
Analyzing the Impact of Natural Language Processing
over Feature Location in Models
Raúl Lapeña

SVIT Research Group
Universidad San Jorge, Spain

rlapena@usj.es

Jaime Font
SVIT Research Group

Universidad San Jorge, Spain
jfont@usj.es

Óscar Pastor
Centro de Investigación en

Métodos de Producción de Software
Universitat Politècnica de València, Spain

opastor@pros.upv.es

Carlos Cetina
SVIT Research Group

Universidad San Jorge, Spain
ccetina@usj.es

Abstract
Feature Location (FL) is a common task in the Software En-
gineering field, specially in maintenance and evolution of
software products. The results of FL depend in a great man-
ner in the style in which Feature Descriptions and software
artifacts are written. Therefore, Natural Language Process-
ing (NLP) techniques are used to process them. Through this
paper, we analyze the influence of the most common NLP
techniques over FL in Conceptual Models through Latent
Semantic Indexing, and the influence of human participation
when embedding domain knowledge in the process. We eval-
uated the techniques in a real-world industrial case study in
the rolling stocks domain.

CCSConcepts • Software and its engineering→Model-
driven software engineering; Reusability; • Information
systems → Information retrieval; • Computing method-
ologies → Natural language processing;

Keywords Feature Location, Natural Language Processing,
Information Retrieval

ACM Reference Format:
Raúl Lapeña, Jaime Font, Óscar Pastor, and Carlos Cetina. 2017.
Analyzing the Impact of Natural Language Processing over Fea-
ture Location in Models. In Proceedings of 16th ACM SIGPLAN
International Conference on Generative Programming: Concepts and
Experiences (GPCE’17). ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3136040.3136052

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
GPCE’17, October 23–24, 2017, Vancouver, Canada
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5524-7/17/10. . . $15.00
https://doi.org/10.1145/3136040.3136052

1 Introduction
Feature Location is a common task in the Software Engineer-
ing (SE) field, specially in the maintenance and evolution of
software products. The identification of Features helps with
bug fixing, Feature reuse, or the formalization of Software
Product Lines, amongst other tasks.

Feature Location techniques have been mainly applied to
code. The results of Feature Location in code depend greatly
in the style in which Feature Descriptions, code variables,
and methods are written [17]. Therefore, Natural Language
Processing (NLP) techniques are used to process them, since
NLP has a direct and beneficial impact on the results.

There is a wide range of NLP techniques that can be used
to process text prior to Feature Location [26]. Some of these
techniques comprehend general phrase styling techniques
(e.g.: lowercasing, removal of duplicate words), syntactical
analysis techniques (filtering words through their role in
a sentence, usually achieved through Parts-Of-Speech Tag-
ging) [21], semantic analysis techniques (filtering of words
according to their meaning, usually achieved through se-
mantic root reduction of words to their lemmas) [29], and
human-in-the-loop techniques (e.g.: domain terms extrac-
tion, stopwords extraction). These NLP techniques can be
used independently of one another in most cases and scenar-
ios, and are in fact combined in distinct ways by different
authors depending on implementation circumstances and
the particularities of their research.
For Feature Location in Conceptual Models, new tech-

niques such as Formal Concept Analysis or Clustering have
been emerging on the past years. However, the influence that
NLP techniques (traditionally used for Feature Location in
code) may have on Feature Location in Conceptual Models
is a topic that has not received enough attention yet.
In the following pages, we present a set of custom UML

Conceptual Models (described through the Background Sec-
tion) from a real-world case study. The Models differ from
the code, being the elements and relationships that conform
them expressed with a distinct convention and manner than

https://doi.org/10.1145/3136040.3136052
https://doi.org/10.1145/3136040.3136052
https://doi.org/10.1145/3136040.3136052

GPCE’17, October 23–24, 2017, Vancouver, Canada Raúl Lapeña, Jaime Font, Óscar Pastor, and Carlos Cetina

TCML Syntax

High Voltage
Equipment Contactors Voltage

Converters
Consumer
Equipment

Product Model Product Model Fragment

Circuit
Breaker 1

Converter 1

HVAC PA CCTV

Pantograph 1

Circuit
Breaker 2

Converter 2

Pantograph 2

Circuit
Breaker 3

Circuit
Breaker 1

Converter 1

HVAC PA CCTV

Pantograph 1

Circuit
Breaker 2

Converter 2

Pantograph 2

Circuit
Breaker 3

Model Fragment

Figure 1. Example of Model and Model fragment

the ones typically used for coding. Therefore, it is not possi-
ble to assume without further validation that the NLP tech-
niques that are used for Feature Location in code can be
immediately extrapolated with success to Feature Location
in Conceptual Models.
Through this work, we aim to analyze how the usage of

different combinations of NLP techniques impacts Feature
Location in Models through Latent Semantic Indexing (LSI)
[19, 23], the technique that obtains the best Feature Location
results [31]. Moreover, we elaborate on the impact of hu-
man participation over LSI results when embedding domain
knowledge in the process, through the extended usage of
stopwords and domain terms. We evaluated the techniques
in a real-world industrial case study in the rolling stocks do-
main with our industrial partner, Construcciones y Auxiliar
de Ferrocarriles (CAF).

Results show that using NLP techniques that achieve good
results in Feature Location in code (such as Parts-Of-Speech
Tagging or Lemmatizing) leads to a significant worsening of
the rankings produced by LSI for Feature Location in Models.
Through the Discussion of this work, we provide insight on
why this is the case. For all the possible NLP combinations,
embedding domain knowledge in the NLP process slightly
improves the results. However, domain experts should decide
whether participating in the NLP process to achieve this
slight improvement is worth the effort and time involved.
The paper is structured as follows: Section 2 provides a

background of the Models used through our work. Section
3 presents the Approach to our work. Section 4 formulates

the Research Questions that we aim to respond through our
work. Section 5 details the Experiment designed to tackle the
Research Questions. Section 6 gives insight on the Discussion
of the results of our work. Section 7 presents the Threats
to Validity of our work. Section 8 summarizes the works
related to the presented paper. Finally, Section 9 presents the
conclusions of our work.

2 Background
This section presents the Domain Specific Language (DSL)
used to formalize the Conceptual Models that implement
the train control and management software of the products
manufactured by our industrial partner, called Train Control
Modeling Language (TCML). The TCML is a custom version
of UML used by our industrial partner, that has the expres-
siveness required to describe both the interaction between
the main pieces of equipment installed in a train unit, and
the non-functional aspects related to regulation. It will be
used through the rest of the paper to present a running ex-
ample. For the sake of understandability and legibility, and
due to intellectual property rights concerns, we present an
equipment-focused simplified subset of the TCML.

Fig. 1 depicts one example, taken from a real-world train. It
presents a converter assistance scenario where two separate
pantographs (High Voltage Equipment) collect energy from
the overhead wires, and send it to their respective circuit
breakers (Contactors), which in turn send it to their indepen-
dent Voltage Converters. The converters then power their
assigned Consumer Equipment: the HVAC on the left (the

Analyzing the Impact of NLP over FL in Models GPCE’17, October 23–24, 2017, Vancouver, Canada

Human-In-The-LoopNon-Processed Feature Description
The PLC will inhibit the connection with the panto whenever the
lowering button in the active cabin is pushed, as long as the panto
is in closed state and more than five seconds have passed after the
closing of the circuit breaker, being the doors in off position.

