
Feature Location in Models through a Genetic Algorithm
Driven by Information Retrieval Techniques

Jaime Font1,2 Lorena Arcega1,2 Øystein Haugen3 Carlos Cetina1

1Universidad San Jorge 2University of Oslo 3Østfold University College
SVIT Research Group Department of Informatics Faculty of Computer Science
Autovía A-23 Km. 299 Postboks 1080 Blindern Postboks 700

50830 Zaragoza, Spain 0316 Oslo, Norway 1757 Halden, Norway
{jfont,larcega,ccetina}@usj.es oysteinh@ifi.uio.no oystein.haugen@hiof.no

ABSTRACT
In this work we propose a feature location approach that 
targets models as the feature realization artifacts. The ap-
proach combines Genetic Algorithms and Information Re-
trieval techniques. Given a model and a feature description, 
model fragments extracted from the model are evolved using 
genetic operations. Then, Formal Concept Analysis is used 
to cluster the model fragments based on their common at-
tributes into feature realization candidates. Finally, Latent 
Semantic Analysis is used to rank the candidates based on 
the similarity with the feature description. As a result, the 
genetic algorithm evolves the population of model fragments 
to find the set of most suitable feature realizations. We have 
evaluated the approach with an industrial case study, locat-
ing features with precision and recall values around 90%
(baseline obtains less than 40%). Finally, we provide recom-
mendations on how to provide the input to the approach to 
improve the location of features over the models.

1. INTRODUCTION
Feature location (FL) is known as the process of finding 

the set of software artifacts that realize a particular feature. 
The topic has gained momentum during recent years [22, 6] 
and several research works focus on creating and improving 
methods to locate the features. FL is one of the main activ-
ities performed during software evolution [6] and up to an 
80% of a system’s lifetime is spent on the maintenance and 
evolution of the system [19].

However, most of the research on FL has been directed 
towards the location of features into source code artifacts, 
neglecting other software artifacts such as the models. In 
addition, the approaches that perform FL over models [10, 
8, 20, 26, 27, 21] are designed to generate the variability 
specififcation over a family of models and built a Software 
Product Line from them and it is not possible to apply them 
to isolated models. Therefore, there is a lack of proper FL

techniques that can be applied to locate the model elements
that belong to a feature that has to be evolved or main-
tanied.

In this work we propose FLM (Feature Location in Mod-
els), an FL approach that targets models as the realiza-
tion artifacts and does not rely in model comparisons, but
on Information Retrieval (IR) techniques. The approach is
based on a Genetic Algorithm (GA) that generates alterna-
tive model fragments that can be the realizations of the fea-
ture being located. Then, we use Formal Concept Analysis
(FCA) [11] to cluster the model fragments by their common
attributes and to generate feature candidates. The feature
candidates are assesed comparing them to a search query
that describes the target feature by using Latent Semantic
Analysis (LSA) [17] to measure the similarity between both.
As a result, feature candidates can be ranked based on the
distance with the feature description, allowing the best ones
to be selected to engendrate the next generations. When
the improvement of the generations is stalled, the resulting
feature candidates are provided as output.

The presented approach has been supported by a tool
within the Eclipse environment and applied to the prod-
uct models obtained from our industrial partner BSH, one
of the largest manufacturers of home appliances in Europe.
Its induction division has been producing Induction Hobs
(sold under the brands of Bosch and Siemens) for the last
15 years. The firmware for their products is generated from
models using a model-based approach. The application of
the approach shows that the values of recall and precision
higher than 85%. Finally, we provide some recommenda-
tions on how to provide the input to the approach to improve
the location of features over the models.

The rest of the paper is structured as follows: Section 2
provides some background. Next, Section 3 provides the de-
tails of the presented approach. Section 4 presents the eval-
uation performed. Then, Section 5 discusses the approach.
Finally, Section 6 presents some related work and the paper
is concluded.

