
Building Software Product Lines from Conceptualized
Model Patterns

Jaime Font1,2 Lorena Arcega1,2 Øystein Haugen2,3 Carlos Cetina1

1San Jorge University 2University of Oslo 3Østfold University College
SVIT Research Group Department of Informatics Department of Information Technology
Autovía A-23 Km. 299 Postboks 1080 Blindern Postboks 700

50830 Zaragoza, Spain 0316 Oslo, Norway 1757 Halden, Norway
{jfont,larcega,ccetina}@usj.es oysteinh@ifi.uio.no oystein.haugen@hiof.no

ABSTRACT
Software Product Lines (SPLs) can be established from a
set of similar models. Establishing the Product Line by me-
chanically finding model differences may not be the best ap-
proach. The identified model fragments may not be seen as
recognizable units by the application engineers. We propose
to identify model patterns by human-in-the-loop and con-
ceptualize them as reusable model fragments. The approach
provides the means to identify and extract those model pat-
terns and further apply them to existing product models.
Model fragments obtained by applying our approach seem
to perform better than mechanically found ones. It turns
out that the repetition of a fragment does not guarantee its
relevance as reusable asset for the SPL engineers and vice
versa, a fragment that has not been repeated yet, may be
relevant as a reusable asset. We have validated these ideas
with our industrial partner BSH, an induction hobs manu-
facturer that generates the firmware of their products from
a model-driven SPL.

CCS Concepts
•Software and its engineering → Software product
lines;

Keywords
Reverse Engineering, Model-based Software Product Lines,
Variability Identification, Human-in-the-loop

1. INTRODUCTION
Software Product Lines (SPLs) aim at reducing develop-

ment cost and time to market while improving quality of
software systems by exploiting commonalities and variabil-
ities across a set of software applications [10]. The SPL
engineering paradigm separates two processes; domain en-
gineering (where the variability of the SPL is defined and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SPLC ’15 June 20–24, 2015, Nashville, TN, USA
c© 2015 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123 4

realized) and application engineering (where specific soft-
ware products are derived by reusing the variability of the
SPL) [2].

The extractive approach to SPLs capitalizes on existing
systems to initiate a product line [7], formalizing variabil-
ity among a set of similar products into a variability model.
However, manually spotting the commonalities and variabil-
ity among the set of product models may become cumber-
some and error prone [1], especially as the number of models
and its complexity increases.

Some reverse engineering model differencing approaches
[15, 11] aim to automatically extract and formalize the vari-
ability among a set of similar product models. By perform-
ing several comparisons among the product models, com-
monalities and variabilities are identified and formalized as
variability models. As a result, a variability model is auto-
matically built from a set of similar products.

We have applied a model differencing approach to build a
SPL around a set of product models from our industrial part-
ner. However, the results are not the reusable model assets
expected by our industrial partner, due to the lack of domain
engineering knowledge embedded in the process; model as-
sets that are automatically extracted may not match the
expectations of domain experts and application engineers.

We propose a human-in-the-loop differencing approach to
identify and extract reusable model patterns from a set of
similar product models. Domain experts and application
engineers become part of the decision-making process, con-
tributing their knowledge of the domain to tailor the ap-
proach. Then, the model patterns are extracted and formal-
ized into variability models. Finally, model patterns can be
applied to the set of models, resulting in a formalization of
the variability in terms that are relevant for the engineers.

We have validated the presented ideas with our industrial
partner (BSH group), the induction division has been pro-
ducing induction hobs (under the brands Bosch and Siemens
among others) over the last 15 years. The Induction Hobs
domain is facing big changes, which has triggered the cre-
ation of a Software Product Line around the Induction Hob
models that already exist. The first attempt follows a model
differencing approach; then we apply our human-in-the-loop
approach. As a result, we have identified the main situations
where domain experts prefer a model asset that is different
to the one proposed by automatic approaches.

The rest of the paper is structured as follows: next section
introduces some background about the Common Variability
Language and our industrial partner’s domain. Section 3

motivates the approach with an example extracted from our
experience. Section 4 presents our approach to identify and
extract resusable model patterns from a set of similar prod-
uct models. In section 5 we present our experience applying
the approach to our industrial partner’s domain. Section 6
discusses related work. Finally we conclude the paper.

2. THE INDUCTION HOBS DOMAIN
Traditionally, stoves have a rectangular shape and fea-

ture four rounded areas that become hot when turned on.
Therefore, the first Induction Hobs (IHs) created provided
similar capabilities. However, the induction hobs domain
is constantly evolving and, due to the possibilities provided
by the induction phenomena and the electronic components
present in the induction hobs, a new generation of IHs has
emerged.

For instance, the newest IHs feature full cooking surfaces,
where dynamic heating areas are automatically calculated
and activated or deactivated depending on the shape, size,
and position of the cookware placed on top. There has been
an increase in the type of feedback provided to the user while
cooking, such as the exact temperature of the cookware,
the temperature of the food being cooked, or even real-time
measurements of the actual consumption of the IH. All of
these changes are being possible at the cost of increasing the
software complexity.

The Domain Specific Language used by our industrial
partner to specify the Induction Hobs (IHDSL) is composed
of 46 meta-classes, 74 references among them and more than
180 properties. However, in order to gain legibility and due
to intellectual property rights concerns, in this paper we use
a simplified subset of the IHDSL (see the top of Figure 1).

Inverters are in charge of converting the input electric sup-
ply to match the specific requirements of the induction hob.
Specifically, the amplitude and frequency of the electric sup-
ply needs to be precisely modulated in order to improve the
efficiency of the IH and to avoid resonance. Then, the en-
ergy is transferred to the hotplates through the channels.
There can be several alternative channels, which enable dif-
ferent heating strategies depending on the cookware placed
on top of the IH at runtime. The path followed by the energy
through the channels is controlled by the power manager.