POS Tagged Tokens
Nouns: PLC, connection, button, state, seconds, doors, position.
Verbs: inhibit, pushed, lower, push, close, pass, be.
…

Processed Requirement

PLC, circuit breaker, door,
state

Root-Reduced Tokens
Nouns: PLC, connection, button, state, second, door, position.
Verbs: inhibit, push, lower, push, close, pass, be.
…

Syntactical
Analysis

Root
Reduction

Software
Engineer

Domain Terms
Extraction

Stopwords
Removal

Filtering

Figure 2. Compendium of NLP Techniques

train’s air conditioning system), and the PA (public address
system) and CCTV (television system) on the right.

To formalize theModel fragments used by through the rest
of our work, we use the Common Variability Language (CVL)
[18]. The elements of Fig. 1 highlighted in gray conform an
example Model fragment, including one circuit breaker that
connects Converter 2 to a Consumer Equipment assigned
to Converter 1. This Model fragment is the realization of
the "converter assistance" Feature, allowing the passing of
current from one converter to equipment assigned to its peer
for coverage in case of overload or failure of the first one.

3 Approach
So far, there has been no discussion onwhich NLP techniques
should be applied, nor on which combination (or combina-
tions) of NLP techniques yield the best results when used to
carry out Feature Location in Models. Different authors use
different techniques and combinations of techniques in their
research, guiding their NLP efforts through implementation
circumstances and problem particularities.

The goal of the presented approach is, by targeting a real-
world industrial example, to study the impact of a set of
combinations of the most spread NLP techniques over a
widely accepted Feature Location process, Latent Semantic
Indexing (LSI). By analyzing the success of LSI over different
inputs, generated through the NLP of Feature Descriptions
and Models by distinct technique combinations, we aim to
determine which of them guide LSI to enhanced results.

The following subsections describe the NLP techniques
taken in account through the rest of this work, and the com-
binations of techniques that are considered for further gen-
eration of LSI results.

3.1 NLP Techniques
Fig. 2 is used here to illustrate the whole compendium of
techniques considered through this work, which are detailed
one by one in this section, through the following paragraphs.

3.1.1 Baseline NLP
The most basic NLP technique covered in this work is the
combination of tokenizing, lowercasing, and removal of du-
plicate keywords, which is often used as the most basic NLP
technique for several widely-known LSI examples [14]. As
such, we use it as the baseline for comparing the outcomes of
the considered NLP techniques combinations. We disregard
the complete lack of NLP as baseline since the scope of this
work is the analysis of the outcomes of distinct NLP combi-
nations of techniques, against verifying whether performing
NLP over NL queries is better or not than not doing so.

3.1.2 Syntactical Analysis
Syntactical Analysis (SA) techniques split the words of NL
sentences, analyzing the specific roles of each one of them
in the sentence and determining their grammatical load. In
other words, these techniques determine the grammatical
function of each word in a particular sentence (e.g.: nouns,

GPCE’17, October 23–24, 2017, Vancouver, Canada Raúl Lapeña, Jaime Font, Óscar Pastor, and Carlos Cetina

verbs, adjectives, adverbs, etc.). These techniques, often re-
ferred to as Parts-Of-Speech Tagging (POS Tagging) tech-
niques allow engineers to implement filters for words that
fulfill specific grammatical roles in a sentence, usually opt-
ing for nouns, since these words are the ones that carry the
relevant information about descriptions of Features and ac-
tions [4]. Words like verbs, adverbs, and adjectives are often
filtered out and disregarded.

In Fig. 2, it is possible to appreciate the SA process, with the
POS Tagged Tokens as outcome of syntactically analyzing
a real-world NL Feature Description. Nouns and verbs are
depicted while, for space reasons, the rest of the words are
omitted in the Figure.

3.1.3 Root Reduction
Through the usage of semantic techniques such as Lem-
matizing, words can be reduced to their semantic roots or
lemmas. Thanks to lemmas, the language of the NL Feature
Descriptions is unified, avoiding verb tenses, noun plurals,
and strange word forms that interfere negatively with the
Feature Location processes. Prior to carrying out Root Reduc-
tion (RR) techniques, it is imperative to use SA techniques,
due to the fact that RR techniques are based on word dictio-
naries that are built upon the grammatical role of words in
a sentence. The unification of the language semantics is an
evolution over pure syntactical role filtering that allows for a
more advanced filtering of words in NL Feature Descriptions.

In Fig. 2, it is possible to appreciate the RR process, with the
Root-Reduced Tokens as outcome of the semantic analysis
of the POS Tags derived from the NL Feature Description.
For space reasons, only the lemmas of nouns and verbs are
depicted once again.

3.1.4 Human-in-the-Loop
The inclusion of domain experts and, in particular, software
engineers in Feature Location processes is a widely discussed
topic within the SE community. It is often regarded as bene-
ficial to have some sort of domain knowledge embedded in
automated Feature Location systems, particularly on areas
related to software reuse and software variability. Some of
the techniques derived from humans interacting with Fea-
ture Location processes are Domain Terms Extraction and
Stopwords Removal.

In order to carry out these techniques, Software Engineers
provide two separate lists of terms: one list of terms (both
single-word terms and multiple-word terms) that belongs
to the domain and that must be always kept for analysis,
and a list of irrelevant words that can appear throughout
the entirety of the specification documents and that have no
value whatsoever for the analysis. Both kinds of terms can be
automatically filtered in or out of the final query, depending
on the needs of the domain experts.
In Fig. 2, it is possible to appreciate the Human-in-the-

Loop process, where a software engineer provides both lists

of terms, which are consequently introduced into the final
query, or filtered out of it. We do not consider separating the
techniques and including only one of the lists. Should we
include domain knowledge in our NLP, we should benefit of
the whole of it and not take out a part.

3.1.5 Other Filters
Many other filters can be implemented to make a NL query
(in our particular case, a Feature Description written in Nat-
ural Language) suit the needs of developers and researchers
alike. For instance, a technique not covered in this study is
Stemming (which consists in the reduction of words to their
logical root or stem through a set of logically-related gram-
matical rules). We opted for the inclusion of Lemmatizing
on its place, due to its more precise and advanced nature on
the fulfillment of the same task [3].

3.2 NLP Configurations
When considering the possible configurations for the NLP
techniques, we have taken in account the following facts,
extracted from the prior subsection:

1 Root Reduction cannot be carried out without applying
prior Syntactical Analysis.

2 We include or exclude domain knowledge as a whole.
3 The main goal of our work is to compare the distinct
NLP techniques configurations, but we also aim to ana-
lyze the raw impact of embedding domain knowledge
on NLP over Feature Location in Models.

Taking these three rules as our main standpoint, we have
designed the table presented in Fig. 3. The Figure presents
tree tiers of processing (baseline processing, processing with
syntactical analysis, and full processing), split in two sub-
groups (excluding domain knowledge, and including domain
knowledge), for a total of six possible configurations:

1 Baseline Processing (BP).
2 Baseline Processing + Domain Knowledge (BP-DK).
3 Tier 1 Processing (T1).
4 Tier 1 Processing + Domain Knowledge (T1-DK).
5 Tier 2 Processing (T2).
6 Tier 2 Processing + Domain Knowledge (T2-DK).

In order to test the impact of the aforementioned config-
urations over the Feature Location process, we apply them
to process the input of a widely used Feature Location tech-
nique, Latent Semantic Indexing (LSI). We chose LSI due
to it being the technique that offers best results in Feature
Location [31].

