
Noname manuscript No.
(will be inserted by the editor)

Handling nonconforming individuals in Search-Based
Model-Driven Engineering
Nine generic strategies for Feature Location in the modeling space of the Meta
Object Facility

Jaime Font · Lorena Arcega · Øystein Haugen · Carlos Cetina

Received: date / Accepted: date

Abstract Lately, the Model-Driven Engineering com-

munity has been paying more attention to the tech-

niques offered by the Search-Based Software Engineer-

ing community. However, even though the conformance

of models and metamodels is a topic of great interest

for the modeling community, the works that address

model-related problems through the use of search meta-

heuristics are not taking full advantage of the strate-

gies for handling nonconforming individuals. The search

space can be huge when searching in model artifacts

(magnitudes of around 10150 for models of 500 ele-

ments). By handling the nonconforming individuals, the

search space can be drastically reduced. In this work,

we present a set of nine generic strategies for handling

nonconforming individuals that are ready to be applied

to model artifacts. The strategies are independent from
the application domain and only include constraints de-

rived from the Meta Object Facility. In addition, we

evaluate the strategies with two industrial case stud-

ies using an evolutionary algorithm to locate features

in models. The results show that the use of the strate-

gies presented can reduce the number of generations

needed to reach the solution by 90% of the original

value. Generic strategies such as the ones presented in

this work could lead to the emergence of more complex

fitness functions for searches in models or even new ap-

An open-source implementation of the strategies will be made
publicly available once the paper has been published

J. Font, L. Arcega, and C. Cetina
SVIT Research Group, Universidad San Jorge, Spain
E-mail: jfont@usj.es, larcega@usj.es, ccetina@usj.es

Ø. Haugen
Department of Information Technology, Østfold University
College, Norway.
E-mail: oystein.haugen@hiof.no

plications for the search metaheuristics in model-related

problems.

Keywords Model-Driven Engineering (MDE),

Search-Based Software Engineering (SBSE), Feature

Location (FL) , Evolutionary Algorithm (EA)

1 Introduction

Since the term Search-Based Software Engineering

(SBSE) was coined [47] in 2001, it has attracted many

research efforts from many different research fields such

as testing [9,6], maintenance [48], requirements [48]

and Software Product Lines [46]. Part of the success

of SBSE resides in the fact that many of the prob-

lems present in the field of software engineering can be
expressed in a way that can be successfully addressed

by existing metaheuristic algorithms, such as evolution-

ary algorithms. In fact, only three key ingredients are

needed to begin: 1) a representation (encoding) of the

problem, 2) the definition of a fitness function, and 3)

the definition of a set of operators. Then, candidate so-

lutions (which are encoded following the representation

chosen) are evolved (by applying the operators) and are

evaluated (by the fitness function) in an iterative pro-

cess until optimal solutions to the problem are found.

Similarly, Model-Driven Engineering (MDE) [53]

aims to facilitate the development of complex systems

by using models as the main artifacts of the software

development process. However, with the widespread ap-

plication of MDE to larger and more complex systems,

new software engineering issues are emerging to sup-

port the development, evolution, and maintenance of

large models. SBSE techniques are best applied in sit-

uations where a large search space is present with a set

of conflicting constraints.

2 Jaime Font et al.

This has led to the combination of MDE and SBSE

techniques into a new field of study known as Search-

Based Model-Driven engineering (SBMDE) [17,54],

where Search-Based techniques are applied for MDE

related tasks, such as discovering or optimizing models,

automatically generating test procedures, maintaining

consistency between models and metamodels, etc.

However, when applying SBSE to model artifacts,

the search space can grow too large (a model of 500 ele-

ments can yield a search space of around 10150 individ-

uals [36]), making the search impractical if the search

space is not reduced. Another problem that has orig-

inated when SBSE techniques are applied to MDE is

the generation of models that do not conform to the

metamodel. Conformance between the model and its

metamodel has been widely studied [73,40] and is re-

quired by existing tools [2,82,81].

One solution for reducing the search space while

managing the conformance between the metamodel and

the models generated by the search metaheuristic is the

use of strategies to handle nonconforming individuals.

In other words, the conformance between a model and

its metamodel can be formulated as a constraint that

needs to be guaranteed by the metaheuristic algorithm

being applied. Therefore, we will refer to conforming or

nonconforming individuals, depending on whether or

not the model encoded by the individual conforms to

its metamodel. There are several methods proposed in

the literature [61,22] to handle these constraints, which

belong to different categories:

Penalty functions: The application of penalty func-

tions to the nonconforming individuals that hinders

their spread during the evolution. [13,89,52,76]

Strong encoding: The use of a representation for the

problem that guarantees (by construction) that all

the individuals are conforming individuals [15].

Closed operators: The use of operators that return

conforming individuals as output when provided

with conforming individuals as input [62].

Repair operators: The use of repair operators that

transform nonconforming individuals into conform-

ing ones. [21,67,66]

The application of these strategies will result in a reduc-

tion of the search space and fine-grained control over

the conformance between the models and the meta-

model. However, most of the works in the literature do

not apply these strategies to MDE problems [61,22], or

they do not encode model artifacts as individuals. This

results in a lack of strategies to handle nonconforming

individuals when working directly with model artifacts

as individuals.

The Meta-Object Facility (MOF) [65] is a specifi-

cation from the Object Management Group to define a

universal metamodel for describing modeling languages.

In this paper, we present and compare nine different

generic strategies for coping with nonconforming indi-

viduals when applying SBSE techniques that encode

model artifacts built within the MOF modeling space.

Specifically, we present and compare: 1) a set of five

different penalty functions; 2) a strong encoding and

its associated operations; 3) a set of closed operations;

and 4) a set of two repair operators. All of these strate-

gies have been designed to work with MOF models as

individuals, and, therefore, are generic in the sense that

they do not contain any particularities of the applica-

tion domain; they only include constraints derived from

the definition of MOF models.

In our previous works [38,39] we have successfully

applied SBSE techniques to perform Feature Location

in Models (FLiM). Feature Location (FL) is one of

the most common activities performed by developers

during software maintenance and evolution [28] and is

known as the process of finding the set of software ar-

tifacts that realize a specific feature. We use the FLiM

problem as a running example throughout the paper.

We evaluate the different strategies for coping with

nonconforming individuals by applying them to per-

form FLiM on the product models from two industrial

domains: BSH, the leading manufacturer of home ap-

pliances in Europe; and CAF, a leading company that

manufactures railway solutions all over the world. The

evaluation is performed using two fitness functions, an

optimal fitness based on an oracle and a state-of-the-

art fitness based on textual similarity. The results show

that these strategies for handling nonconforming indi-

viduals can reduce the number of generations needed

to reach the solution to 90% of the original value. This

can result in gains in performance of more than 20% for

some of the metrics analyzed. In addition, we provide

a statistical analysis to ensure the significance of the

results obtained.

The community that is currently applying SBSE

solutions to MDE problems is not taking full advan-

tage of the improvements that the use of strategies

such as the one presented in this paper can provide.

Therefore, we want to provide evidence of their ben-

efits and contribute to the community with a set of

domain-independent strategies that have been evalu-

ated on two industrial case studies of FLiM and can

be applied by other researchers when applying SBSE

to MDE problems. The strategies can be applied with-

out modification to other FLiM problems whose models

are created with any MOF Domain Specific Language

expecting similar results. In addition, the encoding pre-

Handling nonconforming individuals in Search-Based Model-Driven Engineering 3

sented has been used in other SBMDE problems as Bug

Location [10] and Traceability Link Recovery [71] and

we expect similar results when applying the strategies.

For SBMDE problems requiring a different encoding

(with expressiveness to generate model fragments that

are not part of the parent model), modifications of the

strategies may be required, and further experimenta-

tion is needed to evaluate if the results are similar.

The rest of the paper is structured as follows. Sec-

tion 2 discusses related work. Section 3 establishes the

foundations for the rest of the paper, including the

problem of FLiM and the Evolutionary Algorithm that

we use to address it, the model and metamodel confor-

mance, and the search space. Section 4 presents the nine

generic strategies for handling the nonconforming indi-

viduals introduced in this work. Section 5 presents the

evaluation performed with two industrial case studies.

Section 6 provides a discussion of the results obtained.

Section 7 discusses the threats to validity, and Section

8 concludes the paper.

2 Related Work

This section presents works from the literature that

are related to the approach presented here. There are

some works that apply SBSE strategies to address MDE

problems. However, not all of them use models as the

individuals; some apply the searches to model transfor-

mation rules, while others focus on the improvement of

the metamodel through the use of Object Constraint

Language (OCL) rules. We also present works about

feature location in models. Finally, we discuss works

that are related to models in the context of a Software

Product Line.

2.1 Model transformation rules

Some works that apply EAs to models use model trans-

formation rules to encode the individuals. Nonconform-

ing individuals are mainly handled through repair op-

erators or death penalties:

The work from [5] applies a Non-dominated Sort-

ing Genetic Algorithm (NSGA) to the problem of rule-

based, design-space exploration. The aim is to find the

candidates that are reachable from an initial model by

applying a sequence of exploration rules. In that work,

the authors make use of a custom repair operator that

fixes nonconforming individuals. However, their indi-

viduals are encoded as sequences of exploration rules,

not models themselves, and, therefore, their repair op-

erator is specific to their particular domain. In our work

individuals are encoded as model fragments and the re-

pair operators that we propose in this paper can be

applied to individuals encoding models from any do-

main.

In [27], the authors apply search directly to model

transformations, without the need for an intermediate

representation. The approach proposes the creation of

model transformation rules that are capable of perform-

ing the tasks associated with an Evolutionary Algo-

rithm (EA), such as the creation of the initial pop-

ulation. The approach is applied to a problem of re-

source allocation, where the nonconforming individuals

are pruned out through the use of one of these model

transformation rules. Similarly to our work, the authors

apply a death penalty to prune out nonconforming in-

dividuals. However, the rule that is used to identify

those individuals is specific to their particular domain,

and cannot be applied to identify nonconforming model

fragments from other domains.

In [33], the authors present MOMoT, a tool that

applies SBSE strategies to optimize the set of model

transformation rules needed to maximize the requested

quality goals of a given model. The approach is further

refined in [32] to include support for many objectives

and an exhaustive performance comparison of different

search strategies is presented in [16]. The tool makes

use of three different strategies to handle duplicated

or non-executable sets of transformations that could

arise when performing genetic operations. The first one

is the use of a death penalty, removing those trans-

formations sets. The second one is the replacement of

the malformed transformation by a random transfor-

mation (or a placeholder transformation) so the set of

transformations can be executed. The third strategy is

the use of a dedicated re-combination operator (such

as the partially matched crossover [43]) that is able to

consider some constraints avoiding the creation of non-

executable transformation sets. However, the strategies

used in those works are designed to work on individuals

encoding the order of the transformations, and cannot

be applied to repair nonconforming individuals that en-

code model fragments. Furthermore, the impact of the

use of those strategies on the performance of the ap-

proach is not evaluated.

In [18], the authors describe strategies for gener-

ating closed operators. They use graph transforma-

tion rules to encode the mutation operators that are

then automatically generated in the form of transfor-

mations. These operators guarantee the consistency of

the mutated models with the metamodel multiplicity

constraints. The resulting operators are similar to the

closed operators proposed in this work, but their op-

erators are generated taking into account the multi-

4 Jaime Font et al.

plicities from the metamodel. In this work, we obtain

the constraints for the closed operators from the inher-

ent constraints of the metalanguage used to build the

metamodels, instead of using the multiplicities of the

metamodel. In addition, our operations are designed to

work over EA encoding model fragments.

2.2 Metamodel enhancement

Other works try to enhance the metamodel to avoid

the generation of models that should not be part of

the modeling space for that metamodel. This is usually

done through the use of the Object Constraint Lan-

guage (OCL) rules defined throughout the metamodel.

In [44], the authors propose an approach that helps

the modeller find the boundaries of the modeling space

of a metamodel. To do this, the approach generates

samples of all of the models that can be built with a

given metamodel and iterates those samples (through

a simulated annealing algorithm) to maximize the cov-

erage of the sample. Then, the sample is presented to

experts so that they can fix the metamodel if any of the

presented models should not be allowed. By doing this,

the gap between the modeling space (all of the models

that are reachable from a metamodel) and the intended

modeling space (the models that the experts want to

be built with the metamodel) can be reduced, and the

accuracy of the metamodel can be increased. Similar

to our work, their work deals with nonconforming in-

dividuals. However, in [44], the undesired individuals

are identified by experts and then turned into noncon-

forming by modifications of the metamodel that was

used to create the individuals. In its current form, their

approach cannot be applied to handle nonconforming

individuals of a running EA.

In [30], the authors take two sets of models (one that

includes valid models and another one that includes in-

valid models) and use an EA to automatically generate

well-formedness rules that are derived from the two sets

of models provided. As a result, they provide a set of

OCL rules that can be used to improve the metamodel

into a more precise metamodel + well-formedness rules.

Other works, such as [7], take into account the OCL

constraints that are embedded throughout the meta-

model and try to generate sets of parameters that ful-

fill the OCL constraints with the aim of using them

as test data. The approach is further refined in [8] to

include more types from OCL and heuristics to guide

the search. They compare themselves with the most

widely used OCL constraint solver, achieving better re-

sults. Similarly, the graph solver presented in [79,80]

generate consistent models of a designated size from a

specification defined by a metamodel and a set of well-

formedness constraints. However, these approaches do

not solve the problem of handling nonconforming indi-

viduals when using search strategies. They do take into

account constraints that models should fulfill and use

EAs or other generators to help in this task. In con-

trast, the strategies that we present in this paper are

designed to be applied to existing searches in models

that are not benefiting from the advantages associated

with the proper management of nonconforming individ-

uals.

In [86,87], the authors propose Crepe, a Domain-

Specific Language (DSL) that can be used to specify

individuals that represent any model conforming to a

specific metamodel. Thus, they are able to encode in-

dividuals in the form of a model (or model fragments)

as we do in our work. In [88], the authors report the

generation of nonconforming individuals when apply-

ing their encoding for models as individuals, which al-

lowed them to improve the DSL being used. In [57],

the authors identify the generation of nonconforming

individuals in Crepe, and propose a repair operator to

address this issue. After an individual is modified, they

use a re-coding operation to repair the individual, pre-

serving the semantics of the model in those aspects not

directly affected by the crossover and mutation opera-

tions. However, individuals are only partially repaired

as the expressiveness of the operators and encoding be-

ing used allows for the generation of individuals that

cannot be automatically repaired. We believe that ap-

proaches such as [88,57] could be improved through the

use of the strategies to handle nonconforming individ-

uals presented in this paper.

2.3 Feature Location in Models

Some works from the literature focus only on capturing

guidelines and techniques for manual transformations

of a set of existing products into assets of a Software

Product Line. Those works are interesting because they

are based on industrial experiences; however, there is

almost no automation in the process.

Other works [85,50,90,91,59,41,36] focus on the lo-

cation of features in models through comparisons with

each other. As a result, the variability is expressed in

the form of a model expressing the differences (which is

eventually turned into a Software Product Line). These

include the following:

– The authors in [90] present a generic approach that

is able to perform comparisons of MOF models, re-

sulting in the features being located in the form of

a Common Variability Model [83]. The approach in

Handling nonconforming individuals in Search-Based Model-Driven Engineering 5

[90] was further refined in [91] to allow the exten-

sion of the model capturing the features, when new

models are added to the comparison. This reduces

the complexity of the process, avoiding the need for

executing all of the comparisons from scratch and

allowing them to be performed incrementally.

– Wille et al. [85] present an approach based on an

exchangeable metric that is used to measure the

similarity between different attributes of the mod-

els. The approach in [85] was further refined in [50]

to minimize the number of comparisons needed to

obtain the model representing the similarities and

differences among the different models.

– Martinez et al. [59] propose an extensible approach

based on models’ comparisons that can obtain the

features from a family of related models. The ap-

proach can be extended through a system of tem-

plates, allowing the identification of differences of

any type of model-based content (as long as the

comparison method is provided)

However, all of these approaches are based on me-

chanical comparisons among the models, classifying the

elements based on their similarity, identifying the dis-

similar elements and formalizing them as the feature

realizations. In contrast, in our work the feature loca-

tion is applied to a single model, so it does not rely

on model comparisons to locate the features; instead it

relies on searches across the modelling space performed

by an EA.

Some of our previous works focus on the topic of fea-

ture location in models, ranging from approaches based

on comparisons [41] to human-in-the-loop approaches

[36] or searches based on metaheuristics [37,38,39,19].

One of them focus on the influence of genetic operations

on the quality of the results [72]. Some of them focus

on the possibility of sharing the information scattered

among different engineers in order to empower them to

produce better queries that guide the EA [69,70], while

other works explore the use of Multi Objective Evo-

lutionary Algorithms [19,71]. However, none of those

works has ever investigated the possibility of handling

nonconforming individuals to boost the search process,

as is the case in this work.

2.4 Software Product Lines

Finally, some works report problems when nonconform-

ing individuals are automatically generated by their ge-

netic operations in the context of a software product

line. In [23], the authors propose a representation of a

software product line architecture that can be used by

Search-Based techniques. This allows the optimization

of the architecture model through the use of different

search operations. The authors report the generation of

some solutions that are non-consistent with their defi-

nition of the product line architecture that are repaired

by a domain-dependant repair operator.

In [78], the authors present ETHOM, an EA that

is capable of generating computationally-hard feature

models in order to use them to feed analysis tools for

feature models. To this end, the EA encodes feature

models as a combination of a tree and the related cross-

tree constraints. Since the use of this encoding leads to

the generation of nonconforming individuals, the au-

thors use a repair operator or discard the individual

(death penalty), depending on the complexity of repair-

ing the individual. However, since the encoding used

by the authors is particular to their specific domain

(their representation of feature models), the repair op-

erator proposed is also particular to their domain and

captures inconsistencies that only occur in their repre-

sentation of feature models. In contrast, the strategies

presented in our work are designed to work with mod-

els created with any Domain Specific Language created

using the Meta Object Facility [65] metalanguage, im-

proving its re-usability by different practitioners whose

Domain Specific Languages are created using MOF.

3 Overview of the Problem

This section provides the foundation for the rest of the

paper. It describes the following: 1) what Feature Lo-

cation in Models is; 2) how it is achieved through an

evolutionary algorithm; 3) what model and metamodel

conformance is and what makes an individual noncon-

forming; 4) what the search space is when searching for

model fragments and what it looks like.

