
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, AUGUST XXXX 1

Achieving Feature Location in Families of Models
through the use of Search-Based Software

Engineering
Jaime Font, Lorena Arcega, Øystein Haugen and Carlos Cetina

Abstract—The application of Search-Based Software Engineer-
ing (SBSE) techniques to new problems is increasing. Feature
location is one of the most important and common activities
performed by developers during software maintenance and evo-
lution. Features must be located across families of products and
the software artifacts that realize each feature must be identified.
However, when dealing with industrial software artifacts, the
search space can be huge. We propose and compare five search
algorithms to locate features over families of product models
guided by Latent Semantic Analysis (LSA), a technique that
measures similarities between textual queries. The algorithms are
applied to two case studies from our industrial partners (leading
manufacturers of home appliances and rolling stock) and are
compared in terms of precision and recall. Statistical analysis of
the results is performed to provide evidence of the significance
of the results. The combination of an evolutionary algorithm
with LSA can be used to locate features in families of models
from industrial scenarios such as the ones from our industrial
partners.

Index Terms—Feature Location, Families of Models, Evolu-
tionary Algorithm, Search-Based Software Engineering

I. INTRODUCTION

SEARCH-based techniques have been applied successfully
to a growing number of engineering problems. Software

engineering is concerned with finding near optimal solutions or
those that fall within a specified level of acceptable tolerance.
It is precisely these factors which make search-based tech-
niques readily applicable. Search-Based Software Engineering
(SBSE) has had notable successes and there is an increasingly
widespread application of SBSE across the full spectrum of
Software Engineering activities and problems [1]. In addition,
some research efforts demonstrate that SBSE, which was
previously only applied to laboratory programs, can scale to
real-world systems of tens of thousands of lines of code [2].

Feature location (FL) is one of the most important and
common activities performed by developers during software
maintenance and evolution [3]. FL is known as the process
of finding the set of software artifacts that realize a specific
feature, and it has received much attention during recent years
[4], [5]. However, most of the research on FL targets code as
the software artifacts that realize the feature [4], [5], neglecting

J. Font, L. Arcega, and C. Cetina are with the SVIT Research Group,
Universidad San Jorge, Spain, e-mail: (jfont,larcega,ccetina)@usj.es.

J. Font, and L. Arcega are with the Department of Informatics, University
of Oslo, Norway.

Ø. Haugen is with the Department of Information Technology, Østfold
University College, Norway.

Manuscript received April 19, 2005; revised August 26, 2015.

other software artifacts such as the models. When performing
FL over models, the set of possible realizations for a specific
feature is too big to be evaluated exhaustively (a model of 500
elements can yield around 1029 potential fragments) and there
is a need for search-based techniques to drive the process [6].

In this paper, we propose and compare five search algo-
rithms to locate features over a family of models (MFL): Evo-
lutionary Algorithm (EA-MFL), Random Search (RS-MFL),
steepest Hill Climbing (HC-MFL), Iterated Local Search with
restarts (IHL-MFL), and a hybrid between Evolutionary algo-
rithm and Hill Climbing (EHC-MFL). The five algorithms rely
on Latent Semantic Analysis (LSA) [7] as the fitness function
for the evaluation of the solutions. LSA is an Information
Retrieval technique that measures the similarity between two
textual queries, and, in this paper, it is applied to compare
the feature realization solutions with the search query that
describes the feature being located.

We have applied the five approaches to two different indus-
trial domains: BSH, the leading manufacturer of home appli-
ances in Europe; and CAF, a worldwide leading company that
manufactures rolling stock. To compare the search algorithms,
we extracted two case studies from our industrial partners that
include the problem (the features to be located) and the oracle
(the realization of those features validated by the company).
Then we compared the results from the five algorithms with
the oracle (which is considered to be the ground truth) in
terms of precision, recall, the F-measure, and the Matthews
Correlation Coefficient (MCC) [8], [9]. Finally, we performed
a statistical analysis of the results (following the guidelines in
[10]) in order to provide quantitative evidence of the impact
of the five search algorithms and to show that this impact is
significant.

The EHC-MFL algorithm performed better than the other
algorithms in terms of the four performance indicators. For
the best case study, up to 72.41% of the model elements that
were expected to be in the features being located (according to
the oracle) were present when the EHC-MFL was used (up to
67.32% for EA-MFL, 61.81% for ILS-MFL, 56.61% for HC-
MFL, and 38.91% for RS-MFL). In addition, only 23.53% of
the elements introduced by the EHC-MFL algorithm as part
of the feature realization were misplaced and should not be
part of it (29.32% for EA-MFL, 39.1% for ILS-MFL, 48.01%
for HC-MFL, and 61.67% for RS-MFL). It turns out that
the genetic operations performed by EHC-MFL and EA-MFL
together with the fitness function are able to properly traverse
search spaces that are originated when locating features in

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, AUGUST XXXX 2

industrial models such as the ones from our industrial partners.
The rest of the paper is structured as follows: Section II

provides some background. Section III provides an overview
of the work. Section IV presents the encoding that was used
for the model fragments. Section V shows the usage of LSA as
fitness function. Section VI presents the five search algorithms.
Section VII presents the evaluation that was performed with
our industrial partners and the statistical analysis of the results.
Section VIII presents some related work, and then we conclude
the paper.

II. BACKGROUND

This section presents the Domain-Specific Language (DSL)
used by our industrial partner BSH to formalize their products,
the IHDSL. It will be used throughout the rest of the paper
to present a running example. Then the Common Variability
Language (CVL) is presented. CVL is the language used by
our MFL approaches to formalize the location of the features.

A. The Induction Hobs Domain-Specific Language (IHDSL)

The newest Induction Hobs (IHs) feature full cooking
surfaces, where dynamic heating areas are automatically gen-
erated and activated or deactivated depending on the shape,
size, and position of the cookware placed on top. In addition,
there has been an increase in the type of feedback provided
to the user while cooking, such as the exact temperature of
the cookware, the temperature of the food being cooked, or
even real-time measurements of the actual consumption of the
IH. All of these changes are made possible at the expense of
increasing the software complexity.

The Domain-Specific Language used by our industrial part-
ner to specify the Induction Hobs (IHDSL) is composed of
46 meta-classes, 74 references, and more than 180 properties.
However, in order to increase legibility and due to intellectual
property rights, we show a simplified subset of the IHDSL at
the top of Fig. 1.

Inverters are in charge of transforming the input electric
supply to match the specific requirements of the IH. Then, the
energy is transferred to the inductors through the channels.
There can be several alternative channels, which enable differ-
ent heating strategies depending on the cookware placed on top
of the IH at run-time. The path followed by the energy through
the channels is controlled by the power manager. Inductors
are the elements where the energy is transformed into an
electromagnetic field. Inductors can be organized into groups
to heat larger cookware while sharing the user interface.

B. The Common Variability Language applied to IHs

Our MFL approaches use the Common Variability Language
(CVL) [11] due to its expressiveness to properly formalize the
feature realizations in terms of model fragments. CVL defines
variants of a base model that conforms to Meta-Object Facility
(MOF) [12] by replacing variable parts of the base model with
alternative model replacements that are found in a library.

The base model is a model described by a given DSL
(here, IHDSL) that serves as the base for different variants

Feature Specification layer

Base Model

P1

Library Model

R4

R1

R2

R3

P2

Product Realization layer

Inverter

Channels
Power

manager

Inductors

IHDSL Metamodel

Induction
HobInverter

Power
Manager

Inductor

IHDSL syntax

Provider
Channel

Consumer
Channel

V
ar

ia
b

ili
ty

 S
p

ec
if

ic
a

ti
o

n

Induction
Hob

0..1

small
Inductor

P2 R2

lower
Inverter

P1 R4

medium
Inductor

P2 R1

large
Inductor

P2 R3

upper
Inductor

Fig. 1. CVL applied to IHDSL

defined over it. In CVL, the elements of the base model
that are subject to variations are the placement fragments
(hereafter placement). A placement can be any element or set
of elements that is subject to variation. To define alternatives
for a placement, we use a replacement library, which is a
model that is described in the same DSL as the base model
that will serve as a base to define alternatives for a placement.
Each one of the alternatives for a placement is a replacement
fragment (hereafter replacement). Similarly to placements, a
replacement can be any element or set of elements that can
be used as variation for a placement.

The bottom of Fig. 1 shows an example of a variability
specification of an IH through CVL. In the product realization
layer, two placements are defined over the IH base model
(P1 and P2). Then, four replacements are defined over the IH
library model (R1, R2, R3, and R4). In the feature specification
layer, a Feature Model that formalizes the variability among
the IH (based on the placements and replacements) is defined.
For instance, P1 can only be substituted by R4 (which is
optional), but P2 can be replaced by R1, R2, or R3.

III. OVERVIEW

In this paper, we present and compare five search algorithms
for Model-based Feature Location (MFL). The objective of
the approach is to find the model fragment (from a given
set of product models) that realizes a specific feature being
described by the user. This is one of the most important and

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, AUGUST XXXX 3

Hotplate: group of inductors that can work
together to heat the cookware. Each
hotplate is controlled by a power level that is
then translated to different power outputs
for each inductor depending on its size and
position. The inductors activated depend on
the detection of the cookware.