3.3 Latent Semantic Indexing
LSI is an automatic mathematical/statistical technique that
analyzes relationships between queries and documents (bod-
ies of text). It constructs vector representations of both a user
query and a corpus of text documents by encoding them as a

Analyzing the Impact of NLP over FL in Models GPCE’17, October 23–24, 2017, Vancouver, Canada

Baseline Processing Tier 1 Processing Tier 2 Processing

Without
Domain

Knowledge

With
Domain

Knowledge

Filtering

Syntactical
Analysis

Non-Processed
Feature Description

POS-Tagged
Tokens

Processed
Feature

Description

Baseline
Processing

Non-Processed
Feature Description

Processed
Feature

Description Filtering

Syntactical
Analysis

Non-Processed
Feature Description

POS-Tagged
Tokens

Processed
Feature

Description

Root Reduction

Root-Reduced
Tokens

BP

BP-DK

T1

T1-DK

T2

T2-DK

Baseline
Processing

Non-Processed
Feature Description

Processed
Feature

Description

Human-In-The-Loop

Filtering

Syntactical
Analysis

Non-Processed
Feature Description

POS-Tagged
Tokens

Processed
Feature

Description
Filtering

Syntactical
Analysis

Non-Processed
Feature Description

POS-Tagged
Tokens

Processed
Feature

Description

Root Reduction

Root-Reduced
Tokens

Human-In-The-LoopHuman-In-The-Loop

Figure 3. Possible NLP Techniques Configurations

term-by-document co-occurrence matrix, and analyzes the re-
lationships between those vectors to get a similarity ranking
between the query and the documents. Through LSI, we are
able to extract a ranking of the Model fragments according
to their similarity to a provided query Feature Description.
First, a textual representation of the Model fragments is

obtained through the concatenation of the words that appear
on its elements, and preprocessed with the same techniques
as those used to preprocess the Feature Description. As an
example, the full Model presented in the left part of Figure 1,
after preprocessing, would yield the textual representation
"Pantograph Circuit Breaker Converter HVAC Pantograph
Circuit Breaker Converter Circuit Breaker PA CCTV".

Then, the term-by-document co-occurrence matrix is built.
Terms are the words that compose the preprocessed Fea-
ture Description and the preprocessed textual representation
of Model fragments. Documents are the preprocessed tex-
tual representations of the Model fragments. Finally, the
query is formed by one processed Feature Description. Val-
ues of term occurrences in both the documents and the
query are counted, and used to build the term-by-document
co-occurrence matrix. The resulting documents and query
columns are then transformed into vectors, and the relation-
ships between the documents and the query are analyzed to
extract a ranking of the most similar Model fragments for
the Feature Description.

Figure 4 shows an example term-by-document co-occurrence
matrix, with values associated to our case study, the vectors,
and the resulting ranking. In the following paragraphs, an
overview of the elements of the matrix is provided:

• Each row in the matrix stands for each unique key-
word (term) extracted in the first step of our approach.
In Figure 4, it is possible to appreciate a set of represen-
tative keywords in the domain such as ’pantograph’
or ’doors’ as the terms of each row.

• Each column in the matrix stands for the preprocessed
text of each Model fragment in our case study. In Fig-
ure 4, it is possible to appreciate the identifiers of the
Model fragments in the columns such as ’M_KAO001’
or ’M_CIN072’, representing the preprocessed text of
those Model fragments.

• The final column stands for the query. In our approach,
the query column stands for the preprocessed text of
a Feature Description in our case study. In Figure 4,
the identifier of the Feature Description in the query
column (’R_BUD010’) represents its preprocessed text.

• Each cell in the matrix contains the frequency with
which the term of its row appears in the document de-
noted by its column. For instance, in Figure 4, the term
’pantograph’ appears twice in the ’M_KAO001’ prepro-
cessed text and once in the ’R_BUD010’ preprocessed
text.

We obtain vector representations of the documents and
the query columns by normalizing and decomposing the
term-by-document co-occurrence matrix using a matrix factor-
ization technique called singular value decomposition (SVD)
[19, 23]. SVD is a form of factor analysis, or more properly
the mathematical generalization of which factor analysis is
a special case. In SVD, a rectangular matrix is decomposed
into the product of three other matrices. One component

GPCE’17, October 23–24, 2017, Vancouver, Canada Raúl Lapeña, Jaime Font, Óscar Pastor, and Carlos Cetina

M_KAO001 M_AUCK002 … M_CIN072

pantograph 2 3 … 1

hscb 1 0 … 0

enabled cab 0 1 … 0

driving mode 0 1 … 0

lighting 0 0 … 0

doors 0 0 … 0

...

traction 0 1 … 0

Te
rm

s

Processed
Feature Description

Model Fragments
Ranking

M_BUD010

M_KAO001

…

M_CIN072

Q
B

K

A

C

Q: R_BUD010
K: M_KAO001
A: M_AUCK002
B: M_BUD010
C: M_CIN072

Processed Text of Model Fragments Ranking

R_BUD010

1

0

0

0

3

1

...

0

Singular Value Decomposition

Figure 4. Latent Semantic Indexing Example

matrix describes the original row entities as vectors of de-
rived orthogonal factor values, another describes the original
column entities in the same way, and the third is a diagonal
matrix containing scaling values such that when the three
components are matrix-multiplied, the original matrix is
reconstructed.
In Figure 4, a three-dimensional graph of the SVD is pro-

vided. On the graph, it is possible to appreciate the vectorial
representations of some of the matrix columns. For space
reasons, only a small set of the columns is represented. In the
Figure, it is possible to appreciate the B vector (’M_BUD010’
vector) as the closest to the Feature Description vector, fol-
lowed by vectors K, C, and A, which are the vector repre-
sentations of the columns highlighted in the left part of the
matrix.
To measure the similarity degree between vectors, our

approach calculates the cosine between the query vector and
the documents vectors. Cosine values closer to one denote a
higher degree of similarity, and cosine values closer to minus
one denote a lower degree of similarity. Similarity increases
as vectors point in the same general direction (as more terms
are shared between documents). Having this measurement,
our approach orders the Model fragments according to their
similarity degree to the Feature Description.
The relevancy ranking (which can be seen in Figure 4) is

produced according to the calculated similarity degrees. In
this example, LSI retrieves ’M_BUD010’ and ’M_KAO001’ in
the first and second position of the product relevancy ranking
due to the cosines being ’0.9243’ and ’0.8454’, implying a high
similarity degree between the fragments and the Feature
Description. On the other hand, ’M_CIN072’ is returned in a
latter position of the ranking due to its cosine being ’-0.7836’,
a lower similarity degree.

4 Research Questions
Through this section, we aim to clearly establish what is the
scope of our work, and to determine what are the research
questions that we must tackle and have in mind when design-
ing our comparison experiment. From the described problem,
two research questions arise (RQ1 and RQ2), formulated in
the following lines:
RQ1 How do different NLP configurations affect the effi-

ciency and effectiveness of Feature Location in Mod-
els?

RQ2 How are human NLP efforts reflected in the outcome
of Feature Location in Models?

Through the following section, we describe the experi-
ment that we designed to address both research questions,
as well as its results.

5 Experiment
Through the following subsections, we present our real-
world case study, describe the oracle used for our experiment,
detail the design of our experiment, and present the results
of said experiment.

5.1 Case Study
We applied our experiment to a real-world case study from
one of our industrial partners, CAF (Construcciones y Auxil-
iar de Ferrocarriles, available at http://www.caf.net/en).
CAF is a worldwide provider of railway solutions. Their
trains can be seen all over the world and in different forms
(regular trains, subway, light rail, monorail, etc.).

A train unit is furnished with multiple pieces of equipment
through its vehicles and cabins. These pieces of equipment
are often designed and manufactured by different providers,
and their aim is to carry out specific tasks for the train. Some
examples of these devices are traction equipment, compres-
sors, brakes, the pantograph that harvests power from the
overhead wires, etc. The control software of the train unit is

Analyzing the Impact of NLP over FL in Models GPCE’17, October 23–24, 2017, Vancouver, Canada

in charge of making all the equipment cooperate to achieve
the train functionality, while guaranteeing compliance with
the specific regulations of each country. The functionality
of each train is detailed in documents where each desired
Feature is specified through a Natural Language Description.
In turn, the documents are implemented in Models.

