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ABSTRACT
The aim of domain engineering process is to define and re-
alise the commonality and variability of a Software Prod-
uct Line. In the context of a family of models, spotting
the commonalities and differences may become cumbersome
and error prone as the number of models and its complex-
ity increases. This work presents an approach to automate
the formalization of variability in a given family of models.
As output, the variability is made explicit in terms of Com-
mon Variability Language. The model commonalities and
differences are specified as placements over a base model
and replacements in a model library. The resulting Software
Product Line (SPL) enables the derivation of new product
models by reusing the extracted model fragments. Further-
more, the SPL can be evolved by the creation of new models,
which are in turn automatically decomposed as model frag-
ments of the SPL. The approach has been validated with
our industrial partner (BSH), an induction hobs company.
Finally, we present five different evolution scenarios encoun-
tered during the validation.

CCS Concepts
•Software and its engineering → Software product
lines;

Keywords
Reverse Engineering, Model-based Software Product Lines,
Variability Identification, Common Variability Language

1. INTRODUCTION
A Software Product Line (SPL) enables a planned reuse of

software components into products within the same scope.
The software product line engineering paradigm separates
two processes; domain engineering (where the variability of
the SPL is defined and realized) and application engineering

(where specific software products are derived by reusing the
variability of the SPL) [9].

The proactive strategy for the adoption of an SPL is tra-
ditionally regarded as the typical approach. Following this
strategy, the assets of the SPL are developed prior to the
derivation of any product [6]. However, a recent survey re-
veals that only a minority of industrial SPLs are planned
proactively, being the extractive approach more used (where
existing products are re-engineered into an SPL) [3].

In particular, in model-based SPLs, the members of the
SPL are specified in the form of models. However, in the
context of a family of models, manually spotting the com-
monalities and variability among the models may become
cumbersome and error prone, particularly as the number of
models and its complexity increases.

There are several research efforts towards automating the
formalization of the variability existing among products [1,
2, 11, 14]. However, those works are mainly based on Fea-
ture Models extraction and do not properly support vari-
ability formalization by means of the Common Variability
Language (CVL). In addition, existing works [10,12] are not
designed with the evolution of the SPL on mind. The evo-
lution of SPLs should be considered as the normal case, not
as an anomaly [4].

This work presents Model Family to SPL, an approach
to automate the variability formalization of a given family
of models into an SPL. As output, the variability is made
explicit in terms of CVL [5]. The model commonalities are
formalized as a base model and variabilities are specified
as placements over the base model and replacements in a
model library. In addition, the resulting SPL can be further
evolved to include new products. In particular, our approach
enables the automatic decomposition of new product models
into model fragments that are incorporated to the model
library.

We have validated the approach with our industrial part-
ner (BSH), the largest manufacturer of home appliances in
Europe. Their induction division has been producing induc-
tion hobs (under the brands of Bosch and Siemens among
others) over the last 15 years. We have applied the pre-
sented approach to a set of their induction hobs models to
build an SPL to generate the firmware for their products.
In addition, we present the five evolution scenarios faced by
our industrial partner when evolving the SPL to incorporate
new product models.

The rest of the paper is structured as follows: next section
introduces some background about the CVL and our indus-
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trial partner’s domain. Section 3 presents our approach for
extracting variability from a set of product models. In sec-
tion 4 we present our experience applying the approach to
our industrial partner’s domain, focusing on the evolution
scenarios encountered. Section 5 discusses related work. Fi-
nally we conclude the paper.

2. BACKGROUND
This section presents the main concepts of the Domain

Specific Language (DSL) used to specify Induction Hobs
(hereinafter referred as IHs) and the CVL. Both, the In-
duction Hob Domain Specific Language (IHDSL) and CVL
are the techniques which we use to describe the model-based
SPL of our industrial partner.

