
Improving Traceability Links Recovery in
Process Models through an Ontological

Expansion of Requirements

Technical Paper

Raúl Lapeña1, Francisca Pérez1, Carlos Cetina1, and Óscar Pastor2

1 SVIT Research Group, Universidad San Jorge, Spain
{rlapena,fperez,ccetina}@usj.es

2 Centro de Investigación en Métodos de Producción de Software
Universitat Politècnica de València, Valencia, Spain

opastor@pros.upv.es

Abstract. Often, when requirements are written, parts of the domain
knowledge are assumed by the domain experts and not formalized in
writing, but nevertheless used to build software artifacts. This issue,
known as tacit knowledge, affects the performance of Traceability Links
Recovery. Through this work we propose LORE, a novel approach that
uses Natural Language Processing techniques along with an Ontological
Requirements Expansion process to minimize the impact of tacit knowl-
edge on TLR over process models. We evaluated our approach through a
real-world industrial case study, comparing its outcomes against those of
a baseline. Results show that our approach retrieves improved results for
all the measured performance indicators. We studied why this is the case,
and identified some issues that affect LORE, leaving room for improve-
ment opportunities. We make an open-source implementation of LORE
publicly available in order to facilitate its adoption in future studies.

Keywords: Traceability Links Recovery, Business Process Models, Re-
quirements Engineering

1 Introduction

Traceability Links Recovery (TLR) has been a subject of investigation for many
years within the software engineering community [11, 21]. Traceability can be
critical to the success of a project [25], leads to increased maintainability and
reliability of software systems [10], and decreases the expected defect rate in
developed software [16]. However, TLR techniques rely greatly on the language
of the studied documents. Often, when requirements are written, parts of the
domain knowledge are not embodied in them, or embodied in ambiguous ways.
This phenomena is known as tacit knowledge. The tacit knowledge is assumed by
all the domain experts, and never formalized in writing. This behavior has been
reported by previous works [22, 3]. As a result, both the text of the requirements

and the tacit knowledge are used to build software artifacts, which in turn contain
elements that are related to the text of the requirement, and elements that are
related to the tacit knowledge. However, since part of the knowledge is not
reflected in the text of the requirement, recovering the most relevant software
artifact for a requirement through TLR becomes a complex task.

Through this work, we propose LORE, a novel approach that minimizes the
impact that tacit knowledge has on TLR. To that extent, Natural Language
Processing (NLP) techniques are used to process the requirements, and then
an ontology is used to expand the processed requirements with concepts from
the domain. Finally, TLR techniques are applied to analyze the requirements
and software artifacts in search for software artifact fragments that match the
requirements. We have evaluated our approach by carrying out LORE between
the requirements and process models that comprise a real-world industrial case
study, involving the control software of the trains manufactured by our industrial
partner. Results show that our approach guides TLR to enhanced results for all
the measured performance indicators, providing a mean precision value of 79.2%,
a mean recall value of 50.2%, a combined F-measure of 66.5%, and an MCC value
of 0.62. In contrast, the baseline used for comparison presents worse results in
these same measurements. Through our work, we have also identified a series of
issues related to the ontology and the requirements that prevent our approach
from achieving better solutions. These issues could be tackled in the future to
further improve the TLR process between requirements and process models.

Through the following pages, Section 2 presents the background for our work.
Sections 3 and 4 provide details on our approach, and on the leveraged Traceabil-
ity Links Recovery technique. Section 5 describes the evaluation of our approach.
Section 6 introduces the obtained results. Section 7 discusses the outcomes of
our work. Section 8 presents the threats to the validity of our work. Section 9
reviews works related to this one. Finally, Section 10 concludes the paper.

2 Background

In industrial scenarios, companies tend to have a myriad of products with large
and complex models behind, created and maintained over long periods of time
by different software engineers, who often lack knowledge over the entirety of
the product details. Through this section, we provide an overview of the models
in our case study, and of the problem that our approach intends to mitigate.

2.1 Case Study Models

Fig. 1 depicts one example of a model, taken from a real-world train, specified
through a process model. The model has the expressiveness required to describe
the interaction between the main pieces of equipment installed in a train unit,
and the non-functional aspects related to regulation. Specifically, the example
of the figure presents the station stop process, where a human sets the stop
mode and the system opens the platform passenger doors. The elements of Fig.
1 highlighted in gray conform an example model fragment.

St
at

io
n

St
op

 P
ro

ce
ss Dr

iv
er

PL
C

Set stop mode

YesAre the station
doors open?