Inductors are the elements where the energy is trans-
formed into an electromagnetic field. Inductors are com-
posed of a conductor that is usually wound into a coil. How-
ever, inductors vary in their shape and size, resulting in dif-
ferent power supply needs in order to achieve performance
peaks. Inductors can be organized into groups in order to
heat larger cookware while sharing the user interface con-
trollers. Each group of inductors can have different par-
ticularities; for instance, some of them can be divided into
independent zones or others can grow in size adapting to the
size of the cookware being placed on top of them. Some of
the groups of inductors are made at design time, while oth-
ers can occur at runtime (depending on the cookware placed
on top).

2.1 The Common Variability Language
applied to Induction Hobs

The Common Variability Language (CVL) [3, 13] was rec-
ommended for adoption as a standard by the Architectural
Board of the Object Management Group and is our indus-
trial partner’s choice for specifying and resolving variability.

BaseHModel

P1

LibraryHModel

R4

R1

R2

R3

P2

Inverter

Channels
PowerH

manager

Inductors

IHDSLHMetamodel

Induction
HobInverter

PowerH
Manager

Inductor

IHDSLHsyntax

P
ro

d
uc

tHR
ea

liz
at

io
nH

la
ye

r
F

ea
tu

re
HS

pe
ci

fic
at

io
n

la
ye

r

InductionH
Hob

[0..1]

smallH
Inductor

P2HHHHHHHR2

LowerH
Inverter

P1HHHHHHHR4

mediumH
Inductor

P2HHHHHHHR1

largeH
Inductor

P2HHHHHHHR3

upperH
Inductor

ProviderH
Channel

Consumer
Channel

Figure 1: CVL applied to IHDSL

CVL defines variants of a base model (conforming to MOF)
by replacing variable parts of the base model by alternative
model replacements found in a library model.

The variability specification through CVL is divided across
two different layers: the feature specification layer (where
variability can be specified following a feature model syntax)
and the product realization layer (where variability specified
in terms of features is linked to the actual models in terms
of placements, replacements and substitutions).

The base model is a model described by a given DSL (here,
IHDSL) that serves as the base for different variants defined
over it. In CVL the elements of the base model that are sub-
ject to variations are the placement fragments (hereinafter
placements). A placement can be any element or set of ele-
ments that is subject to variation. To define alternatives for
a placement we use a replacement library, which is a model
that is described in the same DSL as the base model that will
serve as a base to define alternatives for a placement. Each
one of the alternatives for a placement is a replacement frag-
ment (hereinafter replacement). Similarly to placements, a
replacement can be any element or set of elements that can
be used as variation for a replacement.

CVL defines variants of the base model by means of frag-
ment substitutions. Each substitution references to a place-
ment and a replacement and includes the information nec-
essary to substitute the placement by the replacement. In
other words, each placement and replacement is defined along
with its boundaries, which indicate what is inside or out-

side each fragment (placement or replacement) in terms of
references among other elements of the model. Then, the
substitution is defined with the information of how to link
the boundaries of the placement with the boundaries of the
replacement. When a substitution is materialized, the base
model (with placements substituted by replacements) con-
tinues to conform to the same metamodel.

Figure 1 shows an example of variability specification of
IH through CVL. In the product realization layer, two place-
ments are defined over an IH base model (P1 and P2). Then,
four replacements are defined over an IH library model (R1,
R2, R3, and R4). In the feature specification layer, a Fea-
ture Model is defined that formalizes the variability among
the IH based on the placements and replacements previously
defined. For instance, P1 can only be substituted by R4
(which is optional), but P2 can be replaced by R1, R2, or
R3. Note that each fragment has a signature, which is a set
of references going from and towards that replacement. A
placement can only be replaced by replacements that match
the signature. For instance, the P2 signature has a refer-
ence from a power manager (outside the placement) to an
inductor (inside the placement), while the R4 signature is a
reference from a power manager (inside the replacement) to
an inductor (outside the replacement). P2 cannot be sub-
stituted by R4 since their signatures do not match.

3. MOTIVATION OF THE APPROACH
Reverse engineering approaches [11, 15] rely on mechani-

cally finding model differences among the models. First, sev-
eral comparisons among the product models are performed.
Then, a set of model fragments is extracted based on the
differences and common parts spotted among the models.
Identical elements are extracted as common parts of the
product line, similar elements are extracted as variable al-
ternative parts, and unmatched elements are extracted as
variable optional parts. As a result, the variability existing
among the set of similar product models is formalized.

However, we have detected an issue when applying reverse
engineering approaches of this kind to extract and formalize
the variability existing among the IH product models of our
industrial partner. Specifically, fragments obtained by these
approaches do not match the expectations of our industrial
partner. Figure 2 illustrates the issue experienced.

The top part of Figure 2 shows a representation of three
of the IH models used by our industrial partner. To better
illustrate the example, we only focus on the different induc-
tors used by the IHs. Induction Hob 1 is the simplest IH; an
inverter is connected to a power manager that connects with
one standalone inductor (this construction is repeated two
times in the IH). Induction Hob 2 is the next step in the evo-
lution. An inverter is connected to a power manager that is
connected to two inductors (one acts as the main inductor,
and the other acts as a slave of the main; it is only activated
if the main one is not able to heat the cookware placed on
top by itself). Finally, Induction Hob 3 is composed by an
inverter connected to a power manager that is connected to
three inductors (they have different sizes and roles; one acts
as main inductor, while the other two are auxiliary and are
only activated when the size of the cookware is bigger than
the main inductor). It is important to note that the three
IHs share a common point (i.e., an inverter connected to
a power manager that is connected to the main inductor).
However, each IH provides different functionalities and is

Mechanically finding
model differences

Model Fragments
expected

B
as

e
M

od
el

Li
br

ar
y

M
od

el
s

Induction Hob 1 Induction Hob 2 Induction Hob 3

F1

P1

P2

P1'

P2'

F2
F1'

F2'

Figure 2: Motivation of the approach

driven by different software elements.
The bottom left part of Figure 2 presents a representation

of the results obtained after applying a reverse engineering
model differencing approach. The inverter, power manager,
and main inductor are identified as common parts to the
three IHs and are therefore placed into the base model. Then
a placement to hold the rest of the inductors (when they ex-
ist) is created. The first fragment holds the slave inductor
that is present in the hotplate of the IH2. The second frag-
ment holds the two auxiliary inductors that are present in
the hotplate of the IH3.

