR) is defined as the software engineering task that deals
with the automated identification and comprehension of traceability links [10], or
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in other words, as the software engineering task that deals with the automated
mapping of the interconnections that exist between software artifacts. TLR has
been a subject of investigation for many years within both the software engineer-
ing community [16, 17] and the requirements engineering community [18, 19], and
in recent years, it has been attracting more attention, becoming a subject of both
fundamental and applied research [20].

However, most of the TLR approaches that stem from research efforts in both
communities are based on Information Recovery approaches that rely on linguistic
techniques. In that sense, TLR approaches often utilize the latent semantics of
the software artifacts, understood as the textual cues and natural language that
appear within them, in order to identify the dependencies and relationships, that
is, to produce the traceability links between the software artifacts. As a result,
TLR approaches obtain better results when used over artifacts that have abundant
latent semantics, such as requirements, source code, or code generation models.
These kinds of artifacts contain plenty of latent semantics in the form of natural
language descriptions, developer comments, and designer notes. Therefore, most
of the works in the TLR field focus on these kinds of software artifacts [21].

In contrast, BPMN models contain little to none latent semantics. So far,
research about TLR techniques between requirements and BPMN models is prac-
tically nonexistent. Thus, several research challenges remain open in the field. Is
it possible to apply commonplace TLR techniques to a research scenario that uses
BPMN models as the main software artifacts, obtaining valuable traceability re-
sults in the process? How can we mitigate the impact that the lack of inherent
latent semantics has over the TLR process in BPMN models? The aim of this
paper is to fill this research gap by thoroughly studying the application of TLR
techniques to an industrial MDD scenario where requirements and BPMN models
are the protagonist software artifacts in use.

A first exploration of this particular research gap was carried out by Lapeña
et al. [22, 23], where the authors put the focus on the first part of the research
challenge by adapting existing approaches to work for BPMN models and by tack-
ling the issue of tacit knowledge in requirements. We build on the ideas by Lapeña
et al., shifting the focus towards the second part of the research challenge by
researching how to circumvent or mitigate the issues that arise from the lack of
latent semantics in BPMN models. We take advantage of works that study the lin-
guistics of BPMN models, and leverage the linguistic particularities presented by
BPMN models to build a novel approach, specific for TLR between requirements
and BPMN models. Therefore, the main goal of this paper can be summarized
as the proposal of a specific approach for TLR between requirements and BPMN
models. The contribution of this paper is threefold: (i) we identify the particu-
larities and traits of BPMN models on which we can capitalize to improve the
TLR process between requirements and BPMN models (no-text elements and lan-
guage patterns); (ii) we describe how to leverage the particularities to improve
the TLR process; and (iii) we build three variants of the Mutation Search base-
line that specifically cater to BPMN models by incorporating the BPMN models
particularities in different manners to the TLR process.

The three variants are evaluated through two case studies, an academic case
study and an industrial case study from one of our industrial partners. The results
obtained by the three variants are compared against those obtained by baseline
works that do not take in consideration any of the particularities of BPMN models.
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The novel findings presented by this work highlight that the proposed BPMN-
specific approaches improve the results of TLR between requirements and BPMN
models, maintaining precision values and increasing recall.

The rest of the paper is structured as follows: Section 2 motivates the need for
our work in TLR between requirements and BPMN models. Section 3 reviews the
works related to this one. Section 4 provides the research framework for our work
in the form of a description of previous approaches for TLR between requirements
and BPMN models. Section 5 presents the BPMN model particularities that this
work leverages to improve the TLR process. Section 6 describes both how to in-
corporate the particularities to the TLR process, and the approaches proposed
by this work, depicting how to use them to carry out TLR between natural lan-
guage requirements and BPMN models. Section 7 details the evaluation designed
for the three variants. Section 8 presents and statistically analyzes the obtained
results. Section 9 discusses the outcomes of the paper and highlights possibilities
for future works. Section 10 presents the threats to the validity of our work. Fi-
nally, Section 11 concludes the paper by summarizing the main contributions and
results.

2 Motivation

Our industrial partner is a worldwide provider of railway solutions. Their trains
can be seen all over the world in different forms. Train units are furnished with
multiple pieces of equipment that carry out specific tasks for the train. The con-
trol software of the train unit is in charge of making all the equipment cooperate
to achieve the train functionality while guaranteeing compliance with the specific
regulations of each country. Our industrial partner uses BPMN models to describe
processes that are carried out between the humans and the main pieces of equip-
ment installed in a train unit. BPMN models are the models that implement the
OMG’s BPMN standard, which is the de-facto standard for graphically represent-
ing processes [9]. Lately, our industrial partner has been focusing some efforts on
traceability between their natural language requirements and their BPMN models.

However, manual traceability is a time consuming, error prone, and person-
power intensive task [10, 14]. Traceability between natural language requirements
and BPMN models is no exception. Take for instance the image shown in Figure 1.
The figure is an excerpt taken from the e-mail vote diagram, extracted from the
e-mail voting system example found within the BPMN examples available on the
BPMN standard official website1. From the excerpt, it is possible to manually ex-
tract the process for defining a list of issues on which votes must be taken. The
amount of elements shown in the model, along with their positioning and connec-
tions, cause this to be a quite complex task, even without taking in consideration
the full model.

In industrial scenarios as the one from our industrial partner, the complex-
ity of the BPMN models and the number of elements in place render manual
traceability virtually impossible to attain. As an example, imagine that we try to
manually trace the requirements to the model elements that comprise the data
set provided by our industrial partner for this research. The data set comprises 5

1 http://www.bpmn.org/
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Fig. 1 Excerpt taken from the e-mail voting system diagram, an example found within the
official BPMN standard website

trains, with around 100 requirements and one BPMN model per train, being the
models composed, in turn, by an average of 850 model elements each. In order
to trace a particular requirement to a model fragment, a domain expert would
need to examine the full model and decide which elements trace the requirement
correctly. Assuming that the domain expert must spend around 5 seconds to take
the decision with each element [24], creating the fragment that retrieves the trace-
ability to a requirement would take slightly more than one hour. Thus, tracing
the total 100 requirements that implement a full train would take more than 100
hours, which translate into 13 full-time working days. Figure 2 shows a simplified
example of a real-world industrial BPMN model from our industrial partner, along
with a requirement and the traceability result in the form of a model fragment,
composed by those model elements from the model that conform the traceability
for the requirement.
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Despite the complexity of the process, the application of automated TLR tech-
niques to BPMN models is a largely unexplored research challenge, especially due
to the fact that BPMN models have little to none inherent semantics, which TLR
techniques base their results upon. Through our research, we aim to tackle this
research challenge. The following section contains more information on the state
of the art and the research gap that we aim to fulfill through our work.

3 Related Work

This section presents the works related to this one, grouped according to the
community they belong to. In that sense, there are two main families of works
that relate to this one: works devoted to Traceability Links Recovery, and works
devoted to the study of Software Linguistics and their application to Software
Engineering and Requirements Engineering tasks. This section also reflects on
the development of research in the field up to this point, and about the existing
research gap in TLR techniques among requirements and BPMN models that our
work aims to cover.

3.1 Traceability Links Recovery

The main works related to this one are the works on the topic by Lapeña et
al. [22, 23]. In [22], Lapeña et al. explore TLR between requirements and BPMN
models through three different approaches of a generalist character: a baseline
approach for models in general, and two techniques based on Latent Semantic In-
dexing, transported from code and adapted to work over models. The evaluation
of the techniques over both an academic and an industrial set of BPMN mod-
els highlighted that the two techniques based on LSI performed better than the
baseline technique in both case studies. The authors identified a series of particu-
larities in the text of the requirements and the models that could potentially lead
to improvement opportunities. Throughout the pages of this paper, we have incor-
porated BPMN particularities into the process, abandoning the generalist point
of view of Lapeña et al. in order to tailor TLR to the unique characteristics of
BPMN models. This allows us to mitigate the challenge that the lack of inherent
semantics in BPMN poses to the TLR process between requirements and BPMN
models. Through [23], Lapeña et al. leverage some of the particularities that they
found in [22] to further research TLR between requirements and models. More
precisely, Lapeña et al. put the focus on minimizing the tacit knowledge challenge
in requirements by improving the requirements used as input for TLR, which they
achieve through an ontological expansion of the requirements. In this study, the
evaluation showed improvements over the previously discussed work. However,
Lapeña et al. still focus on the generalist aspects of TLR, and do not cater to the
particularities of BPMN models. Through the currently presented work, we are
putting the focus on those particularities and the issues that they pose on TLR
between requirements and BPMN models. In other words, our aim is to study
in an isolated manner how those particularities affect the TLR process between
requirements and BPMN models, and how to incorporate them into the process in
order to improve the core of the TLR techniques for the specific challenge of TLR
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between requirements and BPMN models. Nevertheless, we are building on the
latest works by Lapeña et al., and the findings from this work are complementary
to some of their research. For instance, it would be possible to aim for additional
improvements on the whole process by simultaneously performing an ontological
expansion of the requirements and incorporating BPMN particularities into the
process as described in this paper.