2.1 Induction Hob Domain Specific Language
(IHDSL)

The IHDSL metamodel used by our industrial partner is
composed of 46 metaclasses, 74 references among them and
more than 180 metaclass properties. However, in order to
gain legibility and due to intellectual property rights con-
cerns, in this paper we use a meaningful simplification of it
(see top-left corner of Figure 1).

Induction Hobs use electromagnetic induction phenomenon
to cause the generation of heat on the cookware that is then
transferred to the food. Induction hobs are composed of sev-
eral elements, being the most important the inverter (where
the energy is modulated) and the inductor (where the elec-
tromagnetic field is generated).

Top-right corner of Figure 1 shows the graphical repre-
sentation of the IHDSL. The big rectangle represents the IH
itself. It is composed of two power modules (vertical rect-
angles at both sides of the IH) and each of them holds two
inverters (squares). Inverters are connected to the inductors
(circles). The number inside each inductor represents the
diameter of the inductor. The line that connects inverters
and inductors represent the channel, which transfers energy
from the inverter to the inductor. The user interface of an
IH has buttons to configure the power level of each inductor.
In top-right corner of Figure 1, the horizontal rectangle at
the bottom of the IH represents the user interface. It has
ports to connect each inductor with his button.

In order to gain legibility through the rest of the paper we
will focus on the variability regarding the inductor. How-
ever, there are several parts of the induction hobs that are
subject to variation such as the inverters and how are con-
nected with the inductors. Our work with our industrial
partner has covered the variability of the whole induction
hob although only a subset is presented.

2.2 Common Variability Language (CVL)
CVL is a DSL for modeling variability in any model of

any DSL based on Meta-Object Facility (MOF), an OMG‘s
specification to define a universal metamodel for describing
modeling languages. CVL defines variants of the base model
by replacing parts of the base model by Model replacements
found in a library. Figure 1 presents an overview of CVL.

The base model is a model described by a given DSL
(here: IHDSL) that serves as the base for different variants
defined over it. In CVL the elements of the base model
subject to variations are the placement fragments (here-
inafter placements). A placement can be any element or set
of elements that is subject to variation.
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Figure 1: CVL Overview

To define alternatives for a placement we use a replace-
ment library, a model described in the same DSL as the
base model that will serve as a base to define alternatives for
a placement. Each one of the alternatives for a placement is
a replacement fragment (hereinafter replacement). Simi-
larly to placements, a replacement can be any element, or set
of elements, that can be used as variation for a replacement.

CVL defines variants of the base model by means of frag-
ment substitutions (hereinafter substitution). Each sub-
stitution references to a placement and a replacement and
includes the information necessary to substitute the place-
ment by the replacement. That is, each placement and re-
placement is defined along with its boundaries, which indi-
cate what is inside or outside each fragment (placement or
replacement) in terms of references among other elements of
the model. Then, the substitution is defined with the infor-
mation of how to link the boundaries of the placement with
the boundaries of the replacement. When a substitution is
executed, the base model (with a placement substituted by a
replacement) continues to conform to the same metamodel.

Each resolution model represents one variant of the
base model. The resolution model references a set of sub-
stitutions that needs to be executed in order to create the
variant. When a resolution model is materialized, produces
a resolved model, which is a variant of the base model where
the substitutions defined by the resolution model have been
executed. For further details about the inner workings of
CVL see [5].

3. MODEL FAMILY TO SPL
This section presents Model Family to SPL, our software

process capable of turning the implicit variability existing
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among a given set of similar models into explicit variabil-
ity. In particular, Model Family to SPL takes a product
family modeled in any DSL (conforming to MOF) as input
and generates a CVL based SPL where commonalities and
variabilities among the model family are explicitly defined.
That is, each of the models of the given model family are
expressed in terms of CVL, resulting in an SPL capable of
generating all the products from the given model family.