The IH1 can be obtained without any substitution. The
IH2 can be obtained by substituting the placement by the
first fragment (IH2 = P1 → F1, P2 → F1). The IH3 can be
obtained by substituting the placement by the second frag-
ment (IH3 = P1 → F2). This division of the IH product
models is valid, and the three input IHs can be derived from
them. However, the results differ from the expected results;
the groups of inductors have been divided, resulting in frag-
ments that do not hold model units that are recognizable by
our industrial partner’s engineers.

The bottom right part of Figure 2 shows the expected re-
sult when dividing the IHs models into fragments. The base
model is similar, but the placements are different, holding
the power manager and the inductors to avoid the division of
the groups of inductors. As previously, the three IHs can be
derived from the model fragments (IH2 = P1’→ F1’, P2’→
F1’, and IH3 = P1’ → F2’). Although the main inductor is
the same for the three IHs, our industrial partner expects to
have fragment models that hold whole conceptual patterns.
Then, a new placement could be created inside the group
of inductors to hold the main inductor. This is just a run-
ning example, but the problem grows bigger when taking
into account real models (for instance, elements in charge
of generating power are mixed with inductors in the same
fragment). This results in a lack of recognition of the model

SetRofRsimilarR
productRmodels

InputRsubsetR4R
SeedRfragmentR4R

Constraints

loop

NarrowR
theRInput1

Formalized
modelRpatterns

ModelRPatternsR4
reusabilityRinfo

Relevant
fragments

Potential
fragments

MutateRseed
fragment2

PruneRout
potentialR

fragmentsR
3

ExtractR
ModelR

patterns
4

Select
ModelR

patterns
5

Figure 3: The model pattern identification and extraction process

fragments produced that do not match the reusable units
handled by our industrial partner.

To address this issue we propose a human-in-the-loop ap-
proach where the SPL engineers can take part in the variabil-
ity identification and extraction process, contributing their
knowledge and tailoring the process. As a result, the ap-
proach produces model patterns that hold the variability
among the set of product models in terms of CVL place-
ments and replacements. Those model patterns can then be
applied to the product models to formalize the variability.

4. THE MODEL PATTERN IDENTIFICA-
TION AND EXTRACTION PROCESS

Figure 3 presents an overview of the human-in-the-loop
process to identify and extract model patterns, which con-
sists of 5 steps. The initial input of the process is the set of
similar models around which the SPL will be built. Some
steps of the process are automatic (represented by two gears)
while others are performed by the humans-in-the-loop (rep-
resented by a stickman). The domain experts and applica-
tion engineers will contribute their knowledge to the process.
Since the human roles involved in the establishment and fur-
ther operation of a Product Line may vary depending on the
particular approach adopted, we will refer to the people con-
tributing knowledge to the process as the ”humans”.

The approach itself can be seen as a web search engine.
After providing a search query (and some advanced search
options) the search engine returns a set of webs that match
the query, which are automatically ordered from the most
accurate match to the last. The web search engine may re-
turn several millions of results, but only the most relevant
will be browsed by the user (usually the top of the list).
Then, the user can select any of the results provided or per-
form a new search trying to refine the results.

The first step enables the humans-in-the-loop to narrow
the scope of the comparisons that will take place in further
steps. By doing so, the task of identifying the model patterns
is modularized, resulting in a manageable task. The humans
also select the initial fragment that will be used as seed to
identify the model pattern (i.e., a model fragment that the
humans believe conforms a recognizable unit).

The second step performs mutations of the fragment desig-
nated as seed, taking into account the actual product model
where the seed comes from. In other words, this step per-
forms mutations (following the scope parameters provided
in the first step), resulting in a set of potential fragments
that are variations of the seed fragment. The selected seed
will be used as a starting point, but a set of fragments built

around the seed will be produced. The provided seed is not
always accurate and by providing alternatives we facilitate
the selection of the proper model pattern.

In the third step, the set of potential fragments is pruned
out to discard the model fragments that do not fulfill the
constraints stated by the humans in the first step. The ob-
jective of this step is to discard non-relevant fragments (ac-
cording to the humans’ constraints) as early in the process
as possible, decreasing the cost of further steps. As a result,
we produce a set of relevant fragments that has been built
taking into account the humans’ knowledge.

In the fourth step, a set of model patterns involving the
relevant fragments is calculated. For each potential frag-
ment, the corresponding placement signature in the original
product model is calculated. Then, the process matches
each signature with the product models selected in the first
step; if the match is positive, a model fragment is extracted.
Each model pattern consists of a placement signature and
the set of model fragments that can be used with that par-
ticular placement signature. In addition, information about
the occurrences for each model pattern is calculated (for the
placement and for each of the matching fragments).

In the fifth step, the set of model patterns and the reusabil-
ity information gathered is presented to the humans. The
model patterns can be ordered following different criteria,
such as the size of the placement or the number of alterna-
tives for that placement. In addition, one of the model pat-
terns is selected as the default choice, taking into account the
number of times it has been reused in the models (following
criteria similar to the fully automatic approaches [11, 15]).
Finally, the humans select the model pattern that is relevant
for them and that better formalizes their understanding of
the domain, guided by the reusability information provided.