X

Open platform passenger doors

No

Requirement: At all the stops, the driver will set the train in stop
mode. If the doors are closed, the system will open the doors.

Fig. 1. Example of Requirement, Model and Model Fragment

2.2 Tacit Knowledge in Requirements

However, the requirement in Fig. 1 is lacking important information, known by
the engineers and kept as tacit knowledge. A literal interpretation of the second
sentence of the requirement implies that at all stations, all the doors of the train
will open. However, the sentence embodies tacit knowledge that is not written
but that is obvious to the domain engineers: (1) the train has doors on both
sides, but only the doors on the side of the platform will open; and (2) not all
the doors will open, the door of the control cabin will remain closed for the safety
of the driver and the train. Thus, only the platform passenger doors will open.

3 Our Approach

3.1 Approach Overview

Through the presented approach, we tackle the tacit knowledge issue presented
in the prior section, by expanding requirements through a domain ontology. The
approach runs in a two-step process:

1 First, we use Natural Language Processing (NLP) techniques to process the
requirement and the ontology. The NLP techniques unify the language of
the software artifacts, which facilitates the expansion process.

2 Secondly, we propose an Ontological Requirement Expansion (ORE) process
that uses the processed requirement and ontology in order to expand the
requirement with related domain knowledge, diminishing the amount of tacit
knowledge in the requirement.

The expanded requirement is used along with the NLP-treated process mod-
els from our case study as an input for Latent Semantic Indexing (LSI) [12], a
widely accepted TLR process [26]. Through LSI, a model fragment, candidate
solution for the requirement, is produced. Figure 2 depicts an overview of the
steps of the approach. In the figure, rounded boxes represent the inputs and
outputs of each step, while squared boxes represent each step. The highlighted
boxes represent the initially available inputs (requirement, ontology, and model)
used for the different steps of our approach and for the TLR process, and the
final output (the most relevant model fragment for the requirement).

Our Approach

Expanded
Requirement

2 - Ontological
Requirement

Expansion (ORE)

Model
Fragment

Traceability
Links Recovery

Process
Model

1 - Natural
Language

Processing (NLP)

Requirement Ontology

Requirement
Term Lists

Processed
Ontology

Fig. 2. Approach Overview

3.2 Natural Language Processing (NLP)

This section describes the NLP techniques taken in account for our approach.
Fig. 3 is used to illustrate the whole compendium of techniques, detailed through
the following paragraphs.

Splitting: As seen in Section 2, the tacit knowledge lies within the sentences of
the requirements. Thus, in order to better isolate the tacit knowledge issue,
we split the text of the requirements into the sentences that compose it.
These smaller parts of text will help expand the requirement more accurately
further on in our approach. Fig. 3 depicts the two sentences that result from
splitting the running example requirement.

Syntactical Analysis: Syntactical Analysis (SA) techniques analyze the spe-
cific roles of each one of them in the sentence and determine their grammat-
ical function. These techniques (referred to as Parts-Of-Speech Tagging, or
POS Tagging) allow engineers to implement filters for words that fulfill spe-
cific grammatical roles in a requirement, usually opting only for nouns [5].
In Fig. 3, it is possible to appreciate the SA process, with the POS Tagged
Tokens associated to each sentence of the requirement as outcome.

Root Reduction: The technique known as Lemmatizing reduces words to
their semantic roots or lemmas. Thanks to lemmas, the language of the NL
requirements is unified, avoiding verb tenses, noun plurals, and other word
forms that interfere negatively with the TLR process. The unification of the
language semantics is an evolution over pure syntactical role filtering, allow-
ing for a more advanced filtering of words in NL requirements. In Fig. 3,
it is possible to appreciate the RR process, with the Root-Reduced Tokens
as outcome of the semantic analysis of the POS Tags derived from the NL
requirement (keeping only nouns). This process is also applied to the on-
tology, treating all the concepts as nouns, since domain terms always name
important characteristics of the trains.

Human NLP: The inclusion of domain knowledge through experts and soft-
ware engineers in the TLR process is regarded as beneficial. Human NLP
is often carried out through Domain Terms Extraction or Stopwords Re-
moval. In our approach, domain terms are checked for after splitting the
requirement into sentences. We analyze each sentence in search for the do-
main terms provided by the software engineers, and add the found domain

terms to the final processed sentence. On the other hand, stopwords are fil-
tered out of the Root Reduced sentences. Fig. 3 depicts the Human NLP
process, where a software engineer provides both lists of terms, which are
consequently introduced into the final query, or filtered out of it.