Figure 2 shows an example of execution of Model Family
to SPL. Top part shows the input of the process, the model
family. Bottom part shows the output of the process, an
SPL formalized by CVL models. Middle part shows how
the execution of the processes is performed. Product Fam-
ily to SPL is composed of two sub-processes, Select Base
Model and Product Model to SPL. Select Base Model
analyses the given family of models and determines which
one of them is more suitable to be the base model. Once the
base model is selected, Product Model to SPL compares a
product model from the model family with the base model
and updates CVL models to include the product into the
variability definition. Product Model to SPL formalizes the
variability of each given product model and incorporates it
into the SPL

3.1 Select Base Model
The selection of the base model phase designates the base

model that is used through the rest of the process. In this
example we use the number of differences between the base
model and the rest of the model family to determine the base
model. Using the number of differences among the models
produces simpler CVL models in terms of the number of sub-
stitutions needed to formalize each model. However, other
values can be used to select the base model, the rest of the
process can be executed no matter which base model is se-
lected.

The first process executed as part of the Model Family to
SPL is Select Base Model. Figure 2 shows an example of the
execution of the process (top part). In addition, Figure 3
shows the state machine associated to the Select Base Model
process (top part). Given a Product Model Family, the pro-
cess Select Base Model takes the model family as input and
proceeds as follows:

1.1 Compare. All the models from the model family (IH1,
IH2 and IH3) are input into the compare operation.
The models are paired two by two in all the possi-
ble combinations (the order doesn’t matter) and then
each pair is compared. The comparison is performed at
element level, matching one element from first model
with another from the second model. The process con-
tinues comparing pairs until there are no more pairs.
The result is a set of differences between each pair of
models processed. Figure 2 shows the result of the
operation. For instance, the comparison between IH1
and IH2 produces a set of 4 diffs, because the four in-
ductors of IH1 are different from the inductors of IH2.

1.2 Aggregate. The number of differences among each
model and the rest of the models from the model fam-
ily is added together. This is done for each of the
models of the model family (IH1, IH2 and IH3). This
aggregate value indicates the total number of differ-
ences among a given model and the rest of the prod-
uct models. That is, the value indicates the number
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Figure 2: Model Family to SPL execution

of differences that would need to be addressed if that
particular model were the base model. For instance,
if IH1 were the base model a total number of 7 differ-
ences would need to be addressed (4 differences with
IH2 and 3 differences with IH3).

1.3 Select. When the aggregated values have been cal-
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Figure 3: Select Base Model process and Product Model to SPL process state machines

culated for all the models, the model with the lowest
value is designated as the base model. Therefore, it
is included into the SPL, as it will be the base for
all the products generated with the SPL. The model
designated as base model (IH3 in this case) must be
derivable from the SPL, therefore, a resolution model
capable of generating the base model is created (Res-
olution IH3). As IH3 is the base model itself, there is
no need of substitutions and Resolution IH3 is empty.

3.2 Product Model to SPL
After executing the first process (the base model has been

designated), the second phase of the process starts, the pop-
ulation of the SPL. The population consists of executing the
process Product Model to SPL for each of the product mod-
els of the input (except for the base model, that has been
already included into the SPL).

The Product Model to SPL process, performs compare op-
erations between each of the models from the given model
family and the base model, using the same compare opera-
tion as in the previous process. However, this time we shall
create and update the CVL models that define each of the
differences among the model family as sets of placements,
replacements, substitutions and resolutions.

Figure 2 shows an example of the execution of the Product
Model to SPL process for IH1 (middle part, below Select
Base Model process) and a snapshot of the SPL that is being
constructed. In addition, Figure 3 shows the state machine
for Product Model to SPL process (bottom part). Given a
product model and a Base Model (designated by previous
process), Product Model to SPL proceeds as follows:

2.1 Compare. The first model from the input model
family (IH1) is compared with the base model. The
result is a list of differences between the two mod-
els, diffset(Base Model,IH1). Each difference has two
elements, the from element references elements from
the base model and the to element references elements
from the other compared model (IH1 in this case).
They reference the elements spotted as different by
the compare operation. For instance, diff1.from el-
ement references the inductor of size 15 of the base
model while diff1.to element references the inductor of

size 21 of the IH1 model. It is important to notice
that the difference not only holds the element that is
different (inductor), but also the references involving
that element (in this case references from the button
and from the inverter).