Other works related to our research are mainly found within the knowledge area
of Traceability Links Recovery. CERBERUS [25] provides a hybrid technique that
combines information retrieval, execution tracing, and prune dependency analy-
sis allowing to perform TLR between requirements and code. Eaddy et al. [26]
present a systematic methodology for identifying which code is related to which
requirement, and a suite of metrics for quantifying the amount of crosscutting
code. Marcus and Maletic [27] use LSI for TLR between code and documentation
(manuals, design documentation, requirement documents, test suites). Antoniol et
al. [28] propose a method based on information retrieval for TLR between source
code and free text documents, such as, requirement specifications, design docu-
ments, manual pages, system development journals, error logs, and related mainte-
nance reports. Zisman et al. [29] automate TLR between requirements and object
models using heuristic rules. In more recent years, Schlutter and Vogelsang [18]
proposed an approach based on semantic relation graphs to trace requirements
to other requirements, and Madala et al. [19] performed an empirical study on
automatic model elements identification for component state transition models
from use case documents. These approaches perform TLR between different kinds
of software artifacts, but none of them perform TLR between requirements and
BPMN models.

Other authors target the application of LSI to TLR tasks. De Lucia et al. [30]
present a TLR method and tool based on LSI in the context of an artifact man-
agement system, which includes models. The paper presented in [31] takes in
consideration the possible configurations of LSI when using the technique for TLR
between requirement artifacts, namely requirements and test cases. In their work,
the authors state that the configurations of LSI depend on the used datasets, and
they look forward to automatically determining an appropriate configuration for
LSI for any given dataset. Through our work, we do not focus on the usage of LSI
or its tuning, but rather present three variants of the Mutation Search approach
with the aim of leveraging BPMN models particularities to improve TLR between
requirements and BPMN models.

Finally, there is a recent paper [32] that researches TLR in MDD models,
code generation models that must conform to the MOF standard of the OMG
organization. The paper explores novel directions in Evolutionary Algorithms for
TLR guided by an approach named Learning to Rank. Oppositely, the goal of this
work is to transport and adapt TLR techniques to BPMN models, a particular type
of non-MDD models, and more precisely to mitigate the impact that the lack of
inherent semantics in BPMN models has on the TLR process. The work presented
in [32] does not deal with BPMN models and does not question the quality or
completeness of the semantics that compose the software artifacts in use. While
both our work and the work presented in [32] deal with TLR in models, they do
so through different mechanisms and with very different research goals in mind.
This does not mean, however, that the two papers are completely independent
and exclusive of each other, since there is a shared context in TLR in models. As
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a matter of fact, our research in TLR for BPMN, presented in this paper, can
benefit from the novel SBSE TLR techniques introduced in [32], and the study of
the linguistic particularities of models provided in this piece of work can be used
to enhance and/or adapt the work in [32] for different kinds of MDD and non-
MDD models. The study of the potential collaborations between the two research
branches and their authors remains as future work.

3.2 Software Linguistics

Some other works focus on the impact and application of linguistics to Software
Engineering tasks at several levels of abstraction. Works like [33] or [34] use linguis-
tic approaches to tackle specific TLR problems and tasks. In [35], the authors use
linguistic techniques to identify equivalence between requirements, also defining
and using a series of principles for evaluating their performance when identify-
ing equivalent requirements. The authors of [35] conclude that, in their field, the
performance of linguistic techniques is determined by the properties of the given
dataset over which they are performed. They measure the properties as a factor to
adjust the linguistic techniques accordingly, and then apply their principles to an
industrial case study. The work presented in [36] uses linguistic techniques to study
how changes in requirements impact other requirements in the same specification.
Through the pages of their work, the authors analyze TLR between requirements,
and use linguistic techniques to determine how changes in requirements propagate.

Our work differs from [33] and [34], since our approach is not based on linguistic
techniques as a means of TLR, but we rather present three variants of the Muta-
tion Search approach to perform TLR between requirements and BPMN models.
Moreover, we do not study how linguistic techniques must be tweaked for specific
problems as [35] does. In addition, differing from [36], we do not tackle changes in
requirements nor TLR between requirements, but instead focus our work on TLR
between requirements and BPMN models.

In more recent years, there has been a research trend towards the automated
generation of software artifacts through the use of linguistics. Pudlitz et al. [37]
present a semi-automated approach based on a self-trained named-entity recogni-
tion model to extract system states from requirements specifications. Deshpande
et al. [38] leverage the textual content of requirements to propose a requirements
dependency extraction system based on active learning and an ontology-based in-
formation retrieval technique. Sequerloo et al. [39] generate test cases from require-
ment specifications through BPMN model transformations. Moitra et al. [40] devel-
oped a requirements capture and test case generation tool, called ASSERT, based
on a formal requirements analysis engine. Finally, Reinhartz-Berger and Kemel-
man [41] designed an approach, named CoreReq, that generated core requirements
for Software Product Lines through requirements clustering, NLP techniques, and
an ontological variability framework. Qian et al. [42] formalized an approach to
extract BPMN models from textual descriptions via neural networks trained on
NLP techniques. Rebmann and van der Aa [43] mine BPMN event logs to extract
information about the processes represented by the models through semantic role
labeling. While all of these works put the focus on the automated generation of
several different kinds of software artifacts, our work deals with TLR between
already existing artifacts, namely, requirements and BPMN models.
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Other works such as [44] are focused on aligning process models with textual
descriptions. In the paper, the authors utilize a tailored linguistic analysis of each
description to align the descriptions with the elements of the model, and present a
technique that projects knowledge extracted from both process models and textual
descriptions into a uniform representation that is amenable for comparison. In our
paper, we do not present a novel representation of the BPMN models. Rather, we
utilize BPMN linguistic particularities that can also be found in textual require-
ments to enhance the TLR process between both.

Finally, other works, derived from the the research of the authors of [45, 46, 47],
delve in the area of process model matching, model to text matching, and the
identification of language patterns with the aim of transforming BPMN models
into natural language requirements, and natural requirements into BPMN models.
However, to our knowledge, these papers and their authors have not researched the
implications that these connections between natural language and BPMN models
may have on Information Retrieval processes such as TLR, as our work does. In
any case, in our paper, we do not claim to have identified the entirety of the
particularities of BPMN models, nor that the identified particularities provide a
complete coverage over the contents of requirements and/or BPMN models. The
results of our paper are encouraging, so it is our belief that more work could be
carried out in this particular line of research. In that sense, the papers presented
in [44, 45, 46, 47] identify ways of aligning text and models that can be used in
the future as a starting point to identify novel model particularities and language
patterns, which may be used to further refine the TLR process.

3.3 Analysis of the Research Gap

TLR has proven to be a major support activity for all kinds of SE and RE tasks
regarding various kinds of software artifacts. Current TLR approaches often rely
on the latent semantics of the software artifacts in use, and hence obtain better
results over artifacts that contain an abundance of these latent semantics, such as
requirements, source code, or MDD (code generation) models. As a result, most
of the works in the field focus on researching TLR among these kinds of artifacts.
However, there are other kinds of software artifacts that could benefit from TLR
as well. Among those artifacts are BPMN models, which are also popular in the
software development industry for a variety of tasks, mainly the specification and
management of processes. These models have less text, and in consequence, less
latent semantics that can be exploited by TLR techniques. Other works have stud-
ied the linguistics and latent semantics of the software artifacts in use, but their
findings have not been applied to TLR. So far, the application of TLR approaches
and the application of Software Linguistics to enhance the TLR process in scenar-
ios where requirements and BPMN models are the main software artifacts in use
has been a largely neglected and unexplored field of study.

Table 1 shows a relationship of the works that have put the focus on TLR and
on Software Linguistics. The table highlights the particular community to which
the works belong, the adopted approaches, and the artifacts in use for each of
these state-of-the-art papers. From the table, it is possible to conclude that most
works belong to either the TLR community, where the main goal is to obtain
the traceability links in an automated manner, or to the Software Linguistics
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community, where the focus shifts to the linguistics of the artifacts in use. Save
this work, none of the other works presented in the table apply the available
knowledge on BPMN linguistics to enhance the results of TLR approaches between
requirements and BPMN models.