As a result of these five steps, a single model pattern is
extracted and formalized. The process can be iterated to
identify and extract new model patterns or to extend already
extracted model patterns with the information present in
new product models. The following subsections present a
running example of the application of the approach to our
industrial partner’s domain.

4.1 Step 1 - Narrow the input
The presented process includes several comparisons among

the product models which can be costly in terms of time and
memory. The number of resulting model patterns presented
to the humans in the fifth step depends on the products used
as input and can be too high. Therefore, the approach pro-
vides the means to narrow the input, so that the number of
resulting model patterns can be limited.

Input:MSetMofMsimilarMproductMmodels

1M-MSelectMSubset
ofMproducts

4M-MAddMfragmentM
constraints

3M-MSelectM
seedMfragment

ProductM1 ProductM2 ProductM3 ProductM4

ProductM1

ProductM2

ProductM3

2M-MSelectM
seedMproduct

IHDSLMMetamodel

Induction
HobInverter

PowerM
Manager

Inductor

ProviderM
channel

ConsumerM
channel

Figure 4: Step 1 - Narrow the input

As part of the first step, domain experts are in charge
of four tasks: (1) selecting a subset of products from the
input, (2) selecting one product as the seed product, (3)
selecting one fragment from that product as seed fragment,
and (4) narrowing the scope of the input to reduce the costs
in further steps of the process.

The selection of the seed model and fragment is the most
basic way of narrowing the input and the one that has the
biggest impact on the results of the process. The resulting
model patterns will include the selected fragment or slight
mutations of it (i.e., a set of model patterns related to the se-
lected fragment). Taking into account the knowledge of the
domain (and the results of previous iterations) the humans
select a fragment model from one of the product models used
as input. The selection of the model fragment is done based
on the intuition of what parts of the product model could
be reused across several product models.

In addition, the knowledge of the humans about the do-
main and the product models enables them to have an accu-
rate idea of the model fragments that they expect to obtain
from this process. Taking into account this knowledge, the
scope can be further refined in two different ways:

Input models: When a model is created following clone-
and-own approaches [9], one of the existing models serves as
the base for the new one. However, the model used as base in
each case may vary. This practice could lead to a situation
where there are different groups of models (which are not
explicitly defined) that have a closer relation. If the humans
are aware of the existence of these kinds of groups among
the set of models, they can take advantage of it, scoping the
iteration to just a subset of the input models.

Metamodel level: In order to narrow the set of potential
fragments, the humans can indicate which meta-elements
must be included in or excluded of from the resulting frag-
ments. The process can be tailored so that each functional
unit of the product is formalized as part of a different model
pattern by defining constraints at the metamodel level. For

instance, when applying the approach with large teams it is
common to have experts of different parts of the domain, en-
abling each expert to work only with the subset of the model
that the expert knows best, limiting the model patterns to
just that subset.

Figure 4 shows a running example of the first step of the
process, the scope of the input. A set of 4 products is pro-
vided as input (Product 1 - Product 4). First, the humans
select a subset of the input (Product 1, Product 2 and Prod-
uct 3); Product 4 is discarded since it is an odd product (it
mixes induction with glass-ceramic radiant heaters). Then,
the product model seed and the model fragment seed is se-
lected from the subset of the input models. In this case, an
inductor from Product 2 is selected; the humans are aware
that inductors are present in all IHs and can be turned into a
model pattern. Finally, a constraint is defined at the meta-
model level and the resulting model patterns must comply
with this constraint. In this case, the model patterns will
not contain inverters to avoid the mix between power control
and inductors in the same model pattern.

4.2 Step 2 - Mutate seed fragment
This step is performed automatically and takes as input

the product model seed and the fragment seed selected in
the previous step and the configuration of the mutations
(if any). In this step, some potential fragments (which are
closely related to the seed) are obtained. By doing this, the
humans can evaluate whether the selected seed is a relevant
fragment or there is another mutation that is more suitable.

The mutations are performed taking into account the frag-
ment seed and the product model seed. Taking the seed
fragment as starting point, some model elements are added
to or removed from the seed fragment. However, the ele-
ments added during mutations are obtained from the seed
product model, guaranteeing that the generated fragment is
part of the seed model. In other words, apart from the se-
lected seed fragment, the process proposes other variations
of that fragment that are also part of the product model.

In order to obtain the mutations, the process performs
additions, substractions, and combinations of both. In ad-
dition, the number and type of mutation operations can be
configured or restricted to tailor the process towards the
desired potential fragments. The number of chained muta-
tions performed can also be adjusted to restrict the number
of results.

Figure 5 shows the application of the step. A directed
graph is built with all the potential fragments obtained by
the mutations. Each node (circles) represents a potential
fragment while each arc (arrows) represents one mutation
(both directions, additive or substractive mutations). The
nodes are classified by levels so that the process can be re-
stricted to calculating fragments up to a fixed depth. The
top part of Figure 5 shows the model fragment selected as
seed (labeled as F1). It corresponds to Level 0 since no
mutations are needed. Level 1 shows the fragments that
can be obtained by one mutation; which in this case is F2,
the result of adding the power manager to the original frag-
ment. In this example, we are only considering the addition
of elements that are connected in the seed model. We have
restricted the generation of potential fragments up to Level
4, (i.e., fragments that can be obtained chaining up to four
mutations). Note that some potential fragments (such as F5
or F8) are marked with a red crossed circle (this is part of

Level 0

Level 1

Level 2

Level 3

Level 4

F3 F4 F5

F6 F7 F8

F9 F10 F11

F1

F2

Seed product

Seed
fragment

Figure 5: Step 2 - Mutate seed fragment

the prune out explained in the next step).
This step only produces fragments that are part of the

original model. It does not create new elements; it just pro-
poses variations of the seed fragment that are actual frag-
ments of the original model. Note that all potential frag-
ments produced (F1 to F11) are part of the seed product
model. The elements added during mutations are obtained
from the seed product model, so the resulting fragment is a
subset of the seed product model.

