
Improving Feature Location by Transforming the Query
from Natural Language into Requirements

Raúl Lapeña, Jaime Font, Francisca Pérez, Carlos Cetina
SVIT Research Group. Universidad San Jorge

Autovía A-23 Zaragoza-Huesca Km.299, 50830, Zaragoza, Spain
{rlapena, jfont, mfperez, ccetina}@usj.es

ABSTRACT
Software maintenance and evolution activities are responsi-
ble for the emergence of a great demand of feature location
approaches that search relevant code in a large codebase.
However, this search is usually performed manually and
relies heavily on developers. In this paper, we propose a
feature location approach that, instead of searching directly
into code from a natural language query as other approaches
do, transforms a natural language query to a query that is
made up of the requirements that are located as relevant.
Furthermore, our approach limits the scope of the code
search space by selecting only the code of those products
that hold relevant requirements. We evaluate the overall
effectiveness of our approach in the industrial domain of
train control software. Our results show that our approach
improves in 18.1% the results of precision with regard
to searching directly into code, which encourages further
research in this direction.

Keywords
Feature Location; Software Maintenance and Evolution;
Families of Software Products

1. INTRODUCTION
Companies accumulate a vast amount of software that

implements the features of its product family over the years.
Each feature represents a functionality that is defined by
requirements. Adding or removing features to software
products, improving existing functionality, creating new
products from existing features, and removing bugs, are
common activities performed by developers during software
maintenance and evolution. No maintenance activity can be
completed without locating in the first place the code that is
relevant to the specific functionality [9]. This identification
of the initial location in the code is known as Feature (or
concept) Location (FL) [4, 9].

Hence, there is a great demand for FL approaches that can
help developers find relevant code in a large codebase. To

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SPLC ’16, September 16-23, 2016, Beijing, China
c© 2016 ACM. ISBN 978-1-4503-4050-2/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2934466.2962732

find relevant code, textual analysis can be performed using
Information Retrieval (IR) techniques [9, 1] such as Latent
Semantic Indexing (LSI) [7], Latent Dirichlet Allocation
(LDA) [5], and Vector Space Model [30]. These techniques
are statistical methods used to find a feature’s relevant code
by analyzing and retrieving words that are similar to a query
provided by a user. Several FL approaches have emerged
[2, 18] that analyze the words used in source code and
perform code search based on the text similarity between
code snippets and a query. Nevertheless, these approaches
often have unsatisfactory results [23] since the precision
values accomplished reach only up to 25%.

To overcome this issue, other FL approaches [13, 34] that
tackle the problem by refining the query using semantic
similar words have been proposed recently. However, it
was observed that automatically expanding a query with
inappropriate synonyms may produce even worse precision
values than not expanding the query [23].

In this paper, we propose a FL approach, with a level
of indirection with regard to existing FL approaches, that
searches for relevant code directly from a natural language
(NL) query in a family of software products, which has
a set of formalized requirements but lacks requirements
to code traceability. Our approach transforms the NL
query into a query that holds the requirements located
as relevant according to the similarity of the words used.
In addition, our approach limits the scope of the code
search space by selecting only the code of the products that
hold relevant requirements. In industrial environments, this
limitation is especially important since product families may
comprise thousands of products. Then, both the resulting
requirements query and the code of relevant products are
taken as input to search for relevant code.

We evaluate our approach to investigate its overall effec-
tiveness in an industrial domain, more specifically in the
railway domain. Our industrial partner, Construcciones y
Auxiliar de Ferrocarriles (CAF), is a worldwide leader in
train manufacturing that provided a software product family
of a total of seven real-world trains, which comprise around
2940 requirements and 1193 KLOC. In addition, we compare
our approach with a conventional FL approach that searches
directly into code in order to evaluate its effectiveness in
terms of recall and precision [30]. The results show that our
approach outperforms the conventional FL approach since
it improves an average of 18.1% the precision score. This
result encourages us to further research in this area.

The remainder of this paper is organized as follows.
Section 2 presents the overall structure of our approach.

Current Practice Our Envisioned Approach

Natural
Language Query

Code search

Relevant code

Natural
Language Query

1. Requirement search

Relevant
Requirements

Product family
requirements

Relevant code

Code search

Code of the
product family

Code of the
product family

Input/output

Step

Query in
terms of

requirements

2. Query
construction

Code of the
relevant products

3. Product
scoping

N
L
Q

2
R

Q

Figure 1: A highly simplified view of Feature Location: current state of practice (left) and our approach
(right)

Section 3 describes the transformation from the NL query to
the requirements query. Section 4 presents the experiments
that we conducted to evaluate our approach. Section 5
discusses the results. Section 6 presents threats to validity.
Section 7 reviews the related work, and Section 8 concludes
the paper and outlines the future work.