3.1 Feature Location in Models (FLiM)

Feature Location [75,28] is the process of identifying the

set of software artifacts that realize a specific feature.

That is, Feature Location requires to find and indicate

all the software artifacts that are used for the design, de-

velopment and further maintenance of a specific feature

(such as requirements, source code, documentation, or

tests). Depending on the nature of the software artifacts

and the features being located, a different granularity

may be applied; for instance, when features are located

across source code, a feature could correspond to a sin-

gle class, a set of methods from different classes, some

conditions inside a switch statement, or even a whole

package.

6 Jaime Font et al.

IHDSL Metamodel

Induction
Hob

Inverter
pow:String

Power
Manager InductorProvider

Channel
Consumer
Channel

cChannels
0..*

from fromto to

150

1 1 1 1 1 0 0 0 01
G1 G2 G3 G4 G5 G6 G7 G8 G9G0

Model Fragment 1
(conforming individual)

Parent Model & Encoding

150

G1 G2 G3 G4 G5 G6 G7 G8 G9G0

150

1 1 1 1 1 0 0 0 10
G1 G2 G3 G4 G5 G6 G7 G8 G9G0

Model Fragment 2
(nonconforming individual)

inductors 0..*

pManagers
0..*

pChannels
0..*

inverters
0..*

1..1 1..1 1..1 1..1

Fig. 1 Running example including the Induction Hob Domain-Specific Language (IHDSL) metamodel (top-left), the encoding
of a parent model and its mapping to the metamodel (bottom-left), and two model fragments encoded as individuals, one that
is conforming and one that is nonconforming (right)

We define the Feature Location in Models (FLiM)

as the process of identifying the set of model elements

that realize a specific feature. The results of the FLiM

process are model fragments that represent a specific

feature. At this point, it is important to define what

a model fragment [38,37,39] is: A model fragment is

always defined in reference to a parent model. A model

fragment is a subset of the elements of the parent model.

Therefore, all of the model fragments of a given parent

model are subsets of the parent model.

Similarly to other software artifacts, the granular-

ity can vary depending on the nature of the models

and the features being located. Taking into account the

MOF specification from the Object Management Group

(OMG) and our experience with models from industrial

domains [39,40,38], we divide the relevant elements of a

model into a set of atomic elements (meta-class, meta-

reference, and meta-property), and we do not consider

further subdivisions of those units in this work.

To illustrate the elements, Fig. 1 (top-left) shows

the Induction Hob Domain-Specific Language (IHDSL)

metamodel, which is a simplification1 of the DSL used

by one of our industrial partners. The DSL is used to

model the firmware of the Induction Hobs in the context

of a Model-Based software product line, where some of

1 We use a simplification as running example in order to
increase legibility and due to intellectual property rights.

the features are reused by different products. In the

following we explain the concepts of meta-class, meta-

reference and meta-property.

Meta-class is the core element, holds a set of meta-

properties and meta-references, e.g., the Inductor

meta-class element from the metamodel in Fig. 1

(top-left).

Meta-reference relates two meta-class elements and

includes a source and a target meta-class element,

a multiplicity for the target and the source meta-

classes, and a name. Meta-references can also be

distinguished by whether or not they are contain-

ment meta-references. For instance, the inductors

meta-reference from the metamodel in Fig. 1 (top-

left) is a containment meta-reference whose source

is the Induction Hob meta-class (multiplicity 1) and

whose target is the Inductor meta-class (multiplic-

ity any), while the from meta-reference is a meta-

reference (non-containment) whose source is the

Provider Channel meta-class (multiplicity 1) and

whose target is the Inverter meta-class (multiplicity

1).

Meta-property gives information about a meta-class,

including the meta-property name, the type, and the

value. For instance, the Inverter meta-class element

from the metamodel in Fig. 1 (top-left) contains a

meta-property named pow whose type is a String.

Handling nonconforming individuals in Search-Based Model-Driven Engineering 7

Based on this division, a model fragment is a subset

of the model elements that are present in the parent

model, with the granularity of the elements being meta-

classes, meta-references, or meta-properties.

3.2 Feature Location in Models by an Evolutionary

Algorithm (FLiMEA)

Fig. 2 depicts an activity diagram for a generic EA.

First, a set of individuals is obtained (following a previ-

ously designed specific representation) to be the initial

population of solution candidates for the EA. Then, a

fitness function is designed to assess the quality of indi-

viduals as solutions to the problem. If the stop condition

is met, the execution ends; otherwise, a set of operators

that is compatible with the representation and capa-

ble of evolving the individuals is executed to evolve the

population. The following subsections present each of

the EA parts in detail.

3.2.1 Representation of the individuals

Traditionally, the representation used in EAs comes in

the form of binary strings [74]. For this EA, the indi-

viduals encode model fragments that are defined in the

context of a parent model. Therefore, the representa-

tion needs to be able to capture any model fragment

that can be generated from a given parent model. We

use a binary string where each bit in the sequence rep-

resents the presence or absence of one specific element

of the candidate solution.

In our case, the different elements that may or may

not be part of an individual are the ones defined in
the previous subsection (class, reference, and property).

Each of the elements present in the parent model will be

“tagged” with a position in the binary string, and then

the binary string will be filled with either 0 (to indicate

the absence of that element in the model fragment) or

1 (to indicate the presence of that element in the model

fragment).

Fig. 1 (bottom-left) shows a parent model of an ex-

ample Induction Hob that contains one of each of the

elements defined by the metamodel and the encoding

associated to it. All of the individuals encoded in refer-

ence to this parent model will use a string of the same

length, one gene for each of the elements2 present in the

parent model (G0 to G9, up to a total of ten elements

that may or may not be part of model fragments of this

parent model). It is important to note that all of the

elements (classes, references, and properties) that are

2 In this figure, the containment references and the root
node are omitted for simplicity.

present in the parent model need to be present in the

encoded binary string so that we are able to represent

any possible model fragment using it.

Fig. 1 (right) shows two individuals that are en-

coded in reference to this parent model (Model Frag-

ment 1 and Model Fragment 2). Below each individual,

a string with ten genes where the presence or absence of

each element can be indicated is depicted. For instance,

Model Fragment 1 is composed of an Inverter class el-

ement (G0), a Provider Channel class element (G3), a

Power Manager class element (G5), a from reference

element (G2), a to reference element (G4), and a pow

property element (G1).

The function value(mf, i) is used to retrieve the

value of a gene of a given model fragment (mf) and

a given gene index i. For instance, the value(MF1, 2)

is 1 while value(MF2, 0) is 0 (Fig. 1).

It is important to note that the presented encoding

can be applied without changes to any MOF-compliant

metamodel since it is expressed at the level of the build-

ing blocks of MOF metamodels. No domain-dependant

information is embedded into the encoding (although it

is presented in the context of a specific Induction Hob

metamodel).

3.2.2 Fitness Function

The fitness function is used to evaluate how good each

of the individuals is as a solution to the problem. In

the past [38,39,34], we have successfully applied fitness

functions based on textual similarity between a feature

definition and a model fragment. However, we identi-

fied some issues that influenced negatively the value of

the fitness when using textual similarity as the fitness

for FLiM [19]: (i) some feature descriptions may be in-

complete (guiding the search to an incomplete model

fragment), (ii) there may be vocabulary mismatch (the

specific concepts defining the feature are different from

those present in the feature, even though both repre-

sent the same concept), and (iii) there may be some

concepts related to the domain that are not present in

the model fragments but that are present in the model

transformation rules applied afterwards.

Therefore, in this work we perform the evaluation

applying two different fitness functions. First, to iso-

late the effect of the strategies used to handle noncon-

forming individuals from the fitness function chosen,

we make use of an optimal fitness function. Secondly,

to study the effect of the strategies on a realistic sce-

nario we apply a state-of-the-art fitness function based

on textual similarity.

The Optimal Fitness function is used only for

evaluation purposes; it relies on an oracle to guide the

8 Jaime Font et al.

Population Assessed
Population

[stop]

[not stop]
Initialization Fitness

stop
condition?

parent
selection parents

offspring crossovermutationoffspringreplacement

Fig. 2 Activity Diagram for the Evolutionary Algorithm

search (and the existence of an oracle is not always the

case on real scenarios). An oracle (or golden set) is a set

of problems and the solutions to those problems. In the

case of FLiM, we have two oracles that were extracted

from industry that include a set of problems of Feature

Location in industrial models. Each of them includes a

parent model where the feature should be located and a

model fragment that realizes the feature. By using this

oracle as the fitness function, we can remove the noise

that is produced by fitness functions based on textual

similarity, and focus only on the different strategies for

handling nonconforming individuals and their impact

on the search.

fitness(m) =

n∑
i=0

g(i)

n

g(i) =

{
1 if value(m, i) = value(o, i)

−1 otherwise

(1)

where: m = any given model fragment

n = size of the model fragment

o = model fragment from the oracle.

Equation (1) shows how to compute the fitness of a

model fragment (m). The fitness is the result of adding

the g(i) values for all of the genes present in the model

fragment (from 0 to n) and dividing the sum by the

size of the fragment. The g(i) is 1 if the gene value

is the same in the model fragment and in the oracle

(value(m, i) = value(o, i)) or -1, otherwise.

Fig. 3 shows an example of the fitness calculation

for Model Fragment 1 (left). First, the binary string of

the individual is compared with the solution that was

extracted from the oracle (right). If the value of the gene

is the same in both model fragments, 1
10 (it is divided

by ten as there are ten genes) is added to the result.

If the value of the gene is not the same in both model

fragments, 1
10 is subtracted from the result. Finally, the

resulting fitness(mf1) is equal to 6
10 .

The resulting fitness value of the model fragment

ranges from the worst value, -1 (if all of the genes are

the opposite of the oracle), to the best value, 1 (if all of

compare

150

Model Fragment 1

1 1 1 1 1 0 0 0 11
G1 G2 G3 G4 G5 G6 G7 G8 G9G0

150

Solution from Oracle

0 1 1 1 1 0 0 0 01
G1 G2 G3 G4 G5 G6 G7 G8 G9G0

G1 G2 G3 G4 G5 G6 G7 G8 G9G0

1
10

-1
10

1
10

1
10

1
10

1
10

1
10

1
10

1
10

-1
10

fitness calculation

6
10

fitness(mf1) = = 0.6

Fig. 3 Example of the Fitness calculation

the genes are the same as the oracle). In the case of a

randomly generated individual, the fitness value should

be close to 0 since the probability of correctly guessing

a gene is the same as incorrectly guessing it.

The Textual Similarity Fitness that we apply in

this work relies on Latent Semantic Indexing (LSI) [49]

to determine how similar is each of the individuals of the

population compared to a textual query that describes

the feature being located. Before comparing the textual

query and the texts obtained from the individuals of the

population, texts need to be homogenized through the

use of Natural Language Processing techniques [55].

First, the text is tokenized into words, different to-

kenizers can be applied based on the type of text being

processed (i.e. white space for regular text, camelCase

or underscore for source code). Secondly, the Parts-Of-

Speech (POS) tagging technique can be applied to iden-

tify the grammatical role of each word, allowing to filter

out some categories that do not contain relevant infor-

mation and may introduce noise in the search process

(i.e. prepositions). Thirdly, some words may not contain

semantic information when used in particular domains

(given their widespread), so they can be automatically

removed if a list of stop words or domain terms is pro-

vided (e.g., in the induction hob domain, the word ‘hob’

will appear too many times, being no useful at all).

Fourthly, stemming or lemmatization techniques can

be applied to reduce the words to its root or lemma,

enabling grouping and comparison of terms from the

same family (e.g., ‘induction’ and ‘inductors’ would be

reduced to ‘induct’).

Handling nonconforming individuals in Search-Based Model-Driven Engineering 9

LSI builds a vector representation of the query and

a set of text documents, arranging them as a term-by

document co-occurrence matrix. The rows of the matrix

include all the terms present across the documents, the

columns represent each of the individuals of the popu-

lation and the query as last column, each cell indicates

the number of occurrences of a particular term in an

individual (or the query). Then, the matrix is decom-

posed applying the Singular Value Decomposition [55],

resulting in a set of vectors that represents the latent

semantic (one vector for each individual of the popula-

tion and one vector for the query). Then, to compare

the vectors we apply the cosine similarity between each

of the vectors representing an individual and the vector

of the query, resulting in the fitness value of each indi-

vidual. The values range from -1 (no similarity at all)

to 1 (both vectors are the same).

3.2.3 Genetic Operators

There are four basic operators that are generally ap-

plied in EAs (as depicted in Fig. 2):

Parent selection: This operator selects the parents

that will be used as the basis for the new individuals

of the population. In this case, we use the Roulette

Wheel Selection operator. This selection strategy as-

signs a probability of being selected to each individ-

ual in the population proportional to their fitness

score. As a result, the fittest individuals are selected

more often than individuals that are unfitted.

Crossover: The aim of the crossover operator is to

combine the genetic material from some individu-

als into new ones. In our case, we use a crossover
operation that is based on a mask [38] that com-

bines two parent individuals into two new offspring

individuals.

Mutation: The aim of the mutation operator is to em-

ulate the spontaneous mutations that occur in na-

ture. In this case, we use an evenly distributed mu-

tation where each gene of each individual has the

same probability of undergoing a mutation.

Replacement: The aim of the replacement operator is

to modify the population, adding the new offspring

generated by the evolution and replacing some of

the old individuals of the population. In this case,

we apply widespread replacement of the least fit in-

dividuals by the new offspring.

3.3 Model and Metamodel conformance

A model conforms to a metamodel if it is expressed by

the terms that are encoded in the metamodel. In other

words, the metamodel specifies all of the concepts used

by the model, and the model uses those concepts follow-

ing the rules specified by the metamodel. Conformance

between a model and the metamodel can be described

as a set of constraints between the two [68,73]. For ex-

ample, one of the constraints could be that all multi-

plicities specified in references must be fulfilled.

In addition, as presented in [31], current metamodel

techniques tend to define the metamodel as having two

parts: a domain structure that captures the context and

relationships used to build the models (typically ex-

pressed as class diagrams), and well-formedness rules

that impose further constraints that must be satisfied

by the models (typically expressed as logical formulas).

In this work, we focus on the constraints imposed by

the domain structure. The additional constraints im-

posed by the well-formedness rules are out of the scope

of this work, and some works on the topic are available

elsewhere [7,8].

MDE is built around the concept of modeling, and

several tasks can be automated through the use of mod-

els and specific tools (e.g., the generation of graphical

editors and tools [81,2] or model-to-text transformation

[25]). However, those tools implicitly require that mod-

els conform to a metamodel in order to be used. Model

and metamodel conformance is a topic that is widely

studied in the field of software evolution [40,73].

Model and metamodel conformance is a desired

property of models, which is implicitly required by the

MDE tools and approaches. However, when working

with model fragments, the constraints that ensure con-

formance are not so clear (as we are not dealing with

whole models, but only with model fragments). In this

work, we explore nine strategies that are built around

the conformance of model fragments and metamodels

in order to boost the search process of model fragments

that realize a specific feature (subsets of a parent model

that conforms to a metamodel).

In what follows, we will work with a conformance

between a model fragment and the metamodel where

some constraints should be preserved:

Valid reference: A reference is considered to be valid

if both the source and target model classes pointed

by the reference are present in the model fragment.

For instance, Fig. 1 shows Model Fragment 1, where

the reference encoded by G2 is valid (the source of

G2 is G3 and the target is G1, and both are present

in the model fragment). In contrast, in Model Frag-

ment 2, the reference encoded by G2 is not consid-

ered to be valid (the source of the reference is G0,

which is not present in the model fragment).

Valid property: A property is considered to be valid

if its parent class is present in the model fragment.

10 Jaime Font et al.

For instance, Fig. 1 shows Model Fragment 1, where

the property encoded by G1 is valid (the parent

class, G0, is present in the model fragment). In con-

trast, in Model Fragment 2, the property encoded

by G1 is not valid (the parent class G0 is not present

in the model fragment).

With these conformance constraints, model frag-

ments can be classified into conforming individuals if

they fulfill the constraints for all of the elements present

in the model fragment (Model Fragment 1) or into non-

conforming individuals, where any of the constraints are

violated by any of the elements present in the model

fragment (Model Fragment 2).

3.4 Search Space

The search space is the space where the EA performs

the search, i.e., the set of all possible individuals that an

EA is able to reach by applying the different operations.

Depending on the encoding and operations being used

by the EA, different search spaces will result.

F - conforming space

U - nonconforming space

individual

solution

c

s
a

b

d

Fig. 4 Example of a search space representation that includes
the conforming and nonconforming spaces

In general, a search space consists of two disjoint

subsets of feasible and unfeasible subspaces (F and U ,

respectively) [60]. In this work, we use the term con-

forming subspace instead of the term feasible subspace

and nonconforming subspace instead of unfeasible sub-

space. We make this distinction in order to focus on the

conformance between models and metamodels since it is

what determines if an individual resides in one subspace

or in the other. The individuals in the F subspace sat-

isfy the constraints for the problem (conforming model

fragments), while the individuals in the U subspace do

not satisfy the constraints (nonconforming model frag-

ments).

Fig. 4 shows a representation of an example of a

search space. The grey areas correspond to the con-

forming subspace, and white areas correspond to the

nonconforming subspace. Each point corresponds to a

specific individual, while the star corresponds to the

solution of the problem, which is the individual that

gets the best fitness value. When applying a Multi Ob-

jective Evolutionary Algorithm such as NSGA-II [26],

the search is guided by a fitness with multiple objec-

tives and the solution is output as non-dominated set

of solutions where all the objectives are optimal. In this

work we apply a single objective fitness function, so we

only depict a solution in Fig. 4, but we plan to study

the application of these strategies in combination with

Multi-Objective Evolutionary Algorithms in the future.

For instance, the individual tagged with an ‘a’ is

a conforming individual, such as the one depicted in

Model Fragment 1. The point tagged with a ‘d’ is a

nonconforming individual, such as the one depicted in

Model Fragment 2. The fittest individual that fulfills

the constraints is considered the best-solution to the

problem and resides in the conforming subspace. The

fittest individual in Fig. 4 is depicted by the star tagged

with an ‘s’.

In the case of SBSE applied to MDE, we want the

EA to produce a conforming individual as a solution

to the problem. Nevertheless, exploring nonconforming

individuals could also lead to the solution faster and

benefit the search. Therefore, we will study different

methods to cope with nonconforming individuals. The

next section presents our strategies for handling non-

conforming individuals and how they can be applied to

individuals encoding MOF models.