As a result of the application of several chained muta-
tions (addition or substractions), duplicated fragments may
be produced. However, the process keeps track of the frag-
ments that have already been produced to avoid duplication
of work and results. Therefore, this step produces a set of
potential fragments, including the seed fragment that was
selected in the first step.

4.3 Step 3 - Prune out potential fragments
This step is performed automatically and prunes out the

potential fragments calculated in the previous step, discard-
ing the fragments that do not fulfill the constraints provided
in the first step. In other words, for each of the potential
fragments calculated, the process checks wether the con-
straints are satisfied or not; if not, the potential fragment is
removed from the set. As a result, the set of potential frag-
ments that will be used in further steps is reduced, avoiding
the inclusion of undesired fragments in the result of the pro-
cess.

In Figure 5, some of the potential fragments calculated
contain inverters, but the humans decided to discard poten-
tial fragments containing inverter elements. Consequently,

the potential fragments containing model instances of that
metamodel element must be pruned out. In this example,
since F5, F7, F8, F10, and F11 contain inverters they are
discarded (see the bottom right corner of Figure 5).

By applying constraints to the resulting fragments, the
humans can contribute their knowledge to the process. For
instance, in this example, the humans are aware that there
should be a reusable model fragment containing the induc-
tor, but they are not totally sure about the exact elements
that are part of the fragment. However, they know that the
inverter belongs to another part of the system and want to
prevent the inverter from being included in the model pat-
terns that are calculated during this iteration. By means of
this step, the potential fragments have been reduced from
11 to 6, simplifying further steps of the process. As a result,
a single set containing all the potential fragments that meet
the scope requirements provided by the humans is produced.

4.4 Step 4 - Extract model patterns
This step is performed automatically, and the input is

the set of potential fragments that are relevant for the hu-
mans (from the previous step) and the subset of products
provided by the humans as part of step 1. As output, this
step produces a set of model patterns that is annotated with
information about its reusability among the subset of prod-
ucts. A model pattern can be seen as a variation point (and
the alternatives for that variation point) that can be reused
several times.

First, the placement signature is calculated for each of the
potential fragments; that is, we calculate the boundary in-
formation between the potential fragment and the rest of the
seed model. Particularly, we calculate the set of incoming
and outgoing relationships regarding the potential fragment
and the seed model. This placement signature can be used
to identify spots in the models where that potential fragment
can be used.

Then, we match each of the placement signatures against
each product model from the input subset. By doing so,
we determine wether a particular placement can be found in
each product model. If the match is positive, the fragment
of that particular product that matches with the placement
signature is extracted. Thus, each of the placements’ signa-
tures can be seen as a variation point (that is not bounded
to a particular product) and each of the fragments extracted
can be seen as an alternative for that variation point.

Finally, for each model pattern (placement signature and
alternative fragments), the process computes the number
of times it can be applied in the subset of products (i.e.,
the number of times that the match between the placement
signature and the product is positive and the number of
times that each of the fragments is used in the products).

Figure 6 shows the application of this step to the running
example. Each row shows information for one of the rele-
vant potential fragments obtained. The first column shows
the potential fragment, and the second column shows the
placement signature calculated for each potential fragment.
The rest of the columns show the matching against each of
the products from the subset provided in step 1.

For instance, the first row of Figure 6 shows the seed frag-
ment selected by the humans (F1, the first column), the
placement signature corresponding to that fragment (the
second column) and the matching of the placement signa-
ture with the product models. In this case, another potential

Product 1 Product 2 Product 3

Placement
signature

F1

Potential
fragment

F2

F6

F3

F4

F9

Figure 6: Step 4 - Extract model patterns and oc-
currences

placement (F9, the first column) produces the same place-
ment signature as F1. Not all placement signatures match
all products; for instance, the placement signature corre-
sponding to F4 (the last row), does not match Product 1.

As a result of this step, a model pattern is generated for
each of the potential fragments used as input (i.e., the calcu-
lated placement signature, the alternative fragments match-
ing that placement extracted from the product models, and
the information about occurrences for each of the fragments
and the placement itself).

4.5 Step 5 - Select model patterns
In this step, the model patterns obtained are presented

to the humans so they can choose the ones that are most
relevant for them based on their knowledge and the infor-
mation provided by the approach. Each model pattern is
presented with the information about the occurrences in the
product models gathered in the previous step (i.e., the num-
ber of positive matches of the placement signature among
the products and the number of occurrences for each of the

10/3 10/10

10/3 3/10 4/10

6/3 3/6

Placement
signature

Alternative Fragments
extracted

occurrences

Model
Pattern

1

Model
Pattern

2

5/3

Model
Pattern

3

Model
Pattern

4

2/5

2/6

occurrences

occurrences

occurrences

3/10

1/6

3/5

Figure 7: Step 5 - Select Model Patterns

alternative fragments extracted).
Figure 7 shows the application of this step to the running

example. Each row shows information about a model pat-
tern. The first column presents the placement signature of
the model pattern and the rest of the columns show each of
the extracted alternative fragments that match that particu-
lar placement signature. The number below each placement
signature represents the number of possitive matches out
of the total number of products used as input. The num-
ber below each alternative fragment represents the number
of occurrences of that particular fragment out of the total
number of matches of the placement signature.