2. THE OVERALL STRUCTURE OF OUR
APPROACH

In this section, we present our approach to locate the
relevant code for a natural language query. Figure 1 depicts
a comparison between our approach and the current state
of practice. In the current state of practice (see left side),
both a query and the code of a product family are taken
as input to directly search the code that is relevant. The
code search can be done by analyzing the words used in the
query and the source code. The idea is that the words encode
domain knowledge, and a feature may be implemented using
a similar set of words throughout a software system, making
it possible to find a feature’s relevant code textually.

In our approach (see right side of Figure 1), we propose to
transform a natural language query to a requirements query
(NLQ2RQ) by following the three steps that are shown in
the figure (Requirement search, Query construction, and
Product scoping). In the first place, we search for the
requirements that are the most relevant to the natural
language query. Afterwards, we construct the requirements
query by joining the relevant requirements. Next, we limit
the scope of the code search space by selecting only the code
of those products that hold relevant requirements. Finally,
we take as input both the requirements query and the code
of the relevant products to search for the relevant code.

Our idea is that the words used in the NL query are closer
to the requirements than to the code. Furthermore, we limit
the code search space since only the code that holds the most
relevant requirements is used, instead of using the code of
the whole product family. This is especially important in
industrial environments where a family of products can have
thousands of products.

3. FROM NL QUERY TO REQUIREMENTS
QUERY

In this section, we describe the three steps (Requirement
search, Query construction, and Product scoping) that we
propose in our approach. To illustrate the steps, we use a
simple running example from our industrial partner, CAF1,
which develops software to control the high speed trains,
regional and commuter trains, metros, trams and Light Rail
Vehicles that they manufacture.

3.1 Requirement search
In order to search the requirements that are relevant to

the natural language query, we perform a keyword extraction
process and a textual analysis process.

3.1.1 Keyword extraction
Keywords of the requirements and the query are extracted

and combined into a single set of terms in which duplicates
are removed. To extract keywords, the analysis of POS tags
is used for searching nouns and nominal structures, since
they provide promising results in the extraction of keywords
from technical documents [15, 22]. For example, the NL

1www.caf.es/en

query of our running example is ’doors in cleaning mode’
and some of the extracted keywords are the nouns ’doors’
and ’mode’.

Next, stemming [25] is used to reduce the extracted
keywords to their root in order to unify words and avoid
duplicity of terms. For example, ’doors’ will be stemmed
to ’door’ and ’cleaning’ to ’clean’. After, a filtering
process is carried out to remove stopwords. Stopwords are
non-important nouns and nominal structures provided by
software engineers working in the train products (e.g., a
stopword provided is ’Second’). For example, some keywords
extracted from the query and requirements are: panto,
clean, light, door, coupling, and brake.

3.1.2 Textual analysis of requirements
The keywords previously extracted are taken as input to

perform an adapted LSI analysis [28] that obtains the most
similar requirements of the product family by analyzing
the relationships between queries and documents (bodies of
text). We select LSI because most of the feature location
research efforts show that its application provides better
results [27, 26]. LSI constructs vector representations for
both the query and documents by encoding them as a term-
by-document co-occurrence matrix.

The upper half of Figure 2 shows an example of matrix for
the LSI analysis in our running example. Each row in the
matrix is an extracted keyword, whereas each column is a
requirement (e.g. the R1 column represents the requirement
1 in product 1). Requirements are grouped by product
for the sake of comprehensibility in the figure. The last
column in the matrix is the NL query. Each cell in the
matrix contains the frequency with which the term of its
row appears in the document or query denoted by its column.
For instance, in the matrix that is shown in the figure, the
term ’door’ appears three times in R1 from product 1, and
once in Rx from product 1, Ry from product N, and the
query.

After the matrix is fulfilled, the columns of the matrix
are transformed into vectors. To do this, we normalize and
decompose the matrix using a matrix factorization technique
called Singular Value Decomposition (SVD) [19]. SVD is a
form of factor analysis, or more properly the mathematical
generalization of which factor analysis is a special case. In
SVD, a rectangular matrix is decomposed into the product of
three other matrices. One component matrix describes the
original row entities as vectors of derived orthogonal factor
values, another describes the original column entities in the
same way, and the third is a diagonal matrix containing
scaling values such that when the three components are
matrix-multiplied, the original matrix is reconstructed.