Feature Description

Set of Product Models

Fig. 2. Input provided to the approach

common activities performed by developers during software
maintenance and evolution [3]. This activity takes up to 80%
of the time spent on a system [13]. Therefore, increasing the
automation level of the feature location activity will help in
reducing the time spent on maintenance and evolution tasks.

The five MFL approaches are: Evolutionary Algorithm (EA-
MFL); Random Search (RS-MFL); steepest Hill Climbing
(HC-MFL); Iterated Local Search with Replacement (ILS-
MFL) and a hybrid between Evolutionary Algorithm and Hill-
Climbing (EHC-MFL). The same fitness operation is used by
the five algorithms. The fitness value is calculated according to
the similarity of the model fragment and a feature description
that is provided by the user. The outputs of the five approaches
are model fragments that may realize the feature being located.

The input for the proposed approaches consists of a set of
product models and a textual description of the feature. With
these, the engineer can embed their implicit knowledge of the
domain into the feature location process.

Fig. 2 presents an example of input for the MFL approaches.
The part on the left represents the set of product models. The
part on the right shows a textual description for the feature
to be located, the hotplate. This is a simplified version of
a text description that has been extracted from the internal
documentation used by one of our industrial partners to
describe their products.

IV. ENCODING

The features being located by the algorithms will be in the
form of model fragments, which are a subset of the model
elements present in a specific product model. Traditionally,
evolutionary algorithms encode each possible solution of the
problem as a string of binary values. Each position of the string
has two possible values: 0 or 1. Therefore, each solution candi-
date of our proposed approaches will be a model fragment that
is defined over one of the product models. Each model element
will have a corresponding position in the binary string and the
value of that position will indicate the presence or absence of
that specific element in the encoded model fragment.

Fig. 3 shows two examples of our encoding of model
fragments. We tag each model element of the product model
with a letter. In the example of the upper part of Fig. 3, the
letters A and F correspond to inverters, the letters B, D, G, and
I correspond to channels, and the letters E and J correspond
to inductors. The string of binary values that represents the
model fragment from this product model has the positions
that correspond to each letter with a value of 0 or 1. If the
model element is part of the model fragment, the value will

Product Model 4 Model Fragment 4

Product Model 2 Model Fragment 1

A B C D E F G H I J
0 1 1 1 1 0 0 0 0 0

Encoding

A B C D E F G H ... P
0 1 1 1 0 1 0 0 0 0

Encoding

A B C D E

F G H I J

E
G

H

I

J

K

L

M N O

P

A B C D F

Fig. 3. Encoding of Individuals (Model Fragments)

be 1; if the model element is not part of the model fragment,
the value will be 0.

Each model fragment representation depends on the product
model that it came from. Both of the examples in Fig. 3
represent the same model fragment, but they come from
different product models and thus have different representa-
tions. Throughout the rest of the paper, we will refer to each
individual as a model fragment that is part of a product model.

V. MODEL FRAGMENT FITNESS

To assess the relevance of each model fragment in relation
to the feature description provided by the user, we apply
methods that are based on Information Retrieval (IR) tech-
niques. Specifically, we apply Latent Semantic Analysis (LSA)
[7] to analyze the relationships between the description of
the feature provided by the user and the model fragments
previously obtained. Recent studies have shown that there is
not a statistically significant difference among different IR
techniques [14], [15] when applied to software artifacts [16].
Hence, we chose LSA because it provides results that are
similar to other IR techniques for software documents.

LSA constructs vector representations of a query and a
corpus of text documents by encoding them as a term-by-
document co-occurrence matrix (i.e., a matrix where each row
corresponds to terms, each column corresponds to documents,
and the last column corresponds to the query). We use the
term-frequency (tf) as the term weighting schema to construct
the matrix. In other words, each cell holds the number of
occurrences of a term (row) inside either a document or the
query (column).

In our work, all documents are model fragments (i.e.,
a document of text is generated from each of the model
fragments). The text of the document corresponds to the names
and values of the properties and the methods of each model
fragment. The query is constructed from the terms that appear

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, AUGUST XXXX 4

LSA Results

Q

MF4

MF2

MF3

MF1T
e
rm
s

Model Fragments

MF1

Inverter 0

MF2 MF4 MF5 MF6 MF7MF3

Provider

Power

Inductor

...

0

0

0

...

2

2

4

10

5

5

5

7

7

5

4

2

2

2

4

5

4

5

5

2

2

2

2

2

Query

0

0

0

2

...

Fitness

MF4 : 0.9

MF2 : 0.5

MF3 : 0.2

MF1 : -0.2

Fig. 4. Fitness Operation via Latent Semantic Analysis (LSA) - term-by-document co-occurrence matrix (left) and vector representation (right)

in the feature description. The text from the documents (model
fragments) and the text from the query (feature description)
are homogenized by applying well-known Natural Language
Processing techniques:

First, the textual description is tokenized (divided into
words). Usually, a white space tokenizer can be applied (which
splits the strings whenever it finds a white space). However,
for some sources of description, more complex tokenizers need
to be applied. For instance, when the description comes from
documents that are close to the implementation of the product,
some words could be using CamelCase naming.

Second, we apply the Parts-of-Speech (POS) tagging tech-
nique. POS tagging analyzes the words grammatically and
infers the role of each word into the text provided. Recent
studies in software engineering have proven the usefulness of
POS-tagging techniques to remove textual noise in software
documents [17]. In addition, the use of word-selection strate-
gies [18], [19] can improve the results in feature location [20].
After applying this technique, each word is tagged, which
allows the removal of some categories that do not provide
relevant information. For instance, conjunctions (e.g., or),
articles (e.g., a), or prepositions (e.g., at) are words that are
commonly used and do not contribute relevant information that
describes the feature, so they are removed.

Third, stemming techniques are applied to unify the lan-
guage that is used in the text. This technique consists of reduc-
ing each word to its roots, which allows different words that
refer to similar concepts to be grouped together. For instance,
plurals are turned into singulars (inductors to inductor) or
verbs tenses are unified (using and used are turned into use).

The union of all of the keywords extracted from the
documents (model fragments) and from the query (feature
description) are the terms (rows) used by our LSA fitness
operation.

Fig. 4 (left) shows an example of the co-occurrence matrix
for our running example. Each column is one of the model
fragments. The last column is the query that is obtained from
the feature description of the user. Each row is one of the
terms extracted from the corpora of text, which is composed
by all of the model fragments and the query itself (to improve
readability, we show the terms before the stemming process).
Each cell shows the number of occurrences of each of the
terms in the model fragments.

Once the matrix is built, we normalize and decompose it

into a set of vectors using a matrix factorization technique
called Singular Value Decomposition (SVD) [7]. SVD projects
the original term-by-document co-occurrence matrix in a lower
dimensional space k. We use the value of k suggested by Kuhn
et al. [21], which provides good results [22]. One vector that
represents the latent semantics of the document is obtained for
each model fragment and the query. Finally, the similarities
between the query and each model fragment are calculated
as the cosine between the two vectors. The fitness value that
is given to each model fragment is obtained as the cosine
similarity between the two vectors, obtaining values between
-1 and 1.

Let p1 be an individual of the population; let A be the
vector representing the latent semantic of p1; let B be the
vector representing the latent semantics of the query where
the angle formed by the vectors A and B is θ. The fitness
function can be defined as:

fitness(p1) = cos(θ) =
A ·B

‖A‖ · ‖B‖
(1)

Fig. 4 (right) shows a three-dimensional graph of the LSA
results. The graph shows the representation of each one of
the vectors, which are labelled with letters that represent the
names of the model fragments. Finally, after the cosines are
calculated, we obtain a value for each of the model fragments,
indicating its similarity with the query.

VI. SEARCH ALGORITHMS FOR FML

In this section, we present the five different search algo-
rithms that will be evaluated. All of them will be guided using
the same heuristic function, the fitness based on LSA presented
in the previous section. Therefore, their differences with each
other lie in how the solution space is traversed looking for the
best solution.

A. Evolutionary Algorithm MFL (EA-MFL)

Our first search algorithm is an Evolutionary Algorithm that
iterates a population of model fragments and evolves them
using genetic operations. As output, the algorithm provides
the model fragment that best realizes the feature according
to the fitness function. The generation of model fragments is
done by applying genetic operators that we have adapted to
work with model fragments.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, AUGUST XXXX 5

Model Fragment 1 (from Parent 1)
+

Product Model 4 (from Parent 2)

Crossover operation
Product Model 4

Model Fragment 4

Offspring

0 1 1 1 0 1 0 ...0 0Encoding

Parent 2

Product Model 2
Model Fragment 1

Parent 1

0 1 1 1 1 0 0 0 0 0Encoding

Product Model 4

0 0 0 0 0 0 0 ...0 0Encoding

Fig. 5. Example of application of the Crossover Operation on Model Fragments

We develop our evolutionary algorithm as outlined in Algo-
rithm 1 (available in the Appendix). The algorithm starts with a
random initial population of model fragments that are obtained
from the product models provided as input, (P , Lines 7-14).
From this initial population, the offspring of model fragments
is created by applying a selection operation (Line 18), a
crossover operation (Line 19), and a mutation operation (Line
20). Then, the new offspring is added to the population (Line
21). When the creation of the new population has finished
(Lines 17-22), it replaces the existing one (Line 4). This loop
(Lines 2-5) is repeated until the StopCondition is met. Below
we describe the genetic operations used by this algorithm.