Sentences
S1: At all the stops, the driver
will set the train in stop mode.
S2: If the doors are closed, the
system will open the doors.

Syntactical
Analysis

Processed Requirement
S1: stop, driver
S2: door, door

Domain Terms
Extraction

POS Tagged Tokens

S1: stops, driver, train, mode
S2: doors, system, doors

Root-Reduced Tokens

S1: stop, driver, train, mode
S2: door, system, door

Root
Reduction

Stopwords Removal

Fig. 3. Natural Language Processing Techniques

3.3 Ontological Requirement Expansion (ORE)

The process that we propose in order to ontologically expand a requirement is
detailed through the paragraphs of this section. The process runs in two steps: (1)
calculation of the Ontological Affinity Documents associated to the requirement,
and (2) expansion of the requirement.

1 Ontological Affinity: Ontological Affinity Documents (OADs) are docu-
ments that contain a set of ontological concepts related to a certain input.
The first step of the Ontological Requirement Expansion process is to calcu-
late the OADs associated to the requirement. We designed an algorithm that
utilizes a processed domain ontology and a processed requirement to gen-
erate the OADs. The algorithm first selects one of the processed sentences
generated through NLP. Then, the algorithm takes one term in the sentence,
searching for it in the ontology. If the term matches a concept that is present
in the ontology, all the concepts directly connected to the concept are added
to an OAD. The algorithm iterates over all the terms in the sentence, gener-
ating the OAD associated to the sentence. The process is repeated for every
sentence in the processed requirement, generating one OAD per sentence.
This process is illustrated through our running example in Fig. 4. In the
figure, for space reasons, only a small part of the domain ontology is repre-
sented. In the case of the first sentence, the term ’stop’ appears both in the
sentence and as an ontology concept. The concepts that are directly related
to the ’stop’ concept are ’station’ and ’door’. These concepts are therefore
included into the OAD of the sentence. In our example, the term ’driver’
does not appear as a concept in the ontology, providing no concepts for the
OAD of the first sentence. In the case of the second sentence, the term ’door’
appears as a concept in the example ontology. The concept is connected to

Inputs

Ontology

Output

S1 OAD
door

station

Processed
Requirement
S1: stop, driver
S2: door, door

door

stop

station

passenger

platform
passenger

door
S2 OAD

station (x2)
platform passenger door (x2)

stop(x2)

Fig. 4. Ontological Affinity Documents Calculation

’station’, ’stop’, and ’platform passenger door’. Since the term appears twice
in the sentence, the concepts are added twice to the OAD.

2 Requirement Expansion: Through this step, our approach automatically
reformulates the processed requirement to expand it with terms of the OADs
using a technique that is based on Rocchio’s method [18], which is perhaps
the most commonly used method for query reformulation [20]. Rocchio’s
method orders the terms in the OADs based on the sum of the importance
of each term of the documents using the following equation:

Rocchio =
∑
d∈R

TF (c, d) · IDF (t, R) (1)

Where R is the set of OADs, d is a document in R, and c is a concept in d.
The first component of the measure is the Term Frequency (TF), which is
the number of times the concept appears in a document; it is an indicator
of the importance of the concept in the document compared to the rest of
the concepts in that document. The second component is the Inverse Doc-
ument Frequency (IDF), which is the inverse of the number of documents
that contain that concept; it indicates the specificity of that concept for a
document that contains it. The IDF measurement is calculated as:

IDF (t, R) = log
|R|

|{d ∈ R : c ∈ d}|
(2)

Where |R| is the number of documents and |{d ∈ R : c ∈ d}| is the number
of documents where the concept is present.
To illustrate this calculation, consider the processed requirement from our
running example. After calculating the OADs presented in Fig. 4, Rocchio’s
method is applied to the concepts of the documents in order to retrieve the
importance of said concepts. Take in account the concept ’platform passen-
ger door’. In the first document, the concept does not appear (TF = 0),
immediately leading to a TF · IDF value of TF · IDF = 0. The concept
appears twice in the second document (TF = 2) and appears in one of
two documents (IDF = log 2