For our experiment, CAF provided us with the Feature De-
scriptions and Models of five of their railway solutions, cor-
responding to the cities of Auckland, Bucharest, Cincinnati,
Houston, and Kaohsiung. The trains are configured through
about 100 Features per train, being each Feature described
through one Feature Description. Feature Descriptions, in
turn, have an average of 50 words. Regarding Models, each
train is specified through no less than 8250 Model elements.

CAF also provided both a list of domain terms and a list of
stopwords. The domain terms list comprehends around 300
domain terms, and the stopwords list comprehends around
60words. Both lists were created by a domain expert from the
company with a wide knowledge of the provided software
products.

5.2 Oracle
In order to evaluate the results of our experiment, CAF pro-
vided us with their existing documentation on Feature Loca-
tion between the Feature Descriptions in the specification
documents and the Models. In said documentation on Fea-
ture Location, each Feature Description is mapped to a single
Model fragment. A Model fragment is a subset of elements
of a Model, specified with the Model fragment formaliza-
tion capacities of the Common Variability Language (CVL)
[18]. In other words, for each Feature, we know which is the
associated Model fragment that implements it.
We use the mapping as the oracle for evaluating the im-

pact of each NLP techniques configuration on LSI. In order
to achieve this, we analyze the results of the rankings gener-
ated by LSI, checking the position of the ranking in which
the oracle (correct Model fragment for the input Feature
Description) appears.

5.3 Design of the Experiment
In order to tackle our research questions, we need to study:

1 How Feature Location techniques respond to the dif-
ferent NLP inputs.

2 Whether human-introduced NLP affects the process
and if so, in which manner.

To that extent, we used the aforementioned configura-
tions of NLP techniques along with the priorly described LSI.
The steps through which our experiment is performed are
detailed in the following paragraphs.

The first step is to select a NLP techniques configuration.
With the chosen configuration, we perform the NLP of the
text of all the Feature Descriptions in our case study. The

same NLP is also applied to the textual representation of all
the Model fragments in our case study.
From the NLP strings, all the resulting individual words

are extracted to form a list of words. The list of words (terms),
the NLP text of the Model fragments (documents), and the
NLP text of one Feature Description (query) are used as input
for the LSI technique.

LSI returns a ranking of Model fragments, ordered accord-
ing to the similarity between their NLP textual representa-
tion to the NLP Feature Description. Through the ranking,
and by leveraging the oracle knowledge, we can determine
the ranking position in which the correct Model fragment
for the provided Feature Description appears.
The LSI process is performed several times, taking each

of the Feature Descriptions of our case study as query, in
order to extract the NLP Model fragment rankings for all the
available Feature Descriptions.

Analyzing the positions in which the correct Model frag-
ments appear, we are able to evaluate the relative success
or failure in terms of results and performance of the chosen
NLP techniques configuration over the LSI process.
The described steps (choosing a NLP configuration, NLP

of Feature Descriptions and Model fragments, LSI, impact
analysis) are carried out for the six considered configurations.
By comparing the results of the six configurations, we rate
their global success or failure in terms of performance and
impact on the resulting rankings, and analyze the statistical
impact of humans on the NLP process.
In order to perform our experiment, we used a Lenovo

E330 laptop, with an Intel® Core™ i5-3210M@2.5GHz pro-
cessor, with 16GB RAM and Windows 10 64-bit.

5.4 Statistical Analysis
To properly compare the six NLP configurations, all of the
data resulting from the empirical analysis was analyzed using
statistical methods following the guidelines in [1].

In order to answer the RQs we perform statistical analysis
to: (1) provide formal and quantitative evidence (statistical
significance) that the six NLP configurations do in fact have
an impact on the comparisonmetrics (i.e., that the differences
in the results were not obtained by mere chance); and (2)
show that those differences are significant in practice (effect
size).

5.4.1 Statistical Significance
To enable statistical analysis, all of the configurations should
be run a large enough number of times (in an independent
way) to collect information on the probability distribution
for each configuration. A statistical test should then be run
to assess whether there is enough empirical evidence to
claim (with a high level of confidence) that there is a differ-
ence between the two configurations (e.g., A is better than
B). In order to do this, two hypothesis, the null hypothesis
H0 and the alternative hypothesis H1, are defined. The null

GPCE’17, October 23–24, 2017, Vancouver, Canada Raúl Lapeña, Jaime Font, Óscar Pastor, and Carlos Cetina

hypothesis H0 is typically defined to state that there is no
difference among the configurations, whereas the alternative
hypotheses H1 states that at least one configuration differs
from another. In such a case, a statistical test aims to verify
whether the null hypothesis H0 should be rejected.

The statistical tests provide a probability value, p −value .
The p −value receives values ranging between 0 and 1. The
lower the p − value of a test, the more likely that the null
hypothesis is false. It is accepted by the research community
that a p −value under 0.05 is statistically significant [1], and
so the hypothesis H0 can be considered false.

The test that we must follow depends on the properties of
the data. Since our data does not follow a normal distribution
in general, our analysis requires the use of non-parametric
techniques. There are several tests for analyzing this kind of
data; however, the Quade test is more powerful than the rest
when working with real data [15]. In addition, according to
Conover [5], the Quade test has shown better results than
the others when the number of algorithms is low, (no more
than 4 or 5 algorithms).
However, with the Quade test, is not possible to answer

the following question: Which of the configurations gives
the best performance? In this case, the performance of each
configuration should be individually compared against all
other alternatives. In order to do this, we perform an addi-
tional post hoc analysis. This kind of analysis performs a
pair-wise comparison among the results of each configura-
tion, determining whether statistically significant differences
exist among the results of a specific pair of configurations.
In particular, we apply the Holm Post Hoc procedure, as
suggested by Garcia et al. [15].

5.4.2 Effect Size
When comparing configurations with a large enough number
of runs, statistically significant differences can be obtained
even if they are so small as to be of no practical value [1].
Then, it is important to assess if a configuration performs
statistically better than another and to asses the magnitude
of the improvement. Effect size measures are used to analyze
this.
For a non-parametric effect size measure, we use Vargha

and Delaney’s Â12 [16, 37]. Â12 measures the probability that
using one configuration yields higher performance values
than using another configuration. If the two configurations
are equivalent, then Â12 will be 0.5.

For example, Â12 = 0.7means that we would obtain better
results 70% of the times with the first of the two configura-
tions compared, and Â12 = 0.4 means that we would obtain
better results 60% of the times with the second of the two
configurations. Thus, we have an Â12 value for every pair of
configurations.

5.5 Results
For each NLP techniques configuration, we measured the
best and worst position of the oracles in the rankings gen-
erated by LSI through the steps described in the previous
section, as well as the average position in which the oracle ap-
peared. In other words, for each configuration, we measured
the best, worst, and average position of the correct Model
fragment in the 500 rankings generated via LSI (one rank-
ing per available Feature Description). We also measured
the time that the execution of NLP took for the different
configurations (average time of 25 executions). In the table,
we do not highlight the LSI execution time averages, since
it is practically identical for all the configurations (around
70 seconds). The amount of time associated to create the
Domain Terms and Stopwords List artifacts used to embed
the Domain Knowledge along the techniques (amounting
up to around 3 hours) is also neglected in the table, being a
one-time event that does not account for the performance
of the techniques in the long term. Table 1 shows the results
achieved by LSI when performed over the six configurations:

Table 1. Results per NLP techniques configuration

Best Result Worst Result Average Result Time Taken (s)
BP #1 #14 #5 75
BP-DK #1 #9 #4 79
T1 #11 #26 #16 287
T1-DK #8 #21 #13 295
T2 #5 #19 #11 342
T2-DK #3 #12 #9 376

In the table, it is possible to appreciate that the baseline
processing leads LSI to the best results, with the baseline pro-
cessing with embedded domain knowledge (BP-DK) achiev-
ing slightly better results than its fully automated counter-
part (BP). Both baseline processing combinations achieve a
ranking position #1 as their best result, with BP-DK achiev-
ing a ranking position #9 as its worst result (improving BP’s
#14 in 5 positions) and improving the average result of BP
by 1 position. Regarding timing, BP improves BP-DK by 4
seconds on average after 25 executions of both.

