
Leveraging Execution Traces to Enhance Traceability Links Recovery in
BPMN Models

Raúl Lapeñaa,∗, Francisca Péreza, Óscar Pastorb, Carlos Cetinaa

aSVIT Research Group, Universidad San Jorge
Autov́ıa A-23 Zaragoza-Huesca Km. 299, 50830, Zaragoza, Spain

bPROS Research Centre, Universitat Politècnica de València
Camı́ de Vera, s/n, 46022 València, Spain

Abstract

Context: Traceability Links Recovery has been a topic of interest for many years, resulting in techniques
that perform traceability based on the linguistic clues of the software artifacts under study. However,
BPMN models tend to present an overall lack of linguistic clues when compared to code-based artifacts
or code generation models. Hence, TLR becomes a harder task when performed among requirements and
BPMN models.

Objective: This paper proposes a novel approach, called METRA, that leverages the execution traces of
BPMN to expand the BPMN models. The expansion of the BPMN models enhances their linguistic clues,
bridging the language between BPMN models and other software artifacts, and improving the TLR process
between requirements and BPMN models.

Method: The proposed approach is evaluated through a real-world industrial case study, comparing its
outcomes against two state-of-the-art baselines, TLR and LORE. The paper also evaluates the combination
of METRA with LORE against the rest of the approaches, including standalone METRA. The evaluation
process generates a report of measurements (precision, recall, f-measure, and MCC), over which a statistical
analysis is conducted.

Results: Results show that approaches based on METRA maintain the excellent precision results obtained
by baseline approaches (74.2% for METRA, 78.8% for METRA+LORE), whilst also improving the recall
results from the unacceptable values obtained by the baselines to good values (72.4% for METRA, 73.9%
for METRA+LORE). Moreover, according to the statistical analysis, the differences in the results obtained
by the evaluated approaches are statistically significant.

Conclusions: This paper opens a novel field of work in TLR by analyzing the improvement of the TLR
process through the inclusion of linguistic clues present in execution traces, and discusses ideas for further
research that can delve into this promising direction explored by our work.

Keywords: Traceability Links Recovery, BPMN Models, Model-Driven Engineering

∗Corresponding author.
Email addresses: rlapena@usj.es (Raúl Lapeña),

mfperez@usj.es (Francisca Pérez), opastor@pros.upv.es

(Óscar Pastor), ccetina@usj.es (Carlos Cetina)

Preprint submitted to Elsevier March 1, 2022

1. Introduction

Model-Driven Development (MDD) [1] is a soft-
ware practice where requirements, understood as nat-
ural language representations of the specifications of
a system [2], are used to build models that are then
transformed into source code or interpreted at run-
time. Major players in the software engineering field
and in the requirements engineering field foresee a
broad adoption of MDD [3, 4], since MDD tech-
niques improve the productivity, quality, and per-
formance of software in industrial scenarios that de-
mand more abstract approaches than mere coding [1].
MDD has been applied with success to design novel
approaches in model-based engineering [5], model-
based Software Product Line (SPL) adoption [6], and
feature-oriented engineering [7, 8] in several different
domains.

Software engineers from our industrial partner, an
international manufacturer in the railway domain,
express system requirements in natural language,
and use them to design BPMN models through the
OMG’s BPMN standard, a widespread model stan-
dard used to graphically represent processes [9]. The
BPMN models are used to describe the interactions
that occur between the humans and the trains, and
also to design and derive other software artifacts fol-
lowing MDD practices and guidelines. However, in
industrial MDD contexts such as the one from our
industrial partner, companies tend to have a myriad
of products with large and complex models behind,
which are created and maintained over long periods of
time by different software engineers, who often lack
knowledge over the entirety of the product details.
Under these conditions, maintenance activities con-
sume high amounts of time and effort without guar-
anteeing good results.

Traceability Links Recovery (TLR), defined as the
software engineering task that deals with the auto-
mated identification and comprehension of dependen-
cies and relationships between software artifacts [10],
is a key to success in these industrial scenarios. TLR
is an important support activity for development,
management, and maintenance of software, and is
considered as a good practice by numerous major
software standards such as CMMI or ISO 15504 [10].

Moreover, affordable TLR can be critical to the suc-
cess of a project [11], and leads to increased maintain-
ability and reliability of software systems by making
it possible to verify and trace non-reliable parts [12],
also decreasing the expected defect rate in developed
software [13]. However, establishing and maintaining
traceability links has proven to be a time consuming,
error prone, and person-power intensive task [10, 14].
Therefore, automated TLR has been a subject of in-
vestigation for many years within the software en-
gineering community [15, 16]. Moreover, in recent
years, it has been attracting more attention, becom-
ing a subject of both fundamental and applied re-
search [17]. Nevertheless, while most of the works
in the literature focus on performing TLR between
requirements and code [18], the application of TLR
techniques to models in general, and BPMN models
in particular, is a topic that has not been thoroughly
explored so far.

However, state-of-the-art automated TLR tech-
niques rely greatly on the language and the syntac-
tical, lexical, and semantical particularities of the
software artifacts under study. For instance, Latent
Semantic Indexing (LSI), which is the most popular
TLR technique and the one that has yielded the best
TLR results so far [18], is based on exploiting term
similarities among the requirements and the software
artifacts. However, BPMN models tend to present
less terms and an overall lack of linguistic clues when
compared to code-based artifacts or other models
that are designed with code-generation purposes in
mind, which tend to contain greater amounts of lin-
guistic clues and natural language within their im-
plementation. Since TLR techniques rely on the tex-
tual components of the artifacts under study, TLR
becomes an ever harder task when performing TLR
directly among requirements and BPMN models. Be
that as it may, BPMN models count with an addi-
tional source of textual information that can be lever-
aged to improve the results of the process: the BPMN
execution traces.

Through this work, we propose a novel approach
called METRA (Model Expansion through TRAces)
that minimizes the impact that the diminished
amount of linguistic clues in BPMN has on the TLR
process. To that extent, natural language processing

2

(NLP) techniques are used to process the require-
ments and the BPMN models, and then the BPMN
execution traces are used as a means of expanding
the linguistic clues of the processed BPMN models,
bridging the gap between the language in use in the
requirements and the BPMN models. Finally, TLR
techniques are applied to analyze the requirements
and the expanded BPMN models, in search for model
fragments that match the requirements.

From our work, two research questions arise. We
ought to study (1) whether METRA improves the
results obtained by baseline techniques in a statisti-
cally significant manner, and (2) whether it is possi-
ble to combine METRA with other expansion-based
TLR techniques for enhanced results. We have eval-
uated these questions through the requirements and
BPMN models that comprise a real-world industrial
case study, involving the control software of the trains
manufactured by one of our industrial partners.

Results show that approaches based on METRA
maintain the excellent precision results obtained by
baseline approaches (78.8% on average), whilst also
improving the recall results from the unacceptable
values obtained by the baselines to good values
(73.9% on average). Through the analysis of the
obtained results, we discuss how leveraging the lin-
guistic clues in execution traces improves the TLR
process between requirements and BPMN models, so
that further research can delve into this promising
direction explored by our work.

Through the following pages, Section 2 presents the
background for our work. Section 3 provides details
on our approach. Section 4 describes the evaluation
of our approach. Sections 5 and 6 present the ob-
tained results and discuss the outcomes of our work.
Section 7 presents the threats to the validity of our
work. Section 8 reviews works related to this one.
Section 9 concludes the paper.

2. Background

Our industrial partner is a worldwide provider of
railway solutions. Their trains can be seen all over
the world in different forms. Train units are furnished
with multiple pieces of equipment that carry out spe-
cific tasks for the train. The control software of the

train unit is in charge of making all the equipment co-
operate to achieve the train functionality while guar-
anteeing compliance with the specific regulations of
each country. Our industrial partner uses BPMN
models to describe processes that are carried out
between the humans and the main pieces of equip-
ment installed in a train unit, and as part of their
MDD practices to design and derive other software
artifacts. Lately, our industrial partner has been fo-
cusing some efforts on performing Traceability Links
Recovery (TLR) between their natural language re-
quirements and their BPMN models. As stated in
the introduction section, manual TLR is a nearly in-
feasible task, and TLR between natural language re-
quirements and BPMN models is no exception.

Figure 1 motivates the difficulty of the task at hand
through an excerpt taken from the email vote dia-
gram, extracted from the email voting system exam-
ple found within the BPMN examples available on
the BPMN standard official website1. The model
represents a process for defining a list of issues on
which votes must be taken. This process might be
extracted by hand from the model, but the amount
of elements shown in the model, along with their po-
sitioning and connections cause this to be a quite
complex task, even without taking in consideration
the full model or the potential loopbacks and impli-
cations of the outcomes of this sub-process into the
rest of the modeled behaviours. Considering the dif-
ficulty of extracting information from the academic
model presented in Figure 1, it is possible to better
understand the complexity of achieving similar feats
over more complex real-world industrial models.

In industrial scenarios as the one from our indus-
trial partner, companies tend to have a myriad of
products with large and complex models behind, cre-
ated and maintained over long periods of time by dif-
ferent software engineers, who often lack knowledge
over the entirety of the product details. The complex-
ity of the BPMN models and the number of elements
in place render manual TLR virtually impossible to
attain. As an example, imagine that we try to man-
ually trace the requirements to the model elements

1http://www.bpmn.org/

3

Figure 1: Excerpt taken from the e-mail voting system dia-
gram, an example found within the official BPMN standard
website

that comprise the data set provided by our industrial
partner for this research. The data set is conformed
by 140 test cases, with one requirement per test case
and BPMN models that are implemented by an av-
erage of 650 model elements. In order to trace a par-
ticular requirement to a model fragment, a domain
expert would need to examine the full model and de-
cide which elements trace the requirement correctly.
Assuming that the domain expert must spend around
5 seconds to take the decision with each element [19],
creating the fragment that retrieves the traceability
to a requirement would take slightly less than one
hour. Thus, tracing the total 140 requirements by
hand would take around 140 hours, which translate
into 17 full-time working days.