4 Handling nonconforming individuals in SBSE

encoding model artifacts

This section presents the main strategies that are avail-

able in the literature for handling nonconforming indi-

viduals and how they can be applied to work when in-

dividuals encode model fragments. The main strategies

studied are penalty functions, strong representations,

closed operators, and repair operators.

Handling nonconforming individuals in Search-Based Model-Driven Engineering 11

4.1 Penalty functions

Penalty functions [13,89,52,76] are functions applied to

nonconforming individuals that are designed to hinder

their spread during the evolution. There are different

variants of the penalty function method, ranging from

static penalty functions and dynamic penalty functions,

to the death penalty function, which is the most ex-

treme one.

4.1.1 Static penalty

A static penalty applies a reduction to the fitness value

of nonconforming individuals. In static penalties, the

value can be a static constant or it can be proportional

to the degree of violation of the constraints. To apply a

static penalty in EAs, we need to identify nonconform-

ing individuals and then modify their fitness value by

subtracting the penalty value. This is done as an extra

step after calculating the fitness value of the individu-

als.

Equation 2 shows the definition of sta, which is a

static penalty function that applies a constant penalty

value (λs) to the fitness of an individual (I) if it is a non-

conforming individual. The value of the penalty applied

(λs) needs to be adjusted depending on the domain.

sta(I) =

{
fitness(I) if I ∈ F
fitness(I)− λs if I ∈ U

(2)

Equation 3 shows the definition of staDeg, which is

a static penalty function that applies a penalty value

(λsd) to the fitness of a nonconforming individual pro-

portional to the degree of violation of the constraints

(deg(I)) of the given individual. The degree of violation

of an individual (deg(I)) is calculated as the sum of the

violation degree of each gene (vio(i)), where all viola-

tions of a constraint are weighted the same. A gene that

is not violating any constraint is not taken into account

for the calculations.

staDeg(I) =

{
fitness(I) if I ∈ F
fitness(I)− λsd ∗ deg(I) if I ∈ U

deg(I) =

n∑
i=0

vio(i) where :

vio(i) =



1 if Gi is a property missing parent

1 if Gi is a reference missing source

1 if Gi is a reference missing target

2 if Gi is a reference missing source

and target

0 otherwise

(3)

Static penalty functions can be easily applied to EAs

that are used to find model fragments, with the trick-

iest parts being the adjustment of the constant (λsd)

and the selection of the method used to assess the de-

gree of violation of the constraints (deg(I)). As part of

this work, we try different values and use the ones that

provide the best results.

4.1.2 Dynamic penalty

Dynamic penalty functions are similar to static penalty

functions in that they apply a reduction to the fitness

value of nonconforming individuals. The difference with

static penalty functions is that the penalty value ap-

plied is proportional to the current generation, making

it more difficult for nonconforming individuals to sur-

vive as the evolution goes on. This penalty is well suited

for the problem since we do not want nonconforming

individuals as solutions; however, nonconforming indi-

viduals can lead to better results early in the process

and removing them prematurely can affect the search

negatively.

Depending on the representation used for the prob-

lem, some of the optimal individuals (those with the

highest fitness scores) will be close to the boundaries

between the U and F subspaces. Therefore, evolving a

nonconforming individual into a conforming and opti-

mal individual may be less expensive (in computational

costs) than reaching the same optimal conforming in-

dividual through the evolution of another conforming

individual (e.g., in Fig. 4, evolving ‘d’ to ‘s’ may be less

expensive than evolving ‘a’ to ‘s’).

Equation 4 shows the definition of dyn, which is a

dynamic penalty function that applies a penalty value

(λd) to the fitness of a nonconforming individual pro-

portional to the number of the current generation (g).

dyn(I) =

{
fitness(I) if I ∈ F
fitness(I)− λd ∗ g if I ∈ U

(4)

Similarly, Equation 5 shows the definition of dyn-

Deg, which is a dynamic penalty function that applies

a penalty value (λdd) to the fitness of a nonconform-

ing individual proportional to the degree of violation of

the constraints (deg(I)) of the given individual and the

number of the current generation (g).

dynDeg(I) =

{
fitness(I) if I ∈ F
fitness(I)− λdd ∗ deg(I) ∗ g if I ∈ U

(5)

12 Jaime Font et al.

Strong Encoding

G0 G3 G5 G7 G9

G1 G2 G4 G6 G8

150

Model Fragment 1
(conforming)

G0 G3 G5 G7 G9

G1
1 1 1 0 0G2 G4 G6 G8

1 1 1 0 0

Model Fragment 2
(nonconforming)

G0 G3 G5 G7 G9

G1
1 1 1 0 0G2 G4 G6 G8

0 1 1 0 1

150

Fig. 5 Example of the Strong Encoding

4.1.3 Death penalty

The death penalty is the most extreme case of penalty.

When new offspring are created through the combina-

tion of the genetic operators, the individuals are eval-

uated to check whether they belong to the conforming

or the nonconforming subspace. If they belong to the

nonconforming subspace, they are removed from the

offspring, so they do not end up in the population of

the next generation. If they belong to the conforming

subspace, the EA continues normally, adding them to

the population through the replace operator. When us-

ing this strategy, the population will never contain a

nonconforming element, guaranteeing that the solution

is a conforming individual.

4.2 Strong Encoding

The second strategy for handling nonconforming indi-

viduals is the use of a strong representation (or encod-

ing) for the problem. Changing the encoding may also

involve a change in some of the genetic operators be-

ing applied since the operations are designed to work

on a specific representation. The main idea is to de-

vise a strong encoding that guarantees by construction

that any individual encoded using this representation is

a conforming individual. Having this type of encoding

makes the search space change reducing the U subspace

to the empty set, thus simplifying the search space.

This solution has been successfully applied to prob-

lems that can be represented as a permutation of a set

of values. For instance, the Travelling Salesman Prob-

lem poses the next question: Given a set of cities and

their distances from each other, what is the shortest

path to visits all of the cities? A typically strong en-

coding to solve this problems is a list that includes all

of the cities. Each city appears once in each individual

in the order it is visited, ensuring that all of the can-

didates fulfill the constraint (since all of the cities are

visited).

In the case of model fragments some restrictions

must be introduced in the encoding to guarantee that

all individuals fulfill the constraints (valid references

and valid properties) in order to be considered a con-

forming individual. Our strong encoding consists in in-

troducing a hierarchy of requirements among the genes;

that is, some genes require other genes and can only be

set to true if the required genes are also true.

Fig. 5 (left) shows an example of our proposed

strong encoding for models in EAs that use model frag-

ments as individuals. It shows the encoding for a par-

ent model, including the correspondence between each

gene and the model elements (dashed arrows) and the

requirements among the genes (regular arrows). For in-

stance, the gene G0 indicates the presence or absence

of the inverter class element, while the gene G1 corre-

sponds to the pow property of the inverter class. The

gene G1 requires the gene G0, so G1 can only be true

if G0 is also true.

To ensure the ‘valid reference’ constraint, all of the

reference elements require that their source and target

class element are present in the model fragment. There-

fore, a reference element can only be set to true if both

the source and target class elements are also true. For

instance, in Fig. 5 (left) the gene G2 corresponds to the
from reference of the provider channel class element.

G2 can only be true if the source of the reference (G3)

and the target of the reference (G0) are also true in the

model fragment.

To ensure the ‘valid property’ constraint, all of the

property elements require their parent class element.

Therefore, a gene representing a property can only be

set to true if the parent element is also true.

By doing this, the representation ensures that both

constraints are fulfilled by all of the individuals that

are encoded using this strong encoding. Therefore, all

of the individuals will be conforming individuals and

the nonconforming space is reduced to the empty set.

Fig. 5 (center) shows the representation of a con-

forming individual, Model Fragment 1, encoded follow-

ing the strong encoding instead of the regular encoding

(as in Fig. 1). All of the genes that require other genes

(G1, G2, G4, G6, G8) can only be set to 1 if the required

genes (G0, G3, G5, G7, G9) are also set to 1.

Handling nonconforming individuals in Search-Based Model-Driven Engineering 13

G6 mutation

G0 G3 G5 G7 G9

G1
1 1 1 0 0G2 G4 G6 G8

1 1 1 0 0

150

G9 mutation

G0 G3 G5 G7 G9

G1
1 1 1 0 0G2 G4 G6 G8

1 1 1 0 1

150

G1 mutation

150

G0 G3 G5 G7 G9

G1
0 1 1 0 0G2 G4 G6 G8

1 1 1 0 0

G0 mutation

G0 G3 G5 G7 G9

G1
0 0 1 0 0G2 G4 G6 G8

0 1 1 0 0

150

mutating gene requires others mutating gene is required by others

mutation
from 0

to 1

mutation
from 1

to 0

the gene

mutates to

1 only if

all required

genes are 1

the gene

mutates

to 0

the gene

mutates to 1

the gene

mutates to 0

and all others

that depend

on it also

mutate to 0

Fig. 6 Example of Mutation operator for Strong Encoding

Fig. 5 (right) shows a wrong and invalid representa-

tion of a nonconforming individual, Model Fragment 2

(the same model fragment as in Fig. 1). This is a non-

conforming individual and is not allowed by the strong

encoding. It is only depicted for clarification purposes

(as the encoding will not allow it to exist). Gene G1 re-

quires G0 and since G0 is set to 0, G1 cannot be set to

1. Similarly, G2 requires G0 and cannot be set to 1 ei-

ther. Model Fragment 2 is nonconforming, so it cannot

be built using the strong encoding.

The new strong encoding just introduced also needs

genetic operations that are designed to work properly

for this representation. The selection and replacement

operations used by the regular encoding can also be ap-

plied directly to the strong encoding. However, the new

strong encoding requires new mutation and crossover

operations.

4.2.1 Mutation Operation for Strong Encoding

The Mutation operation that is used with the strong

encoding is similar to the operation used with the reg-

ular encoding. Each gene will have a probability of mu-

tation, changing its value (from 1 to 0 or from 0 to 1).

However, the operator will act differently in some cases

due to the dependencies. Fig. 6 shows a summary of

how the mutation behaves when a gene affected by re-

quirements is going to mutate. It also includes examples

of mutations applied to Model Fragment 1.

The first row of Fig. 6 shows the behaviour when the

gene that is going to mutate has a value of 0 and is going

to mutate to 1. The second row shows the behaviour

when the gene mutates from 1 to 0. The first column

shows the behaviour when the gene that is going to

mutate requires other genes. The second column shows

the behaviour when the gene that is going to mutate is

required by other genes.

For instance, in a mutation of a gene from 0 to 1

when the mutating gene requires other genes (G6 mu-

tation), the gene will only mutate if all of the genes

required are set to 1 (otherwise, the strong encoding

does not allow setting it to 1). Since G7 is set to 0,

the mutation will not take place, and G6 will remain

unchanged with a value of 0.

In a mutation of a gene from 1 to 0 when the mu-

tating gene is required by other genes (G0 mutation),

the gene can mutate from 1 to 0, but then all of the

genes that require it also need to mutate to 0 (as the

strong encoding requires). Since G1 and G2 require G0,

they will also mutate to 0 (if their previous value was

already 0, nothing changes).

In a mutation of a gene from 0 to 1 when the mu-

tating gene is required by others genes (G9 mutation),

the mutation does not need any special action, so it

proceeds as usual (e.g., mutating gene G9 from 0 to 1).

Similarly, in a mutation of a gene from 1 to 0 when the

mutating gene requires other genes (G1 mutation), the

mutation proceeds without further action (e.g., mutat-

ing gene G1 from 1 to 0).

4.2.2 Crossover Operation for Strong Encoding

The crossover operation that is used with the strong

encoding needs to take into account the hierarchy of

the representation. To do this, it follows three steps: 1)

generate a random mask; 2) check the validity of the

14 Jaime Font et al.

random mask; 3) generate offspring. Fig. 7 shows this

three-step process along with an example.

Model Fragment 1

G0 G3 G5 G7 G9

G1
1 1 1 0 0G2 G4 G6 G8

1 1 1 0 0

150

Model Fragment 3

G0 G3 G5 G7 G9

G1
0 1 0 0 0G2 G4 G6 G8

1 1 0 0 1

150

Random Mask

G0 G3 G5 G7 G9

G1 G2 G4 G6 G8

150

Model Fragment 5

G0 G3 G5 G7 G9

G1
0 1 1 0 0G2 G4 G6 G8

1 1 1 0 0

150

Model Fragment 4

G0 G3 G5 G7 G9

G1
1 1 0 0 0G2 G4 G6 G8

1 1 0 0 1

150

Generate Random Mask

is valid?
[not valid]

[valid]

Fig. 7 Example of Crossover operator for Strong Encoding

Generate a Random Mask: The random mask is

randomly generated each time a crossover operation

is performed. The idea is to divide the set of genes

that are present in the representation of an indi-

vidual into two subsets (GA and GB) and then use

them to determine which elements come from one

parent and which from the other when performing

the crossover. First, a random point in the encod-

ing is selected (a random number from 0 to the size

of the individual). Then, all of the elements below

that index will be the first subset (GA), while the

rest will be the second subset (GB). Fig. 7 (center)

shows an example of a mask. In this case, the ran-

domly selected index is 3, so genes G0, G1, G2, and

G3 are the subset GA (the encoding is shaded in

dark grey); the rest of the genes are the second sub-

set GB (the encoding is empty and the elements of

the individual are faded out).

Check Validity: The next step is to check the validity

of the mask. Some masks could lead to nonconform-

ing individuals (which is not possible in the strong

encoding), so they cannot be applied. The purpose

of this step is to detect those situations and gener-

ate a new mask when the current one is not valid.

First, the boundaries between the two subsets are

identified. In other words, any element from subset

SA that requires or is required by an element from

subset SB is considered a boundary. Each bound-

ary has two parts, a requiring gene and a required

gene each of which is in a different subset, SA or

SB . Then, each boundary is classified into one of

the following categories depending on the values of

the boundary in each of the parents:

The requiring gene is 0 in both parents: In

this case, the value of the required gene does not

matter since the requiring gene is not going to be

part of any of the two combinations generated

as offspring. The mask is not invalidated.

The required gene is 1 in both parents: In

this case, the value of the requiring gene does

not matter since the required gene will always

be part of the two combinations generated as

offspring. The mask is not invalidated.

Otherwise: In the rest of the cases, the value of the

requiring and required genes is different in each

of the parents. This leads to a situation where

one of the combinations generated as offspring is

nonconforming. The mask is invalidated (making

it necessary to generate a new mask)

Generate offspring: Finally, the crossover is applied

following the valid mask, and two new individuals

are generated. The first individual obtains the value

for the genes contained in subset SA from the Parent

1 and the value for the genes contained in subset

SB from the Parent 2. The second individual is the

opposite and takes the values for genes in subset SA

from Parent 2 and the values for genes in subset SB

from Parent 1.

As a result of the crossover operation, two new con-

forming individuals that inherit genes from both par-

ents are generated. By using these two new operations,

the resulting individual will always be in the conform-

ing subspace.

4.3 Closed operators

Another method for coping with nonconforming indi-

viduals in EAs is the development of closed opera-

tors. Closed operators have their roots in mathemat-

ics. Specifically, a set has closure under an operation

if the application of that operation to elements of the

set always produces an element of the set. For instance,

the set N of positive numbers (some definitions also in-

clude 0) has closure under the addition operation (+);

the addition of any two numbers from N will produce a

number in N. Or more formally:

Handling nonconforming individuals in Search-Based Model-Driven Engineering 15

Initial Situation Add Repair Remove Repair

Source Reference Target Source Reference Target Source Reference Target
Missing Source X X X X X X
Missing Target X X X X X X

Table 1 Repair scenarios and repair operators for the ’valid reference’ constraint

Initial Situation Add Repair Remove Repair

Property Parent Property Parent Property Parent

Missing Parent X X X

Table 2 Repair scenarios and repair operators for the ’valid property’ constraint

∀a, b ∈ N | a+ b = c⇒ c ∈ N (6)

By extending this concept of closure, we can create

operators that guarantee that if the individuals used

as input are in the conforming subspace, the result-

ing individual produced by the operator will also be in

the conforming space. Closed operators are similar to

the operators used with strong encoding because they

also ensure that resulting individuals reside in the con-

forming subspace. In addition to the definition of closed

operations, the EA must be initiated with a set of con-

forming elements. By doing so, the population will al-

ways be part of the conforming space, guaranteeing that

the solution will be a conforming individual.

In this work, we use two closed operators, which are

adapted from the ones presented for the strong encod-

ing, to apply them directly to the regular encoding. In

order to obtain the initial population we generate two

types of seeds: 1) the empty model fragment (a model

fragment where all of the genes are set to 0), which is

a conforming individual since no constraint is violated;

and 2) the whole model fragment (a model fragment

where all of the genes are set to 1), which is also a

conforming individual since all of the constraints are

satisfied. The evolution of those individuals (through

mutations and crossovers) will eventually lead to the

solution model fragment.

4.4 Repair operators

Repair operators [21,67,66] are those capable of turn-

ing a nonconforming individual into a conforming one.

The repair operator is an operator that is applied after

the evolution has taken place (selection, crossover, mu-

tation) but before the individuals are included in the

population (replacement).

Repair operators are usually bound to the domain

since knowledge about how to repair an individual is

needed. However, in this work, we have identified dif-

ferent generic scenarios where the repair operators can

be applied. First, when taking into account the valid

reference constraint, two scenarios may arise: missing

Source and missing Target (Table 1). Taking into ac-

count the valid property constraint, a new scenario may

arise: missing Parent (Table 2):

Missing Source: This scenario occurs when the indi-

vidual includes the reference element and the target

element of the reference but not the source element

of the reference (See Initial situation of the first row

in Table 1).

Missing Target: This scenario occurs when the indi-

vidual includes the reference element and the source

element of the reference but not the target element

of the reference (See Initial situation of the second

row in Table 1).

Missing Parent: This scenario occurs when a prop-

erty element is present in the individual, but the

parent element of the property is not present (See

Initial situation of the first row in Table 2).

To repair these scenarios, we propose two different

repair operators based on the addition or removal of

elements

4.4.1 Add Repair

Add Repair will be applied to the repair scenarios de-

scribed above and repair them by adding the missing

elements:

Missing Source: The repair operator will add the

source element of the reference to the individual

(See Add Repair of the first row in Table 1).

Missing Target: The repair operator will add the tar-

get element of the reference to the individual (See

Add Repair of the second row in Table 1).

Missing Parent: The repair operator will add the

parent element of the property to the individual (See

Add Repair of the first row in Table 2).

16 Jaime Font et al.

Oracle

Test Case n
.........

