
On the Influence of Models-to-Natural-Language
Transformation in Traceability Link Recovery
among Requirements and Conceptual Models

Raúl Lapeña, Francisca Pérez, and Carlos Cetina

SVIT Research Group, Universidad San Jorge
Autovía A-23 Zaragoza-Huesca Km.299

50830 Villanueva de Gállego (Zaragoza), Spain
{rlapena,mfperez,ccetina}@usj.es

Abstract. Recovering traceability links between software artifacts and
requirements is a common task in Software Engineering. Information
Retrieval (IR) techniques have been applied to recover traceability links
amongst code and requirements. By transforming Models into Natural
Language (M2NL), it is possible to apply IR to calculate their traceabil-
ity links to requirements. However, results retrieved by IR are affected
by the writing style of the NL input. Regarding M2NL, there are two
main types of techniques in use: Rule-Based techniques, and Element-
Based techniques. Along with M2NL, there is a wide range of Natural
Language Processing (NLP) techniques that can be applied. Through
this work, we analyze how the usage of distinct M2NL-NLP combina-
tions of techniques impacts IR-based Traceability Links Recovery over
requirements and models. We evaluate two different M2NL techniques,
and the inclusion of Simple and Advanced NLP along with M2NL, in a
real-world industrial case study.

Keywords: Natural Language Processing, Traceability Link Recovery,
Domain Specific Language

1 Introduction

Traceability Links Recovery (TLR) between software artifacts and requirements
is a common task in Software Engineering (SE), specially when maintaining
and evolving software products. For code and Natural Language (NL) require-
ments, Information Retrieval (IR) techniques have been successfully used for
TLR. By transforming conceptual models into NL, it is possible to apply IR
to requirements-models TLR. However, results retrieved by these techniques de-
pend greatly in the style in which NL is written. Two main types of techniques are
applied for Models-to-Natural-Language Transformation (M2NL): Rule-Based
techniques [1], and Element-Based techniques [2]. Rule-Based techniques apply
sets of logical and grammatical rules, while Element-Based techniques extract
text associated to model elements directly.

After the M2NL transformation process, there is a wide range of Natural Lan-
guage Processing (NLP) techniques that are applied to process NL representa-
tions of models. Some of them are: general phrase styling techniques, syntactical
analysis techniques [3], semantic analysis techniques [4], and human-in-the-loop
techniques. These techniques are combined in distinct ways by different authors,
depending on implementation circumstances and research particularities.

The impact of the usage of different M2NL-NLP techniques combinations
on requirements-models TLR has not been studied yet. Through this work, we
analyze how distinct M2NL-NLP techniques combinations impact requirements-
models TLR through Latent Semantic Indexing (LSI) [5], the technique that
obtains the best TLR results [6]. We evaluate two different M2NL techniques and
the inclusion of Simple and Advanced NLP along with M2NL, in a real-world
industrial case study in the rolling stocks domain with our industrial partner,
Construcciones y Auxiliar de Ferrocarriles (CAF, http://www.caf.net/en).

The combination of Rule-Based M2NL with Advanced NLP leads LSI to the
best results, returning the model fragments that materialize requirements in an
average ranking position of 1 ± 1.12. However, in order to use Rule-Based M2NL,
engineers must adapt or create rules for their Domain Specific Language (DSL).
The combination of Element-Based M2NL with Advanced NLP returns a worse
result for the same measurement (2 ± 5.09), but does not require said efforts.

The paper is structured as follows: Section 2 presents our Approach. Section
3 details the Evaluation designed to tackle the Research Questions. Section 4
analyzes the statistical significance of the obtained results. Section 5 presents
the Threats to Validity of our work. Section 6 summarizes the works related to
the presented paper. Finally, Section 7 concludes the paper.

2 Approach

So far, there has been no discussion on which Model-to-Natural-Language Trans-
formation (M2NL) techniques should be applied for requirements-models Trace-
ability Links Recovery (TLR). The effect of the inclusion of Simple or Advanced
Natural Language Processing (NLP) techniques along with M2NL to the same
intent has not been studied yet either. The presented approach studies the im-
pact of using two different M2NL techniques, and the impact of including Simple
or Advanced NLP techniques along M2NL, over a widely accepted TLR tech-
nique, Latent Semantic Indexing (LSI). Analyzing the success of LSI over the
different inputs, we aim to determine which one guides LSI to enhanced results.