1 ≈ 0.3), which leads to a TF · IDF value of
TF · IDF ≈ 0.6. The sum of both TF · IDF values leads to a total Rocchio

value of Rocchio ≈ 0.6. Using Rocchio’s method, the concepts of the OADs
associated to the sentences of the requirement are ordered from highest to
lowest sum of importance into a single document of concepts. Once ordered,
we take in consideration only the first 10 suggestions and discard the rest,
as is recommended in the literature [6]. The list of the 10 first suggested
concepts conforms the OAD associated to the requirement.
Since the objective of our approach is to mitigate the tacit knowledge of the
requirement, our aim is to find new domain knowledge to include in the re-
quirement, and therefore we refine the requirement OAD by discarding those
concepts in the OAD that already appear in any sentence of the requirement.
In our running example, this process would produce a requirement OAD con-
sisting of the terms ’station’ and ’platform passenger door’, since both ’door’
and ’stop’ are already present in the sentences of the requirement. The terms
of the processed sentences and the concepts on the refined OAD are then
concatenated into a single list of terms. This final list of terms is the ultimate
goal that our approach seeks to obtain: an expanded requirement, enriched
with ontological domain knowledge. The expanded requirement is the final
output of the Ontological Requirement Expansion process, and is used as
query for the Traceability Links Recovery process.

4 Traceability Links Recovery

LORE can be applied to any TLR technique that uses a requirement as input.
Through this work, we utilize Latent Semantic Indexing (LSI), the TLR tech-
nique that obtains the best results when performing TLR between requirements
and software artifacts [26]. Latent Semantic Indexing (LSI) [12] constructs vec-
tor representations of a query and a corpus of text documents by encoding them
as a term-by-document co-occurrence matrix. In our approach, terms are each of
the words that compose the expanded requirement and NL representation of the
input model (extracted through the technique presented in [15]), documents are
the model elements in the input model, and the query is the expanded require-
ment. Each cell in the matrix contains the frequency with which the term of its
row appears in the document denoted by its column. Once the matrix is built, it
is normalized and decomposed into a set of vectors using a matrix factorization
technique called Singular Value Decomposition (SVD) [12].

The similarity degree between the query and each document is calculated
through the cosine between the vectors that represent them. Fig. 5 shows an ex-
ample matrix, built from our running example, the result of applying the SVD
technique to the matrix, and the resulting scores associated to each document.
In our approach, we use the top ranked model elements to build a model frag-
ment that serves as a candidate for realizing the requirement. Of all the model
elements, only those that have a similarity measure greater than x must be taken
into account. A widely used heuristic is x = 0.7. This value corresponds to a
45◦ angle between the corresponding vectors. Even though the selection of the
threshold is an issue under study, the chosen heuristic has yielded good results
in other similar works [14, 17].

Ke
yw

or
ds

QueryDocuments

ScoresSingular Value Decomposition

ME1 ME2 … MEN Requirement

PLC 0 0 … 0 0

platform passenger door 0 1 … 0 1

door 0 1 … 1 2

… … … … … …

Model Fragment
Similitude Scores

ME2 = 0.93

MEN = 0.85

…

ME1 = -0.87

MFN

MF2

Q

MF1

Q

ME2
MEN

ME1

Fig. 5. Traceability Link Recovery through Latent Semantic Indexing Example

5 Evaluation

This section presents the evaluation of our approach, including the experimental
setup, a description of the case study where we applied the evaluation, and the
implementation details of our approach.

5.1 Experimental Setup

The goal of this experiment is to perform TLR between requirements and models
through LORE, comparing its results against the baseline. The baseline against
which we compare our work is the technique that obtains the best results when
recovering Traceability between requirements and models according to the litera-
ture, TLR through LSI. The baseline utilizes the processed requirement, without
performing the ontological expansion in use in LORE. Fig. 6 shows an overview
of the process followed to evaluate our approach (LORE) and the baseline (TLR).
The top part of the figure shows the inputs, as provided by our industrial partner.
The requirements and models are used to build the test cases (one requirement
and one model each) and the approved Traceability is used to build the oracles
against which the results of the approaches are compared.

Documentation from Industrial Partner
Requirements Product Models Approved Traceability

Test Cases
TLR (baseline)

LORE (our approach)