2. BACKGROUND
This section presents the Domain Specific Language (DSL)

used by our industrial partner to formalize their products,
the IHDSL. It will be used through the rest of the paper to
present a running example. Then, the Common Variability
Language (CVL) is presented, CVL is the language used by
our approach (FLM) to formalize the model fragments used



Model Fragment

Inverter

Channels
Power 

manager

Inductors

IHDSL Metamodel

Induction
HobInverter

Power 
Manager

Inductor

IHDSL syntax

Provider 
Channel

Consumer
Channel

Product Model

Figure 1: IHDSL product model and model frag-
ment formalization

as feature candidates.
The newest Induction Hobs (IHs) feature full cooking sur-

faces, where dynamic heating areas are automatically gener-
ated and activated or deactivated depending on the shape,
size, and position of the cookware placed on top. In addition,
there has been an increase in the type of feedback provided
to the user while cooking, such as the exact temperature of
the cookware, the temperature of the food being cooked, or
even real-time measurements of the energy consumption of
the IH. All of these changes are being possible at the cost of
increasing the software complexity and thus require several
modifications into the models used to formalize the prod-
ucts.

The Domain Specific Language used by our industrial
partner to specify the Induction Hobs (IHDSL) is composed
of 46 meta-classes, 74 references among them and more than
180 properties. However, in order to gain legibility and due
to intellectual property rights concerns, in this paper we use
a simplified subset of the IHDSL (see top part of Figure 1).

Inverters are in charge of transforming the input electric
supply to match the specific requirements of the IH. Then,
the energy is transferred to the inductors through the chan-
nels. There can be several alternative channels, which en-
able different heating strategies depending on the cookware
placed on top of the IH at runtime. The path followed by
the energy through the channels is controlled by the power
manager. Inductors are the elements where the energy is
transformed into an electromagnetic field.

Bottom left part of Figure 1 depicts an example of a prod-
uct model specified with the IHDSL. The product model
contains four inverters used to power two different inductors.
The upper inductor is powered by a single inverter while the
lower inductor is powered by the combination of three dif-
ferent inverters. Power managers act as hubs to perform the
connection between the inverters and the inductors.

To formalize the model fragments used by the approach we
use the Common Variability Language (CVL) [13, 24], given
its capabilities to formalize the feature realizations in terms
of model fragments. CVL defines variants of a base model
(conforming to MOF, the OMG metalanguage for defining
modeling languages) by replacing variable parts of the base
model (the features) by alternative model replacements (the
feature realizations) found in a library.

Bottom right part of Figure 1 shows an example of a

model fragment of the product model (bottom-left part).
The model fragment includes the three inverters in charge
of powering the lower inductor along with the three provider
channels and the power manager used to aggregate and man-
age the power provided by those inverters. This model frag-
ment is the realization of the feature “triple inverter”.

3. FEATURE LOCATION IN MODELS (FLM)
This section presents FLM, the proposed approach for fea-

ture location in product models. The objective of the ap-
proach is to provide the subset of elements from a given
product model that realize a particular feature being re-
quested by the user. To do so, the approach relies on a
Genetic Algorithm that iterates a population of model frag-
ments and evolves them using genetic operations. As output
the approach provides a list of feature candidates that might
be realizing the feature. This list is ranked taking into ac-
count the information provided by the user as input.

converges?

Model Fragments
Fitness3

Genetic
Operations2

User Input
Retrieval1

Initial Model
Fragment population

Model Fragment 
population

no

Weighted Model
Fragments population

Query

Rank of
Feature Candidates

yes

Figure 2: Feature Location in Models Overview

Figure 2 presents an overview of the approach. Rounded
boxes represent the different steps of the approach while
rectangular boxes represent the inputs and outputs of each
of the steps. Lines indicate that an element is an input or
output of one of the steps.

The input of the approach is the product model where
the feature is going to be located. Then, the user provides
a description of the target feature in terms of an initial seed



fragment and a textual description of the feature. The initial
seed and the product model are used to generate some can-
didate fragments. Then, those candidates are assessed tak-
ing into account the textual description of the feature being
located. These two steps (generation and assessment) are
repeated until some stop condition is met. When the stop
condition is fullfilled the process returns the list of fragment
candidates ranked according to the assessments.

3.1 User Input Retrieval
The first step is to gather input for the feature location.

The input will consist of the product model and information
about the target feature provided by the user. In particular,
the user will provide a seed fragment and a textual descrip-
tion of the feature.

A seed fragment of the target feature is an element or set
of elements that the engineer believes that could be part of
the feature being located. To do so, the engineer applies his
knowledge of the domain and the product models to point
to some elements that will be used as the starting point of
the process.