From the results, it is also possible to discern that tier one
processing, in both of its forms (T1 and T1-DK), leads LSI
to worse results with regards to both ranking positions and
performance. The best result presented by T1 is position
#11, and the worst one, #26, with the average appearance of
the oracle in position #16. T1-DK improves the results of T1
in 3 positions for the best result, 5 positions for the worst
result, and 3 positions on average, but its results are still
nowhere near those presented by the baseline. Regarding
timing, the processing performed by T1 takes 287 seconds
on average after 25 executions, beating T1-DK by 8 seconds,
but surpassing the best timing result (BP’s) by 212 seconds.
Finally, the table shows the results obtained by LSI after

applying tier two processing to Feature Descriptions and

Analyzing the Impact of NLP over FL in Models GPCE’17, October 23–24, 2017, Vancouver, Canada

Model fragments. T2 obtains a #5 ranking position as its
best result, a #19 ranking position as its worst result, and
a ranking position of #11 on average. Embedding domain
knowledge on tier two processing, once again, slightly im-
proves the results of its fully automated counterpart. T2-DK
obtains #3 as its best ranking position, #12 as its worst rank-
ing position, and an average #9 position of the oracles in
the rankings. From this results, it is observable that the re-
sults of tier two processing regarding ranking positions beat
those of tier one processing, but are still far from those of the
baseline. In addition, notice that both tier two combinations
are utterly outperformed by the baseline combinations and
the tier one combinations, since after 25 executions, T2 took
342 seconds and T2-DK took 376 seconds on average, which
is 267 and 301 seconds slower than the best average time,
respectively.

5.5.1 Results Statistics
The Quade test applied to the results provides p − Values
smaller than 0.05, which reject the null hypothesis for all the
configuration pairs. Consequently, we can state that there
exist differences in the configurations for the performance
indicator evaluated (mean position in the ranking).

Table 2. Holm’s post hoc p − Values and Â12 statistic for
each pair of configurations

Configurations p −values Â12 measures

BP-DK vs BP 4.4x10−5 0.5966
T1 vs BP ≪ 2x10−16 0.0188
T1-DK vs BP ≪ 2x10−16 0.0711
T2 vs BP ≪ 2x10−16 0.1572
T2-DK vs BP ≪ 2x10−16 0.2605
T1 vs BP-DK ≪ 2x10−16 0
T1-DK vs BP-DK ≪ 2x10−16 0.0183
T2 vs BP-DK ≪ 2x10−16 0.0818
T2-DK vs BP-DK ≪ 2x10−16 0.1628
T1-DK vs T1 4.1x10−15 0.7082
T2 vs T1 ≪ 2x10−16 0.7962
T2-DK vs T1 ≪ 2x10−16 0.9319
T2 vs T1-DK 4.2x10−13 0.6283
T2-DK vs T1-DK ≪ 2x10−16 0.7976
T2-DK vs T2 ≪ 2x10−16 0.6669

Table 2 shows the results of the statistical analysis per-
formed (statistical significance and effect size). The first col-
umn shows each pair of configurations, the second column
shows the p −Values of Holm’s post hoc analysis for each

pair of algorithms, and the third column shows the Â12 statis-
tic for each pair of configurations.
All the p − Values shown in this table are smaller than

their corresponding significance threshold value (0.05), in-
dicating that the differences of performance between those
configurations are significant.
Regarding the effect size, the largest differences were ob-

tained between the T1 and BP-DK configurations (where
the BP-DK configuration achieves better results than the
T1 configuration 100% of times). In general, BP and BP-DK
configurations obtain better results than the competitors for
all the cases. When comparing BP and BP-DK, the configura-
tion that includes Domain Knowledge (BP-DK) will produce
better results around 60% of times.

6 Discussion
The results presented in the previous section suggest that,
when faced with Feature Location in Models, the baseline
processing with embedded domain knowledge guides LSI
to achieving the best possible results. The usage of more
advanced techniques, on the other hand, leads to worse re-
trieval of results. Analyzing the Feature Descriptions, the
Models, and the overall process, we noticed a series of facts
that help explain why this is the case:

1 Verbs and adjectives do appear in the Models, and
thus hold a vital amount of information for the Fea-
ture Location process. In addition, these words do not
vary amongst Feature Descriptions and Models. For
instance, verbs tend to appear always in the infinitive
form (raise, open, etc.), and adjectives are invariable
(electric, empty, etc.). This is not the case for nouns,
which can and in fact do appear in different forms.
For instance, singular and plural forms are indistinctly
used through the Feature Descriptions (door vs. doors),
while in the Models, it is extremely rare to find a plu-
ral form of a noun (there are only 2 occurrences of
plural noun forms in the Models of the 5 trains), since
multiplicity is defined through relationships between
elements and not expressed in the textual representa-
tion of Models.

2 Our approach first uses POS Tagging to identify the
tags of the words, and then uses said tags to filter every
word out of the NLP process, except for nouns. This
fact is propagated to Lemmatizing, which relies on
the outcome of the filtering to perform the necessary
operations to obtain the lemmas of the words. Due to
the prior fact (verbs and adjectives do hold relevant
information in the Models), our usage of these more
complex processes removes a portion of the available
information of the problem, which is useful for the
Feature Location process, while the baseline does not
cause this phenomena. This explains the fact that both
the tier one processing and the tier 2 processing lead

GPCE’17, October 23–24, 2017, Vancouver, Canada Raúl Lapeña, Jaime Font, Óscar Pastor, and Carlos Cetina

LSI to worse results than the baseline. In the future,
we may consider adding other tags such as verbs and
adjectives to the list of words that are not to be fil-
tered out, checking whether their inclusion can lead
to Feature Location improvements.

3 As stated before, the noun words that appear in the
Feature Descriptions are used in different forms in
an indiscriminate manner. When performing the tier
one processing, using only POS Tagging, this leads
to a worsening of the results. The usage of tier two
processing includes Lemmatizing, which serves as a
bridge that unifies the language between the Feature
Descriptions and theModel parts that are left after POS
Tagging. The unification of the language is what causes
the improvement that can be appreciated from tier
one results to tier two results. Still, since Lemmatizing
is performed after POS Tagging, a huge part of the
information is already lost, and thus, the provided
results do not reach the levels of those provided by
the baseline. Due to this fact, we may consider testing
the baseline with the inclusion of Lemmatizing in the
future, while ignoring the POS Tagging filtering. We
believe that, since the baseline includes nouns, it can
also benefit from the language unification provided by
Lemmatizing.

4 Even if we may consider testing other combinations of
techniques or improving the processes through which
they are being used in this work in order to test the per-
formance of results as a case study, time performance
results discourage us to use these techniques for real-
world SE tasks in the environment of the company
we are working with. In contrast with our reduced
dataset, where the operations can be addressed in a
quick and easy manner, in a real-world environment
thousands of Models and Feature Descriptions must
be taken in account, and the execution time of the
different techniques grows exponentially. Time per-
formance is key for the competitiveness of a company
such as our industrial partner, and thus software en-
gineers tasked with Feature Location cannot afford to
wait for results for as long as some NLP techniques re-
quire. Upon revisiting the results, software engineers
immediately preferred the baseline processing, since
it is easier to understand, implement, and manage, as
well as quicker in its execution, allowing them to re-
view Model fragments and retrieve Feature Location
results faster, by post-processing the given rankings
through their domain knowledge and expertise.