1) Selection of parents: The evolutionary algorithm uses
the selection operator to select the best model fragments from
the population to be used as the input for the following
operations. There are different methods that can be used to
perform the selection of the parents, but one of the most
common choices is to follow the wheel selection mechanism
[23]. In other words, each model fragment from the population
has a probability of being selected that is proportional to its
fitness score. Therefore, model fragments with high fitness
values will have higher probabilities of being chosen as parents
for the next generation.

2) Crossover: In our encoding, there are two elements that
can be mapped across the different individuals: the model
fragment and the referenced product model. Therefore, our
crossover operation will take the model fragment from the
first parent and the product model from the second parent,
generating a new individual that contains elements from
both parents, thereby preserving the basic mechanics of the
crossover operation.

To achieve the above, our crossover operation is based
on model comparisons. Fig. 5 shows an example of the
application of the crossover operation on model fragments.
First, we select the model fragment from the first parent.
Then, we select the product model from the second parent.

The model fragment (from first parent) is then compared with
the product model (from the second parent). If the comparison
finds the model fragment in the product model, the operation
creates a new individual with the model fragment taken from
the first parent but referencing the product model from the
second parent. In the case that the comparison does not find
a similar element, the crossover will return the first parent
unchanged.

This operation enables the search space to be expanded to
a different product model, i.e., both model fragments (the one
from the first parent and the one from the new individual)
will be the same. However, since each of them is referencing
a different product model, they will mutate differently and
provide different individuals in further generations.

3) Mutation: Fig. 6 shows an example of our mutation
for model fragments. Each model fragment is associated to
a product model, and the model fragment mutates in the
context of its associated product model. In other words, the
model fragment will gain or drop some elements, but the
resulting model fragment will still be part of the referenced
product model. The mutation possibilities of a given model
fragment are driven by its associated product model. All the
potential model fragments for a given product model can be
achieved through the combination of additive and subtractive
mutations (given that the model fragment is a subset of the
product model elements); therefore there is no need for more
complex mutation operations, such as the change mutation (a
combination of a subtractive and an additive mutation).

To perform the mutation, the type of mutation that will
occur (either the addition or removal of elements) is decided
randomly:

Subtractive Mutation: This kind of mutation randomly
removes an element from the model fragment. Since the
resulting model fragment is a subset of the original model
fragment and the original is part of the referenced product
model, the resulting product model will always be part of the

Product Model 4 Model Fragment 4

Offspring

Model Fragment 4
in

Product Model 4

Mutation operation Product Model 4 NEW
Model Fragment

Mutated Offspring

0 1 1 1 0 1 0 ...0 0Encoding 0 1 1 1 1 1 1 0 ... 0Encoding

Fig. 6. Example of application of the Mutation Operation on Model Fragments

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, AUGUST XXXX 6

referenced product model.
Additive Mutation: This kind of mutation randomly adds

some elements to the model fragment. The only constraint is
that the resulting model fragment be part of the referenced
product model. To achieve this, the boundaries of the model
fragment with the rest of the product model are identified and
a random element that is connected to any of those boundaries
(and that is not currently part of the model fragment) is added
to the resulting model fragment (See Fig. 6: the inverter and
the inductor are connected to the boundaries and could be
added as part of the additive mutation). By doing so, the
mutated model fragment will be part of the referenced product
model.

As a result, a new model fragment is created, but it
still references the same product model. In other words, the
individual represents other possible feature realizations (that
are part of the product model) for the specific feature being
located.

B. Random Search MFL (RS-MFL)

The second search algorithm that we use is a standard
random search that is used as a sanity check. We want to
determine if the presented algorithms perform better than mere
chance (represented by this Random Search algorithm).

We used this algorithm as outlined in Algorithm 2 (available
in the Appendix). The algorithm starts with a random initial
model fragment, (Best, Line 1). Then, a new random model
fragment is generated (Line 4). The search moves to a new
model fragment if the fitness value is better than the current
Best model fragment (Lines 5-6). This loop (Lines 3-9) is
repeated until the StopCondition is met.

C. Hill Climbing MFL (HC-MFL)

The third search algorithm that we use is Steepest Ascent
Hill Climbing with Replacement [24]. The algorithm starts
with a random individual and then evaluates its neighbors
(small modifications of the individual) looking for a better one
(in terms of the fitness function). Those steps are repeated until
the stop condition is met. The algorithm does not count with
random restarts; therefore, the quality of the solution found by
the algorithm greatly depends on the first individual created.

We used this algorithm as outlined in Algorithm 3 (available
in the Appendix). The initial model fragment is generated
randomly (S, Line 1). A neighborhood of size NSize is
created based on this initial model fragment by applying
the tweak operation (Lines 7-13). This operation applies the
mutation operation described in Section VI-A3 and keeps
track of the best neighbor of the group (Lines 9-11). After
exploring the neighborhood, if a neighbor has a better fitness
value than the current state, the search moves to that model
fragment (Lines 14-16). This algorithm is repeated until the
StopCondition is met.

D. Iterated Local Search with Random Restarts (ILS-MFL)

The fourth search algorithm that is used is the Iterated
Local Search with Random Restarts. Different versions of

this algorithm have been used since 1981 ([25], [26]) and
can be seen as an evolution of the Hill-Climbing algorithm.
The algorithm uses hill-climbing strategy to search for local
optimum during a certain period of time. Then, it switches to
a near hill (restart) and performs hill climbing on the new hill.
The main particularity of this search algorithm is the selection
of a new hill (which is performed by the newHomeBase
function).

We used this algorithm as outlined in Algorithm 4 (available
in the Appendix). The initial model fragment is generated
randomly (Current, Line 1). A random distribution of times
is then generated (Line 2), splitting the budget into time slots
for each local search. Then, solutions obtained through the
tweak function will be explored during the available time
(Lines 7-12). When the time is over, we store the new Best
solution if it is better (Lines 13-15) and check if we have
to switch to another Home. The newHomeBase function
will determine wether or not we need to move based on the
fitness difference between the two individuals (Line 16). Then,
the individual will undergo a big change (perturb function),
which will be achieved by applying the crossover operation
described in Section VI-A2. The algorithm is repeated until
the StopCondition is met (Lines 5-18).

E. Hybrid between Evolutionary Algorithm and Hill-Climbing
(EHC-MFL)

The fifth algorithm that we will compare is a hybrid between
the hill-climbing and the evolutionary algorithms. It will take
advantage of the hill-climbing capabilities of searching local
optimum values, but it will also make use of the crossover
operation to move to different hills (and then perform local
searches again through the hill-climbing approach).

We used this algorithm as outlined in Algorithm 5 (available
in the Appendix). The initial population of model fragments is
generated randomly (P , Line 2). Then, hill-climb is performed
for a fixed amount of iterations (Line 6) for each of the
individuals in the population (Lines 5-9). If a better solution
is found in this process, it is stored in the Best variable (Lines
7-9). Then, when the hill-climb part has finished, we move to
a different hill through the breedPopulation operation (Line
11) and repeat the process. The algorithm is repeated until the
StopCondition is met (Lines 3-12).

VII. EVALUATION

The goal of this paper is to provide answers to the following
research questions:

RQ1: Can SBSE techniques driven by LSA be applied
to locate features in product models from real industrial
scenarios?

RQ2: If so, which evolutionary algorithm produces the best
results in terms of solution quality?

This section presents the evaluation that was performed to
answer the RQs. It includes a description of the experimental
setup, a description of the case studies where we applied the
five search algorithms, the results obtained, and the statistical
analysis performed.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, AUGUST XXXX 7

Product
Models

Features
located

Oracle

Documentation

Product
Models

Test Case

Feature
Description

Model
Fragment

of the feature

Search
Algorithm

Metrics
Report

Calculate
Confusion Matrix
& Metrics

Fig. 7. Experimental Setup

A. Experimental Setup

We use the product models from the case studies as an
oracle to evaluate our approach. In other words, we make use
of a set of products models whose feature realizations are
known beforehand and that will be considered as the ground
truth, thus allowing us to compare the results provided by the
five algorithms with the oracles.

Fig. 7 shows an overview of the process that was followed to
evaluate the five search algorithms (EA-MFL, RS-MFL, HC-
MFL, ILS-MFL, and EHC-MFL) for locating features in the
two industrial case studies. The top part shows the oracle for
the case study: a set of product models, the features located in
those product models, and the documentation obtained from
our industrial partners. The oracles will be considered the
ground truth and will be used to evaluate the five algorithms
in terms of MCC, precision, recall, and the F-measure.

First, we elaborated a test case for each feature present in
the oracle, including the product models where the feature is
present and a textual description obtained from the documen-
tation for the feature. Then, each test case was fed as input for
five different algorithms. As a result we obtained a solution
in the form of a model fragment for each of the test cases for
each algorithm. Those solutions were then compared to the
features located from the oracle in order to obtain a confusion
matrix.