For instance, the first row shows the model pattern se-
lected by default. The pattern has been identified ten times
in the three products analyzed and is the one that has the
most fragment alternatives with three possibilities. There-
fore, it has been selected as the default pattern by the pro-
cess. However, even though this model pattern is the one
that is most frequently repeated, the humans do not rec-
ognize all the alternative fragments presented because they
are incomplete (they do not contain all the inductors), so
it is discarded. The second row shows a model fragment
that holds inductors; it has been identified six times and
also has three different alternatives. In fact, each alterna-
tive contains the whole group of inductors connected to a
power manager, as the humans were expecting. The third
row shows the model pattern containing the selected seed
fragment; However, even though it is matched ten times in
the models provided, it does not present alternatives and
would be considered as a common part of the model by tra-
ditional reverse engineering model differencing approaches.

Taking into account the reusability information, the hu-
mans select the model pattern that best fits their under-
standing of the domain. For instance, they can stick to
the initial seed selection (model pattern 3), but some of the
model patterns provided may be more accurate and relevant

for them (like model pattern 2). The model pattern presen-
tation (along with the reusability information) enables the
humans to reason about the fragments, thus facilitating the
task of determining which one should be selected.

4.6 Loop
The five-step process enables the extraction of one model

pattern and can be repeated until all the recognizable units
that conform to the models have been extracted. In ad-
dition, already extracted model patterns may be extended
to include new replacements that were not present in the
original iteration.

For instance, a new iteration could be run (taking into
account the model patterns already selected) to extract an-
other model pattern holding the inverters. Similarly, an it-
eration to refine an existing model pattern could be run,
including new models that were not part of the original it-
eration (discarded during the step 1) and resulting in a re-
finement of the former pattern.

The number of iterations needed depends on the domain
where it is being applied and the amount of variability that
must be formalized. In addition, some of the iterations will
not produce a relevant model pattern and will need to be
refined until the desired model pattern is obtained.

5. CASE STUDY: INDUCTION HOBS DO-
MAIN

This section presents our experience building a Product
Line from an existing set of products from our industrial
partner (BSH group). This company is the largest manufac-
turer of home appliances in Europe and one of the leading
companies in the sector worldwide. Their induction division
has been producing induction hobs (the brand portfolio is
composed by Bosch and Siemens among others) over the last
15 years.

In order to implement the approach, several technologies
are involved. Specifically, CVL can be applied to MOF based
models, so the approach is developed within the Eclipse en-
vironment using the Ecore implementation and the Eclipse
Modeling Framework (EMF) 1. The mutations of the seed
fragment (Step 2, Section 4.2) are implemented based on
ecore-mutator 2, which is an EMF-based framework to mu-
tate EMF models that conform to an Ecore metamodel. The
comparisons among models (Step 4, Section 4.4) are imple-
mented based on EMF-Compare 3,which is an Eclipse frame-
work to compare instances of EMF models.

As a first attempt, we applied a reverse engineering model
differencing approach [11, 15] and followed up with an eval-
uation of the obtained fragments that revealed the problem
presented in Section 3. Then, we applied the approach pre-
sented in this paper, a human-in-the-loop approach to iden-
tify and extract conceptualized model patterns as reusable
variation points. Finally, the patterns were used to formal-
ize the variability among the set of existing products and
incorporated to the Product Line supporting tool to enable
the reuse of the patterns when creating new products.

The model patterns extracted following the approach in-
clude the model information necessary to create CVL vari-

1http://www.eclipse.org/modeling/emf/
2https://code.google.com/a/eclipselabs.org/p/ecore-
mutator/
3https://www.eclipse.org/emf/compare/index.html

ation points. Specifically, a pattern contains the placement
signature of a fragment and a set of matching fragment al-
ternatives to replace it. Therefore, the patterns can be used
to formalize the variability among a set of products.

We have used the model patterns identified and extracted
to improve our industrial’s partner tool, enabling the for-
malization of variability based on those patterns. For each
model pattern, we have created (1) a custom editor that en-
ables the creation of new replacements for a particular model
pattern, (2) a fragment library that holds all the replace-
ments identified throughout the process for that particular
model pattern. The resulting tool can be seen here 4.

5.1 Application of our approach
The initial input of the approach is a set of 46 induction

hob models, corresponding to products that are currently
being sold or that will be launched to the market in the
immediate future. The set of models were developed follow-
ing a clone and own [9] approach, where each IH has been
modeled modifying a copy of the most similar IH present in
the collection. Therefore, the variability present among the
models has not been explicitly defined, resulting in a set of
models with implicit variability among its members.

However, there is implicit knowledge among our indus-
trial partner’s engineers of the traceability of the clones per-
formed. In other words, the engineers are aware of the ex-
istence of groups of models that may have more similarity
among them since they share a common ancestor product
used as base. Therefore, we used this information to per-
form the division of the input set into smaller subsets.

With regard to the products complexity, each of the IH
models is composed of more than 500 elements, including
around 100 class elements on average. For each IH, there
are around 1029 different potential fragments composed of
more than one class element. The magnitude gives the idea
that manually processing this amount of data may be cum-
bersome, error prone, and could not be done in a reasonable
time.

For the application of the approach, we had the collabora-
tion of the engineers from the firmware department; they are
experts in developing firmware for induction hobs and are
in charge of maintaining and evolving the firmware used in
the IH. Those engineers are the owners of the induction hob
models and provided their knowledge to tailor the approach.

We performed several iterations looking for model pat-
terns, but not all of them ended up in the extraction of a
model pattern. Some of them were used as the base for
further refinement. For instance, we performed several it-
erations looking for a model pattern that held groups of
inductors (presented as running example in Section 4). We
started with a subset containing the most basic IHs and with
a very conservative set of constraints. With the information
of that iteration, we refined the constraints until we obtained
a pattern that satisfied our industrial partner’s engineers.