The top part of Fig. 1 depicts the outline of this work. Through the usage
of M2NL techniques, we convert model fragments into NL. Then, we process
the NL representation of the models and a NL requirement from our case study
through NLP techniques. With the processed model fragments and requirement,
we carry out LSI, ranking the model fragments according to their similitude to
the query requirement. The bottom part of Fig. 1 shows the four configurations
considered through this work, which we analyze in order to determine their
impact on requirements-models TLR.

Requirement

Traceability
Link

Recovery

Model
Fragments to
Requirements

Similitude
Ranking

M2NL

Processed
Requirement

Model
Fragments

Model
Fragments

Model
Fragments

Model
Fragments

Model
Fragments

Configuration 1 Configuration 2 Configuration 3 Configuration 4

M2NL Element-Based Element-Based Rule-Based Rule-Based

NLP Simple Advanced Simple Advanced

NLP

NLP

Model
Fragments

Model
Fragments

Model
Fragments

Model
Fragments

NL
Representation

of Model
Fragments

Model
Fragments

Model
Fragments

Model
Fragments

Model
Fragments

Processed NL
Representation

of Model
Fragments

Fig. 1. Traceability Link Recovery among Requirements and Conceptual Models
Overview

The following subsections describe the M2NL techniques taken in account
through the rest of this work, the NLP techniques used to process the NL rep-
resentations of the model fragments and requirements in the case study, and the
LSI technique from which results are extracted.

2.1 Models-to-Natural-Language Transformation Techniques
(M2NL)

In order to extract NL from models, two main techniques are applied in the
literature: Rule-Based, and Element-Based M2NL. Fig. 2 depicts an example
DSL model from our industrial partner (where the company-specific DSL in use
is TCML, Train Control Modeling Language), and shows the results of applying
both Rule-Based and Element-Based M2NL to the model. In order to formalize
model fragments, we use the Common Variability Language (CVL) [7].

2.1.1 Rule-Based M2NL

This technique uses a set of user-defined rules to process text inside models.
Through the rules, several aspects inherent to modeling language (such as nam-
ing conventions, model element types, grammatical element ordering, etc.) are
exploited to generate semantically sound NL representations of models.

We use the Rule-Based M2NL technique presented by Meziane et. al. in [1],
where the authors research the language used in class diagrams components and
develop rules for semantically sound NL generation. The TCML used by our
industrial partner was developed following UML conventions, with equipment
elements corresponding to UML classes, equipment properties corresponding to
UML attributes, and connections corresponding to UML relationships. We can

TCML Syntax

HighVoltage
Equipment Contactors

Voltage
Converters

Consumer
Equipment

Product Model

Circuit
Breaker1

Pantograph1

Circuit
Breaker2

Converter 2

Pantograph2

Model Fragment

HVAC

Converter 1

PA CCTV

Converter 2

HVAC

Circuit
Breaker 3

Rule-Based M2NL
Converter 2 is connected to Circuit Breaker 3
Circuit Breaker 3 is connected to HVAC

Element-Based M2NL
Converter 2 Circuit Breaker 3 HVAC

M2NL

Fig. 2. Example of TCML model and model fragment

leverage the rules in [1] to generate NL representations of the TCML models. As
an example, for the model fragment depicted in the top left part of Fig. 2, this
technique would yield the following strings: ’Converter 2 is connected to Circuit
Breaker 3’, and ’Circuit Breaker 3 is connected to HVAC’.

2.1.2 Element-Based M2NL

This technique is used in approaches that concur M2NL for Feature Location
[2] and Software Product Lines synthesis [8] purposes. Through this technique,
the NL texts that represent each element of a model are extracted and then
concatenated into a single string, used as a NL representation of the model. The
NL representations generated through this technique vary in understandability,
being commonly closer to a collection of words or expressions than to descriptions
of functionality understandable by humans.