Test Case 2

Model
Feature
Located

Test Case 1

Model
Feature
Located

for each
Test Case

for 30
repetitions

Optimal Fitness

Textual Similarity Fitness

..
.

Baseline +
(no strategy)

Baseline +
strategy s

Results
Baseline

Results
strategy s

..
.

Average &
Compare

#generations,
 time

Statistical
Analysis

Table
4:Results

Tables
7:Quade

8 to 11:Holms & A12

for each
Test Case

for 30
repetitions

Average &
Compare

precision, recall,
F-mes., MCC

..
.

Baseline +
(no strategy)

Baseline +
strategy s

Results
Baseline

Results
strategy s

..
.

Statistical
Analysis

Table
5:Results

Tables
7:Quade

12 to 19:Holms & A12

Fig. 8 Overview of the evaluation

4.4.2 Remove Repair

Remove Repair will be applied to the repair scenarios

described above and repair them by removing the ele-

ments causing the individual to be nonconforming:

Missing Source: The repair operator will remove the

reference element of the reference to the individual

(See Remove Repair of the first row in Table 1).

Missing Target: The repair operator will remove the

reference element of the reference to the individual

(See Remove Repair of the second row in Table 1).

Missing Parent: The repair operator will remove the

property element of the individual (See Remove Re-

pair of the first row in Table 2).

After applying the operators, the nonconforming

individual will turn into a conforming one (either by

adding or removing elements). One problem that may

arise with the Remove Operator is that it hinders the

evolution of the model fragment because the operator

does not allow new elements to emerge if they are not

valid.

5 Evaluation

This section presents the evaluation performed to ad-

dress the following research questions.

RQ1: Can the strategies for handling nonconform-

ing individuals presented so far (penalty functions,

strong encoding, closed operations or repair operators)

improve the results of SBSE on models in terms of the

number of generations and/or wall-clock time needed

to reach the solution?

RQ2: If so, which strategies produce better results?

RQ3: Can any of the strategies produce solutions of

better quality, in terms of precision, recall, F-Measure

and MCC, than those produced by the baseline when

combined with a state-of-the-art fitness function as the

textual similarity fitness presented?

To address these research questions, the following

subsections present a description of the experimental

setup, the set of performance metrics used, a descrip-

tion of the two case studies where the strategies were

applied, the results obtained, and the statistical analy-

sis performed on the results.

5.1 Experimental Setup:

To evaluate the different strategies, we apply them as

part of the EA explained in Section 3.2 following the

process depicted in Figure 8.

The Oracles (left) contain a set of product models

and several features contained in those product models.

The oracles were obtained from industry and contain

the realization of each feature in the form of a model

fragment. In other words, the oracle can be considered a

set of ‘problems’ and the ‘answer’ to each one. We use it

to evaluate the impact of each of the strategies proposed

in the search process. Each oracle is organized as a set of

test cases where each test case contains a model (where

the feature must be located) a feature that is already

located, and a feature description (elaborated by the

engineers of our industrial partners).

Most of the execution time of an EA is spent on the

evaluation of the fitness function. Specifically, in the

case of FLiM using a fitness function based on textual

similarity [38], we have reported that around 85% of the

execution time is spent on the fitness function. There-

fore, to evaluate the impact of the search strategies in

the search process, we will perform two experiments,

using a different fitness function each time. First, to

Handling nonconforming individuals in Search-Based Model-Driven Engineering 17

avoid the impact of the fitness function on the results,

we use the optimal fitness function (see Section 3.2.2),

which indicates how far from or how close to the solu-

tion each of the individuals is. This setup will allow to

answer RQ1 and RQ2, although is not possible to ap-

ply it to solve real problems (as it needs the existence

of an oracle containing the answers to the questions

beforehand). Secondly, to answer RQ3 and test the im-

pact of the strategies on a real scenario, we repeat the

experiment using a state-of-the-art fitness, the textual

similarity fitness function (see Section 3.2.2).

For each test case (n) and each of the strategies (s),

we executed 30 independent runs [11] (to avoid the ef-

fect of chance due to the stochastic nature of EAs) for

each of the experiments. The set of strategies tested are

the ones presented in Section 4. The EA with no strat-

egy for handling nonconforming individuals is used as

the baseline. The resulting data of the first experiment

was averaged and compared in Table 4 and statistically

analyzed to guarantee the validity of the results ob-

tained (Tables 7 - 11, available in the Appendix). Sim-

ilarly, the data obtained from the second experiment

was averaged and used to build the confusion matrix

of the result of each test case. Then, the performance

measures (precision, recall, F-Measure and MCC) were

derived from the confusion matrix, compared in Table

5 and statistically analyzed to guarantee the validity of

the results obtained (Tables 7 and 12 - 19, available in

the Appendix).

5.2 Performance Metrics

To measure the performance of the strategies on the

search process we make use of standard metrics from

literature, so comparisons among different studies can

be performed. In general, there are two types of per-

formance measures that are relevant for EAs: solution

quality and search effort. The experiment using the op-

timal fitness is designed to measure the impact of the

strategies on the search effort of the algorithm. To do

so, we use the number of generations and the wall clock

time. The experiment using the textual similarity fit-

ness is designed to measure the solution quality. To do

so, we use a confusion matrix to extract four metrics,

precision, recall, F-Measure and Mathew Correlation

Coefficient (MCC).

The performance of each of the strategies is directly

related to the number of times that the fitness function

needs to be executed (i.e., the number of generations).

Therefore, for the experiment using the optimal fitness

we measure the performance of each strategy as the

number of generations needed to find the optimal so-

lution (extracted from the oracle), as suggested in the

literature [51]. The fitness function is executed once for

each individual in the population for each generation.

Using the number of generations as metric allows us to

compare the impact of the different strategies and the

baseline (no strategy) fairly.

In addition we use the wall clock time as metric to

measure the performance of each strategy. However, the

time spent by the EA to find the solution does not de-

pend only on the strategy being applied, the computing

power of the computer used to run the experiments will

influence the results. Similarly, the differences in perfor-

mance of the implementation of each of the strategies

can also introduce noise into the results. Therefore, the

number of generations should be used to compare the

performance of different strategies and the wall clock

time can be used as an indicator on the time needed

by each strategy but should not be used to compare

performance among strategies.

For the experiment using the textual similarity fit-

ness, the EA will run for a fixed amount of time and

then the best candidate obtained so far will be com-

pared to the optimal solution from the oracle. To per-

form that comparison we make use of a confusion ma-

trix, a table typically used to describe the performance

of a classification model (the EA + strategy) on a set of

test data (each of the test cases) for which the true val-

ues are known (the optimal solution from the oracle).

The confusion matrix distinguishes between the pre-

dicted values (solution of the EA + strategy) and the

real values (optimal solution from oracle) and arranges

the elements (each of the genes of each individual) into

four categories:

– True Positive (TP): values that are true in the real
scenario and have been predicted as true.

– True Negatives (TN): values that are false in the

real scenario and have been predicted as false.

– False Positive (FP): values that are false in the real

scenario but have been predicted as true.

– False Negative (FN): values that are true in the real

scenario but have been predicted as false.

Then, performance metrics can be derived from the

confusion matrix, in this experiment we use precision,

recall, F-Measure and MCC.

Precision (see Equation 7) measures the number of

elements from the solution that are correct according to

the optimal solution from the oracle. Precision values

can range from 0% (no single element present in the

solution is also present in the optimal solution from the

oracle) to 100% (all the elements present in the solution

are also present in the optimal solution from the oracle).

Precision =
TP

TP + FP
(7)

18 Jaime Font et al.

Recall (see Equation 8) measures the number of el-

ements of the optimal solution that have been correctly

retrieved in the solution. Recall values range from 0%

(none of the elements that are true in the oracle so-

lutions is present in the solution) to 100% (all the el-

ements that are true in the optimal solution are also

present in the solution).

Recall =
TP

TP + FN
(8)

However, achieving a high value in precision or recall

alone is not enough. The empty model fragment (where

all the genes are set to false) would achieve 100% in pre-

cision (but 0% in recall). Similarly, the complete model

fragment (where all the genes are set to true) would

achieve 100% recall (but 0% in precision). Therefore,

there is a need for overall measures that take into ac-

count all the figures present in the confusion matrix.

F-Measure (see Equation 9) is the harmonic mean

between precision and recall, and provides a good

overview of the overall performance of a strategy. Val-

ues can range from 0% (either precision or recall is 0%)

to 100% (both, precision and recall are 100%).

F -Measure =
2 · precision · recall
precision+ recall

(9)

Finally, MCC (see Equation 10) has recently proven

to be more informative than F-Measure as metric of the

overall performance [20], as it takes into account all the

values from the confusion matrix (including the TN,

which is not used by the F-Measure). The values range

from -1 (worst value possible) to 1 (best value possible).

MCC =
TP · TN − FP · FN√

(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)

(10)

5.3 Case Studies: BSH & CAF

The present work has been evaluated in two industrial

case studies. The first case study used for the evaluation

was BSH, the leading manufacturer of home appliances

in Europe. Their induction division has been producing

induction hobs (under the brands of Bosch and Siemens

among others) for more than 15 years. The second case

study used for the evaluation was CAF, a worldwide

provider of railway solutions. They have been develop-

ing a family of PLC software to control their trains for

more than 25 years.

The BSH case study has already been used as a

running example throughout the paper. Their newest

induction hobs include full cooking surfaces where dy-

namic heating areas are dynamically generated and

activated or deactivated depending on the cookware

placed on top of them. In addition, the new hobs have

increased the amount and type of feedback provided to

the user while cooking, providing data such as the tem-

perature of the food being cooked or real-time measures

of the power consumption of the hob. These changes

have been made possible by increasing the complexity

of the software that drives the induction hob.

The DSL used by our industrial partner to specify

the induction hobs is composed of 46 meta-classes, 74

references with each other, and more than 180 prop-

erties. The running example presented in 3.2 shows a

simplification of their DSL (to increase legibility and

due to intellectual property rights concerns).

Their oracle is composed of 46 product models (in-

duction hob), where each product contains (on average)

around 500 model elements. The oracle is composed of

96 features that may or may not be part of a specific

product model. Those features correspond to products

that are currently on the market or will be released

to the market in the near future. Each of the 96 fea-

tures can be part of several product models, making a

total of 608 occurrences of any of the features in any

of the product models. Therefore, there are 608 test

cases, each of which includes the product model where

the feature should be located and the model fragment

itself that realizes the feature (which is used as fitness).

The CAF case study is based on the family of soft-

ware products used to manage their trains in different

forms (regular train, subway, light rail, monorail,etc.)

all over the world. Each train unit is equipped with
different pieces of hardware installed on their vehicles

and cabins. Those pieces of equipment are often pro-

vided by different companies, and their aim is to carry

out specific tasks for the train such as traction, com-

pression for the hydraulic brakes, harvesting of power

from the overhead wires, etc. The control software is

responsible for making the cooperation among all the

equipment possible in order to achieve the functionality

desired for a specific train and guaranteeing compliance

with the specific regulations of each country.

The DSL used to specify the products from CAF

has expressiveness to describe the interaction among

the equipment pieces. In addition, the DSL also pro-

vides expressiveness to specify non-functional aspects

that are related to specific regulations (such as the qual-

ity of the signals or the different level of redundancies

needed).

The CAF oracle is composed of 23 product models

(train units), where each product contains (on aver-

age) 1200 elements. The products are built from 121

Handling nonconforming individuals in Search-Based Model-Driven Engineering 19

different features that may or may not be part of a spe-

cific product model. Again, some features are present in

more than one product model, making a total of 140 oc-

currences. For each occurrence there is a test case that

includes the product model and the model fragment

that realizes the feature (which is used as fitness).

For the evaluation with the BSH oracle, we per-

formed 608 (test cases) * 30 (repetitions) * 10 (baseline

+ strategies) * 2 (fitness functions) = 364,800 inde-

pendent runs. For the evaluation with the CAF oracle,

we performed 140 (test cases) * 30 (repetitions) * 10

(baseline + strategies) * 2 (fitness functions) = 84,000

independent runs.

To prepare the oracles, our industrial partners pro-

vided us with the product models and the model frag-

ments that were used to build those product models.

Therefore, the information about which elements real-

ize each of the features comes directly from industry.

For each test case, we had previously checked that the

model fragment exists in the provided product model

and that there are no inconsistencies (such as the empty

model fragment or the complete model fragment).

5.4 Implementation Details

The presented strategies were implemented within the

Eclipse environment and the source code has been re-

leased to the public [35] as part of this work. We have

used the Eclipse Modeling Framework [82] to manip-

ulate the models from our industrial partner. The EA

is based on the watchmaker framework [29] for evolu-

tionary computation, creating custom genetic operators

and representations to implement the strategies. The IR

techniques that were used to process the language were

implemented using OpenNLP [3] for the POS-Tagger

and the English (Porter2) [4] as stemming algorithm.

Finally, the LSI fitness was implemented using the Ef-

ficient Java Matrix Library (EJML [1]). We performed

the execution of the EA with the strategies using an

array of computers with processors ranging from 4 to

8 cores, clock speeds between 2.2 and 4 GHz, and 4–16

GB of RAM. All of them were running Windows 10 Pro

N 64 bits as the hosting operative system and the Java

SE runtime environment (build 1.8.0 73-b02).

5.5 Parameters and Budget

There are some parameters in EAs that need to be con-

figured prior to running them. We use default parame-

ter values extracted from the literature [12] (and previ-

ously tested for this EA [39]) when available. However,

the new penalty functions proposed in Section 4.1 also

Parameter Description Value

size Size of population 100
pc Probability of crossover 0,75

pm

Probability of mutation,
where n is the length of
the individual being mutated

1/n

λs constant for static penalty 2.5x10−2

λsd
constant for static penalty
with degree of violation

1.8x10−3

λd constant for dynamic penalty 2x10−4

λdd
constant for dynamic penalty
with degree of violation

1.0x10−5

Table 3 Parameters for the evolutionary algorithm and for
the penalty strategies

need values for some parameters. To give those values

we have performed a tuning to determine which pa-

rameters work better for this problem. In other words,

we have tried different combinations of parameters to

determine the ones that result in a faster search. The

parameters that we use are shown in Table 3.

Regarding the stop condition of the EA for the first

experiment (optimal fitness), since we want to compare

the different strategies against the baseline, we allocate

a budget that is larger than three times the number

of generations needed by the baseline. If the strategies

find the solution in the allocated number of generations,

we obtain the number of generations needed and com-

pare it against the baseline; if the strategies do not help

the algorithm to find the solution within the allocated

number of generations we indicate that in the results

table. Since the baseline results were about 6,400 gen-

erations for the BSH case study and 9,700 for the CAF

case study, we allocated a budget of 30,000 generations.

Regarding the stop condition of the EA for the sec-

ond experiment (textual similarity fitness), since we

want to determine if the use of the strategies has an

impact on the solution quality, we allocated a fixed

amount of time for each test case (10 seconds for BSH

and 20 seconds for CAF), based on the size of the model

being explored and the times needed in a pilot test. Af-

ter that time, we will stop the execution of the EA,

get the best candidate obtained so far and compare it

against the optimal solution obtained from the oracle

using the metrics presented in Section 5.2. This will

result in measures of precision, recall, F-Measure and

MCC for the EA when using each of the strategies and

the baseline.

20 Jaime Font et al.

EA + Optimal Fitness +

Strategy

BSH CAF

Generations ± σ Time ± σ (s.) Generations ± σ Time ± σ (s.)

Baseline 6405 ± 2484 0.164 ± 0.063 9759 ± 5248 0.441 ± 0.227

Static Penalty 6740 ± 2671 2.726 ± 1.085 12085 ± 7702 8.540 ± 10.759

Static Degree Penalty 10281 ± 4112 3.893 ± 1.593 11560 ± 6897 10.094 ± 5.397

Dynamic Penalty 9452 ± 5021 3.852 ± 2.115 19591 ± 9121 13.231 ± 5.572

Dynamic Degree Penalty 7945 ± 3651 3.288 ± 1.462 17504 ± 11265 13.393 ± 7.561

Death Penalty 30000* ± 0 13.061 ± 1.292 30000* ± 0 14.023 ± 1.237

Strong Encoding 456 ± 509 0.010 ± 0.012 2448 ± 1267 0.058 ± 0.033

Closed Operations 1011 ± 1034 0.022 ± 0.022 6372 ± 4164 0.225 ± 0.180

Add Repair 29431 ± 2611 13.802 ± 1.281 23453 ± 9201 16.269 ± 6.054

Remove Repair 4049 ± 1936 1.304 ± 0.619 6789 ± 3363 3.620 ± 1.616

Table 4 Results of the Optimal Fitness for BSH and CAF, including the number of generations and the wall-clock time for
each strategy and the baseline.

EA + Textual Similarity
Fitness + Strategy

BSH CAF

Precision ± σ Recall ± σ F-Meas. ± σ MCC ± σ Precision ± σ Recall ± σ F-Meas. ± σ MCC ± σ

Baseline 33.6 ± 28.7 58.5 ± 28.0 41.2 ± 26.3 0.38 ± 0.28 36.0 ± 22.2 58.1 ± 20.9 39.2 ± 20.0 0.35 ± 0.28

Static Penalty 20.1 ± 20.3 55.7 ± 26.6 28.0 ± 19.7 0.26 ± 0.20 22.4 ± 15.5 53.1 ± 22.7 26.6 ± 15.3 0.19 ± 0.27
Static Degree Penalty 14.6 ± 16.3 55.8 ± 26.0 21.8 ± 17.7 0.20 ± 0.18 19.8 ± 13.3 58.1 ± 24.4 25.3 ± 14.9 0.15 ± 0.32

Dynamic Penalty 11.6 ± 12.8 54.9 ± 24.0 18.0 ± 14.2 0.16 ± 0.14 16.6 ± 9.6 50.2 ± 21.0 22.1 ± 11.3 0.13 ± 0.24
Dynamic Degree Penalty 13.5 ± 12.9 59.0 ± 24.9 20.7 ± 15.7 0.20 ± 0.16 25.9 ± 18.4 57.4 ± 23.5 30.5 ± 17.7 0.23 ± 0.30

Death Penalty 4.3 ± 4.5 99.9 ± 0.4 7.9 ± 7.9 0.01 ± 0.02 6.0 ± 4.0 90.8 ± 4.7 10.9 ± 6.9 -0.01 ± 0.24

Strong Encoding 48.8 ± 27.6 93.7 ± 19.9 61.6 ± 23.1 0.62 ± 0.23 53.8 ± 24.7 84.9 ± 16.4 61.2 ± 21.0 0.61 ± 0.24

Closed Operations 51.1 ± 30.9 85.6 ± 26.7 58.8 ± 26.3 0.60 ± 0.27 50.4 ± 28.7 78.0 ± 21.0 55.1 ±2 4.6 0.53 ± 0.29

Add Repair 6.7 ± 7.2 65.9 ± 19.6 11.4 ± 10.7 0.10 ± 0.08 7.1 ± 4.2 67.9 ± 17.0 12.3 ± 6.6 -0.05 ± 0.31
Remove Repair 38.5 ± 21.1 22.8 ± 9.5 25.2 ± 10.8 0.25 ± 0.12 38.2 ± 18.4 29.2 ± 11.7 29.3 ± 10.7 0.26 ± 0.18

Table 5 Results of the Textual Similarity Fitness for BSH and CAF, including the Precision, Recall, F-Measure and MCC
achieved by each strategy and the baseline.