Figure 2 depicts a simplified example of a real-
world industrial BPMN model, taken from a real-
world train, specified through a BPMN model. The
model, which will be used throughout our paper as a
running example, has the expressiveness required to
describe the interaction between the pieces of equip-
ment installed in a train unit, and also to describe
non-functional aspects related to regulation. Specif-
ically, the example of the figure presents the station
stop process, where a human driver sets the train
in stop mode in preparation for a station stop. The
PLC that implements the system controls of the train

checks whether the doors are open or closed and, in
the event that the doors are closed, opens the pas-
senger doors. The figure also shows an example re-
quirement of the train (”at all the stops, the driver
will set the train in stop mode”). The requirement is
implemented within the context of the station stop
process, as a subset of the BPMN model that depicts
the process. Hence, we define a model fragment as
the subset of elements of a BPMN model that im-
plement a particular requirement. Thus, a model
fragment, which can include any number of elements,
can be mapped directly to a single requirement. In
that sense, a full BPMN model can implement sev-
eral requirements, and can thus be divided into sev-
eral different model fragments that can be mapped
to those requirements. The ultimate goal of our re-
search, which is to automate the traceability between
the requirements and BPMN models, can also be for-
mulated as the automated retrieval of the mapping
between the requirements and the model fragments
that implement them. The elements of Figure 2 high-
lighted in light gray conform such an example model
fragment, more precisely, the model fragment that is
associated with the requirement shown in the figure.
In the case of the example, the model fragment com-
prises the driver, the start event, and the stop mode
action.

St
at

io
n

St
op

 P
ro

ce
ss Dr

iv
er

PL
C

Stop mode

Open
Check door state X

Open passenger doors

Closed

Requirement: At all the stops, the driver will set the train in stop mode.

Execution trace: The driver has actioned the lever in the active
cabin. Commencing the routine that sets the train into stop mode.

Figure 2: Example of Requirement, Model, and Model Frag-
ment

The figure also shows a simplified example execu-
tion trace, associated with the actions represented in

4

the model fragment. The extraction of the execution
traces is performed through an in-house solution im-
plemented by the software engineers of our industrial
partner, a common practice in all kinds of software
scenarios [20, 21]. During the execution of a BPMN
model, their scripts record the different actions that
are performed in the trains and the actors that per-
form those actions in the model. These actions are
logged directly in natural language in textual files
that are used by technicians and engineers to anal-
yse bugs and instruct newcomers in the internal func-
tioning and architecture of the developed systems. As
part of our ongoing research with our industrial part-
ner, they have provided us with the textual files con-
taining the natural language traces associated with
the BPMN models of their case study.

In the figure, it is possible to appreciate that the
model in Figure 2 contains a very little amount of
textual information. To be precise, while the require-
ment contains 13 words, and the execution trace asso-
ciated to the model fragment contains 20 words, the
model as a whole contains just 15 words (including
the name of the process). In comparison, the partic-
ular code that implements the requirement comprises
around 500 lines of code, including valuable terms in
the names of methods and variables and further infor-
mation in the comments of the developers. The lack
of linguistic clues and text in the BPMN model leads
to an increase in the difficulty of the TLR process
between the requirement and the model.

3. Approach

3.1. Approach Overview

Through the presented approach, named METRA
(Model Expansion through TRAces), we tackle the
impact that the lack of linguistic clues in BPMN
models has on the TLR process between requirements
and BPMN models.

To that extent, METRA leverages the linguistic
clues in the BPMN models execution traces to ex-
pand the BPMN models, bridging the gap between
the language used in requirements and BPMN mod-
els. The approach runs through three steps:

1 First, we extract model fragments from the pro-
cessed BPMN model. This step allows METRA
to generate a set of candidate solutions for re-
quirement to BPMN model traceability.

2 Secondly, we convert the model fragments into text
and use natural language processing (NLP) tech-
niques to process the generated BPMN model
fragments, the available input BPMN model ex-
ecution traces, and the input requirements.

The NLP techniques unify the language of the
software artifacts, and facilitate both the expan-
sion process and the traceability process.

3 Afterwards, we leverage the processed BPMN
model execution traces in order to expand the
processed BPMN model fragments, improving
their linguistic clues.

Finally, the processed requirement is used along
with the expanded model fragments as an input for
Latent Semantic Indexing (LSI) [22], a widely ac-
cepted TLR process [3]. Through LSI, the expanded
model fragments are assessed in terms of linguistic
similarity to the input requirement. Fig. 3 depicts an
overview of the steps of the approach. In the figure,
squared boxes represent the inputs and outputs of
each step, while rounded boxes represent each step
of the approach. The highlighted boxes represent
the initially available inputs (BPMN model, BPMN
model execution traces, and requirement) used for
the different steps of our approach and for the TLR
process, and the final output (the most relevant ex-
panded model fragment for the requirement).

The following sections, along with figures 4 to 6,
deal with the explanation of each of the steps of the
METRA approach and their application to the run-
ning example presented in figure 2 in a greater level
of detail.

3.2. Model Fragments Extraction

In the first step of METRA, model fragments are
extracted from the processed BPMN model, gener-
ating a set of candidate solutions for requirement to
model traceability. As stated in sections 1 and 2,
industrial BPMN models are large and complex in

5

METRA Approach

(2) Natural Language Processing

(1) Model
Fragments
Extraction

BPMN Model
Fragments

(3) Model Fragments Expansion

BPMN Model Requirement

Processed
BPMN Model

Execution Logs

Processed
Requirement

Traceability
Links Recovery

Solution BPMN
Model Fragment

Processed
BPMN Model

Fragments

BPMN Model
Fragments

Processed
BPMN Model

Fragments

BPMN Model
Execution Logs

BPMN Model
Execution

Traces

Processed
Execution

Traces

Expanded
BPMN Model

Fragments

Expanded
BPMN Model

Fragments

Figure 3: Approach

comparison with their academic counterparts, mak-
ing extraction of the model fragments by hand un-
feasible in practice. While it would be possible to
apply Information Retrieval techniques at the level
of model elements, such granularity would leave us
with a problematic set of relevant model elements for
the requirement-to-model traceability process, since
(1) elements with no text would never be identified
as relevant and (2) the identified elements in the set
may not be adjacent in the model, coming from very
different parts of the full BPMN. From these prob-
lematic elements, it would then be necessary to build

an understandable, standard-compliant model frag-
ment to propose as a result for traceability, which
would then need manual revision, defeating the pur-
pose of our research. In addition, with industrial
BPMN models being large and complex, the search
space of the model elements and their potential com-
binations for building the model fragments becomes
also large and complex. Hence, in our approach, we
aim to extract the model fragments through a mech-
anism that provides standard-compliant models, and
which also takes into account the possibility of in-
cluding elements with no text, all while being able to
effectively explore the search space. To that extent,
we use an algorithm with evolutionary characteristics
(mutation of model fragments) that helps us generate
populations of standard-compliant, coherent BPMN
model fragments that can be automatically evaluated
by Information Retrieval techniques afterwards.

METRA extracts model fragments from the
BPMN model through Algorithm 1. In the algorithm,
an empty population and a seed fragment (chosen
randomly from the input BPMN model) are created.
Then, until the algorithm meets a stop condition (for
instance, a certain number of iterations), the frag-
ment is mutated and each new mutation is added to
the population, avoiding the addition of already ex-
isting fragments into the population.

Mutations in a fragment can be caused by: (1)
adding one new event, gateway, or task that is con-
nected to an already present event, gateway, or task
(the flow that causes the connection is also added
to the fragment), (2) removing an element with only
one connection (and the flow that causes said con-
nection), (3) adding a lane to the fragment, or (4)
removing a lane from the fragment. The performed
mutation is chosen randomly on each iteration. The
mutation function is described in Algorithm 2.

Fig. 4 shows the BPMN model fragment extraction
process. On the top part of the figure, it is possible to
see the example input BPMN. For the sake of legibil-
ity, understandability, and due to space reasons, the
bottom part of the figure depicts an example subset
of generated model fragments, extracted through the
usage of the algorithm.

6

Algorithm 1 Model fragment extraction algorithm

1: P ← [] . Initialize the population
2: F ← randomFragment(inputModel) . Create an initial seed fragment
3: while !(StopCondition) do . While the stop condition is not met
4: F ← mutateFragment(F) . Mutate the fragment
5: if !(F ∈ P) then . If the new fragment is not in the population
6: P ← P + F . Add the new mutation to the population
7: end if
8: end while
9: return P . Return the population

Algorithm 2 Mutation function

1: M ← chooseMutation() . Randomly choose a mutation
2: switch M do . Perform action depending on chosen mutation
3: case addElement
4: F ← addElement(F) . Add connected event/gateway/task

5: case removeElement
6: F ← removeElement(F) . Remove element with only one connection

7: case addLane
8: F ← addLane(F) . Add a lane

9: case removeLane
10: F ← removeLane(F) . Remove a lane

11: return F . Return the modified fragment

MODEL

EXAMPLE MODEL FRAGMENTS

Dr
iv

er Stop mode

Stop mode

Check door state

X

Open
Check door state

X

Open passenger doors

Closed

PL
C Open passenger doors

MF1

MF14

MF7

MF9

MF6

St
at

io
n

St
op

 P
ro

ce
ss Dr

iv
er

PL
C

Stop mode

Open
Check door state X

Open passenger doors

Closed

Figure 4: Extraction of BPMN model fragments

3.3. Natural Language Processing

The model fragments in the population gener-
ated by the algorithm presented in the first step
of METRA are then transformed into their natural
language representation through the technique pre-
sented by Meziane et. al. [23]. Meziane et. al. pro-
pose a set of linguistic rules and a tagging system to
build natural language sentences from the texts ex-
tracted from the elements that compose UML class
models. In order to transform our BPMN model frag-
ments to their natural language representations, we
extract the text of the model elements that compose
the BPMN model fragments, and then apply the lin-
guistic rules and tagging system proposed by Meziane
et. al. to build such natural language representa-
tions. We consider lanes as nouns (e.g. the ’PLC’
noun would be the actor that is performing an ac-
tion) and actions as verbal clauses (e.g. the ’open
passenger doors’ action contains the verb ’open’ plus

7

an associated noun, ’passenger doors’), allowing us to
build complete natural language sentences of the form
noun + verbal clause following the aforementioned
rules and tagging system (e.g. ’The PLC opens the
passenger doors’).