Then, we performed new iterations, adding more induc-
tion hobs to the subset, in order to find new alternatives for
the model pattern previously extracted. We added induc-
tion hobs that held each of the different group of inductors
present in the products. Finally, we performed several extra
iterations in order to confirm that the extracted model pat-
tern was correct and contained all the alternatives desired.

4www.carloscetina.com/variabilitytool.htm

When looking for the inverter groups, we followed a sim-
ilar strategy, performing several iterations and refining the
search. However, the subsets employed to search for this
model pattern were totally different (as suggested by our in-
dustrial partner engineers). Even more, the domain experts
that took part in the process were also different (since they
had more knowledge of this specific part of the system).

As part of the application of the approach, we conducted a
usability evaluation, including satisfaction tests, interviews,
and focus groups, where the engineers could talk freely about
the process and the fragments that were being identified.
Although the usability evaluation is out of the scope of this
work, we outline some of the findings below.

Specifically, we wanted to know more about the rationale
behind the selection of one model pattern over the others.
The approach proposes a model pattern based on the num-
ber of times it is reused across the products (as other au-
tomatic approaches do), but the proposed pattern was not
always the chosen one. We identified three main reasons for
not choosing the proposed model pattern:

Odd elements in the fragments: It is not clear before-
hand how resulting fragments are going to be, but there are
some elements that are not expected to be part of the model
pattern. However, odd elements can be incorporated by au-
tomatic approaches due to the number of occurrences (as in
the motivation of the approach example). In the presented
approach, the domain experts can state that odd elements
pertain to different parts of the system and choose to have
them in separate fragments. When browsing the results of
the approach, the domain experts can compare among pat-
terns with different levels of granularity, easing the task of
determining which elements should be part of the fragment
and which ones should not.

Deprecated elements: Another reason for selecting a
model pattern that is different from the one proposed is the
inclusion of deprecated elements as part of the model pat-
tern. Thus, the default pattern proposed has a high number
of alternatives for the placement, but the humans know that
those elements are going to disappear in further versions.
Therefore, they prefer to not give them too much relevance
as they will not be part of future products anymore.

Future developments: Sometimes, there is a model
pattern that is treated as irrelevant by the approach due to
its low number of occurrences or alternatives. However, this
pattern was relevant for the humans because they knew that
in future developments that element would be split into sev-
eral elements. Therefore, they wanted to include it among
the model patterns selected. For instance, in Figure 7, the
Model Pattern 3 presents no alternatives, but the engineers
knew that different kind of inductors would be developed in
the future, so they wanted to include that model pattern.

6. RELATED WORK
Some works focus on transforming legacy products into

Product Line assets. For instance, in [5], the authors present
their experience in the Digital Audio & Video Domain. In
[6], the authors explain their experience reengineering the
Image Memory Handler from Ricoh’s products into a SPL.
In [8], the authors report on their experience applying an ex-
tractive approach to a set-top box manufacturing company.
These approaches extract variability from legacy products in
industrial environments, but they focus on capturing guide-
lines and techniques for manual transformations. In con-

trast, our goal is to introduce automation into the process
while taking advantage of the knowledge of the domain ex-
perts through a human-in-the-loop extractive approach.

Other works focus on the automation of the extraction
process, obtaining the variability from legacy products by
comparing the products with each other. In [14] the authors
present an approach to mine family models from block-based
models. The similarity between models is measured follow-
ing an exchangeable metric, taking into account different at-
tributes of the models and can be fine-tuned depending on
the application. Then, the approach is further refined [4] to
reduce the number of comparisons needed to mine the fam-
ily model.In [11], the authors propose a generic framework
for mining legacy product lines and automating their refac-
toring to contemporary feature-oriented SPLE approaches.
They compare the elements of the input with each other,
matching those whose similarity is above a certain thresh-
old and merging them together. In [15], the authors pro-
pose a generic approach to automatically compare products
and extract the variability among them in terms of a CVL
variability model. These two approaches automatically turn
identical elements into common parts of the product line,
similar elements into alternative parts, and unmatched el-
ements into optional parts. However, fully automating the
decision of what should be reused and how it should be done
reduces the flexibility of the approaches. In contrast, our
work enables the domain experts to decide which elements
should be formalized as part of the SPL based on the re-
sults of the comparisons, instead of performing them as an
automatic output of the comparisons.

Finally, some research efforts focus on the source code of
the products in order to extract the variability model. For
instance, the authors in [12] present a tool-supported ap-
proach for reverse engineering feature models from different
sources, such as makefiles, preprocessor declarations, and
documentation. They focus on the crucial point of identify-
ing parents and combine logic formulas and descriptions as
complementary sources of information. In addition, the au-
thors in [16] propose an approach to identify features from
the source code of products. They reduce the noise in-
duced by spurious differences of various implementations of
the same feature. Then, the process produces feature can-
didates that are manually pruned (to remove non-relevant
candidates). The approach is further extended in [17] to in-
troduce ExtractorPL, an automated technique that infers a
full implementation of a SPL from the given code. However,
these approaches focus on the source code level of the prod-
ucts, while our approach is applied at the model level which
enables domain experts to contribute their knowledge to the
identification and extraction of reusable model fragments.

7. CONCLUSION AND FUTURE WORK
As part of this work, we have identified the need for an

approach to identify and extract conceptualized model pat-
terns from a set of similar product models that match the
expectations of the domain experts. We have proposed a
human-in-the-loop approach that enables domain experts to
contribute their knowledge to the identification and extrac-
tion process. In addition, we have implemented the pre-
sented approach within the Eclipse environment. We have
validated the approach with our industrial partner, extract-
ing the model patterns that are present in a set of real in-
duction hob models. We have outlined the rationale followed

by our industrial partner to prefer one model pattern over
the rest (even though it is reused fewer times among the
models). Finally, we have applied the resulting model pat-
terns to a modeling tool, enabling the evolution (creating
new fragment alternatives) and reutilization of the model
pattern.