The lower half of Figure 2 presents the result of performing
SVD over some requirements and the query in the three-
dimensional graph provided. The vector named ’Query’
represents the query column, and the other vectors represent
some of the requirements columns. For example, the vector
named ’R218.P3’ represents Requirement 218 of Product 3.

To measure the similarity degree between the vectors, our
approach calculates the cosine between the query vector and
the requirement vectors. Cosine values closer to one denote
a higher degree of similarity, whereas cosine values closer
to minus one denote a lower degree of similarity. Similarity
increases as the vectors point in the same general direction,
i.e., as more keywords are shared between the requirements

R218.P3

R73. P2

R31. P5

Singular Value Decomposition (SVD):

Query

PRODUCT 1 … PRODUCT N

R1 … Rx … … Ry

PANTO 2 … 1 … … 2

CLEAN 1 … 1 … … 2

LIGHT 1 … 0 … … 1

DOOR 3 … 1 … … 1

CCU 0 … 1 … … 0

COUPL 0 … 1 … … 1

BRAKE 1 … 2 … … 1

... … … …

Ke
yw

or
ds

Query

Requirements

0

1

0

1

0

0

0

…

Latent Semantic Indexing (LSI):

Figure 2: Analysis of requirements example

and the query. Having this measurement, our approach
is then able to obtain a ranking with the most relevant
requirements for the query. Following the running example,
the vector that is the closest to the query vector is ’R218.P3’,
so it represents the most relevant requirement in product 3
for the query that is ’the CCU will enable the doors when
the train enters in cleaning mode state’. The vector ’R73.P2’
represents the second most relevant requirement to the query
that is ’train speed will be limited in the washing state
cleaning mode’.

At this point, it is important to note that among all the
requirements identified as relevant, only those requirements
that have a similarity measure greater than x must be taken
into account. A good and widely used heuristic is x =
0.7. This value corresponds to a 45 degrees angle between
the corresponding vectors. This threshold has yielded good
results in other works [24, 29]. By following the running
example, the vector ’R31.P5’ is not taken into account as a
relevant requirement because the angle with the query vector
is more than 45 degrees wide. Determining a more generally
usable heuristic for the selection of the appropriate threshold
is an issue under study and further research is needed.

3.2 Query construction
To construct the query of requirements, we take as input

the most relevant requirements that we obtained in the
previous step to join them since the performance is more
effective with long and descriptive queries [31]. Specifically,
we combine into a single query the relevant requirements by
removing duplicates.

By following the running example, the most relevant
requirement ’the CCU will enable the doors when the
train enters in cleaning mode state’, which was obtained
in the previous step, is completely added to the require-
ments query. After, duplicates are checked between the
requirements query and each word of the most relevant
requirements. To do this, stemming is used to reduce
the words to their root, unify words and avoid duplicity.
From the second most relevant requirement obtained in the
previous step ’train speed will be limited in the washing state
cleaning mode’, the words ’speed, be, limited, washing’ are
added to the requirements query since their root is not yet
included. Hence, the requirements query obtained is ’the
CCU will enable the doors when the train enters in cleaning
mode state speed be limited washing’.

Several techniques such as [14, 20] can be used to
construct the query selecting or removing the most frequent
words. However, determining the performance of different
techniques remains as future work.

3.3 Product scoping
In this step, we limit the scope of the code search space by

selecting only the code of the products that hold the relevant
requirements, which were obtained in the requirements
search. In our example, the code from product 3 and product
2 is selected, since they hold the relevant requirements
(R218.P3 and R73.P2, respectively). Hence, instead of
searching code in the whole product family, we only search
in the products that include relevant requirements.

Once the product scoping is done, we take as input
the query in terms of requirements that was previously
constructed and the code of the relevant products in order
to perform a code search, obtaining a ranking of relevant
methods (see bottom right of Figure 1).

4. EVALUATION
We perform an evaluation in the railway domain. In

this section, we present our experimental setting, evaluation
metrics, technological decisions, and experimental results.