2.2 Placement. The process checks if a placement hold-
ing exactly the same elements of diff1.from exists in
the Placement Fragments model. As it does not exist,
the process defines a placement over the base model
(Placement 1). The references involving the differing
element (the inductor) are defined as the boundaries of
the placement (Boundary 1 and Boundary 2). If the
placement is already defined in the Placement Frag-
ments model it is not created again (see bottom of
Figure 3).

2.3 Replacement. Once the placement is retrieved (cre-
ated a new one or retrieving the existing one from the
Placement Fragments model), the process continues
with the replacement. Similarly as in previous step,
the process checks if a replacement holding the infor-
mation from diff1.to exists in the Replacement Frag-
ments model. It does not exists, therefore it needs to
be created, but this time will be defined over a model
of the Replacements Library. To accomplish that, the
model being processed (IH1) is copied into the frag-
ments library and then a replacement is defined over
it (Replacement 1). As with placement fragments, the
references involving the differing element (the induc-
tor) are defined as the boundaries of the replacement
(Boundary 3 and Boundary 4). If the replacement is
already defined in the Replacement Fragments model,
there is no need to create a new one as indicated by
the state machine (see bottom right part of Figure 3).

2.4 Substitution. Once the placement (Placement 1 from
step 2.2) and the replacement (Replacement 1 from
step 2.3) had been retrieved (creating them if neces-
sary), the process is ready to create the substitution
of the placement by the replacement. Similarly to pre-
vious steps, the process first checks if the substitution
already exists in the Fragment Substitutions model.
As the substitution does not exist, the process needs
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Figure 4: Resulting SPL for Induction Hobs domain

to create it. The substitution indicates that the Place-
ment 1 can be substituted by the Replacement 1. As
part of the definition of the substitution, links between
the boundaries from the placement and the replace-
ment are established. Therefore, when the fragment
substitution is executed the elements can be updated
properly and the model continues to conform to the
metamodel. Similarly to previous step, if the substi-
tution already exists there is no need to create it (see
bottom of Figure 3).

At this point, the first difference (diff1 ) from the diff-
set(Base Model,IH1) has been processed. Now, the steps
2.2, 2.3 and 2.4 are performed for the rest of differences of
the diffset. For each difference, a placement, a replacement
and the proper substitution of the placement by the replace-
ment are obtained (created or retrieved if already exists).
The iterations for diff2 and diff3 are not shown in Figure 2.

2.5 Resolution. When all the differences from the diffset
had been processed, the process is ready to create a
resolution for the processed model (IH1). First, the
process checks if the resolution already exists in the
resolutions model. As the resolution does not exist,
the process creates a new one (Resolution IH1). In this
case, the process indicates that the resolution of IH1,
involves the Substitution 1 (substitution of Placement
1 by Replacement 1) corresponding to the first diff
processed. Similarly, substitutions for the rest of the
differences of the diffset are included in this resolution.

This five-step process is repeated for all the models from
the input (except for the base model). After executing IH1

to SPL, comes the execution of IH2 to SPL. The result is
an SPL populated with all the models from the input fam-
ily. Bottom part of Figure 2 shows the output of the Model
Family to SPL operation. There is a base model and two
library models conforming to the IHDSL. In addition, there
are placements defined over the base model, and replace-
ments defined over the library models. Moreover, substitu-
tions are defined referencing placements and replacements;
resolutions that generate each of the models received as in-
put have been created based on those substitutions.

With the above process we obtain a CVL-based SPL capa-
ble of generating exactly the same models provided as input
of the process. However, the commonalities and variabil-
ities among the products are now explicitly formalized in
terms of CVL. In addition, the Product Model to SPL pro-
cess presented can be used to further evolve the variability of
the SPL, decomposing new products and expressing them in
terms of CVL. Next section presents the application of the
approach to our industrial partner and the set of evolution
scenarios encountered.