Work Community Approach Artifacts
Eaddy et. al. [25] TLR IR+Tracing+PDA Requirements and code
Eaddy et al. [26] TLR Methodology and metrics Requirements and code
Marcus and Maletic [27] TLR LSI Documentation and code
Antoniol et al. [28] TLR IR Documentation and code
Zisman et al. [29] TLR Heuristic rules Requirements and object models
Schlutter and Vogelsang [18] TLR Semantic Relation Graphs Requirements
Madala et al. [19] TLR Neural Networks Documentation and state models
De Lucia et al. [30] TLR LSI Software artifacts
Eder et. al. [31] TLR Tuning of LSI Requirements and test cases
Marcén et. al. [32] TLR SBSE approach Requirements and MDD models
Lapeña et al. [22] TLR LSI-based approach Requirements and BPMN models
Lapeña et al. [23] TLR + SW Linguistics LSI + Req. Linguistics Requirements and BPMN models
This work TLR + SW Linguistics LSI + BPMN Linguistics Requirements and BPMN models
Sultanov and Hayes [33] SW Linguistics Requirements Tracing Requirements
Duan and Cleland-Huang [34] SW Linguistics Clustering for Traceability Requirements
Falessi et. al. [35] SW Linguistics Requirements Equivalence Requirements
Arora et. al. [36] SW Linguistics Requirements Evolution Requirements
Pudlitz et. al. [37] SW Linguistics Named entity recognition Requirements and system states
Deshpande et al. [38] SW Linguistics Active learning+Ontology Requirements dependencies
Sequerloo et al. [39] SW Linguistics Model transformations Requirements and test cases
Moitra et al. [40] SW Linguistics Requirements analysis Requirements and test cases
Reinhartz-Berger and Kemelman [41] SW Linguistics Clustering+NLP+Ontology Requirements
Qian et al. [42] SW Linguistics NLP Neural Networks Textual descriptions
Rebmann and van der Aa [43] SW Linguistics Semantic role labeling BPMN event logs
Sánchez-Ferreres et. al. [44] SW Linguistics Process Model Alignment BPMN models and NL artifacts
Mendling et. al. [45] SW Linguistics Process Model Matching BPMN models and NL artifacts
Klinkmuller et. al. [46] SW Linguistics Process Model Matching BPMN models and NL artifacts
Leopold et. al. [47] SW Linguistics Process Model Matching BPMN models and NL artifacts

Table 1 Analysis of the research gap

Thus, several research challenges remain open in the field. Is it possible to apply
commonplace TLR techniques to a research scenario that uses BPMN models as
the main software artifacts? How can we bridge the differences in the language in
use by the different software artifacts? How can we mitigate the impact that the
lack of inherent latent semantics has over the TLR process in BPMN models? Can
we develop TLR techniques that are not affected by the lack of semantics? Can
we apply Search-Based Software Engineering techniques guided by other factors
other than linguistics to solve the problem?

The research gap can be filled by thoroughly studying the application of TLR
approaches to a research scenario where requirements and BPMN models, a specific
type of models that are used to specify processes and support process management,
are the protagonist software artifacts in use. Nonetheless, it is not possible to
solve all of these questions at once in a single piece of work, or even within a single
research cycle. Instead, it is necessary to break the problem into smaller challenges.
Through a first research iteration in the field, Lapeña et al. put the focus on the
first question, and managed to transport TLR techniques to a research scenario
where requirements and BPMN models are the protagonist software artifacts.

From there, it was possible to confirm several issues that were affecting the
TLR process between requirements and BPMN models. For a start, Lapeña et
al. corroborated that the texts of the requirements and the BPMN models were
not aligned. To solve this issue, Lapeña et al. turned their eyes to the works in
the Software Linguistics community, where they found an opportunity to mitigate
the linguistic issues in the software artifacts by incorporating the knowledge of
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the Software Linguistics community into TLR. Research works in the Software
Linguistics community provided a framework for enhancing the linguistics of the
software artifacts in use. In a second iteration of their work, Lapeña et al. expanded
the input requirements through the usage of a domain ontology in an attempt to
align the text of the requirements with the language in use in the BPMN models.
The first application of linguistics guided their research to enhanced TLR results,
improved from those obtained without the incorporation of linguistics. However,
the lack of linguistics in the BPMN models still penalized the results.

Through this particular work, we have put the focus on covering the gap on
this particular research challenge. In other words, our aim is to research how to
circumvent or mitigate the issues that arise from the lack of latent semantics
in BPMN models. To cover this gap, we take advantage of works that study the
linguistics of BPMN models, and leverage the linguistic particularities presented by
BPMN models, integrating these particularities into an approach that specifically
performs TLR between requirements and BPMN models.

In order to solve the issues posed by the challenge of applying TLR techniques
to BPMN models, which have little to none inherent semantics, we have joined
the efforts from the two communities, enhancing TLR techniques with the power
of linguistic techniques and approaches. Nevertheless, these are the first efforts
of applying TLR and Software Linguistics to the challenge of performing TLR in
BPMN models. There are plenty of challenges ahead, and a plethora of research
questions that are yet to be posed and responded. In that sense, we firmly believe
that we have begun exploring a very promising novel line of work.

4 Reseach Framework

Through the following paragraphs, we introduce the approaches for TLR between
requirements and models considered as baseline in this work: the Linguistic Rule-
Based approach, the Aggregation approach, and the Mutation Search approach.

4.1 Linguistic Rule-Based approach

Spanoudakis et al. [48] present a Linguistic Rule-Based approach to support the
automatic generation of traceability links between natural language requirements
and models. Specifically, the traceability links are generated following two stages:
(1) a Parts-of-Speech (POS) tagging technique [49] is applied on the requirements
that are defined using natural language, and (2) the traceability links between
the requirements and the models are generated through a set of Requirement-to-

object-Model (RTM) rules, specified by investigating grammatical patterns in re-
quirements. These rules are specified as sequences of terms, and define relations
between requirements and model elements. The rules are atomic: the matching
succeeds if the model element contains the same words in the same pattern. We
worked with a set of rules adapted to work over BPMN models.
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4.2 Aggregation approach

The Aggregation approach receives a query requirement and a BPMN model as
input, and generates a ranking of model elements through Latent Semantic In-
dexing (LSI). From the ranking, a model fragment is generated. To that extent,
the BPMN model is firstly split into model elements, represented through the text
they contain, which is extracted and used as input for LSI.

The top part of Figure 3 shows this process, having the example input BPMN
model on the left, and the resulting model elements on the right. Afterwards,
the text of the requirement and the model elements is treated through natural
language processing techniques. To that extent, general phrase styling techniques
(lowercasing and tokenizing), Parts-Of-Speech tagging [50], and lemmatizing [51]
are applied.

Finally, the requirement and the model elements are fed into LSI, which ranks
the model elements according to their similitude to the requirement. LSI [52] is
an automatic mathematical/statistical technique that analyzes relationships be-
tween queries and documents (bodies of text). LSI produces a term-by-document

co-ocurrence matrix. The bottom left part of Figure 3 shows an example term-

by-document co-occurrence matrix, with values associated to our running example.
Each row in the matrix (term) stands for each of the words that appear in the
processed text of the requirement and the model elements. In Figure 3, it is possi-
ble to notice a subset of said words such as ’door’ or ’button’ as the terms of each
row. Each column in the matrix (document) stands for each of the model elements
extracted from the input BPMN model. In Figure 3, it is possible to notice iden-
tifiers in the columns such as ’ME3’ or ’ME12’, which stand for the documents of
those particular model elements (namely, the processed text of ’ME3’ and ’ME12’).
The final column (query), stands for the processed input requirement. Each cell
in the matrix contains the frequency of each term in each document. For instance,
in Figure 3, the term ’door’ appears once in the ’ME12’ document and once in the
query.

Vector representations of the documents and the query are obtained by normal-
izing and decomposing the term-by-document co-occurrence matrix using a matrix
factorization technique called Singular Value Decomposition (SVD) [52]. In Figure 3,
a three-dimensional graph of the SVD is provided, on which it is possible to notice
the vectorial representations of some of the columns. For legibility reasons, only a
small set of the columns is represented. To measure the similarity degree between
vectors, the cosines between the query vector and the documents vectors are cal-
culated. Cosine values closer to one denote a high degree of similarity, and cosine
values closer to minus one denote a low degree of similarity. Similarity increases
as vectors point in the same general direction (as more terms are shared between
documents). The model elements are ordered into a relevancy ranking according
to the cosine measurement.

The relevancy ranking (which can be seen in Figure 3) is produced according
to the calculated similarity values. In this example, LSI retrieves ’ME12’, ’ME6’,
and ’ME8’ in the first, second, and third position of the relevancy ranking due to
their query-document cosines being ’0.9343’, ’0.8524’ and ’0.7112’, implying high
similarity between the model elements and the requirement. On the opposite, the
’ME4’ model element is returned in a latter position of the ranking due to its
query-document cosine being ’-0.8736’, implying a low similarity degree.



Leveraging BPMN Particularities to Improve TLR among Req. and BPMN Models 13
Ke

yw
or

ds

Query

MFN

MF2

Q

MF1

Documents ScoresSingular Value Decomposition

Q

ME12
ME6

ME4

ME1 ME2 … ME12 ME13 ME14 Query

Inhibition 1 0 … 0 0 0 0

Door 0 0 … 1 0 0 1

Button 0 0 … 0 0 0 0

Open 0 0 … 1 0 0 1

… … … … … … … …

Model Element Ranking

ME12 = 0.93

ME6 = 0.85

ME8 = 0.71

…

ME4 = - 0.87

REQUIREMENT
The system will open the doors

MODEL

In
hi

bi
tio

n Hu
m

an
PL

C

Push doors 
button

Yes

Are the doors open?