Oracle Model Fragments

TLR Model Fragments

LORE Model Fragments

Calculation of
Measurements

Fig. 6. Experimental Setup

For each test case, both LORE and TLR generate one model fragment each.
The model fragments generated for each test case are compared against their
respective oracles (ground truth), and a confusion matrix is calculated for each
of the two approaches. A confusion matrix is a table used to describe the perfor-
mance of a classification model on a set of test data for which the true values are
known. In our case, the presence or absence of each model element is considered
as a classification. The confusion matrix arranges the results of the classifications
into four categories: (1) True Positive (predicted true, true in the real scenario),
(2) False Positive (predicted true, false in the real scenario), (3) True Negative
(predicted false, false in the real scenario), and (4) False Negative (predicted
false, true in the real scenario). From the confusion matrix, it is possible to ex-
tract some measurements that evaluate the performance of the approach. We
report four performance measurements for both LORE and TLR: Recall, Preci-
sion, F-measure, and MCC (Matthews Correlation Coefficient). Recall measures
the number of elements of the solution that are correctly retrieved by the pro-
posed solution, precision measures the number of elements from the solution
that are correct according to the ground truth, and the F-measure corresponds
to the harmonic mean of precision and recall. The MCC is a correlation coeffi-
cient between the observed and predicted binary classifications [19, 14].

Recall values can range between 0% (no single model element from the oracle
is present in the retrieved model fragment) to 100% (all the model elements from
the oracle are present in the retrieved model fragment). Precision values can
range between 0% (no model elements from the retrieved model fragment appear
in the oracle) to 100% (all the model elements from the retrieved model fragment
appear in the oracle). MCC values can range between −1 (no correlation between
the prediction and the oracle) to 1 (perfect prediction). Moreover, an MCC value
of 0 corresponds to a random prediction.

5.2 Case Study

The case study where we applied our approach was provided by our industrial
partner, CAF (http://www.caf.es/en), a worldwide provider of railway solu-
tions. Our evaluation includes 140 test cases, with each test case comprising one
requirement, one model, and the approved Traceability between the requirement
and the model. The requirements have about 25 words on average, and the mod-
els are formed through 650 elements on average. For each test case, we followed
the experimental setup described in Figure 6.

Regarding the domain ontology in use, it comprises 27 concepts and 176
relationships. The construction of an ontology is a major effort which requires
the study of the domain structure and terminology. We did not try to address
the creation of a new ontology in this paper but instead, our industrial partner
provided us with the ontology they use for training new employees. The ontology
is an important artifact and that its quality, size, and completeness may have
an impact on the results. In a future work, we intend to analyze the extent of
this impact on the results of LORE.

5.3 Implementation details

For the development of the Natural Language Processing operations used in both
our approach and the baseline, we have used the OpenNLP Toolkit [2]. To im-
plement the LSI and SVD techniques, the Efficient Java Matrix Library (EJML)
was used [1]. For the evaluation, we used a Lenovo E330 laptop, with a proces-
sor Intel(R) Core(TM) i5-3210M@2.5GHz with 16GB RAM and Windows 10
(64-bit). A prototype of LORE can be found at bitbucket.org/svitusj/lore.

6 Results

Table 1 outlines the results of the TLR baseline and our LORE approach. Each
row shows the Precision, Recall, F-measure, and MCC values obtained through
each of the two approaches. The LORE approach achieves the best results for all
the performance indicators, providing a mean precision value of 79.2%, a mean
recall value of 50.2%, a combined F-measure of 66.5%, and an MCC value of
0.62. In contrast, the TLR baseline presents worse results in all the measure-
ments, attaining a mean precision value of 59.3%, a mean recall value of 45.5%,
a combined F-measure of 52.4%, and an MCC value of 0.31. We also included
the values of the measurements for the top 20 and the bottom 20 results for
TLR and LORE, to better highlight how the results obtained by LORE improve
those obtained by the TLR baseline.

Table 1. Mean Values and Standard Deviations for Precision, Recall and F-Measure

Precision Recall F-Measure MCC

TLR 59.3%±29.6% 45.5%±34.2% 52.4%±31.9% 0.31±0.13

LORE 79.2%±33.6% 50.2%±30.6% 66.5%±38.6% 0.62±0.32

Top 20 - TLR 81.3%±7.3% 55.4%±3.2% 68.3%±5.2% 0.41±0.03

Top 20 - LORE 93.4%±8.4% 69.8%±4.6% 81.6%±6.5% 0.86±0.04

Bottom 20 - TLR 48.3%±6.9% 19.8%±4.2% 34.1%±5.5% 0.22±0.04

Bottom 20 - LORE 66.2%±5.7% 41.2%±5.1% 53.7%±5.4% 0.38±0.08

7 Discussion

The results presented in the previous section suggest that by embedding domain
knowledge into requirements the TLR process retrieves enhanced results. Taking
a closer look at the test cases, we found out that there are many terms in
the models that do not appear in the requirements. Through the ontological
expansion of the requirements, they are enriched with otherwise missing terms,
retrieving more and better links. However, we also noticed a series of facts that
prevent LORE from achieving better results than it does. We should tackle these
issues in the future to further improve our line of work:

1 Our analysis of the results raised awareness about the importance of the qual-
ity and completeness of the ontology in LORE. If a particular concept does
not have quality connections, the quality of the expansion process is dimin-
ished, also affecting the quality of the final outcome. Equally, if a concept is
missing from the ontology, the concept itself and its would-be related con-
cepts cannot be introduced in the expanded requirement. This issue leaves
parts of the domain knowledge out from the requirement, causing a decrease
in recall. In order to tackle this issue, we plan to automatically identify words
and patterns of words that occur repeatedly in the requirements and mod-
els, and suggest their inclusion in the ontology as concepts, entrusting the
creation of their relationships to the software engineers.

2 In the ontology, we identified some terms that have a large number of con-
nections to other terms. Matching one of those terms through LORE leads
to the inclusion of several unwanted ontological concepts into the expanded
requirement. This concatenation of events reflects into LSI noise, strongly
affecting in a negative manner the precision of the results, since elements
that are not part of the oracle can be added to the proposed solution due to
this issue. To tackle this issue, we plan to automatically identify the overly
connected ontological concepts and suggest their inclusion in the stopwords
list to the software engineers, so they can be kept out of the LORE analysis.

3 Another possible consideration towards the obtained results is the parame-
ter tuning of our approach. Many Information Retrieval approaches have
parameters that can be tuned in order to improve the results (such as the
LSI similitude threshold), and our approach is no exception. So far, we have
considered only the directly related ontological concepts when performing
the expansion (one jump or ontological affinity level 1). In the future, we
plan to study how using different levels of affinity may impact the results.
We believe this could help us further explore the ontology and the relation-
ships between the concepts, although at a risk of including noise into LSI.
Analyzing the tuning of this parameter and its implications and impact on
the outcomes of the LORE approach remains as future work.

4 Regarding recall, we have inspected the results and have determined that
the low recall levels are not dependent solely on the techniques under use,
but are also affected by the quality of the received queries, which in several
occasions, are poorly formulated. Focusing only on these particular cases,
recall values obtained by TLR range at 20%, while recall values obtained by
LORE range at 40%. However, for better quality queries, TLR recall results
range at 55%, while those of LORE range at 70%. The point is, considering
ontological knowledge in the process helps improve traceability results. That
is, in the face of poor quality inputs, the results improve, but if we feed
LORE with better queries, the results improve as well. Studying the quality
of the inputs and how to ensure it remains as an interesting research topic
for a future work in which we might as well design another experiment to
research how LORE improves the results of TLR for top-quality queries.
In any case, as a naive experiment and in order to ensure the usefulness
of the obtained results, we have discussed them with one of the software

engineers working for our industrial partner, who has confirmed that the
model fragments obtained by LORE serve as a better starting point for
requirement-model tracing than those obtained by plain TLR.

5 Finally, in many cases, different terms are used to reference the same concept
in the requirements, models, and ontology alike. In industrial environments,
the engineers in charge of writing requirements may not be assigned with the
building of the models or the ontology in any ways, being those tasks left for
different engineers. Moreover, the artifacts can be manipulated by different
engineers. This issue is known as vocabulary mismatch. Even though LORE
uses NLP to homogenize the language between requirements and models, the
vocabulary mismatch continues to be a disregarded issue in our work. The
lack of awareness caused by the vocabulary mismatch makes it impossible
to locate the elements from the model that are relevant to the requirement,
which in turn negatively impacts both precision and recall. To mitigate this
issue, we plan on adding a third human-made list, comprising in-house terms
and their possible synonyms, allowing us to further map ontology concepts
and requirements.

8 Threats to validity

In this section, we use the classification of threats to validity of [27] to acknowl-
edge the limitations of our approach.

1 Construct validity: This aspect of validity reflects the extent to which the
operational measures that are studied represent what the researchers have
in mind. To minimize this risk, our evaluation studies four measures that are
widely accepted in the software engineering research community: precision,
recall, F-measure, and MCC.

2 Internal Validity: This aspect of validity is of concern when causal relations
are examined. There is a risk that the factor being investigated may be
affected by other neglected factors. The number of requirements and models
presented in this work may look small, but they implement a wide scope of
different railway equipment.