4. CASE STUDY: INDUCTION HOBS
This section presents our experience building a Product

Line from an existing set of products from our industrial
partner (BSH group). This company is the largest manufac-
turer of home appliances in Europe and one of the leading
companies in the sector worldwide. Their induction division
has been producing induction hobs (the brand portfolio is
composed by Bosch and Siemens among others) over the last
15 years.

In order to implement the approach, several technologies
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are involved. Specifically, CVL can be applied to MOF based
models, so the approach is developed within the Eclipse en-
vironment using the Ecore implementation and the Eclipse
Modeling Framework (EMF)1. The comparisons among mod-
els are implemented based on EMF-Compare2, which is an
Eclipse framework to compare instances of EMF models. To
build the frontend of the SPL we have used the Graphical
Modeling Project (GMP)3, a framework that provides a set
of generative components and runtime infrastructures for
developing graphical editors based on EMF. Finally, to add
variability management capabilities to the graphical editor
we have integrated the CVL tool from Sintef [5], a CVL pro-
totype implementation that can be integrated into editor.

The initial input of the approach is a set of 46 induction
hob models, corresponding to products that are currently
being sold or that will be launched to the market in the
immediate future. The set of models were developed follow-
ing a clone and own [8] approach, where each IH has been
modeled modifying a copy of the most similar IH present
in the collection. For instance, a modification includes tak-
ing some elements from other induction hobs and customize
them (if necessary, sometimes the elements do not require
further customization). Therefore, the variability present
among the models has not been explicitly defined, resulting
in a set of models with implicit variability among its mem-
bers. With regard to the products complexity, each of the
IH models is composed of more than 500 elements, including
around 100 class elements on average.

Figure 4 presents the resulting SPL tool that makes use
of the variability information obtained applying the Product
Model to SPL process. Top left part presents the Induction
Hobs that have already been derived from the SPL. The
set of products is the same as the one used as input; how-
ever, those induction hobs have been expressed in terms of
the reusable model fragments extracted through the Product
Model to SPL process. Bottom part presents the libraries of
model fragments, holding the 102 replacement model frag-

1http://www.eclipse.org/modeling/emf/
2https://www.eclipse.org/emf/compare/index.html
3http://eclipse.org/modeling/gmp/

ments obtained by the approach. When deriving new prod-
ucts, the model fragments presented by the libraries can
be reused. Finally, top right part presents the editor area,
where product models can be derived and customized.

The tool contains the variability information extracted
from the set of product models used as input. However,
this information is extended when new product models are
derived reusing existing model fragments (as the variabil-
ity model needs to include the new product) and when new
reusable model fragments are needed (the fragments need
to be added to the model fragment libraries). For instance,
one of our industrial partner engineer’s creates a new empty
model and populates it reusing elements from the library.
Then, the engineer customizes some elements of the induc-
tion hob model using the editor and saves it. The Product
Model to SPL process is automatically executed to include
the new induction hob into the SPL, which can lead to an in-
crement in the variability that is defined in the SPL or in the
reusable model assets available to derivate further products.

Figure 5 presents five different examples that illustrates
five different situations encountered when adding new mod-
els to the SPL. Each column presents one of the five ex-
amples. First row present the product model that is going
to be added to the SPL. Second row shows the diffset gen-
erated when each model is compared with the Base Model
(see bottom of Figure 2). Third row presents a summary of
the changes that the application of Product Model to SPL
produces over the CVL models. Next subsections present
the five different scenarios.