4.1 Experimental setting
The product family that we use in our experiment con-

sists of seven real-world trains, provided by our industrial
partner. In total, the product family is defined by an
approximate number of 2940 requirements and comprises
near to 3850 methods, which account for around 1193.5
KLOC. Each train is defined by an average of about 420
requirements, which in turn have an average length of
around 50 words. The trains are coded by an average
of about 550 methods, each one having an approximate
extension of 310 LOC. Therefore, each train in our software
product family is coded in about 170.5 KLOC.

Natural language queries can come from textual documen-
tation of the products, bug reports and oral descriptions
from the engineers who work in our industrial partner.
In this experiment, we use 21 natural language queries,
three for each train. The natural language query describes
functionality related to the voltage supply of the train. We

use these queries because we know exactly what methods
implement them, which enables us to use these methods as
an oracle in the evaluation.

4.2 Research questions
The goal of our evaluation is to investigate the overall

effectiveness of our approach. Moreover, we want to compare
our FL+NL2RQ approach with a feature location approach
(FL) that searches for relevant code directly from the NL
query. Both FL+NL2RQ and FL perform the Code search
step (see Figure 1) using the same LSI and SVD techniques.
We have identified the following research questions:

RQ1: How effective is our approach?
This RQ evaluates the effectiveness of extracting relevant

methods using the requirements query, which is obtained
in our NL2RQ approach from the NL query. To answer
this question, we run our approach taking as input the
requirements and code of the train control product family
and the NL query in order to determine whether the
methods extracted are relevant.

RQ2: Is the proposed FL+NL2RQ approach effective
compared to the conventional FL approach?

To answer this question, we compare our FL+NL2RQ
approach (see right side of Figure 1) with the conventional
FL approach (see left side of Figure 1). Although both
approaches FL+NL2RQ and FL use LSI to code search,
the difference between them is that we omit the transfor-
mation of the NL query into the requirements query in the
implementation of the FL approach. Hence, the ranking
of relevant code is obtained searching into the code of all
products directly from the NL query.

4.3 Evaluation metrics
To answer the research questions, we follow the evaluation

process that is depicted in Figure 3. To start with, a
natural language query, the requirements and the code of the
product family are taken as input for running our approach
(FL+NLQ2RQ). Next, our approach generates a ranking
of relevant methods for the query. In order to evaluate
the results of our approach, we compare the results of the
ranking with an oracle. The oracle is a table that holds
the most relevant method for each query that we are going
to use in the evaluation. We perform the code comparison
by carrying out a diff because: 1) version control software
has become really popular, 2) there is a wide amount of tool
support that calculates differences between two source codes
available, and 3) code comparison techniques have been used
successfully for large scale systems [21, 16], therefore proving
the computational cost of the operation to be affordable for
large documents like ours.

Afterwards, we repeat the evaluation process for running
the FL approach that searches directly into code. Finally,
with the results of the comparisons, we are able to extract
the evaluation metrics used to evaluate precision and recall.
We use these metrics because they are the most common
measures for the experiments within IR methods [9]. The
recall and precision metrics are calculated as follows:

Recall =
RankingElements ∩OracleElements

OracleElements

Precision =
RankingElements ∩OracleElements

RankingElements

Our approach

Comparison

Evaluation metrics
(precision and recall)

Natural
Language

Query

Requirements and code
of the product family

Oracle

Figure 3: Evaluation process

Recall and Precision can be evaluated at a given cut-off
rank as well, considering only the topmost results returned
by the ranking. This measure is called recall or precision at
n (Recall@n and Precision@n, respectively).

4.4 Tool support
The technological decisions for implementing the tool that

supports our approach are the following:

• Open NLP2 is a Natural Language Processing library
developed by the Apache Software Foundation that is
used for the POS tagging of the Keyword Extraction
process of Step 1 (Requirement search).

• Snowball3 is used for the stemming of the Keyword
Extraction process of Step 1.

• Ecient Java Matrix Library (EJML)4 is used for the
implementation of the LSI and SVD of the textual
analysis of requirements of Step 1 and the textual
analysis of methods in the Code search. EJML is a
basic linear algebra package for Java that provides an
implementation of SVD.

For the evaluation, we use the DiffUtils library5 to perform
code diffs. The DiffUtils library is a Java open source
library, which provides methods that we use to perform the
necessary comparison between the relevant code obtained in
our approach and the oracle.