X

Open the 
doors

No

MODEL ELEMENTS
ME1: Inhibition
ME2: Human
ME3: PLC
ME4: -
ME5: -
ME6: Push doors button
ME7: -
ME8: Are the doors open?
ME9: Yes
ME10: -

ME11: No
ME12: Open the doors
ME13: -
ME14: -

Fig. 3 Aggregation approach example

From the ranking, of all the model elements, those that have a similarity mea-
sure greater than x must be taken into account. We adopted the x = 0.7 heuristic,
since it is used in other works [53, 54]. This value corresponds to a 45◦ angle be-
tween the corresponding vectors. However, there are other works that argue for
the deprecation of this particular measurement [35], and for the usage of non-fixed
thresholds. The study of the impact of the thresholds and the proper parametriza-
tion of our approaches remains as an open issue that must be tackled in the future.

Following this principle, the model elements with a similarity measure equal
or superior to x = 0.7 are taken to conform a model fragment, candidate for
realizing the requirement. Through the example provided in Figure 3, ’ME12’,
’ME6’ and ’ME8’ are the model elements that conform the model fragment for
the requirement, due to their cosine values being superior to the 0.7 threshold.
The model elements below the threshold, except for ’ME4’, are not shown in the
ranking for space and understandability reasons. The model fragment generated
in this manner is the final output of the Aggregation approach.

4.3 Mutation Search approach

The Mutation Search approach receives a query requirement and a BPMN model as
input, generates a population of model fragments, and ranks said model fragments
through LSI. From the ranking, the first model fragment is taken as the proposed
solution. In order to generate the population of model fragments, algorithm 1
is followed. In the algorithm, an empty population and a seed fragment (chosen
randomly from the input BPMN model) are created. Then, until the algorithm
meets a stop condition (for instance, a certain number of iterations), the model
fragment is mutated and each new mutation is added to the population, avoiding
the addition of repeated model fragments.
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Algorithm 1 Mutation Search algorithm

1: P ← [] . Initialize the population
2: F ← randomFragment(inputModel) . Create an initial seed fragment
3: while !(StopCondition) do . While the stop condition is not met
4: F ← mutateFragment(F ) . Mutate the fragment
5: if !(F ∈ P ) then . If the new fragment is not in the population
6: P ← P + F . Add the new mutation to the population
7: end if
8: end while
9: return P . Return the population

In the algorithm, a mutation in a model fragment can be caused by: (1) adding
one new event, gateway, or task that is connected to an already present event,
gateway, or task (the flow that causes the connection is also added to the model
fragment), (2) removing a model element with only one connection (and the flow
that causes said connection), or (3) adding or removing a lane from the model
fragment. The performed mutation is chosen randomly on each iteration.

The top part of Figure 4 shows this process, having the example input BPMN
model on the left, and some example model fragments on the right, generated
through the usage of the algorithm. The generated model fragments are repre-
sented through the text contained in all their elements. The text of both the
input requirement and the generated model fragments is then processed through
general phrase styling techniques (lowercasing and tokenizing), Parts-Of-Speech
tagging [50], and lemmatizing [51].
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Finally, the requirement and the model fragments are fed into LSI, which ranks
the model fragments according to their similitude to the requirement. The tech-
nique works exactly as it does in the Aggregation approach, except that each
column in the matrix (document) stands for each of the model fragments (MF1 to
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MFn) generated through the algorithm instead of standing for a single model ele-
ment. Vector representations of the documents and the query are obtained by nor-
malizing and decomposing the term-by-document co-occurrence matrix using SVD,
and the vectorial similarity degrees are calculated through the cosines.

The model fragments are ordered according to the cosine measurement, pro-
ducing the relevancy ranking shown on the bottom right part of Figure 4. In this
example, LSI retrieves the ’MF9’ model fragment in the first position of the rel-
evancy ranking due to its query-document cosine being ’0.9791’. On the opposite,
the ’MF6’ model fragment is returned in the last position of the ranking due to
its query-document cosine being ’-0.9384’. From the ranking, the first model frag-
ment is considered as the candidate solution for the requirement, and consequently
taken as the final output of the Mutation Search approach.

5 BPMN Model Particularities

The results explored in the work by Lapeña et al. corroborated that the lack of
inherent semantics in BPMN models negatively impacts the TLR process, and
brought to light two potential kinds of particularities that can be leveraged in
order to improve the TLR process between requirements and BPMN models. The
study of these particularities, and how to incorporate them into the TLR process,
conforms the core of this paper. In particular, we aim to incorporate the particu-
larities into the most advanced of the baseline techniques, Mutation Search, since
it is the technique that has obtained the best results so far.

5.1 No-text elements

Model elements with little or no text appear often in BPMN models, mainly in the
form of flows (arcs that link elements) and sometimes in the form of events. Even
though these elements have no text, they serve as important connections within the
BPMN model. These elements can never be retrieved by the Linguistic approach:
since there are no words, there is no pattern that can be matched. They are not
retrieved by the Aggregation approach either: they tend to be at the bottom of
the ranking produced by LSI since for these elements, all the term occurrences are
equal to zero and thus, no correlation can be found with the query requirement.

However, in the Mutation Search approach, the algorithm does add these ele-
ments to the candidate fragments. Moreover, the addition of these elements does
not penalize the results of the approach, since the term occurrences are not altered
in any way by them. Therefore, the candidate fragments are more correct and com-
plete in the Mutation Search approach, leading it to better results. Nonetheless,
although these model elements can be added to the fragments constructed by Mu-
tation Search, a detailed inspection of the population of model fragments revealed
that many essential events and flows are still left out of the generated fragments
by the approach.



16 Raúl Lapeña et al.

5.2 BPMN models language patterns

As discussed in Section 3.3, our aim in this work is incorporate BPMN-specific
linguistics into the TLR process in order to tackle the challenge of mitigating
the lack of inherent semantics in BPMN models. To that extent, we identify and
take into consideration five different kinds of language patterns, specific to the
language in use in the artifacts associated to the development of BPMN models:
(1) the usage of the term ’if’ in a requirement almost always indicates the presence
of an associated gateway in the BPMN model, (2) the terms ’start’ or ’end’ are
usually implemented as events of the same type in the BPMN model, (3) questions
are often related with gateways in the BPMN model, (4) verbs appear mostly as
tasks in the BPMN model, and (5) a noun that is often repeated at the start of
multiple requirements may be the subject that carries an action, and thus, may
appear in the BPMN model as a lane. By studying these patterns of the BPMN
models language, it is possible to take in account these particularities in the TLR
approaches, leading them to enhanced traceability results.

6 Approach

Through the pages of this section, we firstly provide an overview of our approach,
explain how to leverage the particularities of BPMN to improve the TLR process
between requirements and BPMN models afterwards, and finally, we build three
variants of the Mutation Search approach that incorporate the BPMN models
particularities.

6.1 Incorporating BPMN models particularities into Mutation Search

Figure 5 presents an overview of our approach. Square boxes in the figure represent
the inputs and outputs of the approach and each of its steps. The inputs for the
approach are a BPMN model, and a set of requirements that must be traced.
Rounded boxes represent the steps and algorithms in use in the approach.

Input BPMN model

(1) Mutation Search
(Algorithm 1)

BPMN model 
fragments population

Input Requirements

(3) Traceability Links 
Recovery (LSI)

(2) Mutation Search enhancements

No-text elements 
(Algorithm 2)

Language patterns
(Algorithm 3)

Expanded BPMN 
model fragments

Identified patterns 
in BPMN fragments

Output BPMN 
Model Fragment 

(Ranking @1)

Fig. 5 Approach Overview
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The approach runs in three steps:

(1) Firstly, we use the Mutation Search approach, implemented through Algo-
rithm 4.3 and introduced in Section 4, to generate a population of BPMN
model fragments from the input model.

(2) The second step oversees the enhancements to the Mutation Search approach
through the incorporation of BPMN particularities. We identified and incor-
porated two types of particularities, described in Section 5: no-text elements
(see Algorithm 6.1.1), and language patterns (see Algorithm 6.1.2). The incor-
poration of the particularities is the focus of the rest of this subsection.

(3) The third and final step of the approach is to perform the TLR process itself
through Latent Semantic Indexing (LSI), as described in Section 4.

The following paragraphs describe how to incorporate each of the identified
particularities into the Mutation Search approach.

6.1.1 No-text elements

The trace of a particular requirement is corresponded with a set of elements from a
BPMN model fragment. One or several of the elements that belong to the trace may
have no associated text. The Mutation Search approach can leave these elements
with no text outside of the BPMN model fragments in the generated population.
We incorporate no-text model elements into Mutation Search through algorithm 2.

Algorithm 2 Incorporating no-text elements into the BPMN fragments
1: P ← P . Get the population of model fragments
2: for each fragment F in P do
3: F ← addMissingEvents(F ) . Add the missing events
4: F ← addMissingF lows(F ) . Add the missing flows
5: end for
6: return P . Return the modified population

The algorithm iterates over the model fragments in the population, searching
for missing no-text model elements and adding them into the model fragments:

Missing events: A model element that appears in a particular model fragment
can be connected to a no-text event in the input BPMN model, with the latter
being absent from the model fragment. When such a case is due, the no-text
event is added to the model fragment.