For the TCML models from our industrial partner, we use this technique
by extracting the text from all the model elements. As an example, for the
model fragment depicted in the top left part of Fig. 2, this technique would yield
the string ’Converter 2 Circuit Breaker HVAC’. Fig. 2 is, for understandability
purposes and space reasons, a simplification of a real model. In a real model,
model elements contain more properties which in turn yield more text in its NL
representation.

2.2 NLP Techniques

Fig. 3 depicts the NLP techniques used through this work, along with an example
taken from a real-world train. In Fig. 3, a NL requirement is used as the input
for the example, but through our work, these techniques are applied to both NL
requirements and NL representations of models obtained through the application
of either Rule-Based M2NL or Element-Based M2NL (see top part of Fig. 1).

3) Human
In The Loop

Non-Processed Requirement
The PLC will inhibit the connection with the panto
whenever the lowering button in the active cabin is
pushed, as long as the panto is in closed state and more
than five seconds have passed after the closing of the
circuit breaker, being the doors off

POS Tagged Tokens
Nouns: PLC, connection, button, state, seconds, doors
Verbs: inhibit, pushed, lower, push, close, pass, be.
…

Processed
Requirement

PLC, circuit breaker,
door, state

Root-Reduced Tokens
Nouns: PLC, connection, button, state, second, door
Verbs: inhibit, push, lower, push, close, pass, be.
…

1) Syntactical Analysis
Software
Engineer

Domain Terms
Extraction

Stopwords
Removal

Filtering
2) Root Reduction

Fig. 3. Compendium of NLP Techniques

Through this work, we include either Simple or Advanced NLP along with
M2NL. Simple NLP uses the techniques in 2.2.4, since we consider their combi-
nation to be the most basic unit of NLP. Advanced NLP includes the techniques
that conform Simple NLP, plus those described in 2.2.1, 2.2.2, and 2.2.3.

2.2.1 Syntactical Analysis

Syntactical Analysis (SA) techniques determine the grammatical function of
words in sentences (e.g.: nouns, verbs, etc.). These techniques, often referred to
as Parts-Of-Speech (POS) Tagging, allow engineers to implement grammatical
filters, usually in search for nouns, which often carry relevant information on
features and actions [9]. Words like verbs or adjectives are often disregarded. In
Fig. 3, it is possible to appreciate the SA process, with the POS Tagged Tokens
as outcome of syntactically analyzing a real-world NL requirement. Nouns and
verbs are depicted while, for space reasons, the rest of the words are omitted.

2.2.2 Root Reduction

Through the usage of semantic techniques such as Lemmatizing, words can be
reduced to their semantic roots (lemmas). Through lemmas, it is possible to unify
NL, avoiding verb tenses, plurals, and strange word forms that interfere with
TLR. Prior to carrying out Root Reduction (RR) techniques, it is imperative
to use SA techniques, since RR techniques are based on word dictionaries built
upon the grammatical role of words. Semantic techniques provide more advanced
word filters in NL requirements. In Fig. 3, it is possible to appreciate the RR
process, with the Root-Reduced Tokens as outcome of the semantic analysis of
the POS Tags derived from the NL requirement. The lemmas of nouns and verbs
are depicted while, for space reasons, the rest of the words are omitted.

2.2.3 Human-In-The-Loop

The inclusion of domain experts in TLR processes is a widely discussed topic
within SE. It is often beneficial to have domain knowledge embedded in TLR,
particularly for software reuse and variability. Some of the human interaction
techniques used in TLR are Domain Terms Extraction and Stopwords Removal.
In order to carry out these techniques, engineers provide two separate lists of
terms: one list of both single-word and multiple-word terms that belong to the
domain and must be kept for analysis, and a list of irrelevant words that have no
analysis value. Both kinds of terms can be automatically filtered in or out of the
final query. In Fig. 3, it is possible to appreciate the Human-In-The-Loop process,
where a software engineer provides both lists of terms, which are consequently
introduced into the final query, or filtered out of it.