A feature description of the target feature, using nat-
ural language. Typically these descriptions can come from
textual documentation of the products, comments in the
code, bug reports or oral descriptions from the engineers.
Therefore, the query will include some domain specific terms
similar to those used when specifying the product models.
The knowledge of the engineers about the domain and the
product models will be useful to select the textual descrip-
tion from the sources available.

Figure 3 presents an example of input for the approach.
Left part presents the seed fragment proposed by the user
(a model fragment of the product model where the feature
is going to be located). The user believes that the selected
inductor is going to be part of the feature realization. Then,
the right part of the figure shows a textual description for
the feature being located, the hotplate. It is a simplified
version of a text description that has been extracted from
the internal documentation used by our industrial partner
to describe their products.

The textual description provided by the user is turned into
a query by using some well stablished IR techniques:

• First, the textual description is tokenized (divided into
words). Usually a white space tokenizer can be applied
(that splits the strings whenever it finds a white space)
but for some sources more complex tokenizers need to
be applied. For instance, when the description comes
from documents that are close to the implementation
of the product some words can be following CamelCase
naming.

• Secondly, we apply the Parts-of-Speech (POS) tagging
technique. POS tagging analyses the words grammat-
ically and infers the role of each word into the text
provided. As a result, each word is tagged enabling
the removal of some categories that do not provide
relevant information. For instance, conjunctions (e.g.
’or’), articles (e.g. ’a’) or prepositions (e.g. ’at’) are
words commonly used and do not contribute with rele-
vant information that describe the feature, so they are
removed.

• Thirdly, stemming techniques are applied to unify the
language used in the text. This technique consists of

Fragment Seed

Figure 3: Input provided to the approach

reducing each word to its roots enabling that differ-
ent words referring to similar concepts can be grouped
together. For instance, plurals are turn into singulars
(inductors to inductor) or verbs tenses are unified (us-
ing and used are turn into use).

The User Input Retrieval step generates as a result an ini-
tial population of fragments (that contain the model frag-
ment provided as seed) and the query that will be used
for the comparisons (obtained from the textual description).
Then, the model fragment from the initial population will
be evolved into several model fragments through the use of
the genetic operations.

3.2 Genetic Operations
The second step is to generate a set of model fragments

that could be realizing the feature. The generation of model
fragments is done by applying genetic operators adapted to
work over model fragments. That is, new fragments based
on the existing ones (the seed fragment during the first
execution) are generated through the use of three genetic
operators: the selection of parents, the mutation and the
crossover.

In order to apply the genetic operators, it is first neces-
sary to apply the selection operator that selects the best
candidates from the population to be the input for the rest
of operators. There are different methods that can be used
to perform the selection of the parents, but one of the most
spread choices is to follow the wheel selection mechanism
[4]. That is, each model fragment from the population has
a probability of being selected proportional to their fitness
score. Therefore, candidates with high fitness values will
have higher probabilities of being chosen as parents for the
next generation. Top part of Figure 4 shows an example of
application of the selection operator.

The crossover operator is used to imitate the sexual
reproduction followed by some living beings in nature to
breed new individuals. That is, two individuals mix their ge-
nomic information to give birth a new individual that holds
some genetic information from one parent and some from the
other one. This could make him adapt better (or worse) to
his living environment depending on the genetic information
inherited from his parents.

Following this idea, our crossover operator applied to model
fragments takes as input two model fragments and a ran-
domly generated mask to combine them into two new indi-
viduals. The mask determines how the combination is done,
indicating for each element of the model fragments if the
offspring should inherit from one parent or the other (in-
cluding the element or not if the element is present on the
parent or not). A model fragment is a subset of the elements
present in a product model. As both model fragments have



Mask

Crossover
operator

MF1 MF3 

MF5 

Initial Model 
Fragments population 

MF1 MF3MF2 MF4

Selection 
operator

Mutation 
operator

MF7 

MF6 

Mutation 
operator

MF8 

Figure 4: Genetic Operators: Mutation and
Crossover over Model Fragments

been extracted from the same product model the combina-
tion (applying the mask) of them will always return a model
fragment that is part of the product model. As a result, two
individuals will be generated, one by applying directly the
mask and another one by applying the inverse of the mask
as it is usually done in genetic algorithms [5].