5.6 Results

Table 4 shows the results of the application of the differ-

ent strategies presented (and the baseline) to the two

case studies presented, using the optimal fitness. For

each of the strategies (rows), the table shows the aver-

age number of generations needed to find the solution

model fragment (and the standard deviation ±σ) and

the mean time in seconds needed to locate each test

case (and the standard deviation ±σ). The first two

columns show the averaged results for the 608 test cases

from BSH, and the next two columns shows the aver-

aged results for the 140 test cases from CAF. The first

row shows the results for the baseline, without applying

any strategy; the second to sixth rows show the differ-

ent penalty functions presented; the seventh row shows

the results for strong encoding; the eighth row shows

the results for closed operations; and the last two rows

show the results for the repair strategies. The strate-

gies that needed fewer generations and less time than

the baseline to find the solution are highlighted in the

table.

For BSH, the baseline was 6,405 generations and

0.164 s, so the results for strong encoding (456 gen-

erations and 0.010 s), closed operations (1,011 gener-

ations and 0.022 s) were below the baseline for both

metrics. For CAF the baseline took 9,759 generations

and 0.441 s to find the solution, while the strong en-

coding (2,448 generations and 0.058 s) and the closed

operations (6,372 generations and 0.225 s) were able

to find the solution in fewer generations and less time

than the baseline. When applying the remove repair,

the number of generations needed to reach the solution

in the BSH case study (4,049 generations) was fewer

than the number of generations needed by the baseline,

but the mean time needed by the remove repair (1.304

s) was bigger than the time needed by the baseline.

The same happens when applying the remove repair

operator to the CAF case study. When applying the

death penalty, the EA was unable to find the solution

in the number of generations allocated (30,000), so it is

marked with an asterisk (*). Thus, in answer to RQ1,

there are strategies that are capable of helping the EA

to find the solution in fewer generations and less time

than the baseline.

Handling nonconforming individuals in Search-Based Model-Driven Engineering 21

Table 5 shows the results of the application of the

different strategies (and the baseline) to the two case

studies presented, using the textual similarity fitness.

For each of the strategies (rows), the table shows the

mean precision values, the mean recall values, the mean

F-Measure values, and the mean MCC values obtained.

All the metrics are presented along with its standard

deviation (±σ). The first four columns show the aver-

aged results for the 608 test cases from BSH, and the

next four columns shows the averaged results for the

140 test cases from CAF. The first row shows the results

for the baseline, without applying any strategy; the sec-

ond to sixth rows show the different penalty functions

presented; the seventh row shows the results for strong

encoding; the eighth row shows the results for closed

operations; and the last two rows show the results for

the repair strategies. The strategies that obtained bet-

ter values than the baseline on the four metrics are

highlighted in the table.

For BSH, the baseline achieved an average value of

33.6% in precision, 58.5% in recall, 41.2% in F-Measure

and 0.38 in MCC, so the results for strong encoding

(48.8% in precision, 93.7% in recall, 61.6% in F-Measure

and 0.62 in MCC) and closed operations (51.1% in pre-

cision, 85.6% in recall, 58.8% in F-Measure and 0.60

in MCC) were above the baseline for the four metrics.

For CAF, the baseline achieved a value of 36.0% in pre-

cision, 58.1% in recall, 39.2 in F-Measure and 0.35 in

MCC, while the results for the strong encoding (53.8%

in precision, 84.9% in recall, 61.2% in F-Measure and

0.61 in MCC), and the results for the closed opera-

tions (50.4% in precision, 78.0% in recall, 55.1 in F-

Measure and 0.53 in MCC) were above the baseline.

When applying the death penalty, the results in recall

were 99.9% for BSH and 90.8 for CAF (way beyond the

results achieved by the baseline), but the results in pre-

cision (4.3% for BSH and 6.0% in CAF) were too low

when compared to the values obtained by the baseline,

resulting in a worse value of the more general metrics

(F-Measure and MCC). Thus, in answer to RQ3, there

are strategies that are capable of helping the EA to find

the solution when applied in combination to a state-of-

the-art fitness function, outperforming the baseline in

terms of precision, recall, F-Measure and MCC.

The values for standard deviations achieved by the

different metrics are due to the differences in size and

complexity of each test case. Bigger test cases require

more generations to be solved, while smaller test cases

require less generations (and thus time). Similarly, the

values of precision. recall, F-Measure and MCC that

can be achieved in a fixed time vary depending on the

size of the model being explored and the size of the

solution [14]. When the experiment is performed, the

execution of each combination of strategy and test case

is performed 30 times (as suggested in literature [11])

to mitigate the stochastic nature of the EA and ensure

that the result is not due to mere chance. Those 30

values are averaged and the standard deviation in that

case was below 1% for all the test cases, showing the

robustness of the search and ensuring that solutions of

similar quality are produced each time that the search

is performed.

5.7 Statistical Analysis

To compare the results from the different strategies,

all of the data resulting from the runs of the algo-

rithms were analyzed following the statistical methods

and guidelines described in [11].

To provide an answer for RQ2, we performed a sta-

tistical analysis to: 1) provide formal and quantita-

tive evidence (statistical significance) that the differ-

ent strategies have an impact on the search (ensuring

that the differences in results are not obtained by mere

chance); and 2) show that those differences are signifi-

cant in practice (effect size). The analysis is performed

for each experiment separately.

5.7.1 Statistical Significance

First, all of the strategies should be run a large enough

number of times (30 independent runs) to collect in-

formation about the probability distribution for each

strategy. Then, a statistical test is run to assess where

there is enough empirical evidence to claim (with a high

enough level of confidence) that there are differences

among the results of the strategies (and thus be able

to claim that one strategy is better than another). To

achieve this, two hypothesis are defined. H0: is the null

hypothesis, stating that there is no difference among

the strategies; H1 is the alternative hypothesis, stating

that at least one strategy differs from another. Finally,

a statistical test is run to determine whether or not the

null hypothesis (H0) can be rejected.

A statistical test returns a probability value (p −
value) that ranges between 0 and 1. The lower the

p − value the higher the probability of the null hy-

pothesis being false (and, therefore, there are differ-

ences among the strategies). In this field of study, a

p − value under 0.05 is considered to be statistically

significant [11], enabling the null hypothesis to be con-

sidered false.

The statistical test used to determine this signifi-

cance depends on the properties of the data. The data

obtained in this evaluation does not follow a normal

distribution, which requires the use of non-parametric

22 Jaime Font et al.

tests. Of the non-parametric tests available, we applied

the Quade test, which has shown to be more powerful

than the rest when working with real data [42].

Table 7 shows the results for the Quade tests applied

to the result sets of the experiments. The Quade test

is applied to the result sets of each experiment, met-

ric and case study separately. The p − value for each

metric and case study is smaller than 0.05, which is con-

sidered to be statistically significant [11]. Therefore, we

can conclude that there are statistically significant dif-

ferences among the results of, at least, a pair of strate-

gies. However, the Quade test is not able to answer the

question: Which strategy gives the best performance (in

terms of the metrics analyzed in each experiment)? To

answer that question, the results from each strategy

should be pairwise compared, determining whether or

not there are statistically significant differences among

the strategies. Therefore, we applied an additional post

hoc analysis after the Quade test that performed these

pairwise comparisons. In this evaluation, we applied the

Holm’s post hoc procedure, as suggested by [42].

Values above the diagonal of Tables 8-19 (Available

on the Appendix) show the Holm’s post hoc results

for each metric and case study. Each cell shows the

p− value obtained when comparing the pair of strate-

gies from the row and the column using the Holm’s

method. Again, values below 0.05 are considered to be

statistically significant. In all tables, the values that are

over 0.05 have been highlighted. For example, in Table

8, the first column, Static Penalty, first row, Baseline,

shows a value of 0.066, indicating that the differences

between the results of the two strategies in terms of

number of generations do not differ enough to be con-

sidered statistically significant. In contrast, the differ-

ences between the remove repair and all of the other

strategies (the last column) are always below 0.05.

For the optimal fitness (Tables 8-11), most of the re-

sults are significant when compared pairwise. The dif-

ferences in number of generations between the static

penalty and the baseline are not significant enough.

In fact, if we compare the results in Table 4, the dif-

ference between the two is minimal (6,405 generations

for the baseline versus 6740 generations for the static

penalty). The effect of the static penalty strategy is not

big enough to be noticeable. Similarly, the difference in

number of generations between the death penalty and

the add repair for the BSH case study (Table 8 death

penalty row, add repair column) also provides a value

(0.701) over the threshold, indicating that the differ-

ences are minimal (Table 4 shows that the difference

is low). For the CAF case study, we confirm that the

differences between the baseline and the static penalty

are not significant (Table 9). In addition, the static de-

gree penalty does not have significant differences with

the baseline or with the static penalty, either. In this

case, the differences between the closed operations and

the remove repair are also not significant, which differs

from the BSH case study. When comparing the time

needed to reach the solution, the differences between

Dynamic Penalty and Dynamic Degree Penalty are not

significant enough for the BSH case study. For the CAF

case study the differences both dynamic penalties and

the Death Penalty is not significant either. This indi-

cates that the strategies behaved differently in each of

the case studies and, therefore, all of them could be rel-

evant for a specific case study (depending on the nature

of the models).

For the textual similarity fitness (Tables 12-19), we

can observe that the differences between the baseline

and the static and dynamic penalties are not significant

for some of the metrics and case studies (such as the

precision in BSH and the recall in both case studies).

This effect is spread also to the more general metrics

of F-Measure and MCC. Similarly, the remove strategy

does not provide significant differences when compared

to other strategies in terms of precision, F-Measure and

MCC for the CAF base study. This is due to the low

differences achieved by those strategies on the perfor-

mance metrics (Table 5).

5.7.2 Effect Size

After we have determined that there are differences

among the results of the strategies (using the Quade

and Holm’s analysis), we need to determine how big

those differences are. Even after obtaining statistically
significant differences, they can be too small and have

no practical value [11] (especially when dealing with a

large enough number of runs). Therefore, it is impor-

tant to assess the magnitude of the difference, using an

effect size analysis.

For a non-parametric effect-size measure [45], we

used Vargha and Delaney’s Â12 [84]. Â12 is applied to

two groups of data (e.g., the results of two strategies S1

and S2) and is related to the probability that an obser-

vation in one group will be greater than an observation

in the other group. In other words, a Â12 = 0.5 indicates

that the two strategies are equivalent and will need a

similar number of generations (or any other metric be-

ing compared) in any case. However, Â12 = 0.7 would

mean that the number of generations needed by S1 will

be higher than the number of generations needed by s2
70% of the times (similarly, we can state that S2 will

need less generations 30% of the times). When compar-

ing number of generations or wall clock time, the lower

the value the better. However, When comparing preci-

Handling nonconforming individuals in Search-Based Model-Driven Engineering 23

sion, recall, F-Measure or MCC, the greater the value

the better. Therefore, a Â12 = 0.2 applied to the pre-

cision values of two strategies indicates that the first

strategy will achieve a greater value of precision than

the second strategy 20% of the times (so first strategy

provides better performance than the second strategy

20% of the times).

Values below the diagonal of Tables 8-19 (Available

on the Appendix) show the results of the Â12 for each

metric and case study. The values of each cell indicate

the number of times (in percentage) that the strategy

in that row will yield a higher value than the strategy in

the column for the metric being analyzed. For example,

in Table 8 the last row (Remove Repair), second col-

umn (Static Penalty) shows 19.71%, indicating that re-

move repair needs more generations than static penalty

around 20% of the times. Values of the strategies that

perform best than the baseline has been highlighted in

the tables, so a quick overview allows to observe the

essence of the results.

For the optimal fitness (Tables 8-11, a low value

indicates that the strategy from the row will outper-

form the strategy of the column. For instance, the re-

sults for strong encoding and the closed operations are

much better than the rest of the strategies for both case

studies. In particular, strong encoding outperforms the

baseline always when the number of generations is com-

pared and 99.53% of the times when wall clock time is

compared for the BSH case study. A similar behaviour

is observed for the CAF case study (strong encoding

outperforms the baseline 96.3% of the times when com-

paring the number of generations and 95.67% of the

times when wall clock time is compared. The closed

operation performs worse than the strong encoding but

also able to outperform the baseline in terms of number

of generations (99.22% of the times for BSH and 70.27%

of the times for CAF) and time (98.82% of the times for

BSH and 77.5% of the times for CAF) required to find

the solution. The remove repair is also able to outper-

form most of the other strategies in terms of number of

generations. However, when comparing the time needed

to reach the solution, the remove repair will be outper-

formed by the baseline most of the times (96.64% of the

times for BSH and 97.43% of the times for the CAF case

study).

When comparing the two best strategies for the

BSH case study, it can be observed that the strong

encoding outperforms the closed operations 65.64% of

the times when number of generations is compared and

68.79% of the times when the wall clock time is com-

pared. Similarly, for the CAF case study, the strong en-

coding outperforms the closed operations most of the

times for both metrics (87.21% of the times when com-

paring number of generations and 82.32% of the times

when comparing the time needed to reach the solution).

Therefore, as an answer to RQ2, we can conclude that

the best strategy to be applied is strong encoding, fol-

lowed by the closed operations, and both are able to

outperform the baseline in terms of number of genera-

tions and time required to find the solution.

For the textual similarity fitness (Tables 12-19), a

high value indicates that the strategy from the row out-

performs the strategy from the column. Again, the re-

sults of strong encoding are better than the baseline for

all the metrics analysed, outperforming the baseline in

precision (68.40% of the times for BSH and 70.18% of

the times for CAF), recall (91.55% of the times for BSH

and 84.62% of the times for CAF), F-Measure (70.61%

of the times for BSH and 77.94% of the times for CAF)

and MCC (77.37% of the times for BSH and 79.79%

of the times for CAF). The same tendency can be ob-

served for the closed operations, although the results

are worse than the results of the strong encoding. Some

strategies outperform the baseline for one of the met-

rics (as we indicated when analyzing the results) but

they are not able to outperform the baseline for the

overall metrics of F-Measure and MCC. As a response

to RQ3, we can conclude that the strong encoding and

the closed operations strategies are able to outperform

the baseline in terms of solution quality when applied

in combination with a state-of-the-art fitness function

as the textual similarity fitness .

6 Discussion

This section provides a discussion about the results ob-
tained in the evaluation, giving some explanations to

the results of each of the strategies. To determine the

rationale behind the results obtained, the EA has been

observed at runtime, checking how the individuals were

evolving while each of the strategies was applied. To

illustrate the findings, we use the parent model used

as running example (see bottom-left of Fig. 1). Table 6

shows a subset of the models fragments that can be gen-

erated using that parent model. Each row shows the en-

coding of one of the possible individuals (randomly se-

lected out of the 1,024 individuals present in the search

space). The first column shows a name to allow the

identification of each model fragment (the name as-

signed to each of them corresponds to the binary string

of the encoding in decimal representation). The rows

with grey background correspond to conforming indi-

viduals; the rows with white background correspond to

nonconforming individuals. The columns named from

G0 to G9 show the value for each specific gene of the

individual. The last column shows the value obtained

24 Jaime Font et al.

Individual G0 G1 G2 G3 G4 G5 G6 G7 G8 G9 Fitness

MF-127 1 1 1 1 1 1 1 0 0 0 0.8

MF-15 1 1 1 1 0 0 0 0 0 0 0.6

MF-38 0 1 1 0 0 1 0 0 0 0 0.4

MF-42 0 1 0 1 0 1 0 0 0 0 0.4

MF-379 1 1 0 1 1 1 1 0 1 0 0.4

MF-14 0 1 1 1 0 0 0 0 0 0 0.4

MF-243 1 1 0 0 1 1 1 1 0 0 0.2

MF-139 1 1 0 1 0 0 0 1 0 0 0.2

MF-885 1 0 1 0 1 1 1 0 1 1 0

MF-329 1 0 0 1 0 0 1 0 1 0 -0.2

MF-0 0 0 0 0 0 0 0 0 0 0 -0.2

MF-784 0 0 0 0 1 0 0 0 1 1 -0.4

MF-578 0 1 0 0 0 0 1 0 0 1 -0.4

MF-834 0 1 0 0 0 0 1 0 1 1 -0.6

MF-898 0 1 0 0 0 0 0 1 1 1 -0.6

Table 6 Subset of model fragments yield by the running example model presented in Fig. 1. Rows with grey background
correspond to conforming individuals while rows with white background correspond to nonconforming individuals

by each individual for the optimal fitness function (see

subsection 3.2.2).

When the baseline EA with no strategies is exe-

cuted, the only guide of the search is performed by the

fitness function. The individuals that can be present in

the population can belong to any subspace (conforming

or nonconforming), so any of the individuals present on

Table 6 could be part of the population. Each time a

new generation is produced, the individuals with higher

fitness values have better opportunities to survive an

eventually the EA will find the solution.

The results of the penalty strategies when combined

with the optimal fitness are low in general and are not

able to outperform the baseline in any of the versions

(static and dynamic, with or without the violation de-

gree) for either of the case studies. This is due to the

penalty strategies reduce the fitness value of some in-

dividuals (that have good fitness values) since they be-

long to the nonconforming subspace. This reduces the

possibilities of the algorithm to improve the population

generation after generation; the genetic operations need

to produce individuals that have high fitness values and

also belong to the conforming space.

For example, consider the selection in a population

composed of MF-299, MF-885 and MF-0 (see Table 6),

whose fitness are 0.4, 0 and -0.2 respectively. If there

are no penalty strategies being applied, the probabil-

ities of MF-299 being selected as parent for the next

generation are twice the probabilities of MF-885 being

selected and four times the probabilities of MF-0 be-

ing selected; when the penalties are applied, the fitness

of MF-299 and MF-885 is reduced as they belong to

the nonconforming subspace and thus their probabil-

ities of being selected as parents for next generation.