5 We confirmed that adverbs and other connector words
do not appear in theModels. Therefore, when counting
occurrences of those words in the Models, the result
is always zero. This leads to the fact that, by default, a
percentage of the rows in the LSI term-by-document

co-occurrence matrix are introduced with no informa-
tion and therefore, do not contribute to the solving of
the problem. A considerable percentage of these words
appear in the stopwords list provided by the software
engineers. The removal of these words when process-
ing the available texts, in turn, causes the removal of
their irrelevant rows from the LSI matrix. Part of the
improvement caused by humans on Feature Location
results is due to this fact, specially in the case of the
baseline, where the inclusion of domain terms does not
play a part in the improvement that can be appreciated
between BP and BP-DK (see the next point for more
details on this).

6 In the case of the baseline, the inclusion of domain
terms does not cause a great impact on the results.
After all, when using the baseline processing, all the
words are included in the LSI analysis. This is not the
case for POS Tagging or Lemmatizing, where the in-
clusion of domain terms (which are often composed,
containing adjectives) causes an inclusion of informa-
tion that would otherwise be discarded. On the other
hand, adverbs and other connector words are discarded
by POS Tagging, so the inclusion of rows with no infor-
mation is a phenomena that does not occur. Looking
at statements 4 and 5 altogether, we can observe that,
due to the behavior of the NLP techniques, we can
only benefit from one specific aspect of the domain
knowledge at a time, depending on which techniques
we are leveraging to guide the Feature Location pro-
cess (stopwords for baseline processing, domain terms
for POS Tagging based techniques).

7 Nevertheless, the evidence suggests that even though
human-introduced processing improves FL in all sce-
narios, its real impact is not significant for the results.
Improving an average of 1 to 3 positions in a ranking
of 500 Model fragments is not a real enhancement of
FL. Domain knowledge should only be provided and
embedded in NLP in cases where this is an almost
immediate process. We do not recommend having soft-
ware engineers employ time and effort in this task, but
rather on more important, impactful duties.

These facts can be summarized as responses to our previ-
ously asked research questions:

RQ1 How do different NLP configurations affect the effi-
ciency and effectiveness of Feature Location in Mod-
els?
The baseline processing yields the best results when
used to guide Feature Location in Model fragments. It
outperforms more complex techniques in both results
and time. More complex techniques can lead to losses
of information in this field, and their execution times
render them impractical in real-world scenarios.

Analyzing the Impact of NLP over FL in Models GPCE’17, October 23–24, 2017, Vancouver, Canada

RQ2 How are human NLP efforts reflected in the outcome
of Feature Location in Models?
Human NLP efforts improve the outcome of Feature
Location in Model fragments in every chosen com-
bination of techniques for different reasons, but the
improvement is slight.

7 Threats to Validity
In this section, we use the classification of threats of validity
of [32, 39] to acknowledge the limitations of our approach:

1 Construct Validity: This aspect of validity reflects
the extent to which the operational measures that are
studied represent what the researchers have in mind.
In order to minimize this risk, we study the positions
of the oracles in the rankings, an objective and widely
accepted measure, used before by other researchers in
the community [17].

2 Internal Validity: This aspect of validity is of con-
cern when causal relations are examined. There is a
risk that the factor being investigated may be affected
by other neglected factors. The number of Features
and Models presented in this work may look small,
but they implement a wide scope of different railway
equipment.

3 ExternalValidity:This aspect of validity is concerned
with to what extent it is possible to generalize the find-
ing, and to what extent the findings are of relevance
for other cases. Both NL-expressed Features and Con-
ceptual Models are frequently leveraged to specify all
kinds of different software. LSI is a widely accepted
and utilized technique which has proven to obtain
good results in multiple domains. The NLP techniques
studied through this work are also commonly used
in the whole of the SE community. Therefore, our ex-
periment does not rely on the particular conditions of
our domain. Nevertheless, our findings are based on a
single study. Therefore, the experiment and its results
should be replicated with different kinds of models and
in other domains before assuring their generalization.

4 Reliability: This aspect is concerned with to what ex-
tent the data and the analysis are dependent on the spe-
cific researchers. The Feature Descriptions and Models
of the trains used through our experiment were pro-
vided by our industrial partner engineers, as well as the
domain terms and stopwords lists, which were crafted
by domain experts not involved in this research.

8 Related Work
The role of NLP is vital to the Software Engineering commu-
nity [33]. NLP has been applied to tackle different issues in
software engineering at several levels of abstraction. Works
like [35, 36] or [7], among many others, use NLP to tackle

specific problems and tasks, but do not study the implica-
tions of using different NLP techniques or combinations of
techniques over the results, as our work does.

In [10], the authors use NLP techniques to identify equiva-
lence between NL software artifacts. The authors also define
and use a series of principles for evaluating the performance
of NLP when identifying said equivalence. They conclude
that, in their field, the performance of NLP is determined by
the properties of the given dataset over which it is performed.
They measure the properties as a factor to adjust the NLP
process and performance accordingly, and then apply their
principles to an industrial case study. Our work differs from
[10], since the authors do not tackle the impact of different
NLP configurations as we do, but rather adjust the NLP pro-
cess according to a series of principles derived from dataset
properties. Moreover, [10] studies equivalence between NL
software artifacts, while we analyze NLP configurations to
process NL software artifacts for Feature Location in Models.
In addition, we do not define a set of principles to serve as
guidelines on which NLP configuration to use, but rather
present the results of applying the NLP configurations to our
case study, exposing the way they behave and improve (or
worsen) each other. Finally, we present an in-depth study on
how human involvement in the NLP process affects Feature
Location in Models, an issue that [10] does not tackle.

The work presented in [2] uses NLP to study how changes
in NL software artifacts impact other artifacts of the same
kind in the same specification. Through the pages of their
work, the authors analyze the traceability links between NL
software artifacts, and use NLP to determine how changes
must propagate. Opposite to [2], our work does not ana-
lyze changes in NL software artifacts or how they affect the
system. Instead, we put the focus on what is the most ap-
propriate way of applying NLP to said artifacts for Feature
Location in Models. Moreover, the authors of [2] do not con-
sider different configurations for their NLP, but rather guide
the process by taking in consideration the properties of the
artifacts.

The work presented in [8] takes in consideration the possi-
ble configurations of LSI when using the technique for trace-
ability links recovery between software artifacts, namely
requirements and test cases. In their work, the authors state
that the configurations of LSI depend on the datasets used,
and they look forward to automatically determining an ap-
propriate configuration for LSI for any given dataset. In our
work, we do not tackle different LSI configurations or how
LSI configurations impact the results of traceability recovery
between requirements and Models, but rather analyze how
different NLP configurations affect the results of Feature
Location in Models.

Other approaches related to the Feature Location process
presented in this paper comprehend Feature and Require-
ment location techniques. Through the following paragraphs,
we discuss said approaches and compare our work to them.

GPCE’17, October 23–24, 2017, Vancouver, Canada Raúl Lapeña, Jaime Font, Óscar Pastor, and Carlos Cetina

Typechef [22] provides an infrastructure to locate the
code associated to a given Feature by means of analyzing the
#ifdef directives. Trace analysis [9] is a run-time technique
used to locate Features. When the technique is executed, it
produces traces indicating which parts of code have been
executed. Some approaches related to Feature location use
LSI to extract the code associated to a Feature [25, 30]. These
techniques have been generally applied to search the code of
a Feature in a given individual product. The main goal of our
approach, in contrast, is to analyze how NLP configurations
impact Feature Location in Models.
Feature location approaches in a product family such as

the one presented in [40] center their efforts in finding the
code that implements a Feature between the different prod-
ucts by combining techniques such as FCA [13] and LSI.
In our approach, we are not interested in the code repre-
sentation of a Feature in the family, but in finding the NLP
configuration that guides LSI to better results when used for
Feature Location in Models.