Figure 4 shows an example of application of the crossover
operator. The input of the operator is the first parent (MF1),
a mask indicating two sets of elements (one regular and one
marked in black) and the second parent (MF3). To create
the first of the new individuals we interpret the mask select-
ing the blacked out elements from the first parent (MF1) and
the regular elements from the second parent (MF3). That
is, the elements on the top part of the product model that
are in black in this mask are selected depending on whether
they are part of MF1 or not, while the rest of the elements
that are not blacked out in the mask are selected depend-

ing on whether they are part of MF3 or not. As a result,
the new MF5 contains some elements from the first parent
(power group connected to the inductor) and some others
from the second parent (the inverter that connects with the
power group).

In addition, the mask is also interpreted in the opposite
way, selecting the blacked out elements form the second par-
ent and the regular elements from the first parent. This
produces MF6 (see middle-right part of Figure 4), where an
inverter connected to a power manager has been inherited
from the second parent (MF3) and nothing has been inher-
ited from parent 1 (MF1) as all the elements not blacked
out in the mask are not part of MF1.

For the crossover operation to work, it is not necessary
to have elements shared by both parents. It is possible to
perform crossovers that return fragments where not all the
elements are connected. Indeed, the feature being located
could be realized by several model elements that are not
directly connected in the model. Therefore, it is necessary
to create this kind of fragments as they could be the ones
realizing the target feature.

The mutation operator is used to imitate the mutations
that randomly occur in nature when new individuals are
born. That is, a new individual holds a small difference in
regards to its parents that could make him adapt better (or
worse) to their living environment.

Following this idea, the mutation operator applied to model
fragments takes as input a model fragment and mutates it
into a new one produced as output. As the approach is
looking for fragments of the product model that realize a
particular feature, the new modified fragment must remain
being a part of the product model. Therefore, the modifi-
cations that can be done to the model fragment are driven
by the product model. In particular, the mutation operator
can perform two kind of modifications, addition of elements
to the fragment, or removal of elements from the model frag-
ment.

Bottom part of Figure 4 shows two examples of appli-
cation of the mutation operator. Left part shows the first
example, MF5 is used as input of the operator that produces
M7 as output. In this example, the mutation operation has
added some elements (a new inverter connected to the power
manager). The resulting model fragment remains being part
of the product model that is driving the mutation, so it is
a candidate as realization of the feature. Right part shows
the second example, where MF6 is used as input and MF8 is
produced as output. In this example the mutation operator
has removed an element (the power manager).

3.3 Model Fragment Fitness
The third step of the process consists of the assessment of

each candidate fragment produced and the ranking of them
according to a fitness function. The fitness function is used
to imitate the different degrees of adaptation to the environ-
ment that different individuals have. Therefore, individuals
that result of mutations and crossovers that contribute to
their adaptation to the environment will have higher chances
of survival that others.

Following this idea, the fitness function is used to deter-
mine the suitability of each candidate as solution to the
problem, enabling to rank them from the best candidate
to the worst. The fitness function is based on the compar-
ison between the feature description query and the identi-



fier names and other natural language items present in the
model fragments. The input of this step is a population of
candidate fragments, and the feature description query; the
output produced is a ranking where each candidate has been
assigned with a fitness value.

However, when locating features realized through model
fragments, it is important to notice that a feature can be re-
alized by the combination of more than one model fragment.
Therefore, as part of our fitness function we will follow two
steps: (1) the population of fragments will be grouped ac-
cording to their similarities in terms of the domain, then (2)
each one of these groups will receive a fitness value obtained
using the feature description obtained from the user as part
of step one.

3.3.1 Grouping of Model Fragments into Feature Can-
didates through FCA

To perform the grouping of model fragments into feature
candidates we rely on Formal Concept Analysis (FCA) [11],
a branch of mathematical lattice theory that provides means
to identify meaningful groups of objects that share common
attributes. Groupings are identified by analysing a binary
relationship between the set of all objects and all attributes.
FCA takes as input a formal context (an incidence table in-
dicating which attributes are possessed by each object) and
returns a set of concepts where every concept is a maximal
collection of objects that share some common attributes.
Each concept will be considered as a feature candidate.

Therefore, in order to apply FCA we need to define a set
of objects (model fragments), a set of common attributes
(the metamodel elements used to build those model frag-
ments) and a binary relationship between them (the pres-
ence or absence of a particular metamodel element in the
model fragment). Then, a formal context that represents
the relationship between the objects and the attributes can
be built.