This kind of situations slows down the search, as the

EA needs that the offspring generated not be only fit-

ter than current generation, but also belong to the con-

forming subspace.

This is not always the case for penalties, and their

effect can be positive in some situations (as we have

found when observing the strategies at runtime). For

example, if the population is composed by the individ-

uals from the five last rows of Table 6, the penalty will

penalize individuals whose fitness value is lower than

the only conforming one (MF-0), and thus will boost

the search. In overall, results show that there are more
situations where the penalties are affecting negatively

than those where they are affecting positively.

When the penalty strategies are applied in conjunc-

tion with the textual similarity fitness, the results are

similar, not being able to outperform the baseline in

terms of precision, F-Measure or MCC. However, the

values obtained in recall are almost as good as those

obtained by the baseline. This is due to the fact that

model fragments with more genes set to true tend to

achieve better fitness values than those with less genes

set to true. This results in the EA exploring more so-

lutions around those conforming model fragments that

have more genes set to true (such as MF-15 in Table

6), that contain more genes that are also present in the

solution and yield greater recall values. However, those

fragments also contain more genes set to true that are

not present in the solution and thus the precision is re-

duced and resulting in lower values than those from the

baseline in the overall metrics (F-Measure and MCC).

Handling nonconforming individuals in Search-Based Model-Driven Engineering 25

The case for the death penalty is even more extreme,

not allowing the existence of any individual outside of

the conforming space. Consider an offspring obtained in

a generation composed by the five last rows of Table 6.

Four individuals will be removed from the population

and the only survivor will be MF-0 since it belongs to

the conforming space. The problem is that the removal

of the nonconforming elements can drastically reduce

the ability to explore the search space of the EA [24].

If this situation is repeated across generations, and no

new areas of the search space are reached, the EA can

be unable to find the solution.

In the evaluation of the death penalty using the op-

timal fitness, all of the attempts to evolve individuals

towards the solution eventually result in nonconform-

ing individuals that are removed by the death penalty.

This creates an endless loop that lasts for the allocated

generations (30,000), resulting in the strategy not be-

ing able to find the solution. The population resides

on an island of the conforming space (as depicted in

Fig. 4) and reaching the solution is not possible with-

out traversing the nonconforming space. Strategies as

the death penalty will keep the individuals from getting

outside of the conforming island and will therefore not

be able to find the solution.

When the death penalty is applied in conjunction

with the textual similarity fitness, a similar situation

can be observed. However, this time the search gets

stuck around a conforming model fragment that has

most of its genes set to true. This results in a value of

recall close to 100% for the BSH case study and 90.8%

for the CAF case study. However, as happened with the

other penalty strategies, there is a drastic reduction in

the precision metric and low values for the F-Measure

and MCC metrics.

The strong encoding strategy uses a different en-

coding to solve the problem, and, therefore, the search

space is different. The search space is a single conform-

ing subspace, which enables the emergence of faster evo-

lution paths between the individuals and the solution.

This results in a lower number of generations and time

needed to reach the solution, as the results show. This

type of encoding reorders the conforming search space

into a space that is easier to navigate. For example, in

the case of the running example (Table 6) the search

space (1,024 individuals) is reduced to the conforming

space (144 individuals), so the EA has better chances

of reaching the solution.

This effect is also happening when applying the tex-

tual similarity fitness, resulting in performance values

higher than those from the baseline for both case stud-

ies. In particular the F-Mesure is 20% points better

when using the strong encoding compared to the base-

line for the BSH case study and around 22% points

better for the CAF case study. The improvement is also

noticeable for the MCC metric, obtaining values around

0.25 units (out of 1) higher than the baseline for both

case studies.

The closed operations strategy guarantees that the

results of genetic operations remain in the conforming

space. This is done through a wise combination of the

individuals, resulting in larger steps each time an oper-

ator is applied. Some of the mutations and crossovers

will result in bigger changes to the individual, and if

those changes result in higher fitness values and preser-

vation across generations, there will be a lower number

of generations and less time needed to reach the so-

lution. When an individual is generated by the use of

closed operations, it will remain in the conforming sub-

space. For example, if MF-0 is evolved (through muta-

tions or crossover), it will not produce any nonconform-

ing individual (like MF-329 or MF-885) but a conform-

ing one (like MF-139). This results in a smaller search

space (as is the case of the strong encoding) and thus

in a lower number of generations needed to reach the

solution.

The same behaviour can be observed when the

closed operations are used in combination with the tex-

tual similarity fitness. Again, values in precision, re-

call, F-Measure and MCC are above the values obtained

by the baseline for both case studies. The performance

of the closed operations in terms of solution quality is

slightly below the performance of the strong encoding.

Finally, the two types of repair show totally oppo-

site behaviour when used in conjunction with the opti-
mal fitness: while the remove repair improves the search

process and results in a lower number of generations,

the add repair hinders the process, resulting in a much

higher number of generations. Both are repairing the

individuals to ensure that they remain in the conform-

ing subspace after applying the operator. However, the

modifications done by the add repair are counterpro-

ductive since they include elements that are not part

of the solution, while the modifications done by the re-

move repair are more productive, making the individ-

ual more similar to the solution. Anyhow, even if the

remove repair needs less generations than the baseline

to reach the solution, the time spent is above the base-

line (due to the complexity of the operation performed).

This can be illustrated by model fragments from Table

6. For example, the individual MF-14 might be repaired

into MF-15 (by the add repair) or repaired into MF-0

(by the remove repair). In some situations the repair

operator is boosting the search (MF-15 has higher fit-

ness value than the MF-14), while in other situations

26 Jaime Font et al.

the repair operator is obstructing the search (MF-0 has

lower fitness value than MF-14).

In fact, we have checked the individuals while they

are evolving, and the add repair hinders the evolution

since it is adding new genes to the individuals that need

to be removed later by the mutation and crossover op-

erations (since those genes do not form part of the so-

lution). This can lead to a loop that makes the solution

unreachable in the number of generations allocated (as

is the case for the BSH case study, where the number

of generations are close to the 30,000 limit).

When the repair operators are used in conjunction

with the textual similarity fitness, a similar behaviour

can be observed. The add repair is performing much

worse than the baseline, while the remove repair obtains

values better than the add repair (but still worse than

the values obtained by the baseline). It is interesting to

see how the add repair has lower values in precision than

the baseline, as it is adding elements (that may not be

present in the solution and thus reduce the precision)

to repair the individuals. By contrast, the recall values

are higher (outperforming the baseline) as some of the

elements added during the repair may be part of the

solution. Similarly, the remove repair achieves better

values of precision but worse values of recall. Most of

the elements removed during the repair are not part

of the solution (so the precision rises) but some of the

elements removed were correctly placed in the model

fragment as they are part of the solution (so the recall

is reduced). However, the repair strategies are not able

to outperform the baseline in terms of F-Measure or

MCC.

7 Threats to validity

In this section, we present some of the possible threats

to validity of the evaluation performed and how we have

addressed or mitigated them. We follow the guidelines

suggested by De Oliveira et. al [64] to identify those

that apply to this work. The threats are divided into

four groups:

Conclusion validity threats: These are con-

cerned with the relationship between the treatment of

the data and the outcome. The design must ensure the

statistical relationship between the parts. We have iden-

tified four threats of this type:

– Not accounting for random variation: To address

this threat, we considered 30 independent runs for

each execution of each of the nine strategies and the

baseline.

– Lack of good descriptive statistics: In this work, we

have used several metrics to compare the different

approaches, including the number of generations (as

suggested in the literature [51]) and wall clock time

needed to find the solution when using the opti-

mal fitness, and precision, recall, F-Measure and

MCC when using the textual similarity fitness. In

addition, some works [63] argue that the use of the

Vargha and Delaney’s Â12 metric may be unrepre-

sentative and that the data should be treated before

applying it. We did not find any use case for data

pre-transformation that applies to our case studies.

– Lack of a meaningful comparison baseline: To ad-

dress this threat, we compare the nine different

strategies against a baseline, the same EA without

any strategy for handling nonconforming individu-

als.

– Lack of formal hypothesis and statistical tests: To

address this threat we have performed a standard

statistical analysis, following accepted guidelines

[12].

Internal validity threats: If a relationship be-

tween treatment and outcome is observed, the exper-

imental design must guarantee that it is a causal rela-

tionship. We have identified four threats of this type:

– Poor parameter settings: In this work, we use stan-

dard values for the evolutionary algorithm that have

been tested in similar conditions for feature location

[56,39]. For the parameters that have no values re-

ported yet (penalties in models), we have performed

a parameter tuning (based on procedures described

in the literature [12]) to find the ones that pro-

vide the best results. For each penalty parameter

we tested different sets of values, selected the best-

performing one and repeated with values above and

below the best-performing so far, until there was no

further improvement. Further evaluation could be

needed to find the best values (as we plan to do in

the future) although there is no guarantee that those

values will perform similarly when the approach is

applied to other problems or domains.

– Lack of discussion on code instrumentation: To

avoid the inclusion of tweaks or instrumentation to

favor certain algorithms, we have made public the

source code [35] of an open-source implementation

of the nine strategies presented, as suggested in the

literature [51].

– Lack of clarity of data collection tools and proce-

dures: The set of 748 test cases used in the evalua-

tion has been provided by domain experts from our

industrial partners (BSH and CAF). The test cases

provided are representative of their respective do-

mains, and the only pre-processing performed was

to identify malformed test cases (where the solution

Handling nonconforming individuals in Search-Based Model-Driven Engineering 27

was the whole model fragment or the empty model

fragment).

– Lack of real problem instances: The evaluation of

this paper was applied to industrial case studies,

(BSH and CAF), with the problem instance being

obtained directly from industry.

Construct validity threats: These are concerned

with the relations between theory and observation. We

have identified one threat of this type:

– Lack of assessing the validity of cost measures: To

address this threat, we have performed a fair com-

parison between the different strategies and the

baseline by using the number of generations as the

cost measure [51]. In addition, the solution qual-

ity measures used (precision, recall, F-Measure and

MCC) are widely used in the field of information

retrieval [77,58,20].

External validity threats: Concerned with the

generalization of observed results to a larger popula-

tion outside of the experiment. We have identified three

threats of this type:

– Lack of clear definition of target instances: To ad-

dress this threat, the test cases are explained, giv-

ing as much detail as possible (such as the num-

ber and type of items of the models from the test

cases and the languages used to build them). The

non-disclosure agreements signed with our indus-

trial partners prevent us from providing the test

cases themselves as they correspond to products

that are currently on the market.

– Lack of a clear object selection strategy: We have
detected three situations where this threat could

prevent the application of the presented approach

(as is) to different scenarios:

– Clear test cases selection strategy: the strategy

has been described in the internal threat about

data collection tools and procedures. The do-

main experts from our industrial partners pro-

vided us with a set of test cases that are rep-

resentative of their domains (covering the full

range of products) and we performed only a san-

ity check to remove malformed test cases.

– Problem selected for evaluation (feature loca-

tion): the nine techniques presented in this work

are generic and they do not include any particu-

larity of the problem being addressed (feature lo-

cation) or the domain specific language used; the

constraints included are derived from the confor-

mance between the model and the metamodel.

They can be applied directly to other problems

where the EA is using model fragments as indi-

viduals. We expect that the strategies will be-

have similarly when applied to other problems;

However, we cannot guarantee that the results

will be the same and further evaluation could

be needed to determine if the results vary when

applied to other problems or when adapted to

work with a different encoding.

– Fitness selected for the evaluation: the tech-

niques presented have been evaluated with two

different fitness functions, optimal fitness and

textual similarity fitness. The optimal fitness is

based on an oracle to reduce the noise that could

be introduced by the fitness function, making it

impossible to apply to a real scenario. The tex-

tual similarity fitness is a state-of-the-art fitness

and shows how the strategies behave on a real

scenario. There are multiple fitness functions be-

ing applied to solve different MDE related prob-

lems available in the literature [17] and the re-

sults could vary depending on the specific de-

tails of each fitness. Both of the fitness used in

this work provided results that are consistent;

however, further evaluations with different fit-

ness functions are needed to determine if the be-

haviour is the same with any fitness function.

– Lack of evaluation instances of growing size and

complexity: To mitigate this threat, we have applied

the strategies to two case studies varying in size and

complexity.

8 Conclusion

EAs can be applied to find solutions to several problems

related to MDE practices. Reducing the number of gen-

erations needed by the EA to find those solutions can

be the difference between (i) a search process that is not

able to find the solution in a reasonable time, (ii) the

same search being applied as an offline process, (iii) the

same search being applied at run-time, providing the

results while the user is interacting with the system,

and (iv) the usage of more complex fitness functions

that can now be applied given the reduced number of

generations required by the search.

In this work, we have presented nine different strate-

gies that can be applied to handle nonconforming indi-

viduals when applying EAs encoding model fragments.

The strategies presented are generic and include only

constraints that are derived directly from MOF, mak-

ing them independent from the domain of application

(Induction hobs and train control systems in this work).

Bigger improvements in performance could be achieved

if the strategies were tailored with domain knowledge

and adapted to specific problems.

28 Jaime Font et al.

The nine strategies have been applied in combina-

tion with two different fitness functions to solve fea-

ture location problems from two different industrial

domains, providing statistically significant results and

comparison among them. The evaluation using the op-

timal fitness shows that some of the strategies were able

to boost the search process, resulting in a lower number

of generations needed to reach the solution (ten times

fewer generations in the most extreme case) and less

time spent. The evaluation using the textual similar-

ity fitness confirms the results, showing that the strong

encoding and closed operation strategies were able to

outperform the baseline in terms of solution quality for

both case studies.

From the related work analysis performed, we have

discovered that strategies for handling nonconforming

individuals are being applied by some researchers using

SBSE solutions to solve MDE problems, but its spread

is not generalized yet. To help in the spread of this kind

of strategies, an open-source implementation of the nine

generic strategies has been made publicly available in

order to facilitate its adoption by the community. In

addition, we provide insights of the behaviour of the

different strategies when solving the feature location

problem that could benefit other practitioners when

choosing which strategy should be applied when solv-

ing his MDE problem. We believe that this work could

lead to the application of strategies for handling non-

conforming individuals that yield to the results faster

by more researchers of the SDMDE community. Simi-

larly, we expect more research to evaluate if the results

are similar when applying the strategies to other SB-

MDE problems and when adapting them to work with

other encoding when required by the problem. As a re-
sult, new generic strategies may emerge, resulting in a

catalogue of strategies that can be reused and improved

by the community.

Acknowledgements This work has been partially supported
by the Ministry of Economy and Competitiveness (MINECO)
through the Spanish National R+D+i Plan and ERDF funds
under the Project ALPS (RTI2018-096411-B-I00).

We thank William B. Langdon and Justyna Petke because
their feedback while Carlos stayed at University College Lon-
don inspired this work.

References

1. Efficient java matrix library. http://ejml.org/. [Online;
accessed 7-April-2016]

2. Eclipse Development Using the Graphical Editing Frame-
work and the Eclipse Modeling Framework. IBM Corp.,
USA (2004)

3. Apache opennlp: Toolkit for the processing of natural
language text. https://opennlp.apache.org/ (2016). [On-
line; accessed 7-April-2016]

4. The english (porter2) stemming algorithm.
http://snowball.tartarus.org/algorithms/english/

stemmer.html (2016). [Online; accessed 7-April-2016]
5. Abdeen, H., Varró, D., Sahraoui, H., Nagy, A.S., De-

breceni, C., Hegedüs, Á., Horváth, Á.: Multi-objective
optimization in rule-based design space exploration. In:
Proc. of the 29th ACM/IEEE international conf. on Au-
tomated software engineering, pp. 289–300. ACM (2014)

6. Afzal, W., Torkar, R., Feldt, R.: A systematic review
of search-based testing for non-functional system prop-
erties. Inf. and Soft. Technology 51(6), 957 – 976 (2009)

7. Ali, S., Iqbal, M.Z., Arcuri, A., Briand, L.: A search-based
ocl constraint solver for model-based test data genera-
tion. In: 2011 11th International Conference on Quality
Software, pp. 41–50. IEEE (2011)

8. Ali, S., Iqbal, M.Z., Arcuri, A., Briand, L.C.: Gener-
ating test data from ocl constraints with search tech-
niques. IEEE Transactions on Software Engineering
39(10), 1376–1402 (2013)

9. Alshahwan, N., Harman, M.: Automated web applica-
tion testing using search based software engineering.
In: 26th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), pp. 3–12 (2011)

10. Arcega, L., Font, J., Haugen, Ø., Cetina, C.: An approach
for bug localization in models using two levels: model and
metamodel. Softw. Syst. Model. 18(6), 3551–3576 (2019).
DOI 10.1007/s10270-019-00727-y

11. Arcuri, A., Briand, L.: A hitchhiker’s guide to statistical
tests for assessing randomized algorithms in software en-
gineering. Software Testing, Verification and Reliability
24(3), 219–250 (2014)

12. Arcuri, A., Fraser, G.: Parameter tuning or default val-
ues? an empirical investigation in search-based software
engineering. Empirical Software Engineering 18(3), 594–
623 (2013)

13. Bäck, T., Schütz, M., Khuri, S.: A comparative study of a
penalty function, a repair heuristic, and stochastic oper-
ators with the set-covering problem. In: European conf.
on Artificial Evolution, pp. 320–332. Springer (1995)

14. Ballaŕın, M., Marcén, A.C., Pelechano, V., Cetina, C.:
Measures to report the location problem of model frag-
ment location. In: 21th ACM/IEEE International Con-
ference on Model Driven Engineering Languages and Sys-
tems, MODELS ’18, pp. 189–199. ACM, New York, NY,
USA (2018)

15. Bean, J.C.: Genetic algorithms and random keys for se-
quencing and optimization. ORSA journal on computing
6(2), 154–160 (1994)

16. Bill, R., Fleck, M., Troya, J., Mayerhofer, T., Wimmer,
M.: A local and global tour on momot. Softw. Syst.
Model. 18(2), 1017–1046 (2019)

17. Boussäıd, I., Siarry, P., Ahmed-Nacer, M.: A survey on
search-based model-driven engineering. Automated Soft-
ware Engineering 24(2), 233–294 (2017)

18. Burdusel, A., Zschaler, S., John, S.: Automatic genera-
tion of atomic consistency preserving search operators for
search-based model engineering. In: ACM/IEEE 22nd
International Conference on Model Driven Engineering
Languages and Systems (MODELS), pp. 106–116 (2019)