3 External Validity: This aspect of validity is concerned with to what extent
it is possible to generalize the findings, and to what extent the findings are
of relevance for other cases. Both requirements and process models are fre-
quently leveraged to specify all kinds of different software. LSI is a widely
accepted and utilized technique which has proven to obtain good results in
multiple domains. The NLP techniques studied through this work are also
commonly used in the whole of the SE community. Therefore, our experiment
does not rely on the particular conditions of our domain. In addition, the
real-world models used in our research are a good representative of the rail-
way, automotive, aviation, and general industrial manufacturing domains.
Nevertheless, the experiment and its results should be replicated in other
domains before assuring their generalization.

4 Reliability: This aspect is concerned with to what extent the data and the
analysis are dependent on the specific researchers. To reduce this threat, all
the software artifacts were provided by our industrial partner.

9 Related Work

Some works focus on the impact and application of Linguistics to TLR at sev-
eral levels of abstraction. Works like [23, 24] or [7] use Linguistic approaches to
tackle specific TLR problems and tasks. In [9], the authors use Linguistic tech-
niques to identify equivalence between requirements, also defining and using a
series of principles for evaluating their performance when identifying equivalent
requirements. The authors of [9] conclude that, in their field, the performance
of Linguistic techniques is determined by the properties of the given dataset
over which they are performed. They measure the properties as a factor to ad-
just the Linguistic techniques accordingly, and then apply their principles to
an industrial case study. The work presented in [4] uses Linguistic techniques
to study how changes in requirements impact other requirements in the same
specification. Through the pages of their work, the authors analyze TLR be-
tween requirements, and use Linguistic techniques to determine how changes in
requirements must propagate.

Our work differs from [23, 24] and [7] since our approach is not based on Lin-
guistic techniques as a means of TLR, but we rather use an ontological expansion
process to enrich requirements before performing TLR, using NLP techniques
only as a preprocess in our work. Moreover, we do not study how Linguistic tech-
niques must be tweaked for specific problems as [9] does. In addition, differing
from [4], we do not tackle changes in requirements nor TLR between require-
ments, but instead focus our work on TLR between requirements and models.

Other works target the application of LSI to TLR tasks. De Lucia et al.
[13] present a Traceability Links Recovery method and tool based on LSI in
the context of an artifact management system, which includes models. [8] takes
in consideration the possible configurations of LSI when using the technique
for TLR between requirements artifacts, namely requirements and test cases.
In their work, the authors state that the configurations of LSI depend on the
datasets used, and they look forward to automatically determining an appropri-
ate configuration for LSI for any given dataset. Through our work, we do not
focus on the usage of LSI or its tuning, but rather expand requirements with on-
tological domain knowledge before carrying out TLR between said requirements
and the models.

10 Conclusions

Through this work, we propose a novel approach (LORE), based on an Ontolog-
ical Requirement Expansion process, that can be used to minimize the impact
that tacit knowledge has on TLR. We evaluated our approach by carrying out
LORE between the requirements and process models that comprise a real-world

industrial case study. Results show that our approach guides TLR to the best
results for all the measured performance indicators, providing a mean precision
value of 79.2%, a mean recall value of 50.2%, a combined F-measure of 66.5%,
and an MCC value of 0.62. In contrast, the baseline used for comparison presents
worse results in these same measurements. In addition, we identified a series of
issues that prevent our approach from achieving better solutions, and that should
be tackled in the future in order to further improve the TLR process between
requirements and process models. To facilitate the adoption of LORE, we made
a reference implementation freely available for the Eclipse environment.

Acknowledgements

This work has been partially supported by the Ministry of Economy and Com-
petitiveness and ERDF funds under the project Model-Driven Variability Extrac-
tion for Software Product Lines Adoption (TIN2015-64397-R). We also thank the
ITEA3 15010 REVaMP2 Project.

References

1. Abeles, P.: Efficient Java Matrix Library. http://ejml.org/ (2017), [Online; accessed
9-November-2017]

2. Apache: OpenNLP Toolkit for the Processing of Natural Language Text.
https://opennlp.apache.org/ (2017), [Online; accessed 12-November-2017]

3. Arora, C., Sabetzadeh, M., Briand, L., Zimmer, F.: Extracting Domain Models
from Natural-Language Requirements: Approach and Industrial Evaluation. In:
Proceedings of the ACM/IEEE 19th International Conference on Model Driven
Engineering Languages and Systems. pp. 250–260. ACM (2016)

4. Arora, C., Sabetzadeh, M., Goknil, A., Briand, L.C., Zimmer, F.: Change Impact
Analysis for Natural Language Requirements: An NLP Approach. In: IEEE 23rd
International Requirements Engineering Conference (2015)