Other works such as [34] focus on applying reverse engi-
neering to the source code to obtain the variability Model.
In [6] the authors use propositional logic which describes
the dependencies between Features. In [28] the authors com-
bine Typechef techniques and propositional logic to extract
conditions among a collection of Features. These works en-
gage explicitly the variability of products, but do not tackle
NLP configurations and their impact on Feature Location in
Models, as our work does.

In [24], Lapeña et al. use POS Tagging in combination with
an adapted two-step LSI to obtain rankings of methods for all
the requirements of a new product in a product family. The
scope of the presented work, on the other hand, is centered
around analyzing how distinct NLP configurations affect the
results of Feature Location in Models.

Some works [20, 27, 38, 41, 42] focus on Feature Location
in Models by comparing the Models with each other to for-
malize the variability among them in the form of a Software
Product Line. The presented work differs from these works
in that the aim is not to formalize the variability, but to an-
alyze the impact that NLP configurations have on Feature
Location in Models.
Finally, Font et al. [11] use a Single Objective Evolutive

Algorithm (SOEA) to locate Features among a family of Mod-
els in the form of a variation point. Their approach is refined
in [12], where the authors use a SOEA to find sets of suit-
able Feature realizations. The authors first cluster Model
fragments based on their common attributes into Feature re-
alization candidates through Formal Concept Analysis, and
then Latent Semantic Indexing ranks the candidates based on
the similarity with the Feature description. The presented ap-
proach, in contrast, analyzes how NLP configurations affect
Feature Location in Models.

9 Conclusions
Natural Language Processing (NLP) techniques have been
extensively used to preprocess the language of software ar-
tifacts for Feature Location in code, due to the direct and
positive impact they have on the outcome. However, the
impact that these techniques have on the results of Feature
Location in Models is an issue that has not been tackled yet.

Through this paper, we analyze howNLP techniques affect
the outcome of Feature Location in Models. We process the
Feature Descriptions andModels from a real-world industrial
case study through combinations of NLP techniques, and
perform Latent Semantic Indexing (LSI) over the processed
specifications. We study the rankings produced by LSI with
our oracle to evaluate the impact and repercussions of the
NLP techniques over the Feature Location process.

Results show that usingNLP techniques that have achieved
good results in the past for Feature Location in code leads to
a significant worsening of the rankings in the case of Feature
Location in Models when compared to a Baseline Process-
ing. We were able to identify a series of issues that cause
this effect. In addition, our results highlight that embedding
domain knowledge in the NLP process improves the Feature
Location results, although in a non-significant manner. Do-
main experts should decide whether participating in the NLP
process is worth the effort and time involved. The findings
of our work are useful since:

1 Thanks to the retrieved results, we found out that we
should not get carried away by inertia and apply NLP
as we do in Feature Location in code. Advanced NLP
techniques do improve the Feature Location results in
the code realm, but we cannot assume that they will
do so in the Models field as well. In fact, using these
techniques by inertia may lead us to a worsening of
the results.

2 Regarding domain experts participation in the NLP
process, our results shed light on their true impact over
Feature Location in Models. Thanks to that, domain
experts can better value if the time and effort inverted
in participating in the NLP process does pay off in
terms of results improvement.

3 Finally, the Discussion of this work about NLP tech-
niques configurations identifies specific issues that
must be tackled in order to apply NLP in domains
where BP-DK does not guide Feature Location in Mod-
els to proficient results.

Acknowledgments
This work has been partially supported by the Ministry
of Economy and Competitiveness (MINECO) through the
Spanish National R+D+i Plan and ERDF funds under the
project Model-Driven Variability Extraction for Software
Product Line Adoption (TIN2015-64397-R) and ITEA3 15010
REVaMP2 Project. We also thank Fundación Banco Sabadell.

Analyzing the Impact of NLP over FL in Models GPCE’17, October 23–24, 2017, Vancouver, Canada

References
[1] Andrea Arcuri and Lionel Briand. 2014. A Hitchhiker’s Guide to

Statistical Tests for Assessing Randomized Algorithms in Software
Engineering. Softw. Test. Verif. Reliab. 24, 3 (May 2014), 219–250. https:
//doi.org/10.1002/stvr.1486

[2] Chetan Arora, Mehrdad Sabetzadeh, Arda Goknil, Lionel C Briand,
and Frank Zimmer. 2015. Change impact analysis for natural lan-
guage requirements: An NLP approach. In Requirements Engineering
Conference (RE), 2015 IEEE 23rd International. IEEE, 6–15.

[3] Vimala Balakrishnan and Ethel Lloyd-Yemoh. 2014. Stemming and
lemmatization: a comparison of retrieval performances. Lecture Notes
on Software Engineering 2, 3 (2014), 262.

[4] Giovanni Capobianco, Andrea De Lucia, Rocco Oliveto, Annibale
Panichella, and Sebastiano Panichella. 2009. On the role of the nouns
in IR-based traceability recovery. In Program Comprehension, 2009.
ICPC’09. IEEE 17th International Conference on. IEEE, 148–157.

[5] W. J Conover. 1999. Practical Nonparametric Statistics, 3rd Edition.
Wiley.

[6] Krzysztof Czarnecki and Andrzej Wasowski. 2007. Feature Diagrams
and Logics: There and Back Again. In Proceedings of the 11th Interna-
tional Software Product Lines Conference.

[7] Chuan Duan and Jane Cleland-Huang. 2007. Clustering support for
automated tracing. In Proceedings of the twenty-second IEEE/ACM inter-
national conference on Automated software engineering. ACM, 244–253.

[8] Sebastian Eder, Henning Femmer, Benedikt Hauptmann, and Maxim-
ilian Junker. 2015. Configuring latent semantic indexing for require-
ments tracing. In Proceedings of the Second International Workshop on
Requirements Engineering and Testing. IEEE Press, 27–33.

[9] Andrew David Eisenberg and Kris De Volder. 2005. Dynamic Feature
Traces: Finding Features in Unfamiliar Code. In 21st IEEE International
Conference on Software Maintenance.

[10] Davide Falessi, Giovanni Cantone, and Gerardo Canfora. 2013. Em-
pirical principles and an industrial case study in retrieving equivalent
requirements via natural language processing techniques. IEEE Trans-
actions on Software Engineering 39, 1 (2013), 18–44.

[11] Jaime Font, Lorena Arcega, Øystein Haugen, and Carlos Cetina. 2016.
Feature Location in Model-Based Software Product Lines Through a
Genetic Algorithm. In Proceedings of the 15th International Conference
on Software Reuse: Bridging with Social-Awareness.

[12] Jaime Font, Lorena Arcega, Øystein Haugen, and Carlos Cetina. 2016.
Feature Location in Models Through a Genetic Algorithm Driven by
Information Retrieval Techniques. In Proceedings of the ACM/IEEE 19th
International Conference on Model Driven Engineering Languages and
Systems.

[13] Bernhard Ganter and Rudolf Wille. 2012. Formal Concept Analysis:
Mathematical Foundations. Springer Science & Business Media.

[14] Edel Garcia. 2006. Latent Semantic Indexing (LSI) A Fast Track Tutorial.
Grossman and Frieders Information Retrieval, Algorithms and Heuristics,
2006 (2006).