Top of Figure 5 shows an example of a formal context re-
lating model fragments and the metamodel elements used to
build them. Columns show each of the attributes present in
the context, in this case the different metamodel elements
used to build the model fragments. Rows show each of the
objects of the context, in this case the different candidate
model fragments present in the population. Each cell indi-
cates if a particular metamodel element has been used to
build each of the model fragments. For instance, MF1 and
MF2 (first and second rows) are built using three different
metamodel elements (power manager, consumer channel and
inductor), while MF4 (fourth row) is built using all the el-
ements from the metamodel (Inductor, Inverter, Provider
Channel, Consumer Channel and Power Manager).

Using the formal context as input, FCA generates a lat-
tice: a set of interrelated concepts where every one is a
maximal collection of model fragments that share common
metamodel elements. Bottom of Figure 5 shows the lattice
obtained applying FCA to the formal context presented be-
fore. Each of the circles represents one concept (there are
seven in total). The concepts are labeled with the meta-
model elements (grey background labels) and the model
fragments (white background labels) grouped by that con-
cept. The concepts are organized hierarchically, indicating
containment relationships between the sets of model frag-
ments and metamodel elements of the concepts.

That is, the set of model fragments of a concept is con-

MF5 

MF4 

MF3 

MF2 

MF1 

Inverter 
Provider
Channel 

Power
Manager 

Consumer
Channel Inductor 

... ... ... ... ... ... 

FC1

FC2 FC3 FC4

FC5 FC6

FC7

Inductor

MF1,MF2,MF4,
MF9,MF7,MF10

Power Manager

MF1,MF2,MF3,
MF4,MF5,MF8,MF9

Ø

MF1,MF2,MF3,MF4,MF5,
MF6,MF7,MF8,MF9,MF10

Inverter

MF3,MF4,
MF5,MF6,MF9

Inverter, Power Manager, 
Provider Channel

MF3,MF4,MF5,MF9

Inverter, Power Manager, 
Inductor, Provider Channel,

Consumer Channel

MF4,MF9

Inductor, Power Manager, 
Consumer Channel

MF1,MF2,MF4,MF9

Figure 5: Formal context between model frag-
ments and metamodel elements and Lattice ob-
tained through FCA

tained by all the connected concepts above it and contains all
the model fragments from connected concepts below it. For
instance, the model fragments in FC6 (MF3,MF4,MF5,MF9)
will be also part of all concepts above FC6 (FC4 and FC1).
Likewise, the metamodel elements in FC3 (Power Manager)
will be also part of all concepts below it (FC5, FC6 and
FC7).

As a result of the application of the FCA, a set of Feature
Candidates (FC1, FC2, FC3, FC4, FC5, FC6 and FC7) that
clusters some of the model fragments based on their use of
the elements of the metamodel is provided.

3.3.2 Feature Candidates assessment through LSA
To assess the relevance of each feature candidate with re-

lation to the query extracted from the textual description
provided by the user, we are going to apply methods based
on Information Retrieval (IR) techniques. In particular we
apply Latent Semantic Analysis (LSA) to analyse the rela-
tionships between the description of the feature provided by
the user and the candidate features previously obtained.

LSA constructs vector representations of a query and a



Model 
Fragments
population

MF1

MF3

MF2

MF4

Query

converges?

yes

no
FCA

Feature
Candidates

MF4

MF1

MF3

MF2

FC4

FC1

FC3

FC2

Weighted
 Feature Candidates

MF4 : 0.9

MF1 : -0.2

MF3 : 0.2

MF2 : 0.5

FC4 : 0.7

FC1 : 0.3

FC3 : 0.2

FC2 : -0.5

Rank of
Feature

Candidates

FC4 : 0.7

FC1 : 0.3

FC3 : 0.2

FC2 : -0.5

Weighted
Model

Fragments

MF4 : 0.9

MF1 : -0.2

MF3 : 0.2

MF2 : 0.5

LSA

Model Fragments Fitness

Figure 6: Model Fragment Fitness

corpus of text documents by encoding them as a term-by-
document co-occureence matrix. That is, a matrix where
each row corresponds to terms and each column corresponds
to documents, followed by the query in the last column.
Then, each cell holds the number of occureences of a term
(row) inside a document or the query (column).