4.5 Experimental results
RQ1: The overall effectiveness of our approach
We evaluate our approach by following the evaluation

process described in Subsection 4.3 for the 21 different
queries. For each query, our approach extracts the ranking
of relevant code and calculates recall and precision values
by comparing the methods of the ranking against the code

2http://opennlp.apache.org/
3http://snowball.tartarus.org/
4https://code.google.com/archive/p/efficient-java-matrix-
library/
5https://code.google.com/archive/p/java-diff-utils/

of the oracle. The continuous line of Figure 4 shows the
average values and the typical deviation for the recall and
precision results obtained for the different queries and for the
number of results in the ranking that are taken into account
to compare the methods against the code of the oracle.

The recall results show that the average recall is 32.4%
when the top 5 results are inspected (Recall@5) and it ob-
tains 55.1% and 64.8% in terms of Recall@20 and Recall@40,
respectively. Then, recall stabilizes.

With regard to the precision results, they show a precision
score of 40% for the first returned result (Precision@1).
Precision achieves 41.1% and 43.1% in terms of Precision@10
and Precision@20, it becomes stable when the top 33 are
inspected. By looking at the typical deviation, it fluctuates
as the recall and precision values change.

RQ2: The effectiveness of FL+NLQ2RQ compared to FL
To evaluate the effectiveness of FL+NLQ2RQ, we com-

pare the FL+NLQ2RQ metrics with the FL metrics. The
dashed line of Figure 4 shows the average values for the
recall and precision results obtained for the different 21
queries in FL and their typical deviation. The recall results
show that the average recall is 17.3% when the top 1 result
is inspected (Recall@1) and it obtains 51.6% and 56.9%
in terms of Recall@20 and Recall@40, respectively. Then,
recall stabilizes when the top 76 results are inspected.

With regard to the precision results, they show a precision
score of 22.8% for the first returned result (Precision@1),
and it achieves 22.5% and 22% in terms of Precision@5
and Precision@10. Precision becomes stable when the top
72 are inspected. Regarding precision, it is possible to
appreciate that FL+NLQ2RQ surpasses FL. The lowest
value of precision in FL+NLQ2RQ is 37.9%, while the peak
value of FL is 23.1%. The peak value of FL+NLQ2RQ tops
in Precision@33 is 44.6%. FL+NLQ2RQ achieves an average
improvement of 18.1% of precision against FL.

Moreover, it is important to note that FL+NLQ2RQ
achieves its maximum recall and precision value before FL
does. The peak recall value is obtained when 33 results are
taken into account for FL+NLQ2RQ, while in FL it is not
obtained until 76 results are reviewed. The peak precision
value is obtained when 33 results are taken into account for
FL+NLQ2RQ, while in FL it is not obtained until 67 results
are observed. A better approach should allow developers to
discover relevant methods for the query by examining fewer
returned results in the ranking. Thus, the higher the metric
values, the better the code search performance.

5. DISCUSSION
The product family, which is used as input in this

experiment, was developed using Clone-and-Own (CAO)
[10]. CAO is a common practice in software maintenance or
evolution tasks that consists in copying the code and reusing
it. In CAO, there are different relationships [3]:

• Reimplemented. Two methods do not share code
between them, so their implementations are entirely
different.

• Modified. Shared code exists between two methods.

• Adapted. One method includes all code from another
method plus additional code.

• Unaltered. The code of two methods is strictly the
same.

0 20 40 60 80 100

10
20

30
40

50

Number of Results in the Rankings

%
 o

f
Pr

ec
is

io
n

Number of Results in the Rankings

%
 o

f
R
ec

al
l

0 20 40 60 80 100 120

20
30

40
50

60
70

CACAO
CACAO−R

FL

FL+NLQ2RQ

Figure 4: FL vs FL+NLQ2RQ: Recall and Precision results of the rankings

Through our evaluation, we have noticed that FL results
were penalized when the methods that must be located are
adapted or modified versions. It turns out that adapted
or modified versions can have more terms apart from those
that appear in the NL query. Figure 5 shows an example of
this phenomenon. One of the terms that appears four times
in the NL query after the post-stemming and LSI analysis
is done is COUPL. The method that is the most relevant
for this query according to the oracle is the method 36 of
Product 3 in which the COUPL term appears twice (see the
left side of the figure).

Searched method FL Result

NL query (Post-stemming and LSI): the term COUPL appears 4 times.

Method 36 of Product 3 Method 121 of Product 5

coupler=getCurrentState();
…

coupled=1;

L L A

Post-stemming
and LSI: COUPL
appears 2 times.