2.2.4 Other Filters

The most basic NLP technique covered in this work is the combination of to-
kenizing and lowercasing a sentence, and afterwards removing duplicate words
from it. This combination is often regarded as the most basic NLP technique for
several LSI examples.

2.3 Traceability Link Recovery through Latent Semantic Indexing

Latent Semantic Indexing (LSI) is an automatic mathematical/statistical tech-
nique that analyzes relationships between queries and documents (bodies of
text). It constructs vector representations of both a user query and a corpus
of text documents by encoding them as a term-by-document co-occurrence ma-
trix, and analyzes the relationships between those vectors to get a similarity
ranking between the query and the documents. Fig. 4 shows an example term-
by-document co-occurrence matrix, with values associated to our case study, the
vectors, and the resulting ranking. In the following paragraphs, an overview of
the elements of the matrix is provided.

Terms: Each row in the matrix (term) stands for each of the words that com-
pose the processed requirement and NL representations of model fragments.
In Fig. 4, it is possible to appreciate a set of representative words in the
domain such as ’pantograph’ or ’doors’ as the terms of each row.

Documents: Each column in the matrix stands for the processed NL repre-
sentation of each model fragment in our case study. In Fig. 4, it is possible
to appreciate the identifiers of the model fragments in the columns such as
’M_KAO001’ or ’M_CIN072’, which stand for the processed NL represen-
tations of those particular model fragments.

Query: The final column stands for the query. In our approach, the query is
one processed requirement in our case study. In Fig. 4, the identifier of the
requirement in the query column (’R_BUD010’) represents its processed
text.

Data: Each cell in the matrix contains the frequency with which the term of its
row appears in the document denoted by its column. For instance, in Fig.
4, the term ’pantograph’ appears twice in the ’M_KAO001’ processed NL
representation and once in the ’R_BUD010’ processed requirement.

We obtain vector representations of the documents and the query by nor-
malizing and decomposing the term-by-document co-occurrence matrix using a
matrix factorization technique called Singular Value Decomposition (SVD) [5].
SVD is a form of factor analysis, or more properly the mathematical general-
ization of which factor analysis is a special case. In SVD, a rectangular matrix
is decomposed into the product of three other matrices. One component matrix
describes the original row entities as vectors of derived orthogonal factor values,
another describes the original column entities in the same way, and the third is a
diagonal matrix containing scaling values such that when the three components
are matrix-multiplied, the original matrix is reconstructed.

In Fig. 4, a three-dimensional graph of the SVD is provided. On the graph,
it is possible to appreciate the vectorial representations of some of the matrix
columns. For space reasons, only a small set of the columns is represented. To
measure the similarity degree between vectors, our approach calculates the cosine
between the query vector and the documents vectors. Cosine values closer to
one denote a higher degree of similarity, and cosine values closer to minus one
denote a lower degree of similarity. Similarity increases as vectors point in the
same general direction (as more terms are shared between documents). Through
this measurement, our approach orders the model fragments according to their
similarity degree to the requirement.

The relevancy ranking (which can be seen in Fig. 4) is produced according
to the calculated similarity degrees. In this example, LSI retrieves ’M_BUD010’
and ’M_KAO001’ in the first and second position of the relevancy ranking due
to query-documents cosines being ’0.9243’ and ’0.8454’, implying a high simi-
larity degree between the fragments and the requirement. On the opposite, the
’M_CIN072’ is returned in a latter position of the ranking due to its query-
document cosine being ’-0.7836’, implying a lower similarity degree.

MF1 MF2 … MFN

PANTO 0 2 … 2

CIRCUIT
BREAKER 0 2 … 5

DOOR 3 0 … 1

… … … … …

Ke
yw

or
ds

Query

Model Fragment
similitude scores

MF2 = 0.93

MFN = 0.24

…

MF1 = -0.87

Q

MF2

MFN

MF1

Documents Score

Requirement

1

2

1

…

Singular Value Decomposition

Fig. 4. Traceability Link Recovery through Latent Semantic Indexing Example

3 Evaluation

Through the following paragraphs, we present the research questions that our
work tackles, describe our real-world case study and the oracle used for our
experiment, detail the design of our experiment, and present the obtained results.