The identification of model patterns through a human-in-
the-loop approach has provided model fragments that are
recognizable by the SPL engineers. The humans involved
in the extraction process could contribute their knowledge
to the process, tailoring it to produce the desired model
fragments and thereby formalizing the variability among a
set of products.

There are some open questions remaining about the pre-
sented approach, such as how many model patterns should
be extracted, what model pattern granularity works best,
or if nested model patterns could benefit the process. To
address those open questions, we are currently applying our
approach in CAF 5, an international company that builds
and deploys railway solutions around the world. Similarly
to our industrial partner, they need a solution to formalize
the variability that exists among their products.

The use of a human-in-the-loop approach seems to be suc-
cessful in identifying and extracting model patterns, as it
enables the domain experts to immerse themselves in the
process and contribute their knowledge. As a result, the
fragments represent recognizable units that are extracted
and fulfill the expectations of the engineers involved. As one
of our industrial partner engineers reported: ”The first frag-
ment library (reverse engineering model differencing) was
generic, but the new fragment library (our model patterns
approach) was made just for us”.

8. REFERENCES
[1] M. Acher, A. Cleve, P. Collet, P. Merle, L. Duchien,

and P. Lahire. Extraction and evolution of
architectural variability models in plugin-based
systems. Software & Systems Modeling, pages 1–28,
2013.

[2] P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley Professional,
3rd edition, Aug. 2001.

[3] Ø. Haugen, B. Møller-Pedersen, J. Oldevik, G. Olsen,
and A. Svendsen. Adding standardized variability to
domain specific languages. In Software Product Line
Conference, 2008. SPLC ’08. 12th International,
pages 139–148, Sept 2008.

[4] S. Holthusen, D. Wille, C. Legat, S. Beddig,
I. Schaefer, and B. Vogel-Heuser. Family model mining
for function block diagrams in automation software. In
Proceedings of the 18th International Software Product
Line Conference: Companion Volume for Workshops,
Demonstrations and Tools - Volume 2, SPLC ’14,
pages 36–43, New York, NY, USA, 2014. ACM.

[5] K. Kim, H. Kim, and W. Kim. Building software
product line from the legacy systems ”experience in
the digital audio and video domain”. In Software
Product Line Conference, 2007. SPLC 2007. 11th
International, pages 171–180, Sept 2007.

[6] R. Kolb, D. Muthig, T. Patzke, and K. Yamauchi.
Refactoring a legacy component for reuse in a software

5http://www.caf.es/en

product line: A case study: Practice articles. J. Softw.
Maint. Evol., 18(2):109–132, Mar. 2006.

[7] C. Krueger. Easing the transition to software mass
customization. In F. van der Linden, editor, Software
Product-Family Engineering, volume 2290 of Lecture
Notes in Computer Science, pages 282–293. Springer
Berlin Heidelberg, 2002.

[8] H. Lee, H. Choi, K. Kang, D. Kim, and Z. Lee.
Experience report on using a domain model-based
extractive approach to software product line asset
development. In Formal Foundations of Reuse and
Domain Engineering, volume 5791 of Lecture Notes in
Computer Science, pages 137–149. Springer Berlin
Heidelberg, 2009.

[9] N. Pham, H. Nguyen, T. Nguyen, J. Al-Kofahi, and
T. Nguyen. Complete and accurate clone detection in
graph-based models. In Software Engineering, 2009.
ICSE 2009. IEEE 31st International Conference on,
pages 276–286, May 2009.

[10] K. Pohl, G. Böckle, and F. Van Der Linden. Software
product line engineering: foundations, principles, and
techniques. Springer, 2005.

[11] J. Rubin and M. Chechik. Combining related products
into product lines. In J. de Lara and A. Zisman,
editors, Fundamental Approaches to Software
Engineering, volume 7212 of Lecture Notes in
Computer Science, pages 285–300. Springer Berlin
Heidelberg, 2012.

[12] S. She, R. Lotufo, T. Berger, A. W ↪asowski, and
K. Czarnecki. Reverse engineering feature models. In
Proceedings of the 33rd International Conference on
Software Engineering, ICSE ’11, pages 461–470, New
York, NY, USA, 2011. ACM.

[13] A. Svendsen, X. Zhang, R. Lind-Tviberg, F. Fleurey,
Ø. Haugen, B. Møller-Pedersen, and G. K. Olsen.
Developing a software product line for train control: a
case study of cvl. In 14th international conference on
Software product lines, SPLC’10, Berlin, Heidelberg,
2010. Springer-Verlag.

[14] D. Wille, S. Holthusen, S. Schulze, and I. Schaefer.
Interface variability in family model mining. In
Proceedings of the 17th International Software Product
Line Conference Co-located Workshops, SPLC ’13
Workshops, pages 44–51, New York, NY, USA, 2013.
ACM.

[15] X. Zhang, Ø. Haugen, and B. Møller-Pedersen. Model
comparison to synthesize a model-driven software
product line. In Software Product Line Conference,
2011 15th International, pages 90–99, Aug 2011.

[16] T. Ziadi, L. Frias, M. da Silva, and M. Ziane. Feature
identification from the source code of product
variants. In Software Maintenance and Reengineering
(CSMR), 2012 16th European Conference on, pages
417–422, March 2012.

[17] T. Ziadi, C. Henard, M. Papadakis, M. Ziane, and
Y. Le Traon. Towards a language-independent
approach for reverse-engineering of software product
lines. In Symposium on Applied Computing, SAC ’14,
2014.