Afterwards, as the second step of METRA, we pro-
cess the natural language representations of the ex-
tracted BPMN model fragments, the available BPMN
model execution traces, and the input requirements
through Natural Language Processing (NLP) tech-
niques. This is often seen as a beneficial process in all
manners of software engineering tasks [24]. In our ap-
proach, the processing step serves as a means of uni-
fying the language of the software artifacts, which in
turn facilitates the expansion process and the trace-
ability process alike. The techniques in use are syn-
tactical analysis, root reduction, and human NLP.
Fig. 5 is used to illustrate, on two example execution
traces (T1 and T2) the whole compendium of NLP
techniques used by METRA to process the software
artifacts (BPMN model fragments, execution traces,
and requirements).

1 Syntactical Analysis: Syntactical Analysis
(SA) techniques analyze the specific roles of each
word in a sentence, determining their grammat-
ical function. These techniques (often referred
to in the literature as Parts-Of-Speech tagging,
or POS tagging) allow engineers to implement
filters for words that fulfill specific grammatical
roles in a requirement, usually opting only for
nouns [25]. In Fig. 5, it is possible to appreciate
the SA process, with the POS tagged tokens as-
sociated to each of the example execution traces
as outcome.

2 Root Reduction: The technique known as
lemmatizing reduces words to their semantic
roots, also known as lemmas. Thanks to lemmas,
the language is unified, avoiding verb tenses,
noun plurals, and several other word forms that
can interfere negatively with the TLR process.
The unification of the language semantics is an
evolution over pure syntactical role filtering, al-
lowing for a more advanced filtering of words.
In Fig. 5, it is possible to appreciate the root

reduction process, with the root-reduced tokens
as outcome of the semantic analysis of the POS
tags derived from the example execution traces
(keeping only nouns).

3 Human NLP: The inclusion of domain knowl-
edge through experts and software engineers in
the TLR process is regarded as beneficial. Hu-
man NLP is often carried out through domain
terms extraction or stopwords removal. METRA
searches the software artifacts for domain terms
provided by software engineers, and adds the
found domain terms to the processed artifact.
On the other hand, stopwords are filtered out
after root reduction, using a list provided by the
software engineers. Figure 5 depicts the Human
NLP process, where a software engineer provides
both lists of terms, which are consequently intro-
duced into the final query, or filtered out of it.

3.4. Model Fragments Expansion

In the last step of METRA, the processed BPMN
model fragments are enriched with information from
the processed BPMN execution traces. To that ex-
tent, METRA uses a technique that is based on
Rocchio’s method [26], which is perhaps the most
commonly used method for query reformulation [27].
Rocchio’s method orders the terms in a set of docu-
ments based on the importance of each term in the
documents, and then uses those terms to expand an-
other artifact.

However, Rocchio’s method orders all the terms in
all the available documents according to their rele-
vancy in the documents. In other words, if we use the
full set of processed BPMN model execution traces
to expand the processed BPMN model fragments,
we end up including the same terms in all the pro-
cessed BPMN model fragments, altering the linguis-
tic clues of all the processed BPMN model fragments
equally and thus cancelling any potential traceability
improvements. Therefore, prior to the expansion of
one particular processed BPMN model fragment, it
is first required to prune the set of execution traces,
leaving only the relevant processed BPMN model exe-
cution traces for the expansion of the particular pro-
cessed BPMN model fragment. To that extent, we

8

BPMN Model Execution Traces
T1: The driver has set the train in
stop mode (stations).
T2: The PLC checks the state of
the doors (state: closed).

Syntactical
Analysis

Processed Execution Traces
T1: stop mode, station
T2: state, door

Domain Terms
Extraction

POS Tagged Tokens
T1: driver, train, mode, stations
T2: PLC, state, doors

Root-Reduced Tokens
T1: driver, train, mode, station
T2: PLC, state, door

Root
Reduction

Stopwords Removal

Figure 5: Natural Language Processing Techniques

first search the population of processed BPMN model
execution traces for those processed BPMN model ex-
ecution traces that have term coincidences with the
processed BPMN model fragment.

Aftwerwards, we use Rocchio’s method for expand-
ing the processed BPMN model fragment. Rocchio’s
method orders the terms in the execution traces
based on the sum of the importance of each term
using the following equation:

Rocchio =
∑
d∈R

TF (t, d) · IDF (t, R) (1)

Where R is the set of processed BPMN model ex-
ecution traces, d is a document in R (that is, one
processed BPMN execution trace), and t is one term
in d.

The first component of the measure is the Term
Frequency (TF), which is the number of times the

term appears in a document; it is an indicator of the
importance of the term in the document compared
to the rest of the terms in that document. The sec-
ond component is the Inverse Document Frequency
(IDF), which is the inverse of the number of docu-
ments that contain that term; it indicates the speci-
ficity of that term for a document that contains it.
The IDF measurement is calculated as:

IDF (t, R) = log
|R|

|{d ∈ R : t ∈ d}|
(2)

Where |R| is the number of documents and |{d ∈
R : t ∈ d}| is the number of documents where the
term is present.

Using Rocchio’s method, the terms of the pro-
cessed BPMN model execution traces associated to
the processed BPMN model fragment that is being
expanded are ordered from highest to lowest sum of
importance into a single document of terms. Once or-
dered, we take in consideration only the first 10 sug-
gested terms and discard the rest, as is recommended
in the literature [28]. The terms are concatenated
into the processed BPMN model fragment, effectively
expanding its linguistic clues. Since the aim of our
approach is to enhance the processed BPMN model
fragment by expanding it with new linguistic clues,
we expand the fragment only with those suggested
terms that do not already appear in it. The expan-
sion process is repeated for all the processed BPMN
model fragments, until all of them are expanded. The
expanded BPMN model fragments are the ultimate
goal that METRA seeks to obtain. Along with the
processed requirement, they are used as query for the
Traceability Links Recovery process.

3.5. Traceability Links Recovery

METRA can be applied to any TLR technique.
However, in our work, we utilize Latent Semantic In-
dexing (LSI), the TLR technique that obtains the
best results when performing TLR between require-
ments and software artifacts [3]. Latent Semantic In-
dexing (LSI) [22] constructs vector representations of
a query and a corpus of text documents by encoding
them as a term-by-document co-occurrence matrix.

9

Once the matrix is built, it is normalized and decom-
posed into a set of vectors using a matrix factoriza-
tion technique called Singular Value Decomposition
(SVD) [22]. Finally, the similarity degree between
the query and each document is calculated through
the cosine between the vectors that represent them.
Scores closer to 1 denote a high degree of similarity,
and scores closer to -1 denote a low degree of simi-
larity. The document with the score closest to 1 will
be the most similar document to the query.

Ke
yw

or
ds

QueryDocuments

ScoresSingular Value Decomposition

EF1 EF2 … EFn Requirement

stop mode 0 1 … 0 1

station 0 0 … 1 0

door 0 2 … 1 1

… … … … … …

Model Fragment
Similitude Scores

EF2 = 0.89

EFn = 0.62

…

EF3 = -0.77

MFN

MF2

Q

MF1

Q

EF2
EFn

EF3

Figure 6: Traceability Link Recovery through Latent Semantic
Indexing

Figure 6 shows an example of the LSI process car-
ried out in our approach. The top part of the fig-
ure shows the term-by-document co-occurrence ma-
trix associated with our running example. For the
sake of simplicity, the matrix shows only a subset of
the terms and a subset of the documents involved in
the creation of the matrix, along with the query. In
our approach, terms are each of the keywords that
compose the processed requirement and expanded
BPMN model fragments (e.g. the term ’station’),
documents are the expanded BPMN model fragments
resulting from the process described in section 3.4
(e.g. an expanded model fragment might result in
the set of terms [’station’, ’door’]), and the query
is the processed requirement for which we want to
find the associated model fragment (e.g. a processed
requirement might result in the set of terms [’stop
mode’, ’door’]). Each cell in the matrix contains the
frequency with which the term of its row appears in

the document denoted by its column. The bottom
left part of the figure shows the result of applying
the SVD technique to the matrix (i.e. the vectors as-
sociated to each of the expanded fragments and query
that appear in the figure). The bottom right part of
the figure shows the resulting similarity scores associ-
ated with each document. The first document in the
ranking is the expanded BPMN model fragment that
is most similar to the processed requirement, and is
thus proposed as the solution for the TLR process.

4. Evaluation

This section presents the evaluation of our ap-
proach, including the research questions that arise
from our work, the experimental setup devised to re-
spond to the research questions, a description of the
case study where we applied the evaluation, and the
implementation details of our approach.

4.1. Research Questions

From our work, two research questions arise:

RQ1 Does METRA improve the results obtained by
baseline techniques in a statistically significant
manner?

RQ2 Is it possible to combine METRA with other
expansion-based TLR techniques to further en-
hance TLR results?