3.1 Research Questions

From the described problem, two research questions arise:

RQ1: How does the usage of different M2NL techniques affect the effectiveness
and efficiency of TLR over requirements and models?

RQ2: How does the inclusion of either Simple or Advanced NLP techniques
along with M2NL affect the effectiveness and efficiency of TLR over require-
ments and models?

3.2 Case study

For our experiment, CAF provided us with requirements and models of five rail-
way solutions from Auckland, Bucharest, Cincinnati, Houston, and Kaohsiung.
The trains are specified by about 100 requirements each, with an average of 50
words. Regarding models, trains are specified through an average 8250 model
elements. CAF also provided lists of domain terms and stopwords. The domain
terms list comprehends around 300 domain terms, and the stopwords list com-
prehends around 60 words. Both lists were created by a CAF domain expert
associated to the provided products.

3.3 Oracle

In order to evaluate the results of our experiment, CAF provided us with their
existing documentation on requirements-models traceability. Each requirement
can be mapped to a single model fragment. A model fragment is a model ele-
ments subset, specified with the model fragment formalization capacities of the
Common Variability Language (CVL) [7]. We use the existing traceability as
the oracle for evaluating the impact of each of the M2LN-NLP configurations on
LSI. To achieve this, we analyze the results of the rankings generated by LSI,
checking the position of the ranking in which the oracle (correct model fragment
for the input requirement) appears.

3.4 Design of the experiment

The first step is to select a M2NL-NLP configuration. With the chosen configura-
tion, we extract the NL representation of the model fragments in our case study.
Then, we perform the necessary NLP over the text of both all the requirements
and all the NL representations of model fragments in our case study.

From the strings achieved through the first step, all the individual words
are extracted to form a list of words. The list of words (terms), the processed
representations of model fragments (documents), and one processed requirement
(query), are used as input for LSI. LSI returns a ranking of model fragments,
ordered according to their similarity to the requirement. LSI is performed several
times, taking each requirement from our case study as query, in order to extract
the model fragment rankings for all the available requirements. Through these
rankings and the oracle, we can determine the ranking positions in which the
correct model fragments appear for each requirement. Through the results, we
are able to evaluate the impact of the chosen M2NL-NLP configuration over LSI.

The described steps (choosing a configuration, performing NLP of require-
ments and model fragments, LSI, impact analysis) are carried out four times,
until the four configurations are chosen and analyzed.

3.5 Results

For each M2NL-NLP configuration, we measured the average, best, and worst
result in the rankings generated by LSI. We also measured the time that the
execution of M2NL-NLP took for the different configurations on average after
25 executions. We do not highlight the LSI execution time averages, since it is
practically identical for all the configurations (around 70 seconds). Table 1 shows
the results achieved by LSI when performed over the four configurations, with
the best results highlighted in light gray.

Table 1. Results per M2NL-NLP techniques configuration

Average Result ± Standard Deviation Best Result Worst Result Time Taken (s)
Configuration 1 #2 ± 5.54 #1 #34 12
Configuration 2 #2 ± 5.09 #1 #30 296
Configuration 3 #1 ± 2.75 #1 #19 53
Configuration 4 #1 ± 1.12 #1 #5 336

Configuration 4 (Rule-Based M2NL + Advanced NLP) leads LSI to the best
results, retrieving an average ranking position of #1 ± 1.12, a ranking position
#1 as its best result, and a ranking position #5 as its worst. Configuration 1
(Element-Based M2NL + Simple NLP), on the opposite, is the one that leads
LSI to the worst results. Its best result is position #1, but its worst peaks at posi-
tion #34, presenting an average of #2 ± 5.54. Configurations 2 (Element-Based
M2NL + Advanced NLP) and 3 (Rule-Based M2NL + Simple NLP) present
intermediate values, being Configuration 3 slightly better than Configuration 2.

4 Statistical analysis

To properly compare the different configurations, the data resulting from the
empirical analysis was analyzed using statistical methods.