Post-stemming
and LSI: COUPL
appears 2 times.

Post-stemming
and LSI: COUPL
appears 2 times.

Figure 5: Example of penalized results using FL in
adapted methods

Nevertheless, the result obtained using FL is the method
121 of Product 5, which is an adapted version of the
searched method. The right side of Figure 5 shows that
this adapted method has all the code that is present in
method 36 of Product 3, referred as Legacy (L) in the
figure, plus additional code, referred as Adapter (A) in the

figure. This is because the adapter part of the method
also contains terms that appear in the NL query (e.g., the
sentences coupler=getCurrentState() and coupled=1 make
the COUPL term occurrences increase by two after the post-
stemming and the LSI analysis are done). This increment
makes the method more relevant for the NL query (e.g.,
the COUPL term in the adapted method appears four
times as it does in the NL query, so the similarity measure
improves). Hence, this adapted method is selected as result
using FL (which penalizes precision) rather than selecting
the searched method.

By contrast, the phenomenon of adapted or modified
methods does not occur in requirements since they are
rewritten and not adapted or modified. Therefore, our
approach is not so sensitive to this phenomenon. For
example, our approach eliminates Product 5 in the product
scoping step since the similarity measure of its requirements
excludes this product from being taken into account.

Although these results are preliminary and still require
more experiments, it seems that our approach could provide
better results in product families developed using CAO, so
this work encourages further research in this direction.

6. THREATS TO VALIDITY
In this section we discuss some of the issues that might

have affected the results of the evaluation. The first issue is
related to the measures that are studied, and whether they
represent what the researchers have in mind. To minimize
this risk, we measured the factors of recall and precision,
which are widely accepted [30, 29]. The second issue is the
number of members in the family of trains. Although the
number may look small, the products presented cover a wide
range of railway types and they have been developed by two
developer teams of our industrial partner.

The third issue is related to the generalization of the

findings. Software in the railway domain is representative
of safety-critical systems like those present in the automo-
tive domain or the aerospace domain. Nevertheless, our
approach should be applied to other domains before assuring
its generalization. Another issue is with regard to what
extent the data and the analysis are dependent on the
specific researcher. For our research, the data was recovered
from trains chosen and provided by our industrial partner.
The evaluation is performed by comparing the data with the
oracle. Moreover, the final results are sensitive to the query
that is used as input.

7. RELATED WORK
There are many feature location approaches proposed to

find relevant code taking textual information as input [9].
For example, Marcus et al. [24] used IR techniques to map
descriptions expressed in NL to source code. Cavalcanti
et al. [6] used IR techniques to assign change requests in
software maintenance or evolution tasks based on context
information. Kimmig et al. [17] proposed an approach for
translating NL queries to concrete parameters of the Eclipse
JDT code query engine.

Recently, several approaches have been proposed to im-
prove the effectiveness of feature location. For example,
Wang et al. [33] proposed a code search approach, which
incorporates user feedback to refine the query. Hill et al. [12]
proposed to automatically extract NL phrases to categorize
them into a hierarchy in order to help developers to discrim-
inate the relevance of results and to reformulate queries.
Zou et al.[35] investigated the ’answer style’ of software
questions with different interrogatives and proposed a re-
ranking approach to refine search results.

Other approaches have been proposed to improve the
effectiveness of feature location getting information from
public repositories [11] or expanding a user query with
semantic similar words from websites [32]. For example,
Dietrich et al. [8] improved the efficacy of future queries
using feedback captured from a validated set of queries and
traceability links. Lv et al. [23] enrich each API with its
online documentation to match the query based on text
similarity.

Despite the fact that these approaches improve the effec-
tiveness of feature location, they require an additional effort
to enrich the code, to keep the documentation synchronized
with the changes of the code throughout maintenance and
evolution activities, and to incorporate users’ feedback.
Different from the above work, our work does not require
additional efforts to enrich neither the code nor the query.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented our feature location

approach (FL+NLQ2RQ) that transforms the NL query
taken as input into a query that holds the most relevant
requirements for the words used in the NL query. This level
of indirection is the main innovation of our approach since
it: 1) searches the most relevant requirements using keyword
extraction (POS tags, stemming and stopwords) and textual
analysis (LSI and SVD), 2) constructs the requirements
query by joining the most relevant requirements, and 3)
limits the scope of the code search space by selecting the
code of the products that hold relevant requirements. Once
the requirements query is obtained and the code search space

is limited, relevant code is obtained.
Our evaluation has been performed in an industrial do-

main. Our industrial partner has provided the requirements
and code of seven real-world trains. We have run our
FL+NLQ2RQ approach to calculate the values of the most
common measures (recall and precision) that are used
in experiments with information retrieval methods. We
have used these values to compare our approach with a
conventional FL approach that searches directly into code.