4.1 Already existing model
First column is an example of the addition of a model

that already exists in the SPL. The comparison between
IH4 and the Base model produces a set of two differences
(second row). When performing steps 2.2, 2.3 and 2.4,
the placement, replacement and substitutions necessary to
model diff1 already exists in the CVL models. Diff1 corre-
sponds to already existing Substitution 4 (substitute Place-
ment 1 by Replacement 4). Therefore, no placement, re-
placement or substitution is created for diff1. The same
happens with diff2, that corresponds to Substitution 5 (sub-
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stitute Placement 2 by Replacement 3). During the creation
of the resolution model (step 2.5), the process detects that
the resolution already exists in the SPL (Resolution 3 com-
posed of Substitution 4 and Substitution 5). Therefore, no
resolution is created as part of step 2.5.

When the step 2.5 does not involve the creation of a
new resolution model (as in this scenario), denotes that the
model being processed is already part of the SPL. The pro-
cess Product Model to SPL automatically skips the inclusion
of this model in order to avoid duplicates. By means of this
scenario, we avoid the inclusion of redundancy into the SPL.

4.2 Model reusing existing variability
Second column is an example of the addition of a model

that reuses the variability already defined in the SPL to
generate a new product model. The comparison between
IH5 and the Base model produces a set of one difference
(second row). Execution of steps 2.2, 2.3 and 2.4 detects that
diff1 corresponds to Substitution 4 (substitute Placement 1
by Replacement 4). During step 2.5 the resolution model
does not exist in the SPL, therefore, a new resolution model
that includes Substitution 4 is created.

When Product Model to SPL does not create any substi-
tution means that already existing variability is being used
to create a new product model. However, if the resolution
model does not exist in the SPL, a new resolution including
the substitutions identified for each diff is created. By means
of this scenario, we have created a new product reusing ex-
isting variability.

4.3 Model requiring a new substitution
Third column shows the addition of a model that needs

the creation of a new substitution in order to be included
into the SPL. The comparison between IH6 and the Base
model produces a set of only one difference (second row).
Then, during step 2.2 a placement for diff1.from is identified
(Placement 1). Similarly, during step 2.3 a replacement for
diff1.to is identified (Replacement 4). However, during step
2.4 no existing substitution is identified, therefore a new one
is created. Then, during step 2.5 a new resolution is created,
holding the new substitution created in previous step.

Sometimes the placement, replacement and substitution
for a given diff already exists in the SPL (as in previous
scenario) while other times only the placement and replace-
ment exists and a new substitution is created (as in this
scenario). However, in both cases we are reusing already
existing model fragments to create new product models. By
means of this scenario we show how the existing variability
is reused in the creation of new product models.

4.4 Model requiring a new replacement
Fourth column is an example of the addition of a model

that requires the creation of a new replacement in order to
be formalized and included into the SPL. The comparison
between IH7 and the base model produces a set of one dif-
ference (second row). Step 2.2 determines that diff1.from
correspond to the already existing Placement 1. By con-
trast, Step 2.3, determines that there is no replacement cor-
responding to diff1.to in the SPL models, therefore it is cre-
ated. As a new replacement has been created in step 2.3,
step 2.4 creates a new substitution of the Placement 1 by
the just created replacement. Finally step 2.5 creates a new
resolution model including the new substitution.

When the step 2.3 involves the creation of a new replace-
ment, the next step 2.4 will always require the creation of a
new substitution (as the substitution involves a new created
placement, it cannot exist in the SPL). By means of this sce-
nario, the variability defined in the SPL has been increased,
including a new replacement that now is available for the
construction of other models.

4.5 Model requiring a new placement
Fifth column is an example of the addition of a model that

requires the creation of a new placement. The comparison
between IH8 model and the base model returns a set of one
difference (second row). Then, step 2.2 detects that there is
no placement corresponding to diff1.from; therefore a new
placement is defined over the base model. Then, in step 2.3
a new replacement defined by diff1.to is created in the SPL.
As part of step 2.4, a new substitution (that substitutes the
new placement by the new replacement) is created. Finally,
the resolution model including the just created substitution
is created as part of step 2.5.