19. Cetina, C., Font, J., Arcega, L., Pérez, F.: Improving fea-
ture location in long-living model-based product families
designed with sustainability goals. J. Syst. Softw. 134,
261–278 (2017)

http://ejml.org/
https://opennlp.apache.org/
http://snowball.tartarus.org/algorithms/english/stemmer.html
http://snowball.tartarus.org/algorithms/english/stemmer.html

Handling nonconforming individuals in Search-Based Model-Driven Engineering 29

20. Chicco, D., Jurman, G.: The advantages of the matthews
correlation coefficient over f1 score and accuracy in binary
classification evaluation. BMC genomics 21(1), 6 (2020)

21. Chootinan, P., Chen, A.: Constraint handling in genetic
algorithms using a gradient-based repair method. Com-
puters & operations research 33(8), 2263–2281 (2006)

22. Coello, C.A.C.: Theoretical and numerical constraint-
handling techniques used with evolutionary algorithms: a
survey of the state of the art. Comp. Methods in Applied
Mechanics and Engineering 191(11), 1245 – 1287 (2002)

23. Colanzi, T.E., Vergilio, S.R.: Representation of software
product line architectures for search-based design. In:
2013 1st International Workshop on Combining Mod-
elling and Search-Based Software Engineering (CMS-
BSE), pp. 28–33 (2013)

24. Črepinšek, M., Liu, S.H., Mernik, M.: Exploration and
exploitation in evolutionary algorithms: A survey. ACM
computing surveys (CSUR) 45(3), 1–33 (2013)

25. Czarnecki, K., Helsen, S.: Classification of model trans-
formation approaches. In: 2nd OOPSLA Workshop on
Generative Techniques in the Context of the Model
Driven Architecture, vol. 45, pp. 1–17. USA (2003)

26. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A
fast and elitist multiobjective genetic algorithm: Nsga-
ii. IEEE transactions on evolutionary computation 6(2),
182–197 (2002)

27. Denil, J., Jukss, M., Verbrugge, C., Vangheluwe, H.:
Search-based model optimization using model transfor-
mations. In: D. Amyot, P. Fonseca i Casas, G. Muss-
bacher (eds.) System Analysis and Modeling: Models and
Reusability, pp. 80–95. Springer International Publishing,
Cham (2014)

28. Dit, B., Revelle, M., Gethers, M., Poshyvanyk, D.: Fea-
ture location in source code: a taxonomy and survey. J.
of Soft.: Evolution and Process 25(1), 53–95 (2013)

29. Dyer, D.: The watchmaker framework for evolutionary
computation. http://watchmaker.uncommons.org/ (2016).
[Online; accessed 7-April-2016]

30. Faunes, M., Cadavid, J., Baudry, B., Sahraoui, H.,
Combemale, B.: Automatically searching for metamodel
well-formedness rules in examples and counter-examples.
In: International Conference on Model Driven Engineer-
ing Languages and Systems, pp. 187–202. Springer (2013)

31. Faunes, M., Cadavid, J., Baudry, B., Sahraoui, H.,
Combemale, B.: Automatically searching for metamodel
well-formedness rules in examples and counter-examples.
In: A. Moreira, B. Schätz, J. Gray, A. Vallecillo, P. Clarke
(eds.) Model-Driven Engineering Languages and Sys-
tems, pp. 187–202. Springer Berlin Heidelberg, Berlin,
Heidelberg (2013)

32. Fleck, M., Troya, J., Kessentini, M., Wimmer, M., Alk-
hazi, B.: Model transformation modularization as a
many-objective optimization problem. IEEE Trans. Soft-
ware Eng. 43(11), 1009–1032 (2017)

33. Fleck, M., Troya, J., Wimmer, M.: Search-based model
transformations with momot. In: P. Van Gorp, G. En-
gels (eds.) Theory and Practice of Model Transfor-
mations, pp. 79–87. Springer International Publishing,
Cham (2016)

34. Font, J.: Location of features as model fragments and
their co-evolution. Ph.D. thesis, U. of Oslo, Nor. (2017)

35. Font, J.: Source Code for Feature Location in Mod-
els through an Evolutionary Algorithm - Handling non-
Conforming Individuals (2020). https://bitbucket.org/

svitusj/flimea-hci

36. Font, J., Arcega, L., Haugen, Ø., Cetina, C.: Building
software product lines from conceptualized model pat-
terns. In: 19th International Conference on Software
Product Line, SPLC ’15, pp. 46–55 (2015)

37. Font, J., Arcega, L., Haugen, Ø., Cetina, C.: Feature lo-
cation in model-based software product lines through a
genetic algorithm. In: 15th International Conference on
Software Reuse: Bridging with Social-Awareness - Vol-
ume 9679, ICSR 2016, pp. 39–54 (2016)

38. Font, J., Arcega, L., Haugen, Ø., Cetina, C.: Feature
location in models through a genetic algorithm driven
by information retrieval techniques. In: ACM/IEEE
19th International Conference on Model Driven Engi-
neering Languages and Systems, MODELS ’16, pp. 272–
282 (2016)

39. Font, J., Arcega, L., Haugen, Ø., Cetina, C.: Achieving
feature location in families of models through the use of
search-based software engineering. IEEE Transactions on
Evolutionary Computation PP(99), 1–1 (2017)

40. Font, J., Arcega, L., Haugen, Ø., Cetina, C.: Leverag-
ing variability modeling to address metamodel revisions
in model-based software product lines. Computer Lan-
guages, Systems & Structures 48, 20–38 (2017)

41. Font, J., Ballaŕın, M., Haugen, Ø., Cetina, C.: Automat-
ing the variability formalization of a model family by
means of common variability language. In: 19th Interna-
tional Conference on Software Product Line, SPLC ’15,
pp. 411–418 (2015)

42. Garćıa, S., Fernández, A., Luengo, J., Herrera, F.: Ad-
vanced nonparametric tests for multiple comparisons in
the design of experiments in computational intelligence
and data mining: Experimental analysis of power. Infor-
mation Sciences 180(10), 2044–2064 (2010)

43. Goldberg, D.E., Lingle, R., et al.: Alleles, loci, and the
traveling salesman problem. In: Int. conference on genetic
algorithms and their applications, vol. 154, pp. 154–159.
Carnegie-Mellon University Pittsburgh, PA (1985)

44. Gomez, J.J.C., Baudry, B., Sahraoui, H.: Searching the
boundaries of a modeling space to test metamodels. In:
2012 IEEE Fifth International Conference on Software
Testing, Verification and Validation, pp. 131–140 (2012)

45. Grissom, R.J., Kim, J.J.: ”Effect sizes for research: A
broad practical approach. Mahwah, NJ: Earlbaum (2005)

46. Harman, M., Jia, Y., Krinke, J., Langdon, W.B., Petke,
J., Zhang, Y.: Search based software engineering for soft-
ware product line engineering: A survey and directions
for future work. In: 18th International Software Product
Line Conference - Volume 1, SPLC ’14, pp. 5–18 (2014)

47. Harman, M., Jones, B.F.: Search-based software engi-
neering. Inf. and soft.Technology 43(14), 833–839 (2001)

48. Harman, M., Mansouri, S.A., Zhang, Y.: Search-based
software engineering: Trends, techniques and applica-
tions. ACM Comput. Surv. 45(1), 11:1–11:61 (2012)

49. Hofmann, T.: Probabilistic Latent Semantic Indexing. In:
22nd Annual International ACM/SIGIR Conf. on Re-
search and Development in Information Retrieval (1999)

50. Holthusen, S., Wille, D., Legat, C., Beddig, S., Schaefer,
I., Vogel-Heuser, B.: Family model mining for function
block diagrams in automation software. In: 18th Interna-
tional Software Product Line Conference: Volume 2, pp.
36–43 (2014)

51. Johnson, D.S.: A theoretician’s guide to the experimen-
tal analysis of algorithms. Data structures, near neighbor
searches, and methodology: fifth and sixth DIMACS im-
plementation challenges 59, 215–250 (2002)

http://watchmaker.uncommons.org/
https://bitbucket.org/svitusj/flimea-hci
https://bitbucket.org/svitusj/flimea-hci

30 Jaime Font et al.

52. Joines, J.A., Houck, C.R.: On the use of non-stationary
penalty functions to solve nonlinear constrained opti-
mization problems with ga’s. In: Evolutionary Computa-
tion. First IEEE World Congress on Computational In-
telligence., pp. 579–584. IEEE (1994)

53. Kent, S.: Model driven engineering. In: Integrated For-
mal Methods, pp. 286–298. Springer Berlin Heidelberg,
Berlin, Heidelberg (2002)

54. Kessentini, M., Langer, P., Wimmer, M.: Searching mod-
els, modeling search: On the synergies of sbse and mde.
In: 2013 1st International Workshop on Combining Mod-
elling and Search-Based Software Engineering (CMS-
BSE), pp. 51–54 (2013)

55. Landauer, T.K., Foltz, P.W., Laham, D.: An introduction
to latent semantic analysis. Discourse processes 25(2-3),
259–284 (1998)

56. Lopez-Herrejon, R.E., Linsbauer, L., Galindo, J.A.,
Parejo, J.A., Benavides, D., Segura, S., Egyed, A.: An
assessment of search-based techniques for reverse engi-
neering feature models. Journal of Systems and Software
103, 353 – 369 (2015)

57. Mandow, L., Montenegro, J.A., Zschaler, S.: Mejora de
una representación genética genérica para modelos. In:
Actas de la XVII Conferencia de la Asociación Española
para la Inteligencia Artificial (CAEPIA) (in press) (2016)

58. Marcus, A., Sergeyev, A., Rajlich, V., Maletic, J.: An in-
formation retrieval approach to concept location in source
code. In: 11th Working Conference on Reverse Engineer-
ing, pp. 214–223 (2004)

59. Martinez, J., Ziadi, T., Bissyandé, T.F., Klein, J., Traon,
Y.L.: Bottom-up adoption of software product lines: a
generic and extensible approach. In: 19th Int. Conf. on
Software Product Line (SPLC), pp. 101–110 (2015)

60. Michalewicz, Z.: Do not kill unfeasible individuals. In:
Fourth Intelligent Information Systems Workshop, pp.
110–123 (1995)

61. Michalewicz, Z.: A survey of constraint handling tech-
niques in evolutionary computation methods. In: 4th
Annual Conference on Evolutionary Programming, pp.
135–155. MIT Press (1995)

62. Michalewicz, Z., Nazhiyath, G.: Genocop iii: A co-
evolutionary algorithm for numerical optimization prob-
lems with nonlinear constraints. In: Evolutionary
Computation, 1995., IEEE International Conference on,
vol. 2, pp. 647–651. IEEE (1995)

63. Neumann, G., Harman, M., Poulding, S.: Transformed
Vargha-Delaney Effect Size, pp. 318–324 (2015)

64. de Oliveira Barros, M., Dias-Neto, A.C.: 0006/2011-
threats to validity in search-based software engineering
empirical studies. RelaTe-DIA 5(1) (2011)

65. (OMG), O.M.G.: Meta object facility (mof) version 2.4.1
(2013). Http://www.omg.org/spec/MOF/2.4.1/

66. Orvosh, D., Davis, L.: Shall we repair? genetic algorithms
combinatorial optimization and feasibility constraints.
In: 5th Int. Conf.on Genetic Algorithms, p. 650 (1993)

67. Orvosh, D., Davis, L.: Using a genetic algorithm to op-
timize problems with feasibility constraints. In: Evolu-
tionary Computation, 1994. First IEEE World Congress
on Computational Intelligence., pp. 548–553 (1994)

68. Paige, R.F., Brooke, P.J., Ostroff, J.S.: Metamodel-based
model conformance and multiview consistency checking.
ACM Transactions on Software Engineering and Method-
ology (TOSEM) 16(3), 11 (2007)

69. Pérez, F., Font, J., Arcega, L., Cetina, C.: Automatic
query reformulations for feature location in a model-
based family of software products. Data Knowl. Eng.
116, 159–176 (2018)

70. Pérez, F., Font, J., Arcega, L., Cetina, C.: Collaborative
feature location in models through automatic query ex-
pansion. Autom. Softw. Eng. 26(1), 161–202 (2019)

71. Pérez, F., Lapeña, R., Font, J., Cetina, C.: Fragment
retrieval on models for model maintenance: Applying a
multi-objective perspective to an industrial case study.
Inf. Softw. Technol. 103, 188–201 (2018)

72. Pérez, F., Ziadi, T., Cetina, C.: Utilizing automatic query
reformulations as genetic operations to improve feature
location in software models. IEEE Transactions on Soft-
ware Engineering pp. 1–1 (2020)

73. Rose, L.M., Kolovos, D.S., Paige, R.F., Polack, F.A.C.:
Model migration with epsilon flock. In: L. Tratt,
M. Gogolla (eds.) Theory and Practice of Model Trans-
formations, pp. 184–198 (2010)

74. Rothlauf, F.: Representations for genetic and evolution-
ary algorithms. In: Representations for Genetic and Evo-
lutionary Algorithms, pp. 9–32. Springer (2006)

75. Rubin, J., Chechik, M.: A survey of feature location tech-
niques. In: Domain Engineering, pp. 29–58. Springer
Berlin Heidelberg (2013)

76. Runarsson, T.P., Yao, X.: Stochastic ranking for con-
strained evolutionary optimization. IEEE Transactions
on evolutionary computation 4(3), 284–294 (2000)

77. Salton, G., McGill, M.J.: Introduction to Modern Infor-
mation Retrieval. McGraw-Hill, Inc., NY, USA (1986)

78. Segura, S., Parejo, J.A., Hierons, R.M., Benavides, D.,
Ruiz-Cortés, A.: Automated generation of computation-
ally hard feature models using evolutionary algorithms.
Ex. Sys. with Applications 41(8), 3975–3992 (2014)

79. Semeráth, O., Barta, A., Horváth, A., Szatmári, Z.,
Varró, D.: Formal validation of domain-specific languages
with derived features and well-formedness constraints.
Software and Systems Modeling 16(2), 357 – 392 (2017)

80. Semeráth, O., Nagy, A.S., Varró, D.: A graph solver for
the automated generation of consistent domain-specific
models. In: 40th International Conference on Software
Engineering, ICSE ’18, p. 969–980 (2018)

81. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.:
EMF: eclipse modeling framework. Pearson Edu. (2008)

82. Steinberg, D., Budinsky, F., Paternostro, M., Merks,
E.: EMF: Eclipse Modeling Framework 2.0, 2nd edn.
Addison-Wesley Professional (2009)

83. Svendsen, A., Zhang, X., Lind-Tviberg, R., Fleurey, F.,
Haugen, Ø., Møller-Pedersen, B., Olsen, G.K.: Develop-
ing a software product line for train control: a case study
of cvl. In: 14th international conference on Software prod-
uct lines (SPLC) (2010)

84. Vargha, A., Delaney, H.D.: A critique and improvement
of the cl common language effect size statistics of mc-
graw and wong. Journal of Educational and Behavioral
Statistics 25(2), 101–132 (2000)

85. Wille, D., Holthusen, S., Schulze, S., Schaefer, I.: Inter-
face variability in family model mining. In: 17th Inter-
national Software Product Line Conference: Co-located
Workshops, pp. 44–51 (2013)

86. Williams, J.R.: A novel representation for search-based
model-driven engineering. Ph.D. thesis, U. of York (2013)

87. Williams, J.R., Paige, R.F., Kolovos, D.S., Polack, F.A.:
Search-based model driven engineering. Tech. rep., Cite-
seer (2012)

88. Williams, J.R., Poulding, S., Rose, L.M., Paige, R.F.,
Polack, F.A.: Identifying desirable game character be-
haviours through the application of evolutionary algo-
rithms to model-driven engineering metamodels. In: In-
ternational Symposium on Search Based Software Engi-
neering, pp. 112–126 (2011)

Handling nonconforming individuals in Search-Based Model-Driven Engineering 31

89. Yeniay, Ö.: Penalty function methods for constrained op-
timization with genetic algorithms. Mathematical and
computational Applications 10(1), 45–56 (2005)

90. Zhang, X., Haugen, Ø., Moller-Pedersen, B.: Model com-
parison to synthesize a model-driven software product
line. In: 2011 15th International Software Product Line
Conference (SPLC), pp. 90–99 (2011)

91. Zhang, X., Haugen, Ø., Møller-Pedersen, B.: Augmenting
product lines. In: 19th Asia-Pacific Software Engineering
Conference (APSEC), vol. 1, pp. 766–771 (2012)

A Statistical Analysis Results

32 Jaime Font et al.

BSH CAF

Generations Time Precision Recall F-Measure MCC Generations Time Precision Recall F-Measure MCC

p− value � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16

Statistic 1251.9 1182 515.26 457.13 402.27 367.43 244.21 571.36 83.311 79.148 78.927 71.36

Table 7 The Quade Test statistic and p− value for the BSH and CAF case studies

Baseline SP SDP DP DDP Death Strong Closed Add Remove

Baseline - 0.066 � 2x10−16 � 2x10−16 7.8x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16

SP 53.19% - � 2x10−16 � 2x10−16 2.3x10−06 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16

SDP 79.81% 77.19% - 2.8x10−07 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16

DP 71.34% 68.57% 41.09% - 5.1x10−09 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16

DDP 61.85% 58.89% 31.84% 40.42% - � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16

Death 100% 100% 99.84% 98.52% 100% - � 2x10−16 � 2x10−16 0.701 � 2x10−16

Strong 0% 0.01% 0% 0% 0% 0% - 4.3x10−05 � 2x10−16 � 2x10−16

Closed 0.78% 0.59% 0.01% 0.07% 0.29% 0% 65.64% - � 2x10−16 � 2x10−16

Add 99.96% 99.94% 99.44% 98.19% 99.80% 46.55% 100% 100% - � 2x10−16

Remove 21.87% 19.71% 6.05% 9.93% 14.94% 0% 99.79% 93.60% 0.01% -

Table 8 Results of the statistical analysis for the number of generations from BSH case study. Values above the diagonal show
the Holm’s post hoc for each pair of strategies (row and column), with values below 0.05 being statistically significant. Values
not significant are highlighted in grey. Values below the diagonal show the AHat12 value, indicating the number of times that
the first strategy (row) performs worse than the second strategy (column). Values outperforming the baseline are highlighted
in grey.