According to the principles presented in [29], in or-
der to test that a particular piece of research satisfies
its goals, it is necessary to falsify the opposite. In
other words, it becomes necessary to formulate the
opposite hypothesis (i.e.: the approach is not able
to satisfy the intended goal), and to be able to reject
the formulated opposite hypothesis. The opposite hy-
pothesis is known as the null hypothesis. According
to [29], conclusions about the validity of the research
and the satisfaction of the intended goals by the ap-
proach can be drawn only after rejecting the null hy-
pothesis. Therefore, towards our research questions,
we formulate the following null hypotheses:

H1 METRA does not improve the results of baseline
techniques in a statistically significant manner.

10

H2 It is not possible to combine METRA with other
expansion-based TLR techniques to further en-
hance TLR results.

Through our work, we aim to falsify the null hy-
potheses, in order to test that METRA improves
the results of basic baseline techniques and of other
expansion-based TLR techniques, and that METRA
can be combined with other expansion-based TLR
techniques to further improve the outcomes for the
TLR process over BPMN models. To that extent,
we have based the evaluation of our work through
the requirements and BPMN models that comprise a
real-world industrial case study, involving the control
software of the trains manufactured by our industrial
partner. The rest of this section is devoted to the
definition of the evaluation process.

4.2. Experimental Setup

The goal of this experiment is to perform TLR be-
tween requirements and BPMN models through ME-
TRA. We compare the results of METRA against
(1) the results obtained by a basic TLR baseline and
(2) the results obtained by another expansion-based
TLR baseline. The baselines against which we com-
pare our work are (1) plain TLR through LSI without
expansion, and (2) LORE [30], a TLR technique that
expands the requirements through a domain ontology
prior to performing LSI. In addition, we explore the
results of combining both METRA with LORE, that
is, expanding at the same time both the BPMN mod-
els through the linguistic clues in the execution traces
and the requirements through a domain ontology.

Fig. 7 shows an overview of the process followed to
perform the evaluation. The top part of the figure
shows the inputs, as provided by our industrial part-
ner, which are used to build the test cases. The ap-
proved traceability is used to build the oracles against
which the results of the different approaches are com-
pared.

For each test case, all of the approaches generate
one model fragment each. The model fragments gen-
erated for each test case are compared against their
respective oracles (ground truth), calculating a con-
fusion matrix in the process.

Documentation from Industrial Partner

Requirements BPMN
Models

Approved
Traceability

Test Cases

Measurements Report

LORETLR METRA METRA + LORE

BPMN
Traces

Figure 7: Experimental Setup

A confusion matrix is a table often used to describe
the performance of a classification model on a set
of test data (the best solutions) for which the true
values are known (from the oracle). In our case, each
solution obtained is a model fragment composed of
a subset of the model elements that are part of the
model. Since the granularity is at the level of model
elements, each model element presence or absence is
considered as a classification. The confusion matrix
distinguishes between the predicted values and the
real values classifying them into four categories:

• True Positive (TP): values that are predicted as
true (in the solution) and are true in the real
scenario (the oracle).

• False Positive (FP): values that are predicted as
true (in the solution) but are false in the real
scenario (the oracle).

• True Negative (TN): values that are predicted
as false (in the solution) and are false in the real
scenario (the oracle).

• False Negative (FN): values that are predicted
as false (in the solution) but are true in the real
scenario (the oracle).

Then, some performance measurements are derived
from the values in the confusion matrix. In par-
ticular, we report four performance measurements

11

for each baseline and approach: recall, precision, F-
measure and the Matthews Correlation Coefficient
(MCC) [31, 32].

Recall measures the number of elements of the so-
lution that are correctly retrieved by the proposed
solution and is defined as follows:

Recall =
TP

TP + FN

Precision measures the number of elements from
the solution that are correct according to the ground
truth (the oracle) and is defined as follows:

Precision =
TP

TP + FP

F-measure corresponds to the harmonic mean of
precision and recall and is defined as follows:

F -measure = 2 ∗ Precision ∗Recall

Precision + Recall

The MCC is a correlation coefficient between the
observed and predicted binary classifications that
takes into account all the observed values (TP, TN,
FP, FN), and is defined as follows:

MCC =
TP · TN − FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Recall values can range between 0% (no single
model element from the oracle is present in the re-
trieved fragment) to 100% (all the model elements
from the oracle are present in the retrieved fragment).
Precision values can range between 0% (no model el-
ements from the retrieved fragment appear in the or-
acle) to 100% (all the model elements from the re-
trieved fragment appear in the oracle).

Precision and recall results can be classified in dif-
ferent categories, according to the quality of the ob-
tained results. In particular, the quality in terms
of precision and recall can be classified as non-
acceptable, acceptable, good and excellent [33, 34].
Table 1 presents the reference values for such a clas-
sification.

MCC values can range between -1 (which means
that there is no correlation between the prediction
and the solution) to 1 (which means that the pre-
diction is perfect). Moreover, an MCC value of 0

Classification Precision Recall
Non-acceptable <20% <60%
Acceptable 20%-29% 60%-69%
Good 30%-49% 70%-79%
Excellent 50%-100% 80%-100%

Table 1: Precision and recall classification

corresponds to a random prediction, where the corre-
lation between the predicted values and the solution
has been attained by chance.

4.3. Case Study

The case study where we applied our approach was
provided by our industrial partner, CAF2, a world-
wide provider of railway solutions. Our evaluation
includes 140 test cases, with each test case compris-
ing one requirement, one execution trace, one model,
and the approved traceability between the require-
ment and the model. The requirements have about
25 words on average, the execution traces comprise
about 320 words on average, and the models are
formed through 650 elements on average.

4.4. Implementation details

A prototype of our approach can be found on-
line along with the results presented in this paper
at https://bitbucket.org/svitusj/lore-metra/.
For the development of the NLP operations used in
both our approach and the baseline, we have used
the OpenNLP Toolkit [35]. To implement the LSI
and SVD techniques, the Efficient Java Matrix Li-
brary (EJML) was used [36]. For the evaluation, we
used a HP ProBook 440 G5 laptop, with a proces-
sor Intel(R) Core(TM) i5-7200U @ 2.5GHz with 8GB
RAM and Windows 10 (64-bit).

5. Results

This section of the paper is divided into three main
parts: Section 5.1 describes the results, Section 5.2
statistically analyzes the results to test the presented
null hypotheses, and Section 5.3 summarizes the out-
comes of our research.

2http://www.caf.es/en

12

5.1. Descriptive statistics

5.1.1. Results values

Table 2 outlines the results of the TLR base-
line, the LORE baseline, our METRA approach, and
the combination of our METRA approach with the
LORE baseline. Each row shows the precision, recall,
F-measure, and MCC values obtained through each
of the approaches. The best values of each category
are highlighted in the table in light grey.

Precision Recall F-measure MCC
TLR baseline 59.3%±29.6% 45.5%±34.2% 52.4%±31.9% 0.31±0.13
LORE baseline 79.2%±33.6% 50.2%±30.6% 66.5%±38.6% 0.62±0.32
METRA 74.2%±14.2% 72.4%±15.9% 72.4%±13.4% 0.63±0.15
METRA+LORE 78.8%± 9.7% 73.9%±15.3% 75.6%±11.6% 0.66±0.13

Table 2: Mean Values and Standard Deviations for Precision,
Recall, F-measure, and MCC

5.1.2. Results analysis

Fig. 8 shows the distribution of the results for the
140 test cases in each of the baseline approaches, the
METRA approach, and the approach that combines
METRA with LORE.

The figure depicts, in a graphical manner, the data
provided in the table. In the figure, it is possible
to appreciate that while standalone LORE achieves
better precision results (albeit with a high standard
deviation), approaches based on METRA attain im-
proved results in terms of recall, which amounts for
the improvements in F-measure and MCC. Specifi-
cally, in terms of F-measure, it is possible to appre-
ciate that more than three quarters of the values for
F-measure of the METRA approach are above the
lower 50% values of standalone LORE, and that all
the values of the approach that combines METRA
with LORE are above the lower 50% values of stan-
dalone LORE.

Table 3 categorizes the values obtained by the ap-
proaches according to the classification of precision
and recall results provided in table 1. Results show
that the approaches that include METRA main-
tain the excellent precision obtained by baseline ap-
proaches, while also improving recall from the un-
acceptable values obtained by the baselines to good
values. In particular, the increase in recall up to
73.9% leads the combination of METRA with LORE

to obtain the best average results, with a 75.6% in F-
measure and 0.66 in the MCC, being only surpassed
in precision by the LORE baseline on a 0.4% mar-
gin, before accounting for the high standard deviation
presented by the latter. In that sense, it is possible to
appreciate from the results that the inclusion of ME-
TRA in TLR, either on its own or in combination
with LORE, leads to decreases in standard deviation
in all measurements in comparison with the baseline
approaches.

Precision Recall
TLR baseline Excellent Non-acceptable
LORE baseline Excellent Non-acceptable
METRA Excellent Good
METRA+LORE Excellent Good

Table 3: Classification of Precision and Recall values for each
of the approaches

5.2. Hypothesis testing

The obtained results look promising and indicate
that approaches based on METRA improve the re-
sults obtained by the baselines in use. However, it
is necessary to address whether the improvements
are statistically significant. To assess whether there
are significant differences in performance between the
baselines and approaches based on METRA, their re-
sults must be properly compared through statistical
methods, following the guidelines presented in [37].
The goals of the statistical analysis are twofold: (1)
provide formal evidence that approaches based on
METRA do in fact have an impact on the comparison
measurements, and (2) show that the differences are
significant in practice. To enable statistical analysis,
all configurations should be run a large enough num-
ber of times independently to collect information on
the probability distribution. A statistical test should
then be run to assess whether there is enough em-
pirical evidence to claim that there are differences
between the configurations.