4.1 Statistical significance

A statistical test must be run to assess whether there is enough empirical evi-
dence to claim that there is a difference between two configurations (e.g., A is
better than B). To achieve this, two hypotheses are defined: the null hypothesis
H0, and the alternative hypothesis H1. The null hypothesis H0 is typically de-
fined to state that there is no difference among the configurations, whereas the
alternative hypothesis H1 states that the configurations differ. In such a case, a
statistical test aims to verify whether the null hypothesis H0 should be rejected.

The statistical tests provide a probability value, p − value. The p − value
obtains values between 0 and 1. The lower the p−value of a test, the more likely
that the null hypothesis is false. It is accepted by the research community that a
p−value under 0.05 is statistically significant [10], and so the hypothesis H0 can
be considered false. The carried test depends on the properties of the data. Since
our data does not follow a normal distribution in general, our analysis requires
the use of non-parametric techniques. There are several tests for analyzing this
kind of data; however, the Quade test is the most powerful when working with
real data [11]. In addition, according to Conover [12], the Quade test is the one
that has shown the best results for a low number of configurations.

The p − V alue of this test is 4.208x10−6 and the statistic of this test is
9.659. Since the p − V alue is smaller than 0.05, we reject the null hypothesis.
Consequently, we can state that there exist differences between among the four
configurations for the performance indicator of the position in the ranking.

However, with the Quade test, we cannot answer the following question:
Which of the configurations gives the best performance? In this case, the perfor-
mance of each configuration should be individually compared against all other
alternatives. In order to do this, we perform an additional post hoc analysis. This
kind of analysis performs a pair-wise comparison among the results of each con-
figuration, determining whether statistically significant differences exist among
the results of a specific pair of configurations.

The second column of Table 2 shows the p − V alues of Holm’s post hoc
analysis for the performance indicator and the specific pair of configurations
(e.g., Configuration 1 and Configuration 2). The p− V alues shown in this table
for two comparisons (the Configuration 1 vs Configuration 2 and Configuration
3 vs Configuration 4) are greater than the corresponding significance threshold
value (0.05), whereas the p−V alues for the other comparisons are smaller than
0.05. Hence, we can determine that the differences in performance between the
Configuration 1 vs Configuration 2 and the Configuration 3 vs Configuration
4 are not significant, but the differences in performance are significant in the
other comparisons (e.g., the comparison shows significant differences between
the Configuration 2 vs Configuration 4).

4.2 Effect size

Statistically significant differences can be obtained even if they are so small
as to be of no practical value [10]. Therefore, it is important to assess if a
configuration is statistically better than another and to assess the magnitude
of the improvement. Effect size measures are taken in account to analyze this
phenomenon.

For a non-parametric effect size measure, we use Vargha and Delaney’s Â12

[13]. Â12 measures the probability that running one configuration yields higher
values than running another configuration. If the two configurations are equiva-
lent, then Â12 will be 0.5.

For example, Â12 = 0.7 means that we would obtain better results in 70%
of the runs with the first of the pair of configurations that have been compared,
and Â12 = 0.3 means that we would obtain better results in 70% of the runs
with the second of the pair of configurations that have been compared. Thus,
we have an Â12 value for every pair of configurations.

Table 2. Holm’s post hoc p− V alues and Â12 statistic for each pair of configurations

Pair of configurations p− V alue Â12

Configuration 1 vs Configuration 2 0.89 0.4983
Configuration 1 vs Configuration 3 0.0065 0.3948
Configuration 1 vs Configuration 4 0.00079 0.4005
Configuration 2 vs Configuration 3 0.0024 0.3883
Configuration 2 vs Configuration 4 3.4x10−5 0.3973
Configuration 3 vs Configuration 4 0.83 0.5122

The third column of Table 2 shows the values of the effect size statistics
between every pair of configurations.

The Â12 values show a slight superiority (even though these values are closer
to the equivalent value of 0.5) of the Configuration 2 in the comparison with the
Configuration 1, and the Configuration 3 in the comparison with the Configu-
ration 4. The Â12 values show the largest differences, with values around 0.39
when Configuration 1 and Configuration 2 are compared with Configuration 3
or Configuration 4.