Missing flows: Two model elements that share a flow connection within the input
BPMN model may appear unconnected in a particular model fragment. If such
a missing link is found within a model fragment, the flow is added to the model
fragment. This also takes in account the flows that connect the events added
as per the ruling in ’missing events’.

The addition of no-text elements to model fragments is portrayed in Figure 6.
The left part of the figure depicts a model fragment, candidate solution for the
requirement, obtained through the Mutation Search approach. In the input BPMN
model, the task ’push doors button’ is connected to a no-text event. According to
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the ruling regarding ’missing events’, the event is added to the model fragment.
Then, due to the ruling regarding ’missing flows’, the no-text flow that connects
both the task and the event is added to the fragment as well. The right part of the
figure depicts the resulting fragment, with the red dashed line and square repre-
senting the addition process and showing the added model elements, respectively.
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Fig. 6 Incorporating no-text elements into the Mutation Search approach

6.1.2 BPMN models language patterns

The second group of particularities comprehends the language patterns used for the
development of BPMN models. We have identified five different patterns, described
in Section 5.2, and incorporated into Mutation Search through algorithm 3.

In order to incorporate these language patterns into Mutation Search, algo-
rithm 3 iterates over the population of model fragments, searching for model el-
ements that can be mapped to the specific language patterns. The found model
elements are included into LSI as terms, that is, rows in the matrix (avoiding dupli-
cates). Then, the values of the cells of the matrix are calculated taking in account
the newly added terms.

Algorithm 3 Incorporating language patterns into Mutation Search
1: P ← P . Get the population of model fragments
2: M ← buildMatrix(P ) . Build the LSI matrix
3: for each fragment F in P do
4: C ← getTermElements(F ) . Retrieve the particular elements
5: M ← incorporateElements(M,C) . Add elements to LSI matrix
6: end for
7: M ← calculateV alues(M) . Calculate the values of the matrix
8: Q← calculateQueryColumn() . Calculate the values of the query column
9: S ← performLSI() . Retrieve the solution fragment

10: return S . Return the solution fragment

An example of this process can be found within Figure 7, where an example
requirement is shown along with a model fragment (MF20), candidate solution
for the requirement, generated through the Mutation Search approach. In the
fragment, certain elements are found that can be matched to the language patterns:
(1) the gateway (’are the doors open?’), (2) the task (’open the doors’), (3) the lane
(’PLC’), and (5) the end event (without text). The model elements are included
in the LSI matrix as terms (rows in the matrix), and then the matrix values are
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calculated taking in account the newly added model elements. In the figure, for
the document (column in the matrix) corresponding to the model fragment MF20,
the values in the cells associated to the newly added terms are set to ’1’, since the
model elements in the rows appear once in the model fragment.
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Fig. 7 Incorporating BPMN language patterns into the Mutation Search approach

Afterwards, the query column is built. To that extent, the requirement is ana-
lyzed in search for language patterns (’if’ clauses, event keywords ’start’ and ’end’,
question marks, verbs, and nouns at the beginning of the requirement).

The values of the cells of the query column are calculated taking in account
the matches between the language patterns and the newly included terms:

’If ’ clauses ’If’ clauses can be associated to gateways, so the values of the cells of
the query column associated to the newly added gateway terms are increased
by one per each ’if’ in the requirement.

Keywords ’start’ and ’end’ The ’start’ and ’end’ keywords can be associated to
events of their type. Therefore, the values of the cells of the query column
associated to start and end event terms are increased by one per each ’start’
and ’end’ in the requirement, respectively.

Question marks Question marks can be associated to gateways, so the values of
the cells of the query column associated to gateway terms are increased by one
per each question mark in the requirement.

Verbs Verb clauses can be associated to tasks, so the values of the cells of the
query column associated to task terms are increased by one per each verb in
the requirement, provided the task contains the verb in its text.

Nouns Nouns at the start of a requirement can be associated to lanes, so the
values of the cells of the query column associated to lane terms are increased
by one per each noun at the start of the requirement, provided the lane contains
the noun in its text.

In that way, the model fragments that contain model elements which can be
mapped in any way to the requirement are weighed in a positive manner. As an
example, in Figure 7, the aforementioned language patterns can be identified in
the requirement (’if’ clause, the ’end’ keyword, the verb ’open’, and the noun
’PLC’ at the start of the requirement). The language patterns match the newly
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added terms, that is, the added model elements. Hence, values are set accordingly
in the matrix. In the figure, the language patterns and their incorporation to the
matrix can be seen highlighted in light gray. Since MF20 and the query require-
ment now share the matches between the model elements and the language of the
requirement, identified through the defined language patterns, the model fragment
will be weighed in a positive manner and will appear in a higher position of the
ranking generated through LSI, thus augmenting its probabilities for becoming the
candidate model fragment solution for the requirement.

6.2 Mutation Search Variants

We have designed three possible variants of Mutation Search, in accordance to the
two groups of particularities described above:

Variant 1 Mutation Search + no-text elements: this variant incorporates the no-
text elements into the Mutation Search fragments as per the algorithm de-
scribed above, and then performs the TLR process through LSI.

Variant 2 Mutation Search + language patterns: this variant incorporates the
identified language patterns into Mutation Search as per the algorithm de-
scribed above, performing the TLR process through LSI after the modification
of the matrix.

Variant 3 Mutation Search + no-text elements + language patterns: this variant
firstly incorporates the no-text elements into the Mutation Search fragments,
and then incorporates the identified language patterns into the matrix, prior
to performing LSI.

In order to test the impact of the aforementioned variants over the TLR pro-
cess, we applied them to two case studies, comparing their results against those
obtained by the baseline techniques.

7 Evaluation

Through the following paragraphs, we introduce the research questions, experi-
mental setup, and case studies used to evaluate our work. We also present the
oracles used to evaluate our work, and detail the design and implementation of
the evaluation steps.

7.1 Research Questions

We have conducted our evaluation following the principles by Wohlin et. al. [55].
According to the guidelines, the evaluation process must be conducted through
the study of research questions, which must be specific to the research problem
under study and narrow enough to adequately pinpoint the research.
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Our evaluation has been designed with the aim of responding the following
research questions:

RQ1 Do BPMN-specific variants improve the results of the generalist baselines when

performing TLR between requirements and BPMN models?

RQ2 Do the baseline and variants vary on accuracy?

According to the principles presented in Section 8.2 of [55], in order to prove
that a particular piece of research satisfies its goals, it is necessary to disprove
the opposite. In other words, it becomes necessary to formulate the opposite hy-
pothesis, (i.e.: the approach is not able to satisfy the intended goal) and to be
able to reject this opposite hypothesis. The opposite hypothesis is known as null
hypothesis. According to [55], conclusions about the validity of the research and
the satisfaction of the intended goals by the approach can be drawn only after
rejecting the null hypothesis.

Therefore, towards our research questions, we formulate the following null hy-
potheses:

H1 BPMN-specific variants do not improve the results of the generalist baselines when

performing TLR between requirements and BPMN models.

H2 The accuracy does not vary between the baseline and variants.

Through our work, we aim to disprove the null hypotheses, in order to prove
that BPMN-specific variants improve the results of the generalist baselines, and
that the accuracy does vary between the baseline and variants. The rest of this
section is devoted to defining the evaluation process followed to respond these
questions.

7.2 Experimental Setup

Figure 8 shows an overview of the evaluation process. The top part shows the
inputs, which are extracted from the documentation provided in the case studies:
requirements, BPMN models, and the approved traceability between requirements
and BPMN models. Each case study comprises a set of requirements, a BPMN
model, and an approved traceability document, which maps each requirement to a
BPMN model fragment. The approved traceability document conforms the oracle
of our evaluation.

For each case study, all the approaches generate a model fragment, contain-
ing the elements of the model that are related to the requirement according to
each approach. The model fragments generated in this way are compared against
their respective oracles, which are considered to be the ground truth. Once the
comparisons are performed, a confusion matrix is calculated for each approach.
A confusion matrix is a table that is often used to describe the performance of a
classification model (in this case, each of the approaches) on a set of test data (the
solutions) for which the true values are known (from the oracle). In our case, each
outputted solution is a model fragment, subset of the model elements that are part
of the BPMN model. Since the granularity is at the level of model elements, the
presence or absence of each model element is considered as a classification.
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Fig. 8 Experimental setup

The confusion matrix arranges the results of the comparison between the model
fragment from the oracle and the model fragment from the approach into four cat-
egories of values: True Positive, False Positive, True Negative, and False Negative
values. Although the confusion matrix holds the results of the comparison be-
tween the results of the approach and the results of the oracle, it is necessary to
extract some measurements from the confusion matrix in order to evaluate the
performance of each approach. To that extent, some performance measurements
are derived from the values in the confusion matrix. In particular, we report five
performance measurements for all the approaches and both case studies: recall,
precision, F-measure, MCC (Matthews Correlation Coefficient) and AUC (Area
Under the Curve) [56, 53, 35].