5.2.1. Statistical methods

Null hypothesis H1, defined in Section 4 along with
the research questions, states that METRA does not
improve the results of baseline techniques in a statis-
tically significant manner. The statistical tests aim

13

Figure 8: Distribution of precision, recall, F-measure and MCC
for the baselines and METRA-based approaches

to falsify this null hypothesis. Statistical tests pro-
vide a probability value, the p-value, which can range
in values from 0 to 1. The lower the p-value of a test,
the more likely that the null hypothesis can be falsi-

fied. It is accepted by the research community that a
p-value under 0.05 is statistically significant [37] to-
wards falsifying the null hypotheses. The statistical
test that must be followed depends on the proper-
ties of the data. Since our data does not follow a
normal distribution, our analysis requires the usage
of non-parametric techniques. Of the several avail-
able tests for analyzing this kind of data, the Quade
test is more powerful than other tests when working
with real data [38], and according to [39], has shown
better results than other tests when the number of
algorithms is low (no more than 4 or 5 algorithms).

However, statistically significant differences can be
obtained even when they are so small as to be of no
practical value. Effect size measurements are needed
to analyze this factor. For a non-parametric effect
size measure, we use Vargha and Delaney’s Â12 [40].
Â12 measures the probability that running one ap-
proach yields higher values than running another ap-
proach. With the Â12 statistic, the approaches are
compared in pairs. If the Â12 statistic obtains a value
greater than 0.5, the comparison will be in favor of
the first approach in the pair. If the Â12 statistic ob-
tains a value lesser than 0.5, the comparison will be
in favor of the second approach of the pair. If the two
approaches are equivalent, then the Â12 statistic will
obtain a value of 0.5. This can be better illustrated
through a few examples:

• A value of Â12 = 0.52 means that on 52% of the
runs, the first of the pair of compared approaches
would obtain better results than the second ap-
proach of the pair.

• A value of Â12 = 0.24 means that on 76% of the
runs, the second of the pair of approaches would
obtain better results than the first approach of
the pair.

5.2.2. Statistical analysis results

Regarding statistical significance, the Quade test
returns a p-value of 0.00204 for precision and a p-
value of 1.4x10−16 for recall. Since the values ob-
tained by the Quade test are all below the 0.05
threshold, we can conclude that there are significant
differences between the outcomes of the approaches

14

under evaluation. Hence, we can falsify null hy-
pothesis H1, and conclude that there are statisti-
cally significant differences between the baseline and
METRA-based approaches.

Regarding the effect size statistics, table 4 shows
the Â12 values for precision and recall. The Â12 val-
ues shown in the table reflect the scenario depicted
by the results and box-plots of Fig. 8:

• Basic TLR is outperformed by the rest of the
approaches in terms of both precision and recall.
Remarkably, basic TLR attains near statistical
equivalence with standalone LORE in terms of
recall.

• Standalone LORE outperforms both METRA
and the combination of METRA with LORE in
terms of precision. In turn, standalone LORE
is outperformed by both of the METRA-based
approaches in terms of recall.

• Finally, METRA and the combination of ME-
TRA with LORE obtain values close to 0.5 in
both precision and recall. Even though Â12 re-
sults are slightly in favour of the combination of
METRA with LORE, the obtained values reflect
the near statistical equivalence of both that can
be appreciated in the results table and figure.

Compared approaches Precision Recall
TLR vs. LORE 0.2765 0.4620
TLR vs. METRA 0.3145 0.1162
TLR vs. METRA+LORE 0.2901 0.0872
LORE vs. METRA 0.6761 0.1677
LORE vs. METRA+LORE 0.6395 0.1405
METRA vs. METRA+LORE 0.4427 0.4942

Table 4: Vargha and Delaney’s Â12 statistic

5.3. Summary of results

From the obtained results and the performed sta-
tistical analysis, it is possible to draw conclusions
from our research, in the form of responses to the
research questions posed in Section 4:

RQ1 Does METRA improve the results obtained by
baseline techniques in a statistically significant
manner?

Yes. Null hypothesis H1 states that METRA
does not improve the results of baseline tech-
niques in a statistically significant manner. How-
ever, the results obtained by the METRA ap-
proach, along with the statistical tests carried
out in Section ??, falsify this null hypothesis.
Hence, we can conclude that METRA improves
the results obtained by baseline techniques in a
statistically significant manner.

RQ2 Is it possible to combine METRA with other
expansion-based TLR techniques to further en-
hance TLR results?

Yes. Null hypothesis H2 states that it is
not possible to combine METRA with other
expansion-based TLR techniques to further en-
hance TLR results. However, as seen on Sec-
tion 5, the combination of METRA with LORE
yields better results than those obtained by the
baselines and by standalone METRA. Moreover,
the statistical tests carried out in Section ??
show that the obtained improvements are statis-
tically significant. Hence, we can falsify this null
hypothesis, and conclude that it is not only pos-
sible to combine METRA with other expansion-
based techniques, but that the combination of
METRA with other expansion-based techniques
is able to further enhance the results of TLR over
requirements and BPMN models.

Overall, the outcomes of our research attest that
expanding the linguistic load and the amount of lin-
guistic clues of the software artifacts in use has a
beneficial impact on the results of TLR over require-
ments and BPMN models.

6. Discussion

By inspecting the results of the approaches, we
have researched a series of facts that help explain
why leveraging the linguistic clues in execution traces
through METRA improves the results of the TLR
process between requirements and BPMN models:

15

(1) Some of the elements in the fragments are rel-
evant for the implementation of a particular require-
ment, but contain little to no text. Without the ex-
pansion of the fragments through execution traces,
those particular elements cannot display their rel-
evance. Hence, the fragments containing such ele-
ments are often disregarded by TLR and LORE, since
LSI determines that query terms do not appear in
the fragment. On the other hand, METRA adds the
missing linguistic clues to the fragments containing
those elements, making them more relevant for LSI.

(2) Some elements in the models are conformed by
terms and words that are representative of their func-
tions for human software engineers, but those terms
and words are not necessarily aligned with all the
underlying actions performed by the element or with
the vocabulary in the requirements. The inclusion of
execution traces with METRA leads to a reduction of
this vocabulary mismatch, which in turn helps iden-
tify the true relevancy of the fragments containing
those elements.

(3) In TLR and LORE, smaller fragments are of-
ten prioritized, since bigger fragments tend to present
more elements with the problems depicted in points
(1) and (2), which in turn impacts their relevancy
score. With smaller solution fragments, precision is
maximized, but recall values suffer because many cor-
rect elements are left out of the solution. Thanks to
the inclusion of execution traces, problems (1) and (2)
are mitigated, and through the addition of linguistic
clues, METRA is capable of determining the rele-
vancy of bigger fragments with more accuracy, taking
them as solutions more often, which in turn leads to
an increase in recall.

(4) The addition of this bigger model fragments
impacts precision negative in METRA, since incor-
rect elements are also added to the solution. How-
ever, as more elements are present in a fragment,
more execution traces are taken in account to ex-
pand the fragment. With more documents, Rocchio
is capable of providing an improved list of relevant
terms for the expansion. The improved list of terms
and the diminishing of the vocabulary mismatch be-
tween fragments and requirements discussed in point
(2) help mitigate the impact that taking bigger frag-
ments has on precision.

(5) TLR and LORE suffer from greater standard
deviations than the approaches where METRA is in-
volved. Since both TLR and LORE depend only
on the linguistic clues in requirements to obtain the
similitude values, a poorly formulated query leads to
poor results, whereas a good query leads to strongly
improved results. In METRA, the execution traces
act as an intermediate artifact that helps unify the
language of queries and fragments, bridging the gap
between the linguistic clues in both. Therefore, ap-
proaches based in METRA are less sensible to the
quality of the software artifacts in use, improving the
robustness of the results and reducing the difference
between the best and worse results. However, this
does not make approaches based in METRA imme-
diately immune to problems in the quality of the soft-
ware artifacts in use, including the quality of execu-
tion traces. Thus, studying the quality of the content
of requirements and execution traces and how to en-
sure it remains as future work.

7. Threats to validity

In this section, we use the classification of threats
to validity of [29] to acknowledge the limitations of
our approach. The threats to the validity of our ap-
proach [29] are classified into four categories: conclu-
sion validity, internal validity, construct validity, and
external validity.

• Conclusion validity: This validity is con-
cerned with the relationship between the treat-
ment and the outcome. In other words, we must
ensure that the research is not tailored for the
data or vice-versa, also making sure that the re-
lationship of the authors with the dataset is of a
purely scientific nature.

To minimize this threat, we have based our work
on research questions and disproving null hy-
potheses through widespread statistical tests. In
addition, the requirements and BPMN models
used in our approach were taken from an indus-
trial case study, and none of the authors of this
work was involved in the generation of the data.
Furthermore, we were not involved with the de-
velopment of the execution traces nor with the

16

development of the code that generated those
execution traces. As a matter of fact, the ex-
ecution traces were provided by our industrial
partner along with the rest of the software arti-
facts in use for this particular piece of research.

• Internal Validity: If a relationship is observed
between the treatment and the outcome, we
must make sure that it is a causal relationship,
and that it is not a result of a factor of which we
have no control or have not measured. In other
words, that the treatment causes the outcome
(the effect).

To minimize this threat, we have utilized the
same natural language processing techniques
as preprocessing over the requirements and
BPMN models. Moreover, we have followed the
same evaluation process for all the evaluated
approaches (the baselines and the approaches
based on METRA). In addition, the available
case study represents a wide scope of different
scenarios in an accurate manner.

• Construct validity: This validity is concerned
with the relation between theory and observa-
tion. If the relationship between cause and ef-
fect is causal, we must ensure two things: (1)
that the treatment reflects the construct of the
cause well, and (2) that the outcome reflects the
construct of the effect well.