If the step 2.2 involves the creation of a new placement,
then, a new replacement (step 2.3) and a new substitution
(step 2.4) will be also created. It is important to notice
that during the inclusion of IH8 model into the SPL a new
replacement has been created. This replacement overlaps
with other existing replacements (Replacement 1 and Re-
placement 3), as it is defined over the same model elements
as other existing placements. However, this situation does
not poses a threat to the stability of the SPL models. Sub-
stitution in CVL can be restricted, to avoid situations where
two overlapping placements try to be replaced. Therefore,
it is safe to define overlapping placements as long as the
restrictions among them are correctly defined.

5. RELATED WORK
There are several research efforts in existing literature to-

wards the automation of the variability formalization among
a set of products. However, most of them are focused on gen-
erating Feature Models (FMs) and not address CVL partic-
ularities. For instance, [2] present an approach to reverse en-
gineering and evolve architectural FMs. In particular, they
focus on plugin-based systems, projecting variability and
technical constraints of plugin dependencies into an architec-
tural FM. In [1], the authors presents a reverse-engineering
tool to extract variability data from web configurators and
transform them into structured data (for instance, a feature
model) in a semi-automated way. The tool incorporates a
component that explores the configuration space simulating
users’ configuration actions in order to generate more vari-
able data to be extracted.

Other research efforts rely on the source code of the prod-
ucts in order to extract the variability model. In [11] the
authors present a tool-supported approach for reverse engi-
neering FMs from different sources, such as Makefiles, pre-
processor declarations, and documentation. They focus on
identifying parents and combine logic formulas and descrip-
tions as complementary sources of information. In addi-
tion, [14] propose an approach to identify features from the
source code of products. They reduce the noise induced by
spurious differences of various implementations of the same
feature. Then, the process produce feature candidates that
are manually pruned (to remove non-relevant candidates).
However, these approaches rely on the source code level as

417



input for the process, focusing in the generation of Feature
Models. By contrast, our approach deals with the particu-
larities of the CVL and is applied at model level.

In [10], the authors propose a generic framework for min-
ing legacy product lines and automating their refactoring to
contemporary feature-oriented SPLE approaches. In [7] the
authors present MoVaC, an approach to identify and anal-
yse commonalities and variability among a set of models,
with the focus on the visualization of the results. In [12] the
authors propose an approach to synthesize an SPL from the
comparison of a set of models. The variability is extracted
from the set of models and then a CVL model for the SPL is
proposed. The approach is further refined in [13] to enable
the inclusion of new models to the SPL. As output, a CVL
model for the SPL is proposed to be manually enhanced. We
further extend those works, automatically selecting a base
model among the input models based on the metric desired.
In addition, we have validated the approach building an SPL
for an industrial environment, extracting the variability of a
set of real induction hob models. Furthermore, we present
the five different evolution scenarios encountered during the
validation and how the approach handles them in order to
evolve the variability of the SPL.

6. CONCLUSIONS
We have presented theModel Family to SPL process, capa-

ble of automating the formalization of the variability among
a given set of similar product models. In addition, the gen-
erated SPL can be further extended in order to increase the
variability specification. The presented approach has been
tooled within the Eclipse environment using already exist-
ing technologies such as EMF Runtime, EMF Compare and
GMP. Then, the approach has been validated with our in-
dustrial partner. Finally, we have presented the five different
evolution scenarios encountered when evolving the variabil-
ity specification by our industrial partner.

However, our current implementation has some limita-
tions. For instance, the concrete syntax used to represent
each of the elements from the library is not automatically
produced. Therefore, some customization regarding the con-
crete syntax has been performed in order to present the re-
sulting SPL tool. We plan to provide means for automating
the generation of a graphical syntax following a generative
approach (similar to the Graphical Modeling Project).

CVL materialization generates product models from res-
olution models. However, the graphical editor shows di-
agrams that need to be automatically generated for each
resolved model. Therefore, the position of each graphical
element needs to be calculated by custom layouts that au-
tomatically position each element in the correct place. Nev-
ertheless, these limitations constitute our future work.
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