7.3 Case Study

In order to perform the evaluation of the three variants, we rely on two different
case studies : (1) an academic case study, and (2) a set of BPMN models provided
by one of our industrial partners:

Academic case study: The academic case study consists of four BPMN mod-
eling exercises. Each exercise contains an associated textual description and
the solution BPMN model for the provided description. In order to apply the
TLR approaches to the academic case study, a software engineer (with BPMN
expertise, and who is not related to the writing of this paper) derived a set
of natural language requirements from the problem descriptions. On average,
there are around 15 requirements per problem, with an approximate average
of 25 words per requirement. The BPMN models in the case study contain an
approximate average of 25 elements per model.
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Industrial case study: For our evaluation, one of our industrial partners pro-
vided us with the natural language requirements and the BPMN models of
five railway solutions. The functionality is specified through about 100 natural
language requirements per each of the trains, for an approximate total of 500
requirements, with an approximate average of 50 words per requirement. The
number of identified language patterns differs greatly between requirements,
but on average, 3 language patterns are identified per requirement. With re-
gards to the BPMN models, the functionality is specified through one BPMN
model per train, with an average of 850 total model elements per BPMN model.

While our industrial case study is larger and more realistic than the academic
case study, the latter comprises an interesting set of scenarios that we would not be
able to model or replicate otherwise. Without the academic case study, we might
concur in the risk of tailoring our approaches to the problem domain, and hence
we might lose the perspective and purpose of generalizable research. The academic
case study also contributes to prove that this work is independent from the domain,
and that its functioning does not rely on the peculiarities of the industrial case
study.

7.4 Oracle

In order to obtain the performance results of the approaches under study, the
produced outcomes must be compared against the correct solutions of the two
case studies:

Academic case study: In the case of the academic case study, each exercise has
an associated solution BPMN model. The same software engineer who derived
the natural language requirements from the problem descriptions also gener-
ated a set of model fragments from the solution model. Model fragments in
the academic case study oracle range from 5 to 10 model elements. The same
engineer also mapped each of the generated fragments to each of the derived
requirements. Thus, we were provided with a set of requirements, the model
fragments that implement them, and the TLR mapping between each require-
ment and the model fragment that implements the requirement.

Industrial case study: Our industrial partner provided us with their existing
documentation on the traceability between the provided requirements and the
provided BPMN models. In the documentation, each requirement from a par-
ticular train is mapped to a single model fragment from the full BPMN model
of the same train. The oracle model fragments vary greatly in size and com-
plexity, but on average, the oracle fragments are composed by 35 elements.

In both cases, we consider the existing documentation on traceability as the
ground truth (oracle) of the case studies, which serves us as a means of evaluating
the outcomes of the approaches by comparing them against the oracle.

7.5 Implementation details

A prototype of our research can be found online [omitted for blind review pur-
poses]. We have used three libraries to implement the different approaches taken
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in account through this work: (1) the Camunda BPMN API2, (2) the OpenNLP3

toolkit, and (3) the Efficient Java Matrix Library4 (EJML). For the evaluation, we
used a Lenovo E330 laptop, with a processor Intel(R) Core(TM) i5-3210M@2.5GHz
with 16GB RAM and Windows 10 64-bit.

8 Results and Statistical Analysis

This section presents the outcomes of the variants, the statistical analysis of the re-
sults, the responses to the research questions posed in Section 7, and the reception
of the approach by the end users.

8.1 Results

Tables 2 and 3 outline the results of the baselines and variants for both case studies.
In the tables, each row shows the precision, recall, F-measure, MCC, and AUC
values obtained through each approach for each case study. The novel findings
presented by this work highlight that the proposed BPMN-specific approaches im-
prove the results of TLR between requirements and BPMN models, maintaining
precision values and increasing recall. The following paragraphs detail the partic-
ular results obtained in each case study.

8.1.1 Academic case study

Results in the academic case study show that Variant 3 is the one that achieves the
best results for all of the measured performance indicators except for precision,
in which Variant 3 obtains similar results than those obtained by the baseline
and the other two variants. Variant 3 provides a mean recall value of 85%±16%, a
combined F-measure of 71%±12%, an MCC value of 0.65±0.14, and an AUC value
of 0.786. In contrast, the first and second variants and the baseline present worse
results than Variant 3 in these same measurements in the same case study. In the
case of recall, Variant 1 and Variant 2 obtain worse results than Variant 3, but
better results than those obtained by the baseline. In the case of precision, results
are very similar, with the deviation of the values being the only differentiating
factor between them.

Academic case study
Approach Precision Recall F-Measure MCC AUC

Linguistic Rule-Based 40%±25% 35%±22% 33%±13% 0.25±0.19 0.372
Aggregation 56%±18% 72%±22% 61%±17% 0.52±0.24 0.616
Mutation Search 63%±21% 77%±22% 68%±19% 0.60±0.24 0.691
MS Variant 1 63%±17% 80%±18% 68%±14% 0.62±0.15 0.713
MS Variant 2 62%±15% 83%±18% 70%±15% 0.63±0.17 0.718
MS Variant 3 63%±13% 85%±16% 71%±12% 0.65±0.14 0.786

Table 2 Precision, recall, F-measure, MCC, and AUC in the academic case study

2 https://github.com/camunda/camunda-bpmn-model
3 https://opennlp.apache.org/
4 http://ejml.org/
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Figure 9 shows the boxplots for the results of precision, recall, F-measure and
the MCC in the academic case study. The figure also shows the ROC curves asso-
ciated to the obtained AUC values for the baselines and variants in the academic
case study. In the boxplots, it is possible to appreciate the distributions for the
results, and to visualize the equivalence of the precision measurement and the
improvements in recall obtained by the variants.
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Fig. 9 Box plots for Precision, Recall, F-measure, and MCC in the academic case study

8.1.2 Industrial case study

In the industrial case study, Variant 3 achieves the best results all the measure-
ments except precision. Variant 3 achieves a mean recall value of 93%±14%, a
combined F-measure of 80%±7%, an MCC value of 0.76±0.09, and an AUC of
0.791. In this case study, Variant 3 does not improve the precision values of other
variants or the baseline. As a matter of fact, it is the baseline, plain Mutation
Search, the approach that attains the best precision value, with a mean value of
79%±19%. In this case study, the differences in recall are what guide Variant 3 to
the enhanced F-measure, MCC, and AUC values.
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Industrial case study
Approach Precision Recall F-Measure MCC AUC

Linguistic Rule-Based 35%±28% 35%±10% 30%±7% 0.18±0.13 0.287
Aggregation 69%±29% 66%±17% 64%±17% 0.58±0.21 0.599
Mutation Search 79%±19% 72%±19% 74%±16% 0.69±0.20 0.672
MS Variant 1 75%±11% 86%±16% 79%±6% 0.74±0.09 0.714
MS Variant 2 68%±15% 86%±20% 76%±16% 0.71±0.19 0.690
MS Variant 3 71%±4% 93%±14% 80%±7% 0.76±0.09 0.791

Table 3 Precision, recall, F-measure, MCC, and AUC in the industrial case study

Figure 10 shows the boxplots for the results of precision, recall, F-measure
and MCC in the industrial case study. The figure also shows the distribution of
the ROC curves associated to the obtained AUC values for the baselines and the
variants in the industrial case study.
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Fig. 10 Box plots for Precision, Recall, and F-measure in the industrial case study

In the boxplots, it is possible to appreciate the distributions for the results,
and to visualize the improvements in recall obtained by the variants, especially
by Variant 3. With regards to precision, in the boxplots it is possible to visually
perceive that Variant 1 also outperforms Variant 3.
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For Variant 2, this is uncertain: the average values are close, but the deviation
of the values does not allow for a straightforwards comparison, since a few very low
values would suffice to greatly alter the average without affecting the uppermost
results. This comparison is clarified through the statistical tests presented in the
following subsection.

8.2 Statistical Analysis

The obtained results look promising and indicate that the variants improve the
results of the baselines. However, it is necessary to address whether the improve-
ments are statistically significant. To that extent, we compare the results of the
variants against those obtained by Mutation Search. Mutation Search was chosen
as the baseline over which the three variants are built upon for being the base-
line that obtained the best results in our previous research works in the field. For
this very same reason, a significant improvement against the results of Mutation
Search would also implicitly imply a significant improvement against the results
obtained by the other two baselines.

In order to assess whether there are significant differences in performance be-
tween the baseline and the variants, their results must be properly compared
through statistical methods, following the guidelines presented in [57]. The goals
of the statistical analysis are twofold: (1) provide formal evidence that the variants
do in fact have an impact on the comparison measurements, and (2) show that
the differences are significant in practice.

To enable statistical analysis, all configurations should be run a large enough
number of times independently to collect information on the probability distri-
bution. A statistical test should then be run to assess whether there is enough
empirical evidence to claim that there are differences between the configurations.
The null hypothesis H2, defined in Section 7 along with the research questions,
states that the differences in the results of the baseline and the variants are not
significant. The statistical tests aim to disprove H2, and verify that it can be re-
jected. Statistical tests provide a probability value, the p-value, which can range
in values from 0 to 1. The lower the p-value of a test, the more likely that H2 can
be rejected. It is accepted by the research community that a p-value under 0.05 is
statistically significant [57] towards disproving the null hypothesis.