A confusion matrix is a table that is often used to describe
the performance of a classification model (in this case, our
algorithms) on a set of test data (the resulting model frag-
ments) for which the true values are known (from the oracle).
In our case, each solution outputted by the algorithms is a
model fragment that is composed of a subset of the model
elements that are part of the product model (where the feature
is being located). Since the granularity will be at the level
of model elements, the presence or absence of each model
element will be considered as a classification. The confusion
matrix distinguishes between the predicted values and the real
values by classifying them into four categories:

True Positive (TP): values that are predicted as true (in the
solution) and are true in the real scenario (the oracle).

False Positive (FP): values that are predicted as true (in
the solution) but are false in the real scenario (the oracle).

True Negative (TN): values that are predicted as false (in
the solution) and are false in the real scenario (the oracle).

False Negative (FN): values that are predicted as false (in
the solution) but are true in the real scenario (the oracle).

Then, some performance metrics are derived from the values
in the confusion matrix. Specifically, we will create a report

that includes four performance metrics (precision, recall, the
F-measure, and the MCC) for each of the test cases for each
search algorithm.

Precision measures the number of elements from the solu-
tion that are correct according to the ground truth (the oracle)
and is defined as follows:

Precision =
TP

TP + FP
(2)

Recall measures the number of elements of the oracle that
are correctly retrieved by the proposed solution and is defined
as follows:

Recall =
TP

TP + FN
(3)

The F-measure corresponds to the harmonic mean of preci-
sion and recall and is defined as follows:

F −measure = 2 ∗
Precision ∗Recall
Precision+Recall

=
2 ∗ TP

2TP + FP + FN
(4)

Finally, the MCC is a correlation coefficient between the
observed and predicted binary classifications that takes into
account all of the observed values (TP, TN, FP, FN) and is
defined as follows:

MCC =
TP · TN − FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(5)

The presented approach has been implemented1 within the
Eclipse environment. We used the Eclipse Modeling Frame-
work [27] to manipulate the models from our industrial
partners and the CVL to manage the fragments of models.
The evolutionary algorithm was built using the Watchmaker
Framework for Evolutionary Computation [28], which allowed
us to implement our own genetic operators. The IR techniques
that were used to process the language were implemented
using OpenNLP [29] for the POS-Tagger and the English
(Porter2) [30] as stemming algorithm. Finally, the LSA was
implemented using the Efficient Java Matrix Library (EJML
[31]).

We performed the execution of the algorithms using an array
of computers with processors ranging from 4 to 8 cores, clock
speeds between 2.2 GHz and 4GHz, and 4-16 GB of RAM. All
of them were running Windows 10 Pro N 64 bits as the hosting
Operative System and the Java(TM) SE Runtime Environment
(build 1.8.0 73-b02).

1The source code can be found here: www.jaimefont.com/flimea.html

www.jaimefont.com/flimea.html

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, AUGUST XXXX 8

TABLE I
AVERAGE TIME REQUIRED TO CONVERGE

EA-MFL RS-MFL HC-MFL ILS-MFL EHC-MFL Budget allocated

Time (s) ± (σ) 38.3 ± 10.3 19.9 ± 11.6 26.5 ± 9.1 33.7 ± 8.5 47.4 ± 12.4 80

1) The BSH case study: The first case study where we
applied our approach was BSH (already presented in section
II-A as the running example). Their induction division has
been producing Induction Hobs under the brands of Bosch
and Siemens for the last 15 years.

The oracle extracted from BSH is composed of 46 induc-
tion hob models where each product model, on average, is
composed of more than 500 elements. The oracle includes 96
different features that can be part of a specific product model.
Those features correspond to products that are currently being
sold or will be released to the market in the near future. For
each of the 96 features, we created a test case that included
the set of product models where that feature was used and
a feature description; this information was obtained from the
documentation of the features in the oracle.

For this case study, we executed 30 independent runs (as
suggested by [10]) for each of the 96 test cases for each of
the five algorithms (i.e., 96 (features) x 5 (algorithms) x 30
repetitions = 14400 independent runs).

2) The CAF case study: The second case study where
we applied our approach was CAF, a worldwide provider
of railway solutions. Their trains can be seen all over the
world and in different forms (regular trains, subway, light
rail, monorail, etc.). A train unit is furnished with multiple
pieces of equipment through its vehicles and cabins. These
pieces of equipment are often designed and manufactured
by different providers, and their aim is to carry out specific
tasks for the train. Some examples of these devices are: the
traction equipment, the compressors that feed the brakes, the
pantograph that harvests power from the overhead wires, or the
circuit breaker that isolates or connects the electrical circuits
of the train. The control software of the train unit is in charge
of making all the equipment cooperate to achieve the train
functionality while guaranteeing compliance with the specific
regulations of each country.

The DSL of our industrial partner has the required expres-
siveness to describe the interaction between the main pieces of
equipment installed in a train unit. Moreover, this DSL also has
the required expressiveness to specify non-functional aspects
related to regulation, such as the quality of signals from the
equipment or the different levels of installed redundancy.

For instance, the high voltage connection sequence can be
described using the DSL. This connection sequence is initiated
when the train driver requests its start by using interface
devices fitted inside the cabin. The control software is in
charge of raising the pantograph to harvest power from the
overhead wire and of closing the circuit breaker so the energy
can get to converters that adapt the voltage to charge batteries,
which, in turn, power the traction equipment.

Again, we extracted an oracle that is composed of 23
trains where, on average, each product model is composed

of around 1200 elements. The product models are built using
121 different features that can be part of a specific product
model. For each of the 121 features, we created a test case
that included the set of product models where that feature was
used and a feature description.

For this case study, we executed 30 independent runs for
each of the 121 test cases for each of the five algorithms
(i.e., 121 (features) x 5 (algorithms) x 30 repetitions = 18150
independent runs). The sum for the two case studies presented
is a total of 32550 independent runs.

3) Parameters and Budget: In general, there are two atomic
performance measures for search algorithms: one regarding
solution quality and one regarding algorithm speed or search
effort. In this paper, we focus on the solution quality, trying
to determine which algorithm provides solutions that are more
similar to the one extracted from the oracle in terms of
precision and recall.

Since we allocated a fixed amount of wall clock time for
each of the runs of the algorithms, each algorithm has the
same amount of time to traverse the search space and so the
comparison is fair. First, we run some prior tests to determine
the time needed to converge for each of the algorithms, and
then we selected the budget time based on those tests.

Then, we use the allocated time to determine the
StopCondition of the algorithms (see Table VI and Algo-
rithms in the Appendix). The allocated budget time was 80
seconds (adding a margin to ensure convergence). Although
the focus of this paper is the solution quality and not the
performance of each algorithm in terms of time, we include the
times required by each algorithm to converge as an indication
to practitioners when choosing which algorithm to use (see
Table I).

As suggested by Arcuri and Fraser [32] and confirmed in
Kotelysanskii and Kapfhammer [33], tuned parameters can
outperform default values generally, but they are far from
optimal in individual problem instances. The focus of this
paper is not to tune the values to improve the performance of
the algorithms when applied to a specific problem, but rather to
compare the performance of the algorithms in terms of solution
quality (precision and recall).

Therefore, we will use default parameter values that are
commonly used in the literature [34] for the algorithms as
described in the literature [32] (see Table VI available on
the Appendix). The crossover operation is applied with a
probability (pc) of 0.75. The mutation operation is applied with
a probability (mutation probability) of 1/n where n is the size
of the individual (the number of bits needed to encode that
product model). The population size size for the algorithms
based on a population will be 100 individuals. Given our
crossover operation, the crossover will act over 2 parents (µ)
and produce 1 offspring (λ).

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, AUGUST XXXX 9

TABLE II
MEAN VALUES AND STANDARD DEVIATIONS FOR PRECISION, RECALL, F-MEASURE AND MCC FOR EACH SEARCH ALGORITHM AND EACH CASE

STUDY

BSH CAF

Precision ± (σ) Recall ± (σ) F-measure ± (σ) MCC ± (σ) Precision ± (σ) Recall ± (σ) F-measure ± (σ) MCC ± (σ)

EA 70.68 ± 14.91 67.32 ± 14.32 67.34 ± 11.01 0.58 ± 0.16 68.80 ± 14.97 65.81 ± 14.35 65.91 ± 11.29 0.59 ± 0.16
RS 38.33 ± 16.61 28.12 ± 14.82 29.21 ± 13.64 0.20 ± 0.20 34.18 ± 14.39 38.91 ± 15.16 33.74 ± 12.09 0.28 ± 0.30
HC 47.07 ± 15.46 39.48 ± 13.06 40.26 ± 10.50 0.28 ± 0.17 51.99 ± 14.18 56.61 ± 16.38 51.97 ± 11.07 0.45 ± 0.15
ILS 60.90 ± 14.76 59.92 ± 14.07 58.91 ± 11.16 0.47 ± 0.19 58.86 ± 16.89 61.81 ± 16.57 58.23 ± 13.75 0.48 ± 0.22
EHC 76.47 ± 13.39 72.41 ± 13.79 72.99 ± 9.35 0.67 ± 0.13 71.75 ± 12.54 67.96 ± 15.07 68.34 ± 10.24 0.62 ± 0.13

B. Statistical Analysis

To properly compare the five algorithms, all of the data
resulting from the empirical analysis was analyzed using
statistical methods following the guidelines in [10].