To minimize this threat, our evaluation is per-
formed around four widespread measurements:
precision, recall, f-measure, and the MCC. These
measurements are widely accepted and utilized
in the state of the art literature. Moreover, we
have used the same kinds of software artifacts
for all the approaches (requirements, execution
traces, and BPMN models), representing the
same scenarios (processes in an industrial case
study) so the results can be generalized among
constructs.

• External Validity: The external validity is
concerned with generalization. If there is a
causal relationship between the construct of the
cause, and the effect, can the result of the study

be generalized outside the scope of our study? Is
there a relation between the treatment and the
outcome?

All the artifacts in use (requirements, BPMN
models, and traces) are frequently leveraged to
specify and analyze all kinds of different pro-
cesses. In addition, while it is true that the
traces are generated through an in-house so-
lution by our industrial partner, logging natu-
ral language traces is a common practice in all
kinds of software development scenarios. The
real-world industrial BPMN models used in our
research are a good representative of the rail-
way, automotive, aviation, and general industrial
manufacturing domains. Our approach does not
rely on the particular conditions of those do-
mains. In other words, we have not defined
METRA based on the case study, but we have
rather defined METRA and then applied the ap-
proach on the case study. Hence, our approach
can potentially work in any scenarios where re-
quirements, natural language traces, and BPMN
models are available as inputs. Nevertheless, our
results should be replicated with other case stud-
ies before ensuring their external generalization.
Finally, in the railway domain it is common to
need to certify both the software that runs the
trains and the trains themselves, which implies
providing evidence of requirements traceability.
The experimental setup of the paper builds on
those needs and serves as a means of providing
traceability evidence in practice.

8. Related Work

Works related to this one can be found mainly
within two different fields of research in the areas of
Traceability Links Recovery, and the study of Soft-
ware Linguistics and their application to Software
Engineering tasks.

8.1. Traceability Links Recovery

The main works related to this one are our pre-
vious works on the topic, presented through [41]

17

and [42]. In [41], we perform TLR between re-
quirements and BPMN models through generalist ap-
proaches. In [42], we improve TLR between require-
ments and models through an ontological expansion
of the requirements (LORE). While [42] deals with
improving the requirements used as input for TLR,
the currently presented work focuses on improving
the BPMN linguistic clues through the inclusion of
execution traces into the process. The findings from
this work and those presented in [42] are complemen-
tary, as proven by this paper.

Other works related to our research are mainly
found within the knowledge area of Traceability Links
Recovery. CERBERUS [43] provides a hybrid tech-
nique that combines information retrieval, execution
tracing, and prune dependency analysis allowing to
perform TLR between requirements and code. Eaddy
et al. [44] present a systematic methodology for iden-
tifying which code is related to which requirement,
and a suite of metrics for quantifying the amount of
crosscutting code. Marcus and Maletic [45] use LSI
for TLR between code and documentation (manuals,
design documentation, requirement documents, test
suites). Antoniol et al. [46] propose a method based
on information retrieval for TLR between source code
and free text documents, such as, requirement spec-
ifications, design documents, manual pages, system
development journals, error logs, and related mainte-
nance reports. Zisman et al. [47] automate TLR be-
tween requirements and object models using heuris-
tic rules. These approaches perform TLR between
different kinds of software artifacts, mainly code, but
none of them perform TLR between requirements and
BPMN models.

Regarding the extraction of BPMN model
fragments from a base BPMN model, Piotr
Wísniewski [48] presents an approach towards the
automatic decomposition of BPMN models accord-
ing to a desired number of elements. The main goal
of the approach is to retrieve a library of design pat-
terns that can act as reusable components for build-
ing models and software systems. In our approach,
we use an algorithm to extract a population of BPMN
fragments that is not based on a particular desired
number of elements, but rather, that is used to ex-
plore a large search space of which not all the details

are available. In addition, our goal is not to generate
reusable components, but to retrieve the closer model
fragment to a particular requirement, which can then
be used for a variety of software tasks besides reuse.

Other works target the application of LSI to TLR
tasks. De Lucia et al. [49] present a TLR method
and tool based on LSI in the context of an artifact
management system, which includes models.The pa-
per presented in [50] takes in consideration the pos-
sible configurations of LSI when using the technique
for TLR between requirement artifacts, namely re-
quirements and test cases. In their work, the au-
thors state that the configurations of LSI depend on
the used datasets, and they look forward to auto-
matically determining an appropriate configuration
for LSI for any given dataset. Through our work,
we do not focus on the usage of LSI or its tuning,
but rather aim to expand the information of BPMN
models to improve TLR between requirements and
BPMN models.

In a previous work [51], we explored TLR in MDD
models, code generation models that must conform to
the MOF standard of the OMG organization. While
both this work and the work presented in [51] deal
with TLR in models, they do so through different
mechanisms and with very different research goals
in mind. While the paper in [51] explores novel di-
rections in Evolutionary Algorithms for TLR guided
by an approach named Learning to Rank, the goal
of this work is to build TLR techniques that cater
to requirements and BPMN models. The work pre-
sented in [51] does not deal with the characteristics
of BPMN models nor with its execution traces. On
the other hand, our work abandons the more gener-
alist approach of [51], which considers MDD models
in general, in favor of exploring the peculiarities of
BPMN models. In that sense, this work explores the
unique aspects of BPMN semantics, and exploits the
information available in BPMN execution traces with
the main goal of mitigating the impact that the lack
of inherent semantics in BPMN models has on the
TLR process. The fundamental differences in the ap-
proaches and in the focus presented by both papers
do not mean, however, that the two of them are com-
pletely independent and exclusive of each other, since
there is a shared context in TLR in models. As a mat-

18

ter of fact, our research in TLR for BPMN, presented
in this paper, can benefit from the novel SBSE TLR
techniques introduced in [51], and the study of the
linguistic particularities of models provided in this
piece of work can be used to enhance and/or adapt
the work in [51] for different kinds of models. The
study of the potential collaborations between the two
research branches and their authors remains as future
work.

Finally, our ongoing research in the field has re-
sulted in a novel work [52] that, as this paper does,
aims to enhance the results of the TLR process be-
tween requirements and BPMN models. The novel
research starts from the same premise of this paper,
that is, the lack of inherent linguistic clues in BPMN
models, and explores ways to mitigate such a lack of
linguistics. Even if the goal of both papers is similar,
there are also fundamental differences between the
approaches of both papers. This research work lever-
ages the linguistic clues available in execution traces,
incorporating them to the models in order to enhance
the BPMN artifacts themselves. On the other hand,
the paper in [52] builds upon the identification of
BPMN particularities, and creates a series of rules
based on those particularities that are used to en-
hance the TLR process. Hence, the main fundamen-
tal difference between both papers is the focus of the
approach: while our approach is focused on tackling
the available information in the software artifacts in
use, the approach in [52] tackles the TLR process,
adapting it to the peculiarities of the artifacts. Once
again, the differences in the approaches and in the
focus of the research do not mean that the works are
independent nor exclusive of each other. As a matter
of fact, since one of the papers presents improvements
to the process and the other presents improvements
to the artifacts in use, we reckon that the combina-
tion of this work with the work presented in [52] can
and should be explored, since both approaches seem
compatible and complementary to each other. We
reason that, if we were to combine both approaches,
we would be enhancing all the different parts of our
problem at once, and thus we might potentially find
a more complete solution towards completing our re-
search puzzle.

8.2. Software Linguistics
Other works focus on the impact and application

of linguistics to Software Engineering tasks at several
levels of abstraction. Works like [53] or [54] use lin-
guistic approaches to tackle specific TLR problems
and tasks. In [55], the authors use linguistic tech-
niques to identify equivalence between requirements,
also defining and using a series of principles for eval-
uating their performance when identifying equivalent
requirements. The authors of [55] conclude that, in
their field, the performance of linguistic techniques
is determined by the properties of the given dataset
over which they are performed. They measure the
properties as a factor to adjust the linguistic tech-
niques accordingly, and then apply their principles to
an industrial case study. The work presented in [56]
uses linguistic techniques to study how changes in
requirements impact other requirements in the same
specification. Through the pages of their work, the
authors analyze TLR between requirements, and use
linguistic techniques to determine how changes in re-
quirements propagate. Our work differs from [53]
and [54], since our approach is not based on linguis-
tic techniques as a means of TLR, but we rather ex-
pand the BPMN models to enhance TLR between
requirements and BPMN models. Moreover, we do
not study how linguistic techniques must be tweaked
for specific problems as [55] does. In addition, dif-
fering from [56], we do not tackle changes in require-
ments nor TLR between requirements, but instead
focus our work on TLR between requirements and
BPMN models.

Another field of work puts the focus on aligning
process models with textual descriptions, linking pro-
cess models with textual descriptions, and discover-
ing process models from natural language descrip-
tions. In [57], the authors utilize a tailored linguistic
analysis of each description to align the descriptions
with the elements of the model, and present a tech-
nique that projects knowledge extracted from both
process models and textual descriptions into a uni-
form representation that is amenable for comparison.
In [58], Hugo López et. al. present a tool for build-
ing declarative processes from natural language texts
and then trace changes in the process models back
to the text. Other works by López et. al. [59, 60]

19

build on some of the ideas presented in [58] to pro-
pose methods for process discovery from natural lan-
guage descriptions, and towards linking process mod-
els with their textual views. In our paper, we do not
present a novel representation of the BPMN models
that incorporates knowledge from the textual descrip-
tions as [57] does. In addition, we do not put the fo-
cus on building process models from textual descrip-
tions or discovering processes as the works presented
in [58, 59, 60] do. Rather, we utilize execution traces
to enrich the BPMN models, all with the aim of en-
hancing the TLR process between already existing
software artifacts.