Results have revealed that our approach is effective and
outperforms the results obtained by searching directly in
the code. The results show that our approach improves
an average of 18.1% the results of precision against FL.
Although these results are preliminary and still require more
experiments, it seems that product families developed using
CAO penalize the results of precision when the methods to
be located are modified or adapted versions. In the context
of product families developed with CAO, our approach
provides better results since this behavior does not occur
in requirements, so this work encourages further research in
this direction.

In the future, we plan to evaluate differences of perfor-
mance among different natural language processing tech-
niques for building a single query from several requirements.
Furthermore, we plan to further research the impact that the
CAO relationships have in information retrieval for FL.

Acknowledgments
This work has been partially supported by the Ministry
of Economy and Competitiveness (MINECO) through the
Spanish National R+D+i Plan and ERDF funds under the
project Model-Driven Variability Extraction for Software
Product Line Adoption (TIN2015-64397-R).

9. REFERENCES
[1] V. Alves, C. Schwanninger, L. Barbosa, A. Rashid,

P. Sawyer, P. Rayson, C. Pohl, and A. Rummler. An
exploratory study of information retrieval techniques
in domain analysis. In 12th International Software
Product Line Conference, pages 67–76, Sept 2008.

[2] S. Bajracharya, J. Ossher, and C. Lopes. Sourcerer:
An internet-scale software repository. In Proceedings of
the 2009 ICSE Workshop on Search-Driven
Development-Users, Infrastructure, Tools and
Evaluation, pages 1–4, 2009.

[3] M. Ballarin, R. Lapeńa, and C. Cetina. Leveraging
feature location to extract the clone-and-own
relationships of a family of software products. In
Proceedings of the 15th International Conference On
Software Reuse, ICSR ’16, 2016.

[4] T. J. Biggerstaff, B. G. Mitbander, and D. Webster.
The concept assignment problem in program
understanding. In Proceedings of the 15th
International Conference on Software Engineering,
ICSE ’93, pages 482–498, 1993.

[5] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent
dirichlet allocation. J. Mach. Learn. Res., 3:993–1022,
Mar. 2003.

[6] Y. a. C. Cavalcanti, I. d. C. Machado, P. A. d. M. S.
Neto, E. S. de Almeida, and S. R. d. L. Meira.
Combining rule-based and information retrieval
techniques to assign software change requests. In

Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering, ASE
’14, pages 325–330, New York, NY, USA, 2014. ACM.

[7] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K.
Landauer, and R. Harshman. Indexing by latent
semantic analysis. Journal of the American Society for
Information Science, 41(6):391–407, 1990.

[8] T. Dietrich, J. Cleland-Huang, and Y. Shin. Learning
effective query transformations for enhanced
requirements trace retrieval. In 2013 IEEE/ACM 28th
International Conference on Automated Software
Engineering (ASE), pages 586–591, Nov 2013.

[9] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk.
Feature location in source code: a taxonomy and
survey. Journal of Software: Evolution and Process,
25(1):53–95, 2013.

[10] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski,
M. Becker, and K. Czarnecki. An exploratory study of
cloning in industrial software product lines. In 2013
17th European Conference on Software Maintenance
and Reengineering (CSMR), pages 25–34, 2013.

[11] H. Dumitru, M. Gibiec, N. Hariri, J. Cleland-Huang,
B. Mobasher, C. Castro-Herrera, and M. Mirakhorli.
On-demand feature recommendations derived from
mining public product descriptions. In Proceedings of
the 33rd International Conference on Software
Engineering, ICSE ’11, pages 181–190, 2011.

[12] E. Hill, L. Pollock, and K. Vijay-Shanker.
Automatically capturing source code context of
nl-queries for software maintenance and reuse. In
Proceedings of the 31st International Conference on
Software Engineering, ICSE ’09, pages 232–242, 2009.

[13] E. Hill, L. Pollock, and K. Vijay-Shanker. Improving
source code search with natural language phrasal
representations of method signatures. In Automated
Software Engineering (ASE), pages 524–527, 2011.