The statistical test that must be followed depends on the properties of the
data. Since our data does not follow a normal distribution, our analysis requires
the usage of non-parametric techniques. There are several tests for analyzing this
kind of data. However, the Quade test is more powerful than other tests when
working with real data [58], and according to [59], has shown better results than
other tests when the number of algorithms is low (no more than 4 or 5 algorithms).
The Quade test returns the following p-values: (1) 0.04 for precision and 2x10−16

for recall in the academic case study, and (2) 3.2x10−5 for precision, 2x10−16 for
recall in the industrial case study. Since the values obtained by the Quade test are
all below the 0.05 threshold, we can conclude that there are significant differences
between the outcomes of the baseline and the variants.

However, statistically significant differences can be obtained even when they
are so small as to be of no practical value. Effect size measurements are needed
to analyze this factor. For a non-parametric effect size measure, we use Vargha
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and Delaney’s Â12 [60]. Â12 measures the probability that running one approach
yields higher values than running another approach. With the Â12 statistic, the
approaches are compared in pairs. If the Â12 statistic obtains a value greater than
0.5, the comparison will be in favor of the first approach in the pair. If the Â12

statistic obtains a value lesser than 0.5, the comparison will be in favor of the
second approach of the pair. If the two approaches are equivalent, then the Â12

statistic will obtain a value of 0.5. This can be better illustrated through a few
examples:

– A value of Â12 = 0.52 means that on 52% of the runs, the first of the pair of
compared approaches would obtain better results than the second approach of
the pair.

– A value of Â12 = 0.24 means that on 76% of the runs, the second of the pair
of approaches would obtain better results than the first approach of the pair.

The following paragraphs describe the values of the effect size statistics for
precision and recall when comparing the Mutation Search baseline and the variants
in both case studies.

8.2.1 Academic case study

Table 4 shows the Â12 values for precision and recall in the academic case study.

Academic case study
Compared approaches Precision Recall
Baseline vs Variant 1 0.4763 0.4600
Baseline vs Variant 2 0.4985 0.4157
Baseline vs Variant 3 0.4896 0.4001
Variant 1 vs Variant 2 0.5362 0.4371
Variant 1 vs Variant 3 0.5259 0.4216
Variant 2 vs Variant 3 0.4919 0.4837

Table 4 Â12 statistic for Mutation Search vs. its variants in the academic case study

Regarding precision, the Â12 values range closely to 0.5, reflecting the near
equivalence scenario depicted by the results and boxplot of Figure 9:

– The three variants obtain better precision results than the baseline: Variant 1
does so in 52.37% of the runs, Variant 2 does so in 51.15% of the runs, and
Variant 3 does so in 51.04% of the runs.

– Variant 1 outperforms the other two variants: Variant 2 in 53.62% of the runs,
and Variant 3 in 52.59% of the runs.

– Finally, Variant 3 outperforms Variant 2 in 50.81% of the runs.

Regarding recall, the Â12 values also confirm the results scenario shown in the
boxplot of Figure 9, where Variant 3 ranks as the variant that obtains the best
results:

– The three variants obtain better recall results than the baseline: Variant 1 does
so in 54.00% of the runs, Variant 2 does so in 58.43% of the runs, and Variant 3
does so in 59.99% of the runs.
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– Variant 2 outperforms Variant 1 in 56.29% of runs.
– Finally, Variant 3 outperforms the other two variants: Variant 1 in 57.84% of

the runs, and Variant 2 in 51.63% of the runs.

8.2.2 Industrial case study

Table 5 shows the Â12 values for precision and recall in the industrial case study.

Industrial case study
Compared approaches Precision Recall
Baseline vs Variant 1 0.5547 0.2813
Baseline vs Variant 2 0.6094 0.2969
Baseline vs Variant 3 0.6250 0.2031
Variant 1 vs Variant 2 0.5313 0.4688
Variant 1 vs Variant 3 0.5938 0.3750
Variant 2 vs Variant 3 0.5625 0.4219

Table 5 Â12 statistic for Mutation Search vs. its variants in the industrial case study

In this case study, the Â12 values for precision are in favor of the baseline:

– The baseline outperforms the three variants: Variant 1 in 55.47% of the runs,
Variant 2 in 60.94% of the runs, and Variant 3 in 62.50% of the runs.

– Variant 1 outperforms the other two variants: Variant 2 in 53.13% of the runs,
and Variant 3 in 59.38% of the runs.

– Finally, Variant 2 outperforms Variant 3 in 56.25% of the runs.

As stated in the results report, the differences between Variant 2 and Variant 3
are uncertain, since the average values are close and the deviation does not allow
for a straightforwards comparison. The values of the Â12 measurement show that
Variant 2 outperforms Variant 3 in terms of precision in 56.25% of the runs.
Regarding recall, the Â12 values confirm the results scenario shown in the boxplot
of Figure 10:

– The three variants outperform the baseline: Variant 1 does so in 71.87% of the
runs, Variant 2 does so in 70.31% of the runs, and Variant 3 does so in 79.69%
of the runs.

– Variant 2 outperforms Variant 1 in 53.12% of the runs.
– Finally, Variant 3 outperforms the other two variants: Variant 1 in 62.50% of

the runs, and Variant 2 in 57.51% of the runs.

In this case study, it is possible to perceive that the higher deviation of the
values of Variant 2 causes the following situation: while Variant 2 outperforms
Variant 1 in terms of recall (albeit by a small margin), the results of the first
quartile of the recall data obtained by Variant 2 are lower than those of the first
quartile of the recall data obtained by Variant 1. This allows for the baseline to
catch up with the first and second quartile of Variant 2. As a result, Variant 1
outperforms the baseline for a slightly greater margin than Variant 2 (71.87%
against 70.31%, a 1.56% margin).
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8.3 Research Question Responses

Through the results, the two research questions presented in Section 7 can be
responded:

RQ1 Do BPMN-specific variants improve the results of the generalist baselines when

performing TLR between requirements and BPMN models? Yes, the results ob-
tained by the BPMN-specific variants outperform those obtained by the gen-
eralist approaches, maintaining precision levels and increasing recall values.
Hence, we can reject the null hypothesis H1.

RQ2 Do the baseline and variants vary on accuracy? Yes, the Quade statistical test
shows that the differences in performance between the variants and the base-
lines are significant. In addition, we have calculated the Â12 values that measure
the differences in performance. Hence, we can reject the null hypothesis H2.

8.4 Reception of our work

In order to obtain qualitative data from practitioners, we ran a focus group inter-
view [61] with software engineers from our industrial partner. Through the focus
group interview, we posed a series of open questions to acquire feedback from the
engineers about the results obtained by the approaches in use. Specifically, we
asked the engineers the following open questions: (1) How do you feel about the
results of each approach? and (2) What would make you choose one approach over
another of the approaches?

The engineers stated that they preferred the results obtained by the advanced
variants of Mutation Search over the baselines, indicating that their results were
better aligned with the reality of the case study. The software engineers indicated
that a train has around 100 requirements on average, and that manually tracing
those requirements to the models is a tedious and error-prone process. They stated
that requirements and models evolve throughout the duration of a project, and
that both artifacts rarely remain as defined in their original inception, mainly due
to changes in the requirements stemming from their meetings with clients.

Theoretically, requirements and models should be synchronized at all times, but
with manual traceability, it is practically impossible to guarantee the alignment of
the artifacts. The engineers stated that, through our approaches, they can attain at
all times and in an inexpensive manner a proposal of the relevant model elements
for each requirement, which helps them check whether the requirements have been
completely and correctly transported into the models.

When further questioned about the usefulness of our approaches, engineers
stated that the approaches were not used only internally, but also to support
the certification of the final products, that is, the trains they sell in an interna-
tional context. Each country has different regulations regarding certification, but
the need to accredit traceability between requirements and software is becoming
more and more common. When the software is developed through Model-Driven
Development techniques, traceability between requirements and models must be
provided for certification purposes. The engineers stated that in these scenarios,
our approaches support the traceability activity and the subsequent certification.
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9 Discussion and Future Work

The following paragraphs discuss the outcomes of the paper, the conclusions that
we were able to extract on the behaviour of the approaches after a thorough
analysis of their results, and directions for future works.

The Linguistic Rule-Based approach obtains extremely poor results compared
to the rest of the approaches: for a link to be produced between a requirement
a model element, exact patterns of words must be atomically matched through
the rules. If a single word in a pattern found in a requirement is different (or
missing) in the model, the rule does not trigger and the link is not produced. In
the Aggregation and Mutation Search approaches the atomic matching of text
patterns is abandoned in favor of the semantic similitude of individual terms.