In order to answer RQ2, we performed statistical analysis
to: (1) provide formal and quantitative evidence (statistical
significance) that the five search-based techniques do in fact
have an impact on the comparison metrics (i.e., that the
differences in the results were not obtained by mere chance);
and (2) show that those differences are significant in practice
(effect size).

1) Statistical significance: To enable statistical analysis,
all of the algorithms should be run a large enough number
of times (in an independent way) to collect information on
the probability distribution for each algorithm. A statistical
test should then be run to assess whether there is enough
empirical evidence to claim (with a high level of confidence)
that there is a difference between the two algorithms (e.g., A
is better than B). In order to do this, two hypotheses, the null
hypothesis H0 and the alternative hypothesis H1, are defined.
The null hypothesis H0 is typically defined to state that there
is no difference among the algorithms, whereas the alternative
hypothesis H1 states that at least one algorithm differs from
another. In such a case, a statistical test aims to verify whether
the null hypothesis H0 should be rejected.

The statistical tests provide a probability value, p− value.
The p− value receives values ranging between 0 and 1. The
lower the p − value of a test, the more likely that the null
hypothesis is false. It is accepted by the research community
that a p− value under 0.05 is statistically significant [10], so
the hypothesis H0 can be considered false.

The test that we must follow depends on the properties of
the data. Since our data does not follow a normal distribution
in general, our analysis requires the use of non-parametric
techniques. There are several tests for analyzing this kind of
data; however, the Quade test is more powerful than the rest
when working with real data [35]. In addition, according to
Conover [36], the Quade test has shown better results than the
others when the number of algorithms is low, (no more than
4 or 5 algorithms).

However, it is not possible to answer the following question
with the Quade test: Which of the algorithms gives the best
performance?. In this case, the performance of each algorithm
should be individually compared against all of the other
alternatives. In order to do this, we perform an additional
post hoc analysis. This kind of analysis performs a pair-wise
comparison among the results of each algorithm, determining

whether statistically significant differences exist among the
results of a specific pair of algorithms. Specifically, we apply
the Holm Post Hoc procedure, as suggested by Garcia et. al.
[35].

2) Effect size: When comparing algorithms with a large
enough number of runs, statistically significant differences can
be obtained even if they are so small as to be of no practical
value [10]. Then it is important to assess if an algorithm is
statistically better than another and to assess the magnitude
of the improvement. Effect size measures are used to analyze
this.

For a non-parametric effect size measure, we use Vargha
and Delaney’s Â12 [37], [38]. Â12 measures the probability
that running one algorithm yields higher performance values
than running another algorithm. If the two algorithms are
equivalent, then Â12 will be 0.5.

For example, Â12 = 0.7 means that we would obtain better
results 70% of the times with the first of the two algorithms
compared, and Â12 = 0.4 means that we would obtain better
results 60% of the times with the second of the two algorithms.
Thus, we have an Â12 value for every pair of algorithms.

C. Results
Fig. 8 presents the mean values of precision, recall, the F-

measure and the MCC for each feature located for the two
case studies and the five algorithms. The first column of the
charts (see Fig. 8a ,Fig. 8c, Fig. 8e, 8g, 8i) shows the results
for the BSH case study, and the second column of the charts
shows the results for the CAF case study (see Fig. 8b, 8d,
8f, 8h, 8j). The first row shows the results for EA-MFL, the
second row shows the results for RS-FML, the third row shows
the results for HC-MFL, the fourth row shows the results for
ILS-MFL, and the fifth row shows the results for EHC-MFL.
Each point in the charts represents the mean value (between
the 30 independent runs) of the two performance indicators
(precision on the x axis and recall on the y axis) for one of
the features located for that case study and algorithm.

In Table II, we outline the results aggregated for each
algorithm and case study. We also show the F-measure and
the MCC performance indicators. The EHC-MFL algorithm
achieves the best results for all the performance indicators,
providing a precision value of 76.47% in the BSH case study
and a precision value of 71.75% in the CAF case study. The
Recall achieved is 72.41% for BSH and 67.96% for CAF. The
combined F-measure is 72.99% for BSH and 68.34% for CAF.
Finally, the MCC achieved is 0.67 for BSH and 0.62 for CAF.

The EA-MFL algorithm follows EHC-MFL and is the
second best option, providing values around 10% lower than

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, AUGUST XXXX 10

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●
●

●●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

● ●

● ●

●
●

●

●

● ●

● ●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●
●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

● ●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

● ●

●

●
●

●

●

●

●●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●
●

●

● ●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

● ●● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

Precision (%)

BSH

(e)

(c)

0 20 40 60 80 100

0
20

40
60

80
10

0

CAF

0 20 40 60 80 100

0
20

40
60

80
10

0

0 20 40 60 80 100

0
20

40
60

80
10

0

0 20 40 60 80 100

0
20

40
60

80
10

0

(d)

(f)

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
● ●

● ●

●

●
●

●●

●
●

●

●
●

●

●●
●

● ●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

0 20 40 60 80 100

0
20

40
60

80
10

0
(a) (b)

E
A
-M
F
L

R
ec

al
l (

%
)

R
ec

al
l (

%
)

Precision (%)

R
S
−
M
F
L

R
ec

al
l (

%
)

Precision (%)

R
ec

al
l (

%
)

Precision (%)

0 20 40 60 80 100

0
20

40
60

80
10

0

R
ec

al
l (

%
)

H
C
−
M
F
L

Precision (%)

R
ec

al
l (

%
)

Precision (%)

(g)

0 20 40 60 80 100

0
20

40
60

80
10

0

0 20 40 60 80 100

0
20

40
60

80
10

0

0 20 40 60 80 100

0
20

40
60

80
10

0

(h)

(j)

IL
S
−
M
F
L

R
ec

al
l (

%
)

Precision (%)

R
ec

al
l (

%
)

Precision (%)

E
H
C
−
M
F
L

(i)

0 20 40 60 80 100

0
20

40
60

80
10

0

R
ec

al
l (

%
)

Precision (%)

R
ec

al
l (

%
)

Precision (%)

Fig. 8. Mean Precision, Recall, and the F-measure for the two case studies and the five algorithms

EHC-MFL. Then, ILS-MFL is the third option, with values
around 20% lower than EHC-MFL. Finally, HC-MFL and RS-
MFL are the fourth and fifth options, with values between 25%
and 50% lower than the best option.

In response to RQ1, the search algorithms driven by LSA
and applied to models from our industrial partners’ scenarios

have been capable of locating features, giving precision values
of up to 76.47% and recall values of up to 72.41%.

1) Statistical significance: The p − V alues and statistics
of this test are shown in Table III. Since the p − V alues
shown in this table are smaller than 2x10−16 in all cases, we
reject the null hypothesis. Consequently, we can state that there

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, AUGUST XXXX 11

TABLE III
QUADE TEST STATISTIC AND p− V alues

BSH CAF

Precision Recall F-measure MCC Precision Recall F-measure MCC

p− V alue � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16

Statistic 72.319 100.27 132.15 84.132 70.181 50.389 99.646 57.504

TABLE IV
HOLM’S POST HOC p− V alues

BSH CAF

Precision Recall F-measure MCC Precision Recall F-measure MCC

EA vs HC 1.0x10−14 � 2x10−16 � 2x10−16 � 2x10−16 2.7x10−12 4.9x10−5 1.2x10−15 1.3x10−10

EA vs RS � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16

EA vs ILS 0.0056 0.0017 4.2x10−5 0.00014 7.7x10−5 0.3453 9.9x10−5 6.0x10−5

EA vs EHC 0.0056 0.1274 0.004 0.00975 0.466 0.3453 0.11 0.060
HC vs RS 0.0020 1.3x10−5 4.2x10−5 0.00975 3.9x10−9 1.2x10−10 4.9x10−12 1.7x10−5

HC vs ILS 7.7x10−7 3.9x10−11 6.6x10−13 9.5x10−8 0.003 0.0081 3.5x10−5 0.023
HC vs EHC � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 1.9x10−14 1.9x10−7 � 2x10−16 3.2x10−16

RS vs ILS 5.3x10−16 � 2x10−16 � 2x10−16 2.4x10−15 � 2x10−16 � 2x10−16 � 2x10−16 1.7x10−11

RS vs EHC � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16

ILS vs EHC 2.2x10−8 5.8x10−6 6.9x10−12 8.0x10−11 3.6x10−6 0.0359 7.6x10−8 6.3x10−9

TABLE V
Â12 STATISTIC FOR EACH PAIR OF ALGORITHMS

BSH CAF

Precision Recall F-measure MCC Precision Recall F-measure MCC

EA vs HC 0.867241 0.917806 0.962674 0.894640 0.791408 0.657674 0.812649 0.751383
EA vs RS 0.92551 0.965061 0.984809 0.886393 0.947067 0.898094 0.971553 0.898777
EA vs ILS 0.676595 0.655653 0.701931 0.685981 0.668602 0.568540 0.655727 0.637457
EA vs EHC 0.388129 0.410862 0.352431 0.336914 0.446418 0.464244 0.446896 0.447715
HC vs RS 0.663466 0.713487 0.743001 0.601129 0.811591 0.780445 0.864832 0.754457
HC vs ILS 0.254178 0.142687 0.111599 0.217665 0.366949 0.414692 0.348064 0.404003
HC vs EHC 0.072103 0.043240 0.009657 0.034722 0.151083 0.313401 0.140291 0.192268
RS vs ILS 0.153103 0.064290 0.050456 0.197917 0.130524 0.159996 0.095144 0.219589
RS vs EHC 0.041829 0.012967 0.003147 0.069119 0.027013 0.086060 0.014343 0.057646
ILS vs EHC 0.222277 0.272461 0.166721 0.168945 0.272625 0.400792 0.291374 0.308790

are differences in the algorithms for all of the performance
indicators evaluated.