Remaining in the field of work of process and text
alignment, Han van der Aa et. al. proposed an
approach to identify inconsistencies between process
models and their textual descriptions [61] and an ap-
proach that used behavioral spaces to capture all the
possible interpretations of textual process descrip-
tions in a systematic manner for compliance check-
ing [62]. Our work does not deal with compliance
checking and does not consider inconsistencies be-
tween the models and the descriptions. Rather, we
aim to map textual requirements to the BPMN mod-
els.

Other works deal with the extraction of annota-
tions from textual descriptions of process models, and
their usage for several software tasks such as process
mining. The annotations represent a middle-ground
between the unstructured natural language of textual
descriptions and the formal characteristics of model-
ing languages and styles. Quisphi et. al. focused
on delivering an approach for extracting annotations
from process descriptions [63], which they then im-
proved by considering relationships between nearby
sentences [64]. In a later work by Sánchez et. al. [65],
the annotations are used as the central piece of a
framework that enables process modeling on top of
natural language descriptions of processes. This lat-
ter work also opens the possibility for new research
lines in verification, simulation, and query answering
in models on top of textual descriptions of processes.
Our work does not deal with the alignment of pro-
cesses and their textual descriptions, and does not
use annotations extracted from the textual descrip-
tions of the processes, but rather uses another soft-

ware artifact (execution traces) to enhance the text
of BPMN models towards improving traceability be-
tween the models and textual requirements. How-
ever, the annotations proposed in these prior works
might be a valuable source of additional information
that we might leverage in future works to further
enhance the TLR process between requirements and
BPMN models.

Finally, other works, derived from the the research
of the authors of [66, 67, 68], delve in the area of pro-
cess model matching, model to text matching, and
the identification of language patterns with the aim
of transforming BPMN models into natural language
requirements, and natural requirements into BPMN
models. However, to our knowledge, these papers and
their authors have not researched the implications
that these connections between natural language and
BPMN models may have on Information Retrieval
processes such as TLR, as our work does. In any
case, in our paper, we do not claim to have identi-
fied the entirety of the particularities of BPMN mod-
els, nor that the identified particularities provide a
complete coverage over the contents of requirements
and/or BPMN models. The results of our paper are
encouraging, so it is our belief that more work could
be carried out in this particular line of research. In
that sense, the papers presented in [57, 66, 67, 68]
identify ways of aligning text and models that can be
used in the future as a starting point to identify novel
model particularities and language patterns, which
may be used to further refine the TLR process.

9. Conclusions

Through this work, we propose a novel approach
(METRA) that minimizes the impact that the lack of
linguistic clues in BPMN models has on TLR between
requirements and BPMN models. To that extent, the
approach leverages the linguistic clues present in the
BPMN models execution traces to expand the BPMN
models, bridging the gap between the language in use
in the requirements and the BPMN models. We eval-
uated our approach by carrying out METRA between
the requirements and BPMN models that comprise a
real-world industrial case study. Results show that

20

approaches based on METRA maintain the excel-
lent precision results obtained by baseline approaches
(78.8% on average), whilst also improving the re-
call results from the unacceptable values obtained
by the baselines to good values (73.9% on average).
Through the analysis of the obtained results, we dis-
cuss how leveraging the linguistic clues in execution
traces improves the TLR process between require-
ments and BPMN models, so that further research
can delve into this promising direction explored by
our work.

Acknowledgements

This work was supported in part by the Ministry of
Economy and Competitiveness (MINECO) through
the Spanish National R+D+i Plan and ERDF funds
through Project ALPS under Grant RTI2018-096411-
B-I00, and in part by the Gobierno de Aragón (Spain)
(Research Group S05 20D).

References

[1] M. Brambilla, J. Cabot, and M. Wimmer,
Model-Driven Software Engineering in Practice,
1st ed. Morgan & Claypool Publishers, 2012.

[2] L. A. Macaulay, Requirements engineering.
Springer Science & Business Media, 2012.

[3] S. Winkler and J. Pilgrim, “A Survey of Trace-
ability in Requirements Engineering and Model-
Driven Development,” Software and Systems
Modeling (SoSyM), vol. 9, no. 4, pp. 529–565,
2010.

[4] G. Loniewski, E. Insfran, and S. Abrahão,
“A systematic review of the use of require-
ments engineering techniques in model-driven
development,” in International Conference on
Model Driven Engineering Languages and Sys-
tems. Springer, 2010, pp. 213–227.

[5] J. Font, L. Arcega, Ø. Haugen, and C. Cetina,
“Feature Location in Models Through a Ge-
netic Algorithm Driven by Information Retrieval
Techniques,” in Proceedings of the ACM/IEEE

19th International Conference on Model Driven
Engineering Languages and Systems, ser. MOD-
ELS ’16. ACM, 2016.

[6] J. Martinez, T. Ziadi, T. F. Bissyande, J. Klein,
and Y. Le Traon, “Automating the extraction of
model-based software product lines from model
variants (t),” in 2015 30th IEEE/ACM Interna-
tional Conference on Automated Software Engi-
neering (ASE). IEEE, 2015, pp. 396–406.

[7] J. Martinez, T. Ziadi, M. Papadakis, T. F.
Bissyandé, J. Klein, and Y. Le Traon, “Fea-
ture location benchmark for extractive software
product line adoption research using realistic
and synthetic eclipse variants,” Information and
Software Technology, vol. 104, pp. 46–59, 2018.

[8] J. Krüger, M. Mukelabai, W. Gu, H. Shen,
R. Hebig, and T. Berger, “Where is my feature
and what is it about? a case study on recover-
ing feature facets,” Journal of Systems and Soft-
ware, vol. 152, pp. 239–253, 2019.

[9] M. Chinosi and A. Trombetta, “BPMN: An In-
troduction to the Standard,” Computer Stan-
dards & Interfaces, vol. 34, no. 1, pp. 124–134,
2012.

[10] R. Oliveto, M. Gethers, D. Poshyvanyk, and
A. De Lucia, “On the Equivalence of Informa-
tion Retrieval Methods for Automated Trace-
ability Link Recovery,” in 2010 IEEE 18th In-
ternational Conference on Program Comprehen-
sion. IEEE, 2010, pp. 68–71.

[11] R. Watkins and M. Neal, “Why and How of
Requirements Tracing,” IEEE Software, vol. 11,
no. 4, pp. 104–106, 1994.

[12] A. Ghazarian, “A Research Agenda for Software
Reliability,” IEEE Reliability Society 2009 An-
nual Technology Report, 2010.

[13] P. Rempel and P. Mäder, “Preventing Defects:
the Impact of Requirements Traceability Com-
pleteness on Software Quality,” IEEE Transac-
tions on Software Engineering, vol. 43, no. 8, pp.
777–797, 2017.

21

[14] Y. Zhang, R. Witte, J. Rilling, and V. Haarslev,
“Ontological Approach for the Semantic Recov-
ery of Traceability Links Between Software Arte-
facts,” IET software, vol. 2, no. 3, pp. 185–203,
2008.

[15] O. C. Gotel and C. Finkelstein, “An Analysis
of the Requirements Traceability Problem,” in
Proceedings of the First International Confer-
ence on Requirements Engineering. IEEE, 1994,
pp. 94–101.

[16] G. Spanoudakis and A. Zisman, “Software
Traceability: a Roadmap,” Handbook of Soft-
ware Engineering and Knowledge Engineering,
vol. 3, pp. 395–428, 2005.

[17] R. M. Parizi, S. P. Lee, and M. Dabbagh,
“Achievements and Challenges in State-of-the-
Art Software Traceability between Test and
Code Artifacts,” IEEE Transactions on Relia-
bility, vol. 63, no. 4, pp. 913–926, 2014.

[18] J. Rubin and M. Chechik, “A Survey of Feature
Location Techniques,” in Domain Engineering.
Springer, 2013, pp. 29–58.

[19] F. Pérez, J. Font, L. Arcega, and C. Cetina,
“Collaborative Feature Location in Models
through Automatic Query Expansion,” Auto-
mated Software Engineering, vol. 26, no. 1, pp.
161–202, 2019.

[20] P. He, Z. Chen, S. He, and M. R. Lyu, “Char-
acterizing the natural language descriptions in
software logging statements,” in Proceedings of
the 33rd ACM/IEEE International Conference
on Automated Software Engineering, 2018, pp.
178–189.

[21] D. Yuan, S. Park, and Y. Zhou, “Characteriz-
ing logging practices in open-source software,” in
34th International Conference on Software En-
gineering (ICSE). IEEE, 2012, pp. 102–112.

[22] T. K. Landauer, P. W. Foltz, and D. Laham,
“An Introduction to Latent Semantic Analysis,”
Discourse Processes, vol. 25, no. 2-3, pp. 259–
284, 1998.

[23] F. Meziane, N. Athanasakis, and S. Anani-
adou, “Generating Natural Language Specifica-
tions from UML Class Diagrams,” Requirements
Engineering, vol. 13, no. 1, pp. 1–18, 2008.

[24] A. Hulth, “Improved Automatic Keyword Ex-
traction Given more Linguistic Knowledge,”
in Proceedings of the Conference on Empirical
Methods in Natural Language Processing, 2003,
pp. 216–223.

[25] G. Capobianco, A. De Lucia, R. Oliveto,
A. Panichella, and S. Panichella, “On the Role of
the Nouns in IR-Based Traceability Recovery,”
in Program Comprehension, 2009. ICPC’09.
IEEE 17th International Conference on. IEEE,
2009, pp. 148–157.

[26] G. Salton, The SMART Retrieval System - Ex-
periments in Automatic Document Processing.
Prentice-Hall, Inc., 1971.

[27] B. Sisman and A. C. Kak, “Assisting code search
with automatic query reformulation for bug lo-
calization,” in Proceedings of the 10th Work-
ing Conference on Mining Software Repositories,
2013, pp. 309–318.