Moreover, model elements with little or no text can never be retrieved by the
Linguistic Rule-Based approach: since there are no words, there is no pattern
that can be matched. They are not retrieved by the Aggregation approach either:
they tend to be at the bottom of the ranking produced by LSI since for these
elements, all the term occurrences are equal to zero and thus, no correlation can
be found with the query requirement. However, in the Mutation Search approach
and also in the variants, the algorithm does add these elements to the candidate
fragments. Moreover, for these approaches, the addition of these elements does
not penalize the results, since the term occurrences are not altered in any way by
them. Therefore, the candidate fragments are more correct and complete, which
leads to enhanced precision and recall results.

While inspecting the results obtained by our work, we noticed a series of facts
that help explain the behavior of the variants against Mutation Search. First of all,
we have to consider the general structure of the BPMN models and requirements
that are being studied. The BPMN models in our case studies tend to have few
start and end events (only one BPMN model has more than 3 of these events).
Thanks to the addition of no-text model elements, start and end events with no
text and flows with no text are incorporated more often than not to the model
fragments. Through our implementation, it is possible for the variants that use
the addition of no-text model elements to add both a start and an end event to
a model fragment, specially in the larger model fragments and also in fragments
belonging to smaller BPMN models where start and end events are close. How-
ever, requirements describe particular branches of the BPMN models, and it is
very rare for a single requirement to correspond to a whole start-to-end model
fragment. Rather, requirements tend to depict start-plus-task, task-plus-end, or
task-gateway-task combinations of model elements.

Therefore, we realized that the variants of Mutation Search that utilize the ad-
dition of no-text elements may be adding both a start and an end event to model
fragments where only one of them is in fact needed to represent the requirement.
When this happens, two elements are added to the model fragment, one being
correct and another one being incorrect, always according to the oracle. Some-
times, for task-gateway-task requirements, none of them are correct. The recall
measurement only accounts for true positive and false negative classifications, so
it can only increase as correct model elements are added to the solution. How-
ever, the precision measurement does account for false positive classifications, and
thus, is negatively impacted by the addition of wrong model elements to the so-
lution model fragment. Upon a closer inspection of the results, we concluded that
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correct and incorrect events and flows with no text are being added in a similar
proportion, not causing a significant impact on precision. Therefore, when model
fragments where this phenomenon happens are chosen as candidate solutions for
the requirement, recall values increase but precision values are maintained stable.

A similar issue happens when incorporating language patterns into Mutation
Search. In the end, the addition of more model elements into LSI and the match-
ing of those model elements with the text of the query benefits the larger model
fragments. By their very nature, larger model fragments tend to have more text
and terms than smaller ones, therefore having more matching opportunities. In ad-
dition, when adding model elements to LSI, through sheer numbers, larger model
fragments have more opportunities of matching the added model elements. Re-
quirements tend to use the full expressiveness of the natural language, incorporat-
ing as many terms from the domain as possible, so as to be better understood by
modelers. Therefore, the added model elements tend to be matched by the lan-
guage patterns of the requirements as well. In turn, this fact brings larger model
fragments and requirements closer in similarity. As a result, the variants that use
the linguistic patterns to enhance Mutation Search tend to present larger model
fragments in the first positions of the LSI ranking. Larger model fragment solutions
account for better recall values, but the addition of too many incorrect model ele-
ments to the solution worsens precision. However, LSI also accounts for the textual
similitude of the model fragments to the requirements, so those model fragments
that hold too many terms unrelated to the query are not able to maintain the sim-
ilarity level and tend to be disregarded as potential solutions. The combination of
these two factors leads to the selection of large model fragments with a moderate
amount of incorrect elements. Once again, recall values increase, but in this case,
precision values struggle to remain stable. Following these conclusions, it may be
possible to further improve the process and the results by tackling the discussion
points above and through the incorporation of further language patterns discussed
in the literature into the TLR techniques [62, 63].

Moreover, Search-Based Software Engineering (SBSE) approaches have been
gaining momentum in the community within the last few years [64, 5, 65]. SBSE
approaches utilize either single objective or multi-objective genetic algorithms to
maintain and evolve populations of model fragments. SBSE techniques imitate the
crossovers and random mutations that occur in nature, and then select the best
individuals of the generated populations through fitness functions. This process
is iterated until a certain condition is met, generating several self-enhancing pop-
ulations of individuals in the process. As future work, we intend to explore the
application and results of SBSE approaches for TLR tasks between requirements
and BPMN models. In addition, we will compare the results of those approaches
against the approaches presented through the research works discussed throughout
the paper. Additionally, we believe that the lack of inherent semantics in BPMN
may also constitute a research challenge in SBSE, and hence we will also research
how to incorporate BPMN linguistics into SBSE techniques.

Overall, from the results of our work, a reflection can be extracted on the
impact of this paper for the community that is working on this novel line of
research: in order to optimize the results of the TLR process, there is a need for
taking in account the particularities of the different kinds of models and software
artifacts in use, instead of relying on approaches that do not account for these
particularities.
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10 Threats to Validity

In this section, we use the classification of threats to validity of [55] to acknowledge
the limitations of our approach.

Conclusion validity: This validity is concerned with the relationship between
the treatment and the outcome. We want to make sure that there is a statisti-
cal relationship, that is, a statistical significance. To minimize this threat, we
have utilized reliable, well-known statistical measurements such as Holm’s post
analysis and Â12, utilized in the state of the art literature. We have also based
our work on research questions and disproving null hypotheses. In addition,
the requirements and BPMN models used in our approach were taken from
an academical case study and from an industrial case study, and none of the
authors of this work was involved in the generation of the data.

Internal Validity: If a relationship is observed between the treatment and the
outcome, we must make sure that it is a causal relationship, and that it is not
a result of a factor of which we have no control or have not measured. In other
words, that the treatment causes the outcome (the effect). We have carried out
the same natural language techniques as preprocessors over the requirements
and BPMN models prior to the application of the different TLR approaches.
Moreover, we have followed the same evaluation process for all the approaches.
In addition, the available test cases (60 for the academic case study, and 500
for the industrial case study) represent a wide scope of different scenarios in
an accurate manner.

Construct validity: This validity is concerned with the relation between theory
and observation. If the relationship between cause and effect is causal, we must
ensure two things: (1) that the treatment reflects the construct of the cause
well, and (2) that the outcome reflects the construct of the effect well. To
minimize this threat, our evaluation is performed around five widespread mea-
surements: precision, recall, f-measure, MCC, and AUC. These measurements,
presented in tables 2 and 3, are widely accepted in the software engineering
research community. Moreover, we have used the same kinds of software arti-
facts in all of our case studies (requirements and BPMN models), representing
the same scenarios (processes in an academic and an industrial case study) so
the results can be generalized among constructs.

External Validity: The external validity is concerned with generalization. If there
is a causal relationship between the construct of the cause and the effect, can
the result of the study be generalized outside the scope of our study? Is there a
relation between the treatment and the outcome? Both artifacts in use, natu-
ral language requirements and BPMN models alike, are frequently leveraged to
specify all kinds of different processes, whether academic or industrial. The aca-
demic case study provides different examples from radically different domains.
In addition, the real-world industrial BPMN models used in our research are
a good representative of the railway, automotive, aviation, and general indus-
trial manufacturing domains. Our approach does not rely on the particular
conditions of any of those domains. In addition, Mutation Search is the tool
leveraged by the industrial partner from the case study, which makes it the
most representative baseline in practice. Hence, comparing the results of our
approaches against Mutation Search is coherent in order to conform to practice.
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Nevertheless, our results should be replicated with other case studies before
assuring their external generalization. Finally, in the railway domain it is com-
mon to need to certify both the software that runs the trains and the trains
themselves, which implies providing evidence of requirements traceability. The
experimental setup of the paper builds on those needs and serves as a means
of providing traceability evidence in practice.

11 Summary and Conclusions

Traceability Links Recovery (TLR) is defined as the software engineering task that
deals with the automated identification and comprehension of dependencies and
relationships between software artifacts. Research so far has studied TLR between
natural language requirements and BPMN models through three different gener-
alist approaches that have provided good results when performing TLR between
requirements and code. However, prior work does not account for the specific traits
and particularities of the different kinds of models in use. Through this work, we
extend the contributions of previous research works in the field, leveraging the
particularities presented by BPMN models to enhance the baseline approaches.
In that sense, the achievements of our work are threefold: (i) we identify the par-
ticularities and traits of BPMN models to incorporate to the approaches; (ii) we
propose methods to leverage the aforementioned particularities; and (iii) we apply
those methods to build three variants of the Mutation Search approach, specific
for BPMN models.

The novel techniques are evaluated through two case studies, contrasting the
results with those obtained by the baseline approaches. The novel approaches
succeed at improving the results of TLR between requirements and BPMN models,
maintaining precision values and increasing recall. Overall, this research proves the
importance of incorporating the particularities of the software artifacts in use when
performing TLR. Through a thorough analysis of the results, we have identified a
series of issues that impact the performance of the proposed approaches, mainly
related to the linguistics of the software artifacts in use. These issues bring to
light future work possibilities in the field, which range from the enrichment of
the proposed approaches through the incorporation of further language patterns
stemming from the works of other authors in the field, to the development of
more advanced approaches through the application of the novel trends and latest
state-of-the-art approaches in Search Based Software Engineering (SBSE).
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