5. Capobianco, G., De Lucia, A., Oliveto, R., Panichella, A., Panichella, S.: On the
Role of the Nouns in IR-Based Traceability Recovery. In: Program Comprehension,
2009. ICPC’09. IEEE 17th International Conference on. pp. 148–157. IEEE (2009)

6. Carpineto, C., Romano, G.: A Survey of Automatic Query Expansion in Informa-
tion Retrieval. ACM Comput. Surv. pp. 1:1–1:50 (2012)

7. Duan, C., Cleland-Huang, J.: Clustering Support for Automated Tracing. In: Pro-
ceedings of the 22nd IEEE/ACM International Conference on Automated Software
Engineering (2007)

8. Eder, S., Femmer, H., Hauptmann, B., Junker, M.: Configuring Latent Seman-
tic Indexing for Requirements Tracing. In: Proceedings of the 2nd International
Workshop on Requirements Engineering and Testing (2015)

9. Falessi, D., Cantone, G., Canfora, G.: Empirical Principles and an Industrial Case
Study in Retrieving Equivalent Requirements via Natural Language Processing
Techniques. Transactions on Software Engineering 39(1) (2013)

10. Ghazarian, A.: A Research Agenda for Software Reliability. IEEE Reliability So-
ciety 2009 Annual Technology Report (2010)

11. Gotel, O.C., Finkelstein, C.: An Analysis of the Requirements Traceability Prob-
lem. In: Proceedings of the First International Conference on Requirements Engi-
neering. pp. 94–101. IEEE (1994)

12. Landauer, T.K., Foltz, P.W., Laham, D.: An Introduction to Latent Semantic
Analysis. Discourse Processes 25(2-3), 259–284 (1998)

13. de Lucia, A., et al.: Enhancing an Artefact Management System with Traceability
Recovery Features. In: Proceedings of the 20th IEEE International Conference on
Software Maintenance. pp. 306–315. IEEE (2004)

14. Marcus, A., Sergeyev, A., Rajlich, V., Maletic, J.: An Information Re-
trieval Approach to Concept Location in Source Code. In: Proceedings of the
11th Working Conference on Reverse Engineering. pp. 214–223 (Nov 2004).
https://doi.org/10.1109/WCRE.2004.10

15. Meziane, F., Athanasakis, N., Ananiadou, S.: Generating Natural Language Speci-
fications from UML Class Diagrams. Requirements Engineering 13(1), 1–18 (2008)

16. Rempel, P., Mäder, P.: Preventing Defects: the Impact of Requirements Traceabil-
ity Completeness on Software Quality. IEEE Transactions on Software Engineering
43(8), 777–797 (2017)

17. Salman, H.E., Seriai, A., Dony, C.: Feature Location in a Collection of Product
Variants: Combining Information Retrieval and Hierarchical Clustering. In: The
26th International Conference on Software Engineering and Knowledge Engineer-
ing. pp. 426–430 (2014)

18. Salton, G.: The SMART Retrieval System - Experiments in Automatic Document
Processing. Prentice-Hall, Inc. (1971)

19. Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-
Hill, Inc., New York, NY, USA (1986)

20. Sisman, B., Kak, A.C.: Assisting code search with automatic query reformulation
for bug localization. In: Proceedings of the 10th Working Conference on Mining
Software Repositories. pp. 309–318 (2013)

21. Spanoudakis, G., Zisman, A.: Software Traceability: a Roadmap. Handbook of
Software Engineering and Knowledge Engineering 3, 395–428 (2005)

22. Stone, A., Sawyer, P.: Using Pre-Requirements Tracing to Investigate Require-
ments based on Tacit Knowledge. In: ICSOFT (1). pp. 139–144 (2006)

23. Sultanov, H., Hayes, J.H.: Application of Swarm Techniques to Requirements En-
gineering: Requirements Tracing. In: 18th IEEE International Requirements Engi-
neering Conference (2010)

24. Sundaram, S.K., Hayes, J.H., Dekhtyar, A., Holbrook, E.A.: Assessing Traceability
of Software Engineering Artifacts. Requirements Engineering 15(3) (2010)

25. Watkins, R., Neal, M.: Why and How of Requirements Tracing. IEEE Software
11(4), 104–106 (1994)

26. Winkler, S., Pilgrim, J.: A Survey of Traceability in Requirements Engineering
and Model-Driven Development. Software and Systems Modeling (SoSyM) 9(4),
529–565 (2010)

27. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Ex-
perimentation in Software Engineering. Springer Science & Business Media (2012)