Table IV shows the p−V alues of Holm’s post hoc analysis
for each pair of algorithms, case study, and performance
indicator. The majority of the p−V alues shown in this table
are smaller than their corresponding significance threshold
value (0.05), indicating that the differences of performance
between those algorithms are significant. However, when com-
paring EA-MFL and EHC-MFL (fourth row), the values for
some performance indicators are greater than the threshold,
indicating that the differences between those algorithms could
be due to the stochastic nature of the algorithms and are not
significant.

2) Effect size: Table V shows the values of the effect size
statistics. In general, the largest differences were obtained
between the EHC-MFL and RS-MFL algorithms (where EHC-
MFL achieves better precision than RS-MFL 95% of the times,
better recall 98% of the times, better F-measure 99% of the
times and better MCC 93% of the times). When comparing
EA-MFL and EHC-MFL, the differences are not so big, and
the EHC-MFL outperforms EA-MFL around 55% of the times.

In response to RQ2, the EHC-FML algorithm obtained the
best performance results among the five algorithms evaluated

(see Table II). The statistical analysis performed indicated
that EHC-FML will outperform the rest of the algorithms in
terms of the metrics analyzed (around 60% of the times when
compared to EA-MFL, 78% of the times when compared to
ILS, 92% of the times when compared to HC-MFL, and almost
all of the times when compared to RS-MFL).

D. Threats to validity

In this section, we present some of the threats to validity.
We follow the guidelines suggested by De Oliveira et. al [39]
to identify those are applicable to this work.

Conclusion validity threats. We identify four threats of
validity of this type. The first threat is the not accounting for
random variation. To address this threat, we considered 30
independent runs for each feature with each algorithm. The
second threat is the lack of meaningful comparison baseline.
Because we used random search as a standard comparison
baseline, this threat is addressed. The third threat is the
lack of formal hypothesis and statistical tests. In this paper,
we employed standard statistical analysis following accepted
guidelines [32] to avoid this threat. The fourth threat is the
lack of good descriptive analysis. In this work, we have
used precision, recall, the F-measure and the MCC metrics to

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, AUGUST XXXX 12

analyze the confusion matrix obtained from the experiments;
however, other metrics could be applied. In addition, some
works argue that the use of the Vargha and Delaney A12
metrics can be miss-representative [40] and that the data
should be pre-transformed before applying them. We did not
find any use case for data pre-transformation that applies to
our case study.

Internal validity threats. We identify two threats of validity
of this type. The first threat is the poor parameter settings.
In this paper, we used standard values for the algorithms.
As suggested by Arcuri and Fraser [32], default values are
good enough to measure the performance of search-based tech-
niques in the context of testing. These values have been tested
in similar algorithms for feature location [41]. In addition, the
choice of the k value in the application of SVD can produce
sub-optimal accuracy when using LSA for software artifacts
[42]. Nevertheless, we plan to evaluate all of the parameters
of our algorithms in a future work. The second threat is the
lack of real problem instances. The evaluation of this paper
was applied to two industrial case studies from two of our
partners, BSH and CAF.

Construct validity threats. We identify one threat of validity
of this type. The threat is the lack of assessing the validity of
cost measures. To address this threat, we performed a fair
comparison among the algorithms by generating the same
number of model fragments and using the same number of
fitness evaluations.

External validity threats. We identify two threats of validity
of this type. The first threat is the lack of a clear object selec-
tion strategy, and the second threat is the lack of evaluations
for instances of growing size and complexity. Both threats are
addressed by using two industrial case studies from two of our
partners, BSH and CAF. Our instances are collected from real-
world problems. In addition, we have two different domains
(induction hobs and trains) with different sizes and complexity.

VIII. RELATED WORK

Some works report their industrial experiences transforming
legacy products into Product Line assets in a wide range of
fields [43], [44], [45]. They focus on capturing guidelines
and techniques for manual transformations. In contrast, our
approach performs search-based software engineering while
taking advantage of the knowledge of the domain experts.

Some works focus on the location of features over models
by comparing the models with each other to formalize the
variability among them in the form of a Software Product
Line:

Wille et al. [46] present an approach where the similarity
between models is measured following an exchangeable met-
ric, taking into account different attributes of the models. Then
the approach is further refined [47] to reduce the number of
comparisons needed to mine the family model.

The authors in [48] propose a generic approach to auto-
matically compare products and locate the feature realizations
in terms of a CVL model. In [49], the approach is refined to
automatically formalize the feature realizations of new product
models that are added to the system. A similar approach

is proposed in [50] where the feature location results are
validated in an industrial environment.

Martinez et al. [51] propose an extensible approach that
is based on comparisons to extract the feature formalization
over a family of models. In addition, they provide the means
to extend the approach to locate features over any kind of
asset based on comparisons. The MoVaPL approach [52]
considers the identification of variability and commonality in
model variants as well as the extraction of a Model-based
Software Product Line (MSPL) from the features identified in
these variants. MoVaPL builds on a generic representation of
models, making it suitable for any MOF-based models.

However, all of these approaches are based on mechanical
comparisons among the models, classifying the elements based
on their similarity and identifying the dissimilar elements as
the features realizations. In contrast, our work does not rely on
model similarity to locate the features; it relies on comparisons
with a textual description of the target feature. Specifically,
humans are involved in the search by means of the fitness
function. Domain experts and application engineers become
part of the process, contributing their knowledge of the domain
in order to tailor the approach with the feature description.
Model fragments that are obtained mechanically are less
recognizable by software engineers than those obtained with
the participation of software engineers [6].

Lopez-Herrejon et al. [41] evaluate three standard search-
based techniques with three objective functions in order to
calculate the relationships of a feature model. Their results
are slightly better for hill climbing than for the evolutionary
algorithm, but they are not statistically significant when the
first two objective functions are applied. The authors do not
address how each feature is materialized. Our work focuses on
the extraction of model fragments that correspond to a feature.
Therefore, both works are complimentary: [41] calculates
the feature relationships of the feature specification layer,
while our work locates the model fragments of the product
realization layer (see Fig. 1).

Harman et al. [53] performed a survey on the topic of
search-based software engineering applied to SPLs. They
present an overview of recent articles that are classified accord-
ing to themes such as configuration, testing, or architectural
improvement. Lopez-Herrejon et al. [54] performed a prelim-
inary systematic mapping study at the connection of search-
based software engineering and SPL. They categorized the
articles using a known framework for SPL development. These
two surveys indicate that search-based software engineering is
being applied to SPLs. However, these surveys do not identify
works that focus on finding model fragments that materialize
the features of the SPL, as our work does.

Font et al. [6] propose a generic approach to locate features
among a family of product models based on a human-in-
the-loop process. The features are located by the comparison
of models and the interaction of engineers that provide their
knowledge of the domain. The approach is further refined in
[55] and generalized through the use of a genetic algorithm to
create the model fragments. They introduce a genetic operator
for mutation that can work with a single model fragment and a
crossover operator that combines two different product models.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, AUGUST XXXX 13

The results show that the use of a genetic algorithm allows the
approach to provide accurate location of features in spite of
inaccurate information on the part of the user.

However, since the work in [55] is designed to locate
features by comparisons among the members of a family, the
participation of the software engineers is limited and the resul-
tant model fragments are less recognizable to them. In contrast,
in this paper, we present five algorithms (EA-MFL, HC-MFL,
RS-MFL, ILS-MFL, and EHC-MFL), which are addressed by
a feature description given in natural language. Our fitness
function makes use of LSA to measure the similarity with the
description provided and to store the model fragments.

IX. CONCLUSIONS

This work proposes and compares five search algorithms to
locate features over a family of models (MFL): Evolutionary
Algorithm (EA-MFL), Random Search (RS-MFL) used as a
sanity check, steepest Hill Climbing (HC-MFL), Iterated Local
Search with random restarts (ILS-MFL), and a hybrid between
Evolutionary and Hill Climbing (EHC-MFL). We apply Latent
Semantic Analysis (LSA) as the fitness function.

In this work, we address two research questions: (RQ1)
Can SBSE techniques driven by LSA be applied to locate
features in product models from real industrial scenarios?;
(RQ2) If so, which evolutionary algorithm produces the best
results in terms of solution quality? To do so, we conducted
an evaluation in BSH (the manufacturer of home appliances)
and in CAF (the manufacturer of rolling stock). We report our
evaluation, including the experimental setup, the results, the
statistical analysis, and the threats to validity identified.

The results show that SBSE techniques can be applied to
locate features in product models. Specifically, the use of
genetic operations for models in combination with the EHC-
MFL algorithm provided the best results in our study. This
demonstrates that SBSE for feature location at the model level
can be applied in real world environments.