Overall, these results confirm that Configuration 3 and Configuration 4 out-
perform Configuration 1 and Configuration 2.

5 Threats to Validity

In this section, we use the classification of threats of validity of [14] to acknowl-
edge the limitations of our approach:

1 Construct Validity: This aspect of validity reflects the extent to which the
operational measures that are studied represent what the researchers have
in mind. In order to minimize this risk, we study the positions of the oracles
in the rankings, an objective and widely accepted measure, used before by
other researchers in the community [15].

2 Internal Validity: This aspect of validity is of concern when causal relations
are examined. There is a risk that the factor being investigated may be
affected by other neglected factors. The number of requirements and models
presented in this work may look small, but they implement a wide scope of
different railway equipment.

3 External Validity: This aspect of validity is concerned with to what extent
it is possible to generalize the finding, and to what extent the findings are
of relevance for other cases. Both requirements and conceptual models are
frequently leveraged to specify all kinds of different software. LSI is a widely
accepted and utilized technique which has proven to obtain good results in
multiple domains. Therefore, our experiment does not rely on the particular
conditions of our domain. Nonetheless, the experiment and its results should
be replicated in other domains before assuring their generalization.

4 Reliability: This aspect is concerned with to what extent the data and
the analysis are dependent on the specific researchers. The requirements
and models of the trains used through our experiment were provided by our
industrial partner engineers, as well as the domain terms and stopwords lists,
which were crafted by domain experts not involved in this research.

6 Related Work

In [16], NLP techniques are used to assess equivalence between requirements. The
authors conclude that performance of NLP in their field is determined by the
properties of the provided datasets. Properties are then considered as a factor to
adjust the NLP process and performance over an industrial case study. Through
our work, rather than adjusting the NLP process to study equivalence between
requirements, we tackle the impact of different M2NL-NLP configurations on
LSI, exposing the way they behave and improve (or worsen) the IR process.

The work presented in [17] uses NLP to study how changes in requirements
impact other requirements. The authors analyze TLR between requirements, and
use NLP to determine the propagation of changes. Our work does not analyze
changes in requirements or how they affect the system, but rather on what is
the most appropriate way of applying M2NL-NLP to requirements-models TLR.
Moreover, the authors of [17] do not consider different NLP configurations, but
rather guide the process through requirements properties.

Finally, [18] takes in consideration the possible LSI configurations for TLR
between requirements and test cases. The authors state that LSI configurations
depend on the available datasets, and also look forward to automatically deter-
mining appropriate LSI configurations for any given dataset. We do not tackle
the impact of using different LSI configurations for TLR, but rather analyze how
different M2NL-NLP configurations affect the results of TLR.

7 Concluding Remarks

Through this paper, we analyze how different M2NL-NLP techniques impact
the outcome of requirements-models TLR. To that extent, we process the re-
quirements and models that specify a real-world industrial case study through
a series of combinations of M2NL-NLP techniques, and then perform Latent
Semantic Indexing (LSI) over the processed specifications. We study the rank-
ings produced by LSI with our oracle to evaluate the impact of the M2NL-NLP
techniques over TLR. Results show that:

1 Rule-Based M2NL improves the results of Element-Based M2NL in a statis-
tically significant manner, but it requires an additional effort from software
engineers when Domain Specific Languages (DSLs) are used. The rules from
[1] are specific for UML models, and work with the TCML DSL of our in-
dustrial partner due to it being derived from UML, but engineers that use a
non-UML DSL need to either adapt the existing rules or create DSL-specific
rules. With the obtained results, engineers have more information to choose
between investing their efforts in Rule-Based M2NL, or (in case it yields
sufficiently reliable TLR results) using Element-Based M2NL.

2 The usage of Advanced NLP along with M2NL always improves its results,
although in a non-statistically significant manner. We noticed that the terms
used in the conceptual models are close to those of requirements, so Advanced
NLP does not have a huge impact over the results. Nonetheless, the appli-
cation of the Advanced NLP techniques does not require a huge effort, and
therefore its application can be deemed worthy when maximizing the quality
of TLR results is a key priority.