[15] Salvador García, Alberto Fernández, Julián Luengo, and Francisco Her-
rera. 2010. Advanced Nonparametric Tests for Multiple Comparisons
in the Design of Experiments in Computational Intelligence and Data
Mining: Experimental Analysis of Power. Inf. Sci. 180, 10 (May 2010),
2044–2064. https://doi.org/10.1016/j.ins.2009.12.010

[16] R. J. Grissom and J. J. Kim. 2005. "Effect sizes for research: A broad
practical approach. Mahwah, NJ: Earlbaum.

[17] Sonia Haiduc, Gabriele Bavota, AndrianMarcus, RoccoOliveto, Andrea
De Lucia, and Tim Menzies. 2013. Automatic query reformulations for
text retrieval in software engineering. In Software Engineering (ICSE),
2013 35th International Conference on. IEEE, 842–851.

[18] Øystein Haugen, Birger Møller-Pedersen, Jon Oldevik, Gøran K Olsen,
and Andreas Svendsen. 2008. Adding standardized variability to do-
main specific languages. In Software Product Line Conference, 2008.
SPLC’08. 12th International. IEEE, 139–148.

[19] Thomas Hofmann. 1999. Probabilistic latent semantic indexing. In
Proceedings of the 22nd annual international ACM SIGIR conference on
Research and development in information retrieval. ACM, 50–57.

[20] Sönke Holthusen, David Wille, Christoph Legat, Simon Beddig, Ina
Schaefer, and Birgit Vogel-Heuser. 2014. Family Model Mining for
Function BlockDiagrams in Automation Software. In 18th International
Software Product Lines Conference.

[21] Anette Hulth. 2003. Improved automatic keyword extraction given
more linguistic knowledge. In Proceedings of the 2003 conference on
Empirical methods in natural language processing. Association for Com-
putational Linguistics, 216–223.

[22] Christian Kästner, Paolo G. Giarrusso, Tillmann Rendel, Sebastian Erd-
weg, Klaus Ostermann, and Thorsten Berger. 2011. Variability-Aware
Parsing in the Presence of Lexical Macros and Conditional Compila-
tion. In Proceedings of the 26th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications.

[23] Thomas K Landauer, Peter W Foltz, and Darrell Laham. 1998. An
introduction to latent semantic analysis. Discourse processes 25, 2-3
(1998), 259–284.

[24] Raúl Lapeña, Manuel Ballarín, and Carlos Cetina. 2016. Towards Clone-
and-Own Support: Locating Relevant Methods in Legacy Products. In
Proceedings of the 20th International Conference on Software Product
Lines.

[25] Dapeng Liu, Andrian Marcus, Denys Poshyvanyk, and Vaclav Rajlich.
2007. Feature Location via Information Retrieval Based Filtering of a
Single Scenario Execution Trace. In Proceedings of the Twenty-second
IEEE/ACM International Conference on Automated Software Engineer-
ing.

[26] Christopher D Manning, Hinrich Schütze, et al. 1999. Foundations of
statistical natural language processing. Vol. 999. MIT Press.

[27] Jabier Martinez, Tewfik Ziadi, Tegawendé F. Bissyandé, Jacques Klein,
and Yves Le Traon. 2015. Bottom-up Adoption of Software Product
Lines: a Generic and Extensible Approach. In Proceedings of the 19th
International Conference on Software Product Lines.

[28] Sarah Nadi, Thorsten Berger, Christian Kästner, and Krzysztof Czar-
necki. 2014. Mining Configuration Constraints: Static Analyses and
Empirical Results. In 36th International Conference on Software Engi-
neering.

[29] Joël Plisson, Nada Lavrac, Dunja Mladenic, et al. 2004. A rule based ap-
proach to word lemmatization. In Proceedings C of the 7th International
Multi-Conference Information Society IS 2004, Vol. 1. Citeseer, 83–86.

[30] Denys Poshyvanyk, Yann-Gaël Guéhéneuc, Andrian Marcus, Giuliano
Antoniol, and Václav Rajlich. 2007. Feature Location Using Probabilis-
tic Ranking of Methods Based on Execution Scenarios and Information
Retrieval. IEEE Trans. Software Eng. 33, 6 (2007).

[31] Denys Poshyvanyk, Yann-Gael Gueheneuc, Andrian Marcus, Giuliano
Antoniol, and Vaclav Rajlich. 2007. Feature location using probabilistic
ranking of methods based on execution scenarios and information
retrieval. IEEE Transactions on Software Engineering 33, 6 (2007).

[32] Per Runeson and Martin Höst. 2009. Guidelines for conducting and
reporting case study research in software engineering. Empirical
software engineering 14, 2 (2009), 131.

[33] Kevin Ryan. 1993. The role of natural language in requirements engi-
neering. In Requirements Engineering, 1993., Proceedings of IEEE Inter-
national Symposium on. IEEE, 240–242.

[34] Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wasowski, and
Krzysztof Czarnecki. 2011. Reverse Engineering Feature Models. In
Proceedings of the 33rd International Conference on Software Engineer-
ing.

[35] Hakim Sultanov and Jane Huffman Hayes. 2010. Application of swarm
techniques to requirements engineering: Requirements tracing. In
Requirements Engineering Conference (RE), 2010 18th IEEE International.
IEEE, 211–220.

https://doi.org/10.1002/stvr.1486
https://doi.org/10.1002/stvr.1486
https://doi.org/10.1016/j.ins.2009.12.010

GPCE’17, October 23–24, 2017, Vancouver, Canada Raúl Lapeña, Jaime Font, Óscar Pastor, and Carlos Cetina

[36] Senthil Karthikeyan Sundaram, Jane Huffman Hayes, Alex Dekht-
yar, and E Ashlee Holbrook. 2010. Assessing traceability of software
engineering artifacts. Requirements engineering 15, 3 (2010), 313–335.

[37] András Vargha and Harold D. Delaney. 2000. A Critique and Im-
provement of the CL Common Language Effect Size Statistics of
McGraw and Wong. Journal of Educational and Behavioral Statis-
tics 25, 2 (2000), 101–132. https://doi.org/10.3102/10769986025002101
arXiv:http://jeb.sagepub.com/content/25/2/101.full.pdf+html

[38] David Wille, Sönke Holthusen, Sandro Schulze, and Ina Schaefer. 2013.
Interface Variability in Family Model Mining. In 17th International
Software Product Line Conference.

[39] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn
Regnell, and Anders Wesslén. 2012. Experimentation in software engi-
neering. Springer Science & Business Media.

[40] Yinxing Xue, Zhenchang Xing, and Stan Jarzabek. 2012. Feature Loca-
tion in a Collection of Product Variants. In 19th Working Conference
on Reverse Engineering.

[41] Xiaorui Zhang, Øystein Haugen, and Birger Møller-Pedersen. 2011.
Model Comparison to Synthesize a Model-Driven Software Product
Line. In Proceedings of the 15th International Conference on Software
Product Lines.

[42] Xiaorui Zhang, Øystein Haugen, and Birger Møller-Pedersen. 2012.
Augmenting Product Lines. In 19th Asia-Pacific Software Engineering
Conference.

https://doi.org/10.3102/10769986025002101
http://arxiv.org/abs/http://jeb.sagepub.com/content/25/2/101.full.pdf+html

	Abstract
	1 Introduction
	2 Background
	3 Approach
	3.1 NLP Techniques
	3.2 NLP Configurations
	3.3 Latent Semantic Indexing

	4 Research Questions
	5 Experiment
	5.1 Case Study
	5.2 Oracle
	5.3 Design of the Experiment
	5.4 Statistical Analysis
	5.5 Results

	6 Discussion
	7 Threats to Validity
	8 Related Work
	9 Conclusions
	References