Baseline SP SDP DP DDP Death Strong Closed Add Remove

Baseline - 0.24620 0.24620 � 2x10−16 9.8x10−08 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 1.0x10−15

SP 56.92% - 0.89463 � 2x10−16 0.00038 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16

SDP 56.29% 48.77% - � 2x10−16 0.00025 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16

DP 80.17% 73.27% 74.87% - 7.5x10−06 � 2x10−16 � 2x10−16 � 2x10−16 0.0006 � 2x10−16

DDP 66.42% 62.06% 63.22% 45.18% - 4.2x10−11 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16

Death 100% 97.87% 99.29% 86.52% 80.85% - � 2x10−16 � 2x10−16 0.00928 � 2x10−16

Strong 3.70% 3.40% 3.61% 0.94% 3.48% 0% - 1.1x10−07 � 2x10−16 2.4x10−13

Closed 29.73% 26.19% 26.54% 10.16% 22.39% 0% 87.21% - � 2x10−16 0.18534

Add 86.46% 82.16% 83.18% 64.05% 65.66% 30.14% 99.83% 93.80% - � 2x10−16

Remove 33.67% 29.62% 29.24% 11.03% 25.13% 0% 90.92% 56.57% 7.79% -

Table 9 Results of the statistical analysis for the number of generations from CAF case study. Values above the diagonal show
the Holm’s post hoc for each pair of strategies (row and column), with values below 0.05 being statistically significant. Values
not significant are highlighted in grey. Values below the diagonal show the AHat12 value, indicating the number of times that
the first strategy (row) performs worse than the second strategy (column). Values outperforming the baseline are highlighted
in grey.

Baseline SP SDP DP DDP Death Strong Closed Add Remove

Baseline - � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16

SP 99.09% - � 2x10−16 2.5x10−08 6.8x10−05 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16

SDP 98.55% 26.68% - 0.0122 5.7x10−05 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16

DP 95.51% 67.95% 51.05% - 0.1192 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16

DDP 98.80% 61.47% 38.16% 41.35% - � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16

Death 100% 100% 99.99% 100% 100% - � 2x10−16 � 2x10−16 0.0056 � 2x10−16

Strong 0.47% 0.66% 1.06% 4.08% 1.15% 0% - 0.0122 � 2x10−16 � 2x10−16

Closed 1.18% 0.67% 1.10% 4.10% 1.14% 0% 68.79% - � 2x10−16 � 2x10−16

Add 100% 100% 100% 100% 100% 65.69% 100% 100% - � 2x10−16

Remove 96.64% 12.54% 6.28% 12.19% 10.14% 0% 97.91% 97.88% 0% -

Table 10 Results of the statistical analysis for wall clock time metric from BSH case study. Values above the diagonal show
the Holm’s post hoc for each pair of strategies (row and column), with values below 0.05 being statistically significant. Values
not significant are highlighted in grey. Values below the diagonal show the AHat12 value, indicating the number of times that
the first strategy (row) performs worse than the second strategy (column). Values outperforming the baseline are highlighted
in grey.

Handling nonconforming individuals in Search-Based Model-Driven Engineering 33

Baseline SP SDP DP DDP Death Strong Closed Add Remove

Baseline - � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 3.0x10−06 � 2x10−16 � 2x10−16

SP 77.39% - 7.4x10−08 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 1.1x10−09

SDP 95.49% 54.35% - 4.2x10−15 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16

DP 99.04% 64.67% 65.61% - 0.97 0.82 � 2x10−16 � 2x10−16 1.6x10−10 � 2x10−16

DDP 95.38% 64.36% 64.64% 51.39% - 0.97 � 2x10−16 � 2x10−16 1.9x10−09 � 2x10−16

Death 100% 70.00% 77.10% 56.24% 50.90% - � 2x10−16 � 2x10−16 8.4x10−08 � 2x10−16

Strong 4.33% 21.88% 4.10% 0.68% 4.28% 0% - 3.5x10−08 � 2x10−16 � 2x10−16

Closed 22.50% 22.13% 4.22% 0.89% 4.39% 0% 82.32% - � 2x10−16 � 2x10−16

Add 99.34% 73.48% 77.96% 64.59% 61.48% 64.58% 99.34% 99.34% - � 2x10−16

Remove 97.43% 31.93% 12.29% 4.66% 10.73% 0% 99.16% 98.46% 2.22% -

Table 11 Results of the statistical analysis for wall clock time metric from CAF case study. Values above the diagonal show
the Holm’s post hoc for each pair of strategies (row and column), with values below 0.05 being statistically significant. Values
not significant are highlighted in grey. Values below the diagonal show the AHat12 value, indicating the number of times that
the first strategy (row) performs worse than the second strategy (column). Values outperforming the baseline are highlighted
in grey.

Baseline SP SDP DP DDP Death Strong Closed Add Remove

Baseline - � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 0.0693

SP 34.84% - 1.3x10−11 � 2x10−16 2.4x10−12 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16

SDP 26.95% 40.71% - 0.0012 1 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16

DP 22.49% 35.63% 45.27% - 0.0024 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16

DDP 26.06% 40.13% 49.49% 54.37% - � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16

Death 10.83% 17.80% 23.41% 25.72% 23.08% - � 2x10−16 � 2x10−16 6.7x10−11 � 2x10−16

Strong 68.40% 82.66% 88.12% 91.34% 89.45% 96.59% - 1 � 2x10−16 7.8x10−10

Closed 68.44% 82.35% 88.15% 91.46% 89.39% 97.37% 50.49% - � 2x10−16 � 2x10−16

Add 14.79% 24.44% 31.87% 35.19% 32.00% 61.40% 4.94% 4.38% - � 2x10−16

Remove 59.91% 76.18% 83.37% 87.44% 84.62% 96.83% 41.02% 40.39% 93.81% -

Table 12 Results of the statistical analysis for the precision metric from BSH case study. Values above the diagonal show the
Holm’s post hoc for each pair of strategies (row and column), with values below 0.05 being statistically significant. Values not
significant are highlighted in grey. Values below the diagonal show the AHat12 value, indicating the number of times that the
first strategy (row) performs better than the second strategy (column) in terms of precision. Values outperforming the baseline
are highlighted in grey.

Baseline SP SDP DP DDP Death Strong Closed Add Remove

Baseline - 9.7x10−06 2.9x10−07 1.2x10−11 0.06435 � 2x10−16 5.5x10−07 0.00029 � 2x10−16 0.54982

SP 32.03% - 0.60322 0.13274 0.12861 7.9x10−15 � 2x10−16 � 2x10−16 1.6x10−11 2.3x10−09

SDP 28.32% 45.84% - 0.52783 0.02475 1.3x10−12 � 2x10−16 � 2x10−16 1.4x10−09 2.9x10−11

DP 23.86% 40.47% 44.14% - 5.1x10−05 4.8x10−08 � 2x10−16 � 2x10−16 1.2x10−05 � 2x10−16

DDP 36.66% 54.82% 58.84% 64.17% - � 2x10−16 1.4x10−14 1.7x10−10 � 2x10−16 0.00044

Death 9.19% 15.55% 17.49% 16.54% 13.57% - � 2x10−16 � 2x10−16 0.60322 � 2x10−16

Strong 70.18% 85.04% 87.58% 91.02% 81.07% 97.28% - 0.57261 � 2x10−16 0.00053

Closed 64.61% 78.97% 81.62% 85.05% 75.08% 94.14% 46.20% - � 2x10−16 0.05140

Add 10.84% 18.61% 20.48% 20.04% 16.18% 58.15% 3.06% 6.93% - � 2x10−16

Remove 53.38% 74.67% 79.23% 85.22% 69.25% 96.95% 31.02% 37.43% 96.06% -

Table 13 Results of the statistical analysis for the precision metric from CAF case study. Values above the diagonal show the
Holm’s post hoc for each pair of strategies (row and column), with values below 0.05 being statistically significant. Values not
significant are highlighted in grey. Values below the diagonal show the AHat12 value, indicating the number of times that the
first strategy (row) performs better than the second strategy (column) in terms of precision. Values outperforming the baseline
are highlighted in grey.

34 Jaime Font et al.

Baseline SP SDP DP DDP Death Strong Closed Add Remove

Baseline - 0.30647 0.30647 0.42903 1 � 2x10−16 � 2x10−16 � 2x10−16 1.1x10−14 � 2x10−16

SP 46.82% - 1 1 0.15561 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16

SDP 46.73% 50.03% - 1 0.18279 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16

DP 45.97% 49.07% 48.68% - 0.30647 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16

DDP 49.95% 53.48% 53.45% 54.93% - � 2x10−16 � 2x10−16 � 2x10−16 1.6x10−13 � 2x10−16

Death 98.54% 99.06% 99.07% 98.73% 98.90% - 0.00067 � 2x10−16 � 2x10−16 � 2x10−16

Strong 91.55% 92.39% 92.31% 92.12% 91.71% 44.71% - 4.4x10−06 � 2x10−16 � 2x10−16

Closed 82.02% 83.05% 82.99% 82.82% 81.85% 37.01% 42.35% - � 2x10−16 � 2x10−16

Add 56.88% 60.97% 60.93% 63.49% 57.46 2.27% 10.21% 21.39% - � 2x10−16

Remove 12.50% 12.90% 13.21% 11.19% 9.96% 0% 2.74% 4.78% 3.89% -

Table 14 Results of the statistical analysis for the recall metric from BSH case study. Values above the diagonal show the
Holm’s post hoc for each pair of strategies (row and column), with values below 0.05 being statistically significant. Values not
significant are highlighted in grey. Values below the diagonal show the AHat12 value, indicating the number of times that the
first strategy (row) performs better than the second strategy (column) in terms of recall. Values outperforming the baseline
are highlighted in grey.

Baseline SP SDP DP DDP Death Strong Closed Add Remove

Baseline - 1 1 0.06287 1 � 2x10−16 � 2x10−16 1.1x10−12 0.00028 � 2x10−16

SP 42.97% - 1 1 1 � 2x10−16 � 2x10−16 � 2x10−16 1.9x10−07 1.3x10−11

SDP 50.00% 56.00% - 0.12801 1 � 2x10−16 � 2x10−16 1.2x10−13 7.6x10−05 2.2x10−15

DP 38.70% 46.14% 40.24% - 0.17941 � 2x10−16 � 2x10−16 � 2x10−16 4.8x10−11 6.8x10−08

DDP 49.04% 55.01% 49.32% 59.09% - � 2x10−16 � 2x10−16 3.5x10−14 3.6x10−05 8.2x10−15

Death 93.83% 93.95% 88.65% 96.17% 91.57% - 1 0.00331 7.7x10−11 � 2x10−16

Strong 84.62% 86.78% 81.53% 89.26% 82.81% 46.19% - 0.12801 1.1x10−07 � 2x10−16

Closed 75.34% 78.83% 73.22% 81.83% 74.13% 37.24% 41.05% - 0.01154 � 2x10−16

Add 63.82% 69.89% 62.27% 74.91% 63.36% 10.18% 22.35% 33.68% - � 2x10−16

Remove 12.11% 18.05% 14.90% 19.02% 15.21% 0% 0.85% 3.43% 3.45% -

Table 15 Results of the statistical analysis for the precision metric from CAF case study. Values above the diagonal show the
Holm’s post hoc for each pair of strategies (row and column), with values below 0.05 being statistically significant. Values not
significant are highlighted in grey. Values below the diagonal show the AHat12 value, indicating the number of times that the
first strategy (row) performs better than the second strategy (column) in terms of recall. Values outperforming the baseline
are highlighted in grey.

Baseline SP SDP DP DDP Death Strong Closed Add Remove

Baseline - � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 1.1x10−14 1.9x10−07 � 2x10−16 � 2x10−16

SP 37.08% - 2.9x10−10 � 2x10−16 1.6x10−11 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 3.2x10−05

SDP 28.11% 39.59% - 0.0002 0.6577 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 0.0762

DP 22.94% 34.03% 44.88% - 0.0010 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 4.5x10−09

DDP 26.01% 37.82% 48.15% 53.28% - � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 0.0474

Death 6.33% 12.46% 19.45% 22.13% 20.68% - � 2x10−16 � 2x10−16 1.6x10−11 � 2x10−16

Strong 70.61% 81.77% 87.33% 90.36% 89.93% 99.04% - 0.0474 � 2x10−16 � 2x10−16

Closed 67.21% 78.38% 84.69% 88.42% 87.21% 98.48% 45.19% - � 2x10−16 � 2x10−16

Add 10.73% 19.01% 27.89% 31.29% 29.36% 61.04% 2.51% 3.53% - � 2x10−16

Remove 30.43% 46.79% 59.23% 66.78% 61.03% 90.23% 7.45% 11.26% 83.33% -

Table 16 Results of the statistical analysis for F-Measure metric from BSH case study. Values above the diagonal show the
Holm’s post hoc for each pair of strategies (row and column), with values below 0.05 being statistically significant. Values
not significant are highlighted in grey. Values below the diagonal show the AHat12 value, indicating the number of times that
the first strategy (row) performs better than the second strategy (column) in terms of F-Measure. Values outperforming the
baseline are highlighted in grey.

Handling nonconforming individuals in Search-Based Model-Driven Engineering 35

Baseline SP SDP DP DDP Death Strong Closed Add Remove

Baseline - 0.00015 7.9x10−06 1.0x10−09 0.09738 � 2x10−16 2.3x10−10 5.6x10−06 � 2x10−16 0.07066

SP 31.29% - 1 0.23328 0.48220 1.2x10−13 � 2x10−16 � 2x10−16 1.3x10−11 0.51503

SDP 29.39% 47.88% - 0.51503 0.15086 9.9x10−12 � 2x10−16 � 2x10−16 8.1x10−10 0.19615

DP 24.07% 41.98% 43.82% - 0.00092 2.0x10−07 � 2x10−16 � 2x10−16 6.7x10−06 0.00150

DDP 37.32% 56.14% 58.13% 64.10% - � 2x10−16 � 2x10−16 4.2x10−13 � 2x10−16 1

Death 10.52% 19.06% 21.03% 21.04% 16.22% - � 2x10−16 � 2x10−16 1 � 2x10−16

Strong 77.94% 89.92% 91.07% 93.81% 86.55% 97.25% - 0.51503 � 2x10−16 � 2x10−16

Closed 69.43% 82.64% 83.92% 87.20% 78.83% 93.90% 42.93% - � 2x10−16 1.5x10−13

Add 11.96% 21.78% 23.68% 24.28% 18.45% 56.50% 3.02% 6.83% - � 2x10−16

Remove 33.87% 56.55% 58.71% 67.76% 48.95% 91.76% 9.52% 17.98% 90.13% -

Table 17 Results of the statistical analysis for the F-Measure metric from BSH case study. Values above the diagonal show
the Holm’s post hoc for each pair of strategies (row and column), with values below 0.05 being statistically significant. Values
not significant are highlighted in grey. Values below the diagonal show the AHat12 value, indicating the number of times that
the first strategy (row) performs better than the second strategy (column) in terms of F-Measure. Values outperforming the
baseline are highlighted in grey.

Baseline SP SDP DP DDP Death Strong Closed Add Remove

Baseline - 2.4x10−13 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16

SP 37.11% - 2.3x10−08 8.1x10−13 9.9x10−09 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 1

SDP 29.23% 40.54% - 0.59 1 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 3.1x10−06

DP 22.92% 33.15% 42.91% - 0.64 � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 5.0x10−10

DDP 29.72% 41.44% 51.08% 58.32% - � 2x10−16 � 2x10−16 � 2x10−16 � 2x10−16 1.6x10−06

Death 25.53% 26.91% 28.47% 28.90% 27.32% - � 2x10−16 � 2x10−16 6.2x10−12 � 2x10−16

Strong 77.37% 88.71% 91.88% 94.47% 92.84% 7726% - 1 � 2x10−16 � 2x10−16

Closed 74.71% 85.72% 89.71% 92.89% 90.38% 77.74% 47.27% - � 2x10−16 � 2x10−16

Add 14.03% 21.68% 30.40% 35.97% 29.04% 68.57% 3.20% 3.73% - � 2x10−16

Remove 38.10% 52.91% 63.78% 72.43% 62.71% 77.81% 7.02% 10.98% 85.14% -

Table 18 Results of the statistical analysis for the MCC metric from BSH case study. Values above the diagonal show the
Holm’s post hoc for each pair of strategies (row and column), with values below 0.05 being statistically significant. Values not
significant are highlighted in grey. Values below the diagonal show the AHat12 value, indicating the number of times that the
first strategy (row) performs better than the second strategy (column) in terms of MCC. Values outperforming the baseline
are highlighted in grey.

Baseline SP SDP DP DDP Death Strong Closed Add Remove

Baseline - 3.4x10−05 1.2x10−07 8.2x10−09 0.02147 � 2x10−16 1.5x10−10 3.4x10−05 � 2x10−16 0.13849

SP 31.13% - 0.82880 0.62474 0.55499 5.8x10−07 � 2x10−16 � 2x10−16 1.5x10−10 0.14695

SDP 31.48% 49.73% - 0.99636 0.05639 0.00012 � 2x10−16 � 2x10−16 1.3x10−07 0.00752

DP 23.69% 41.81% 42.21% - 0.01583 0.00083 � 2x10−16 � 2x10−16 1.5x10−06 0.00144

DDP 37.59% 56.35% 56.57% 64.39% - 1.8x10−11 � 2x10−16 1.8x10−13 5.7x10−16 0.99636

Death 14.64% 27.76% 29.68% 32.70% 23.78% - � 2x10−16 � 2x10−16 0.69584 1.3x10−13

Strong 79.79% 91.54% 90.62% 94.94% 87.74% 96.92% - 0.21764 � 2x10−16 � 2x10−16

Closed 70.78% 83.92% 83.17% 88.29% 79.65% 93.03% 42.32% - � 2x10−16 2.4x10−11

Add 14.23% 26.65% 28.07% 31.66% 22.80% 47.20% 2.84% 6.89% - � 2x10−16

Remove 34.31% 57.05% 57.14% 68.19% 48.82% 83.06% 7.74% 17.08% 83.85% -

Table 19 Results of the statistical analysis for the MCC metric from BSH case study. Values above the diagonal show the
Holm’s post hoc for each pair of strategies (row and column), with values below 0.05 being statistically significant. Values not
significant are highlighted in grey. Values below the diagonal show the AHat12 value, indicating the number of times that the
first strategy (row) performs better than the second strategy (column) in terms of MCC. Values outperforming the baseline
are highlighted in grey.

	Introduction
	Related Work
	Overview of the Problem
	Handling nonconforming individuals in SBSE encoding model artifacts
	Evaluation
	Discussion
	Threats to validity
	Conclusion
	Statistical Analysis Results