Acknowledgements

This work has been partially supported by the Ministry of Economy and Com-
petitiveness (MINECO) through the Spanish National R+D+i Plan and ERDF
funds under the project Model-Driven Variability Extraction for Software Prod-
uct Line Adoption (TIN2015-64397-R). We also thank ITEA3 15010 REVaMP2
Project.

References

1. Meziane, F., Athanasakis, N., Ananiadou, S.: Generating Natural Language Spec-
ifications from UML Class Diagrams. Requirements Engineering 13(1)

2. Font, J., Arcega, L., Haugen, Ø., Cetina, C.: Feature Location in Models through
a Genetic Algorithm driven by Information Retrieval Techniques. In: Proceedings
of the ACM/IEEE 19th International Conference on Model Driven Engineering
Languages and Systems

3. Hulth, A.: Improved Automatic Keyword Extraction given more Linguistic Knowl-
edge. In: Proceedings of the 2003 Conference on Empirical Methods in Natural
Language Processing

4. Plisson, J., Lavrac, N., Mladenic, D., et al.: A Rule Based Approach to Word
Lemmatization. In: Proceedings of the 7th International Multi-Conference Infor-
mation Society. Volume 1.

5. Landauer, T.K., Foltz, P.W., Laham, D.: An Introduction to Latent Semantic
Analysis. Discourse processes 25(2-3)

6. Poshyvanyk, D., Gueheneuc, Y.G., Marcus, A., Antoniol, G., Rajlich, V.: Feature
Location Using Probabilistic Ranking of Methods Based on Execution Scenarios
and Information Retrieval. IEEE Transactions on Software Engineering 33(6)

7. Haugen, Ø., Møller-Pedersen, B., Oldevik, J., Olsen, G.K., Svendsen, A.: Adding
Standardized Variability to Domain Specific Languages. In: 12th International
Software Product Line Conference

8. Zhang, X., Haugen, O., Moller-Pedersen, B.: Model Comparison to Synthesize
a Model-Driven Software Product Line. In: 15th International Software Product
Line Conference

9. Capobianco, G., De Lucia, A., Oliveto, R., Panichella, A., Panichella, S.: On the
Role of the Nouns in IR-Based Traceability Recovery. In: IEEE 17th International
Conference on Program Comprehension

10. Arcuri, A., Briand, L.: A Hitchhiker’s Guide to Statistical Tests for Assessing
Randomized Algorithms in Software Engineering. Softw. Test. Verif. Reliab. 24(3)

11. García, S., Fernández, A., Luengo, J., Herrera, F.: Advanced Nonparametric Tests
for Multiple Comparisons in the Design of Experiments in Computational Intelli-
gence and Data Mining: Experimental Analysis of Power. Inf. Sci. 180(10)

12. Conover, W.J.: Practical Nonparametric Statistics, 3rd Edition. Wiley (1999)
13. Vargha, A., Delaney, H.D.: A Critique and Improvement of the CL Common

Language Effect Size Statistics of McGraw and Wong. Journal of Educational and
Behavioral Statistics 25(2)

14. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Ex-
perimentation in Software Engineering. Springer Science & Business Media (2012)

15. Haiduc, S., Bavota, G., Marcus, A., Oliveto, R., De Lucia, A., Menzies, T.: Auto-
matic Query Reformulations for Text Retrieval in Software Rngineering. In: 35th
International Conference on Software Engineering

16. Falessi, D., Cantone, G., Canfora, G.: Empirical Principles and an Industrial Case
Study in Retrieving Equivalent Requirements via Natural Language Processing
Techniques. IEEE Transactions on Software Engineering 39(1)

17. Arora, C., Sabetzadeh, M., Goknil, A., Briand, L.C., Zimmer, F.: Change Im-
pact Analysis for Natural Language Requirements: An NLP Approach. In: 23rd
International Requirements Engineering Conference

18. Eder, S., Femmer, H., Hauptmann, B., Junker, M.: Configuring Latent Semantic
Indexing for Requirements Tracing. In: Proceedings of the Second International
Workshop on Requirements Engineering and Testing