ACKNOWLEDGMENTS

This work has been partially supported by the Ministry of
Economy and Competitiveness (MINECO) through the Span-
ish National R+D+i Plan and ERDF funds under the project
Model-Driven Variability Extraction for Software Product Line
Adoption (TIN2015-64397-R). The authors are very grateful
to the anonymous reviewers for their valuable suggestions and
comments to improve the quality of this paper.

REFERENCES

[1] M. Harman, “Why the virtual nature of software makes it ideal for
search based optimization,” in Proceedings of the 13th International
Conference on Fundamental Approaches to Software Engineering, ser.
FASE’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 1–12.

[2] W. B. Langdon and M. Harman, “Optimizing existing software with ge-
netic programming,” IEEE Transactions on Evolutionary Computation,
vol. 19, no. 1, pp. 118–135, Feb 2015.

[3] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location
in source code: A taxonomy and survey,” in Journal of Software
Maintenance and Evolution: Research and Practice, 2011.

[4] J. Rubin and M. Chechik, “A survey of feature location techniques,” in
Domain Engineering, I. Reinhartz-Berger, A. Sturm, T. Clark, S. Cohen,
and J. Bettin, Eds. Springer Berlin Heidelberg, 2013, pp. 29–58.

[5] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location
in source code: a taxonomy and survey,” Journal of Software: Evolution
and Process, vol. 25, no. 1, pp. 53–95, 2013.

[6] J. Font, L. Arcega, Ø. Haugen, and C. Cetina, “Building software product
lines from conceptualized model patterns,” in Proceedings of the 19th
International Conference on Software Product Line (SPLC), 2015, pp.
46–55.

[7] T. K. Landauer, P. W. Foltz, and D. Laham, “An introduction to latent
semantic analysis,” Discourse processes, vol. 25, no. 2-3, pp. 259–284,
1998.

[8] C. D. Manning, P. Raghavan, H. Schütze et al., Introduction to infor-
mation retrieval. Cambridge university press, 2008, vol. 1, no. 1.

[9] M. Shepperd and S. MacDonell, “Evaluating prediction systems in
software project estimation,” Information and Software Technology,
vol. 54, no. 8, pp. 820 – 827, 2012, special Issue: Voice of the Editorial
BoardSpecial Issue: Voice of the Editorial Board.

[10] A. Arcuri and L. Briand, “A hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering,” Softw.
Test. Verif. Reliab., vol. 24, no. 3, pp. 219–250, May 2014. [Online].
Available: http://dx.doi.org/10.1002/stvr.1486

[11] Ø. Haugen, B. Moller-Pedersen, J. Oldevik, G. Olsen, and A. Svendsen,
“Adding standardized variability to domain specific languages,” in
Software Product Line Conference, 2008. SPLC ’08. 12th International,
Sept 2008, pp. 139–148.

[12] “Meta object facility (mof) version 2.4.1,” 2013, object Management
Group (OMG) Specification.

[13] M. M. Lehman, J. Ramil, and G. Kahen, A paradigm for the behavioural
modelling of software processes using system dynamics. Citeseer, 2001.

[14] M. Gethers, R. Oliveto, D. Poshyvanyk, and A. D. Lucia, “On integrating
orthogonal information retrieval methods to improve traceability recov-
ery,” in Software Maintenance (ICSM), 2011 27th IEEE International
Conference on, Sept 2011, pp. 133–142.

[15] A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and S. Panichella,
“Labeling source code with information retrieval methods: an empirical
study,” Empirical Software Engineering, vol. 19, no. 5, pp. 1383–1420,
2014.

[16] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the
naturalness of software,” in Proceedings of the 34th International
Conference on Software Engineering, ser. ICSE ’12. Piscataway, NJ,
USA: IEEE Press, 2012, pp. 837–847.

[17] S. Gupta, S. Malik, L. Pollock, and K. Vijay-Shanker, “Part-of-speech
tagging of program identifiers for improved text-based software en-
gineering tools,” in 2013 21st International Conference on Program
Comprehension (ICPC), May 2013, pp. 3–12.

[18] G. Capobianco, A. D. Lucia, R. Oliveto, A. Panichella, and S. Panichella,
“On the role of the nouns in ir-based traceability recovery,” in Program
Comprehension, 2009. ICPC ’09. IEEE 17th International Conference
on, May 2009, pp. 148–157.

[19] ——, “Improving ir-based traceability recovery via noun-based indexing
of software artifacts,” Journal of Software: Evolution and Process,
vol. 25, no. 7, pp. 743–762, 2013.

[20] S. Zamani, S. P. Lee, R. Shokripour, and J. Anvik, “A noun-based
approach to feature location using time-aware term-weighting,” Infor-
mation and Software Technology, vol. 56, no. 8, pp. 991 – 1011, 2014.

[21] A. Kuhn, S. Ducasse, and T. Gı́rba, “Semantic clustering: Identifying
topics in source code,” Inf. Softw. Technol., vol. 49, no. 3, pp. 230–243,
Mar. 2007.

[22] P. van der Spek, S. Klusener, and P. van de Laar, Complementing
Software Documentation. Dordrecht: Springer Netherlands, 2011, pp.
37–51.

[23] M. Affenzeller, S. Winkler, S. Wagner, and A. Beham, Genetic Al-
gorithms and Genetic Programming: Modern Concepts and Practical
Applications, 1st ed. Chapman & Hall/CRC, 2009.

[24] S. Luke, Essentials of Metaheuristics, 2nd ed. Lulu, 2013, available
for free at http://cs.gmu.edu/∼sean/book/metaheuristics/.

[25] J. Baxter, “Local optima avoidance in depot location,” The Journal of
the Operational Research Society, vol. 32, no. 9, pp. 815–819, 1981.

[26] H. R. Lourenço, O. C. Martin, and T. Stützle, Iterated Local Search.
Boston, MA: Springer US, 2003, pp. 320–353.

[27] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse
Modeling Framework 2.0, 2nd ed. Addison-Wesley Professional, 2009.

[28] D. Dyer, “The watchmaker framework for evolutionary computation,”
http://watchmaker.uncommons.org/, 2016, [Online; accessed 7-April-
2016].

[29] “Apache opennlp: Toolkit for the processing of natural language text,”
https://opennlp.apache.org/, 2016, [Online; accessed 7-April-2016].

http://dx.doi.org/10.1002/stvr.1486
http://watchmaker.uncommons.org/
https://opennlp.apache.org/

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, AUGUST XXXX 14

[30] “The english (porter2) stemming algorithm,” http://snowball.tartarus.
org/algorithms/english/stemmer.html, 2016, [Online; accessed 7-April-
2016].

[31] “Efficient java matrix library,” http://ejml.org/, [Online; accessed 7-
April-2016].

[32] A. Arcuri and G. Fraser, “Parameter tuning or default values? an
empirical investigation in search-based software engineering,” Empirical
Software Engineering, vol. 18, no. 3, pp. 594–623, 2013.

[33] A. Kotelyanskii and G. M. Kapfhammer, “Parameter tuning for search-
based test-data generation revisited: Support for previous results,” in
2014 14th International Conference on Quality Software, Oct 2014, pp.
79–84.

[34] A. S. Sayyad, J. Ingram, T. Menzies, and H. Ammar, “Scalable product
line configuration: A straw to break the camel’s back,” in Automated
Software Engineering (ASE), 2013 IEEE/ACM 28th International Con-
ference on, Nov 2013, pp. 465–474.

[35] S. Garcı́a, A. Fernández, J. Luengo, and F. Herrera, “Advanced non-
parametric tests for multiple comparisons in the design of experiments
in computational intelligence and data mining: Experimental analysis of
power,” Inf. Sci., vol. 180, no. 10, pp. 2044–2064, May 2010.

[36] W. J. Conover, Practical Nonparametric Statistics, 3rd Edition. Wiley,
1999.

[37] A. Vargha and H. D. Delaney, “A critique and improvement of the cl
common language effect size statistics of mcgraw and wong,” Journal
of Educational and Behavioral Statistics, vol. 25, no. 2, pp. 101–132,
2000.

[38] R. J. Grissom and J. J. Kim, ”Effect sizes for research: A broad practical
approach. Mahwah, NJ: Earlbaum, 2005.

[39] M. de Oliveira Barros and A. C. Dias-Neto, “0006/2011-threats to
validity in search-based software engineering empirical studies,” RelaTe-
DIA, vol. 5, no. 1, 2011.

[40] G. Neumann, M. Harman, and S. Poulding, Transformed Vargha-
Delaney Effect Size. Cham: Springer International Publishing,
2015, pp. 318–324. [Online]. Available: http://dx.doi.org/10.1007/
978-3-319-22183-0 29

[41] R. E. Lopez-Herrejon, L. Linsbauer, J. A. Galindo, J. A. Parejo,
D. Benavides, S. Segura, and A. Egyed, “An assessment of search-based
techniques for reverse engineering feature models,” Journal of Systems
and Software, vol. 103, pp. 353 – 369, 2015.

[42] A. Panichella, B. Dit, R. Oliveto, M. D. Penta, D. Poshyvanyk, and A. D.
Lucia, “Parameterizing and assembling ir-based solutions for se tasks
using genetic algorithms,” in 2016 IEEE 23rd International Conference
on Software Analysis, Evolution, and Reengineering (SANER), vol. 1,
March 2016, pp. 314–325.