[28] C. Carpineto and G. Romano, “A Survey of Au-
tomatic Query Expansion in Information Re-
trieval,” ACM Comput. Surv., pp. 1:1–1:50,
2012.

[29] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson,
B. Regnell, and A. Wesslén, Experimentation in
Software Engineering. Springer Science & Busi-
ness Media, 2012.

[30] R. Lapeña, F. Pérez, C. Cetina, and Ó. Pastor,
“Improving traceability links recovery in pro-
cess models through an ontological expansion
of requirements,” in International Conference
on Advanced Information Systems Engineering.
Springer, 2019, pp. 261–275.

[31] G. Salton and M. J. McGill, Introduction to
Modern Information Retrieval. New York, NY,
USA: McGraw-Hill, Inc., 1986.

22

[32] A. Marcus, A. Sergeyev, V. Rajlich, and
J. Maletic, “An Information Retrieval Approach
to Concept Location in Source Code,” in Pro-
ceedings of the 11th Working Conference on Re-
verse Engineering, Nov 2004, pp. 214–223.

[33] T. Vale and E. S. de Almeida, “Experimenting
with information retrieval methods in the recov-
ery of feature-code SPL traces,” Empirical Soft-
ware Engineering, pp. 1–41, 2018.

[34] J. H. Hayes, A. Dekhtyar, and S. K. Sun-
daram, “Advancing candidate link generation
for requirements tracing: The study of meth-
ods,” IEEE Transactions on Software Engineer-
ing, vol. 32, no. 1, pp. 4–19, 2006.

[35] Apache, “OpenNLP Toolkit for the Pro-
cessing of Natural Language Text,”
https://opennlp.apache.org/, 2017, [Online;
accessed 12-November-2017].

[36] P. Abeles, “Efficient Java Matrix Library,”
http://ejml.org/, 2017, [Online; accessed 9-
November-2017].

[37] A. Arcuri and L. Briand, “A Hitchhiker’s Guide
to Statistical Tests for Assessing Randomized
Algorithms in Software Engineering,” Software
Testing, Verification and Reliability, vol. 24,
no. 3, pp. 219–250, 2014.

[38] S. Garćıa, A. Fernández, J. Luengo, and F. Her-
rera, “Advanced Nonparametric Tests for Mul-
tiple Comparisons in the Design of Experiments
in Computational Intelligence and Data Mining:
Experimental Analysis of Power,” Information
Sciences, vol. 180, no. 10, pp. 2044–2064, 2010.

[39] W. J. Conover, Practical nonparametric statis-
tics. John Wiley & Sons, 1998, vol. 350.

[40] A. Vargha and H. D. Delaney, “A Critique and
Improvement of the CL Common Language Ef-
fect Size Statistics of McGraw and Wong,” Jour-
nal of Educational and Behavioral Statistics,
2000.

[41] R. Lapeña, J. Font, C. Cetina, and Ó. Pastor,
“Exploring new directions in traceability link re-
covery in models: The process models case,” in
International Conference on Advanced Informa-
tion Systems Engineering. Springer, 2018, pp.
359–373.

[42] R. Lapeña, F. Pérez, C. Cetina, and Ó. Pastor,
“Improving Traceability Links Recovery in Pro-
cess Models Through an Ontological Expansion
of Requirements,” in International Conference
on Advanced Information Systems Engineering.
Springer, 2019, pp. 261–275.

[43] M. Eaddy, A. V. Aho, G. Antoniol, and Y.-G.
Guéhéneuc, “Cerberus: Tracing Requirements
to Source Code Using Information Retrieval,
Dynamic Analysis, and Program Analysis,” in
ICPC 2008 conference. IEEE, 2008, pp. 53–62.

[44] M. Eaddy, A. Aho, and G. C. Murphy, “Identi-
fying, Assigning, and Quantifying Crosscutting
Concerns,” in Proceedings of the First Interna-
tional Workshop on Assessment of Contempo-
rary Modularization Techniques, 2007, p. 2.

[45] A. Marcus and J. I. Maletic, “Recover-
ing Documentation-to-Source-Code Traceability
Links Using Latent Semantic Indexing,” in Pro-
ceedings of the 25th International Conference on
Software Engineering. IEEE, 2003, pp. 125–135.

[46] G. Antoniol, G. Canfora, G. Casazza, A. de Lu-
cia, and E. Merlo, “Recovering Traceability
Links between Code and Documentation,” IEEE
Transactions on Software Engineering, vol. 28,
no. 10, pp. 970–983, 2002.

[47] A. Zisman, G. Spanoudakis, E. Pérez-Miñana,
and P. Krause, “Tracing Software Requirements
Artifacts,” in Software Engineering Research
and Practice, 2003, pp. 448–455.

[48] P. Wísniewski, “Decomposition of business pro-
cess models into reusable sub-diagrams,” in ITM
Web of Conferences, vol. 15. EDP Sciences,
2017, p. 01002.

23

[49] A. de Lucia et al., “Enhancing an Artefact Man-
agement System with Traceability Recovery Fea-
tures,” in Proceedings of the 20th IEEE Inter-
national Conference on Software Maintenance.
IEEE, 2004, pp. 306–315.

[50] S. Eder, H. Femmer, B. Hauptmann, and
M. Junker, “Configuring Latent Semantic Index-
ing for Requirements Tracing,” in Proceedings
of the 2nd International Workshop on Require-
ments Engineering and Testing, 2015.

[51] A. C. Marcén, R. Lapeña, Ó. Pastor, and
C. Cetina, “Traceability link recovery between
requirements and models using an evolutionary
algorithm guided by a learning to rank algo-
rithm: Train control and management case,”
Journal of Systems and Software, vol. 163, p.
110519, 2020.

[52] R. Lapeña, F. Pérez, C. Cetina, and O. Pastor,
“Leveraging BPMN particularities to improve
traceability links recovery among requirements
and BPMN models,” Requirements Engineering,
pp. 1–26, 2021.

[53] H. Sultanov and J. H. Hayes, “Application of
Swarm Techniques to Requirements Engineer-
ing: Requirements Tracing,” in 18th IEEE Inter-
national Requirements Engineering Conference,
2010.

[54] C. Duan and J. Cleland-Huang, “Clustering
Support for Automated Tracing,” in Proceedings
of the 22nd IEEE/ACM International Confer-
ence on Automated Software Engineering, 2007.

[55] D. Falessi, G. Cantone, and G. Canfora, “Empir-
ical Principles and an Industrial Case Study in
Retrieving Equivalent Requirements via Natural
Language Processing Techniques,” IEEE Trans-
actions on Software Engineering, vol. 39, no. 1,
pp. 18–44, 2013.

[56] C. Arora, M. Sabetzadeh, A. Goknil, L. C.
Briand, and F. Zimmer, “Change Impact Anal-
ysis for Natural Language Requirements: An
NLP Approach,” in IEEE 23rd International Re-
quirements Engineering Conference, 2015.

[57] J. Sànchez-Ferreres, H. van der Aa, J. Carmona,
and L. Padró, “Aligning Textual and Model-
Based Process Descriptions,” Data & Knowledge
Engineering, vol. 118, pp. 25–40, 2018.

[58] H. A. López, S. Debois, T. T. Hildebrandt, and
M. Marquard, “The process highlighter: From
texts to declarative processes and back.” BPM
(Dissertation/Demos/Industry), vol. 2196, pp.
66–70, 2018.

[59] H. A. López, M. Marquard, L. Muttenthaler,
and R. Strømsted, “Assisted declarative pro-
cess creation from natural language descrip-
tions,” in 2019 IEEE 23rd International Enter-
prise Distributed Object Computing Workshop
(EDOCW). IEEE, 2019, pp. 96–99.

[60] H. A. López, R. Strømsted, J.-M. Niyodusenga,
and M. Marquard, “Declarative process discov-
ery: Linking process and textual views,” in In-
ternational Conference on Advanced Informa-
tion Systems Engineering. Springer, 2021, pp.
109–117.

[61] H. van der Aa, H. Leopold, and H. A. Rei-
jers, “Comparing textual descriptions to process
models–the automatic detection of inconsisten-
cies,” Information Systems, vol. 64, pp. 447–460,
2017.

[62] ——, “Checking process compliance against nat-
ural language specifications using behavioral
spaces,” Information Systems, vol. 78, pp. 83–
95, 2018.

[63] L. Quishpi, J. Carmona, and L. Padró, “Extract-
ing annotations from textual descriptions of pro-
cesses,” in International Conference on Business
Process Management. Springer, 2020, pp. 184–
201.

[64] ——, “Improving the extraction of process anno-
tations from text with inter-sentence analysis,”
in International Conference on Process Mining.
Springer, 2020, pp. 149–161.

24

[65] J. Sànchez-Ferreres, A. Burattin, J. Carmona,
M. Montali, L. Padró, and L. Quishpi, “Unleash-
ing textual descriptions of business processes,”
Software and Systems Modeling, pp. 1–23, 2021.

[66] J. Mendling, H. Leopold, L. H. Thom, and
H. van der Aa, “Natural Language Processing
with Process Models (NLP4RE Report Paper),”
in Requirements Engineering FSQ Workshops,
ser. CEUR Workshop Proceedings, vol. 2376.
CEUR-WS.org, 2019.

[67] C. Klinkmüller, I. Weber, J. Mendling,
H. Leopold, and A. Ludwig, “Increasing Recall
of Process Model Matching by Improved Activ-
ity Label Matching,” in Business Process Man-
agement. Springer, 2013, pp. 211–218.

[68] H. Leopold, J. Mendling, and A. Polyvyanyy,
“Supporting Process Model Validation through
Natural Language Generation,” IEEE Transac-
tions on Software Engineering, vol. 40, no. 8, pp.
818–840, 2014.

25