[14] W. Hon, R. Shah, S. V. Thankachan, and J. S. Vitter.
String retrieval for multi-pattern queries. In String
Processing and Information Retrieval - 17th
International Symposium, SPIRE, pages 55–66, 2010.

[15] A. Hulth. Improved automatic keyword extraction
given more linguistic knowledge. In Proceedings of the
2003 conference on Empirical methods in natural
language processing, pages 216–223, 2003.

[16] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: a
multilinguistic token-based code clone detection
system for large scale source code. IEEE Transactions
on Software Engineering, 28(7):654–670, 2002.

[17] M. Kimmig, M. Monperrus, and M. Mezini. Querying
source code with natural language. In Proceedings of
the 2011 26th IEEE/ACM International Conference
on Automated Software Engineering, ASE ’11, pages
376–379, 2011.

[18] Krugle. http://www.krugle.com/.

[19] T. K. Landauer, P. W. Foltz, and D. Laham. An
introduction to latent semantic analysis. Discourse
processes, 25(2-3):259–284, 1998.

[20] C. Largeron, C. Moulin, and M. Géry. Entropy based
feature selection for text categorization. In Proceedings
of the 2011 ACM Symposium on Applied Computing,
SAC ’11, pages 924–928, 2011.

[21] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner:

Finding copy-paste and related bugs in large-scale
software code. Software Engineering, IEEE
Transactions on, 32(3):176–192, 2006.

[22] F. Liu, D. Pennell, F. Liu, and Y. Liu. Unsupervised
approaches for automatic keyword extraction using
meeting transcripts. In Proceedings of human language
technologies: The 2009 annual conference of the North
American chapter of the association for computational
linguistics, pages 620–628, 2009.

[23] F. Lv, H. Zhang, J. g. Lou, S. Wang, D. Zhang, and
J. Zhao. Codehow: Effective code search based on API
understanding and extended boolean model. In
Automated Software Engineering (ASE2015), 2015.

[24] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic.
An information retrieval approach to concept location
in source code. In Proceedings of the 11th Working
Conference on Reverse Engineering, WCRE ’04, pages
214–223, Washington, DC, USA, 2004.

[25] M. Porter. Snowball: A language for stemming
algorithms, Oct. 2001.

[26] D. Poshyvanyk, Y. G. Gueheneuc, A. Marcus,
G. Antoniol, and V. Rajlich. Feature location using
probabilistic ranking of methods based on execution
scenarios and information retrieval. IEEE
Transactions on Software Engineering, 33(6):420–432,
June 2007.

[27] M. Revelle, B. Dit, and D. Poshyvanyk. Using data
fusion and web mining to support feature location in
software. In ICPC, pages 14–23, 2010.

[28] J. Rubin and M. Chechik. A survey of feature location
techniques. In Domain Engineering, pages 29–58.
Springer, 2013.

[29] H. E. Salman, A. Seriai, and C. Dony. Feature
location in a collection of product variants: Combining
information retrieval and hierarchical clustering. In
The 26th International Conference on Software
Engineering and Knowledge Engineering, pages
426–430, 2013.

[30] G. Salton and M. J. McGill. Introduction to Modern
Information Retrieval. McGraw-Hill, Inc., 1986.

[31] T. Strzalkowski, F. Lin, J. Perez-Carballo, and
J. Wang. Building effective queries in natural language
information retrieval. In Proceedings of the Fifth
Conference on ANLC, pages 299–306, 1997.

[32] Y. Tian, D. Lo, and J. Lawall. Automated
construction of a software-specific word similarity
database. In IEEE Conference on Software
Maintenance, Reengineering and Reverse Engineering
(CSMR-WCRE), pages 44–53, 2014.

[33] S. Wang, D. Lo, and L. Jiang. Active code search:
Incorporating user feedback to improve code search
relevance. In Proceedings of the 29th ACM/IEEE
International Conference on Automated Software
Engineering, ASE ’14, pages 677–682, 2014.

[34] J. Yang and L. Tan. Inferring semantically related
words from software context. In Mining Software
Repositories (MSR), pages 161–170, 2012.

[35] Y. Zou, T. Ye, Y. Lu, J. Mylopoulos, and L. Zhang.
Learning to rank for question-oriented software text
retrieval. In Proceedings of the 30th IEEE/ACM
International Conference on Automated Software
Engineering (ASE 2015), pages 1–11, 2015.