[43] K. Kim, H. Kim, and W. Kim, “Building software product line from
the legacy systems ”experience in the digital audio and video domain”,”
in Software Product Line Conference, 2007. SPLC 2007. 11th Interna-
tional, Sept 2007, pp. 171–180.

[44] R. Kolb, D. Muthig, T. Patzke, and K. Yamauchi, “Refactoring a legacy
component for reuse in a software product line: A case study: Practice
articles,” J. Softw. Maint. Evol., vol. 18, no. 2, pp. 109–132, Mar. 2006.

[45] H. Lee, H. Choi, K. Kang, D. Kim, and Z. Lee, “Experience report on
using a domain model-based extractive approach to software product
line asset development,” in Formal Foundations of Reuse and Domain
Engineering, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2009, vol. 5791, pp. 137–149.

[46] D. Wille, S. Holthusen, S. Schulze, and I. Schaefer, “Interface variability
in family model mining,” in Proceedings of the 17th International
Software Product Line Conference: Co-located Workshops, 2013, pp.
44–51.

[47] S. Holthusen, D. Wille, C. Legat, S. Beddig, I. Schaefer, and B. Vogel-
Heuser, “Family model mining for function block diagrams in automa-
tion software,” in Proceedings of the 18th International Software Product
Line Conference: Volume 2, 2014, pp. 36–43.

[48] X. Zhang, Ø. Haugen, and B. Moller-Pedersen, “Model comparison
to synthesize a model-driven software product line,” in Proceedings of
the 2011 15th International Software Product Line Conference (SPLC),
2011, pp. 90–99.

[49] X. Zhang, Ø. Haugen, and B. Møller-Pedersen, “Augmenting product
lines,” in Software Engineering Conference (APSEC), 2012 19th Asia-
Pacific, vol. 1, Dec 2012, pp. 766–771.

[50] J. Font, M. Balları́n, Ø. Haugen, and C. Cetina, “Automating the vari-
ability formalization of a model family by means of common variability
language,” in Proceedings of the 19th International Conference on
Software Product Line (SPLC), 2015, pp. 411–418.

[51] J. Martinez, T. Ziadi, T. F. Bissyandé, J. Klein, and Y. L. Traon,
“Bottom-up adoption of software product lines: a generic and extensible

approach,” in Proceedings of the 19th International Conference on
Software Product Line (SPLC), 2015, pp. 101–110.

[52] J. Martinez, T. Ziadi, T. F. Bissyand, J. Klein, and Y. l. Traon,
“Automating the extraction of model-based software product lines from
model variants (t),” in Automated Software Engineering (ASE), 2015
30th IEEE/ACM International Conference on, Nov 2015, pp. 396–406.

[53] M. Harman, Y. Jia, J. Krinke, W. B. Langdon, J. Petke, and Y. Zhang,
“Search based software engineering for software product line engineer-
ing: A survey and directions for future work,” in Proceedings of the
18th International Software Product Line Conference - Volume 1, ser.
SPLC ’14. New York, NY, USA: ACM, 2014, pp. 5–18.

[54] R. E. Lopez-Herrejon, J. Ferrer, F. Chicano, L. Linsbauer, A. Egyed, and
E. Alba, “A hitchhiker’s guide to search-based software engineering for
software product lines,” CoRR, vol. abs/1406.2823, 2014.

[55] J. Font, L. Arcega, Ø. Haugen, and C. Cetina, “Feature location in
model-based software product lines through a genetic algorithm,” in 15th
International Conference on Software Reuse, ser. ICSR 2016, Limassol,
Cyprus, Jun 2016.

Jaime Font is a PhD student in computer sci-
ence at the University of Oslo and a researcher in
the SVIT Research Group at San Jorge University.
His research interests include reverse engineering,
evoluationary computation, and variability modeling.
He received an MSc in Advanced Software Tech-
nologies from San Jorge University. Contact him at
jfont@usj.es

Lorena Arcega is a PhD student in computer sci-
ence at the University of Oslo and a researcher in the
SVIT Research Group at San Jorge University. Her
research interests are software evolution, variability
modeling, and models at run-time. She received an
MSc in Advanced Software Technologies from San
Jorge University. Contact her at larcega@usj.es

Øystein Haugen is a professor at Østfold University
College and senior researcher at SINTEF ICT. His
research focuses on cyber-physical systems, vari-
ability modeling and software product lines, object
oriented languages and methods, software engineer-
ing, and practical formal methods. Contact him at
oystein.haugen@hiof.no

Carlos Cetina is an associate professor at San
Jorge University and the head of the SVIT Research
Group. His research focuses on software product
lines, variability modeling, and model-driven devel-
opment. Cetina received a PhD in computer science
from the Universitat Politècnica de València. Contact
him at ccetina@usj.es

http://snowball.tartarus.org/algorithms/english/stemmer.html
http://snowball.tartarus.org/algorithms/english/stemmer.html
http://ejml.org/
http://dx.doi.org/10.1007/978-3-319-22183-0_29
http://dx.doi.org/10.1007/978-3-319-22183-0_29

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, AUGUST XXXX 15

APPENDIX
ALGORITHMS PSEUDOCODES AND PARAMETERS

TABLE VI
PARAMETERS FOR THE ALGORITHMS

Parameter Description Value
Size Size of the population 100
StopCondition Budget allocated to run the algorithm (s) 80
µ Number of parents for the crossover 2
λ Number of offspring from µ parents 1
pc Probability of crossover 0.75

pm
Probability of mutation, where n is the
length of the chromosome being mutated 1/n

Algorithm 1 Evolutionary Algorithm
1: P ← initPopulation(inputData, size)
2: while (!StopCondition) do
3: Bestevaluatefitness(P)
4: P ← breedPopulation(P)
5: end while
6: return Best

7: function initPopulation(inputData,size)
8: P ← [] . Initial population empty
9: for i = 1 to size do

10: F ← randomFragment(inputData)
11: P ← P + F . Add the new individual
12: end for
13: return P
14: end function

15: function breedPopulation(P,size)
16: P0 ← [] . empty population
17: for i = 1 to size do
18: parents← selectionParents(P)
19: offspring ← crossover(parents, pc)
20: offspring ← mutation(offspring, pm)
21: P0 ← P0 + offspring . Add the new offspring
22: end for
23: return P0

24: end function

Algorithm 2 Random Search
1: Best← randomFragment(inputData)
2: I ← 0
3: while (!StopCondition)) do
4: S ← randomFragment(inputData)
5: if (fitness(S) > fitness(Best)) then
6: Best← S
7: end if
8: I ← I + 1
9: end while

10: return Best

Algorithm 3 Steepest Ascent Hill Climbing with Replacement
1: S ← randomFragment(inputData)
2: NSize← number of neighbors desired
3: I ← 0
4: Best← S
5: while (!StopCondition) do
6: X ← 0
7: while X < NSize do
8: S′ ← tweak(Best)
9: if (fitness(S′) > fitness(S)) then

10: S ← S′

11: end if
12: X ← X + 1
13: end while
14: if (fitness(S) > fitness(Best)) then
15: Best← S
16: end if
17: I ← I + 1
18: end while
19: return Best

Algorithm 4 Iterated Local Search (ILS) with Random
Restarts

1: Current← randomFragment(inputData)
2: Times← distribution of time intervals
3: Home← Current
4: Best← Current
5: while (!StopCondition) do
6: time← random time chosen from Times
7: while (!StopCondition && time 6= 0) do
8: Aux← tweak(Current)
9: if (fitness(Aux) > fitness(Current) then

10: Current← Aux
11: end if
12: end while
13: if (fitness(Current) > fitness(Best) then
14: Best← Current
15: end if
16: Home← newHomeBase(Home,Current)
17: Current← perturb(Home)
18: end while
19: return Best

Algorithm 5 Hybrid between Evolutionary and Hill-Climbing
1: HCIter ← number of iterations to Hill-Climb
2: P ← initPopulation(InputDataSize)
3: while (!StopCondition) do
4: fitness(P)
5: for Pi in P do
6: Pi ← Hill − Climb(Pi)forHCIter
7: if (fitness(Pi) > fitness(Best)) then
8: Best← Pi

9: end if
10: end for
11: P ← breedPopulation(P)
12: end while
13: return Best

	Introduction
	Background
	The Induction Hobs Domain-Specific Language (IHDSL)
	The Common Variability Language applied to IHs

	Overview
	Encoding
	Model Fragment Fitness
	Search Algorithms for FML
	Evolutionary Algorithm MFL (EA-MFL)
	Selection of parents
	Crossover
	Mutation

	Random Search MFL (RS-MFL)
	Hill Climbing MFL (HC-MFL)
	Iterated Local Search with Random Restarts (ILS-MFL)
	Hybrid between Evolutionary Algorithm and Hill-Climbing (EHC-MFL)

	Evaluation
	Experimental Setup
	The BSH case study
	The CAF case study
	Parameters and Budget

	Statistical Analysis
	Statistical significance
	Effect size

	Results
	Statistical significance
	Effect size

	Threats to validity

	Related Work
	Conclusions
	References
	Biographies
	Jaime Font
	Lorena Arcega
	Øystein Haugen
	Carlos Cetina

	Appendix: Algorithms Pseudocodes and Parameters