Once the matrix is built, it is normalized and decomposed
into a set of vectors using a matrix factorization technique
called Singular Value Decomposition (SVD) [17]. One vec-
tor that represents the latent semantic is obtained for each
document and the query. Finally, the similarities between
the query and each document are calculated as the cosine
between both vectors, obtaining values between -1 and 1.

We apply LSA to the feature candidates generated by
FCA and the query. A document of text is generated from
each of the feature candidates using the model fragments
contained by the feature candidate. That is, the names and
values of properties and methods are processed to extract
the terms by applying Natural Language Processing tech-
niques (as performed with the textual description provided
in the first step, see Section 3.1). As a result we obtain
a list of relevant terms present in the documents and the
query. Finally, after the matrix is turned into vectors and
the cosines are calculated, we obtain a value for each of the
feature candidates indicating its similarity with the query.

Inverter 

Provider 

Power  

Consumer 

Inductor 

FC1 FC2 FC3 FC4 FC5 FC6 FC7 Q 

0 

2 

4 

5 

0 10 

5 

0 

0 

2 5 

5 

7 

2 

5 2 

2 4 

5 

5 7 

2 

0 5 

5 2

2 

4 

5 

2 2 

2 

4 

0 

2 3 

2 

2 

0 

0 

Manager 

Channel 

4 0 7 0 4 4 4 

7 10 7 0 7 7 4 

2 

... ... ... ... ... ... ... ... ... 

0 

Figure 7: Term-by-document co-occurrence matrix
for Feature Candidates

Figure 7 shows an example of co-occurrence matrix for
our running example. Each column is one of the Feature
Candidates obtained through the application of FCA. Then,

the last column is the query provided by the user as part
of the input of the process. Each row is one of the terms
extracted from the corpuses of text conformed by all the
feature candidates and the query itself (we show the terms
before the stemming process to improve the readability).
Each cell shows the number of occurrences of each of the
terms into the feature candidates.

3.3.3 Loop
The next step is to spread the similarity values obtained

by each feature candidate to the model fragments contained
by that feature candidate. However, each model fragment
can be part of more than one feature candidate. Therefore,
in order to obtain the similarity of a model fragment with
the query we need to combine the similarity values obtained
by each of the feature candidates where the model fragment
is present. As a result each model fragment is assigned with
a value (fitness value).

Figure 6 shows an example of the assessment process.
First, the set of model fragments from the population is used
to build a set of feature candidates through FCA. Then, the
set of feature candidates is compared with the query through
the use of LSI, resulting in a set of weighted feature candi-
dates. At this point, if the stop condition is met, the process
will stop returning the rank of feature candidates. If the stop
condition is not met yet, the genetic algorithm will keep its
execution one generation more.

The next time that the genetic operators are applied, it
will be necessary to select the best candidates as parents for
the new generation. This will be done based on the score
obtained by each model fragment. As a result, model frag-
ments with higher similarities will have more chances to be
selected as parents of the new generation. Notice that being
part of more feature candidates does not guarantee a higher
score for the model fragment, as the similarity between a
feature candidate and the query can be negative.

The process of generation of fragments, extraction of fea-
ture candidates and assessment of those candidates is re-
peated until the stop condition is met. Usually, the stop
condition can be a time slot, a fixed number of generations
or a trigger value of the fitness that makes the process finish
when reached. In addition, it also possible to monitor the fit-
ness values and determine when they are converging and no
further improvements are being made by new generations.
The stop condition highly depends on the domain and the
problem being solved; therefore, it is adjusted depending on
the results being outputted by the process.



Product
Models

Features
located

Oracle from BSH

Documentation

Product
Model

Fragment
Seed

Test Case

Feature
Description Calculate

Precision & Recall
Baseline

Precision & 
Recall Report

Rank of
Feature

Candidates

Calculate
Precision & Recall

Rank of
Feature

Candidates
FLM

Precision & 
Recall Report

Figure 8: Evaluation Overview

4. EVALUATION
To evaluate the approach we applied it to a case study ex-

tracted from our industrial partner BSH, the leading manu-
facturer of home appliances in Europe. Their induction di-
vision has been producing Induction Hobs under the brands
of Bosch and Siemens for the last 15 years. The firmware of
the different induction hobs is generated following a model-
based Software Product Line approach.

We are going to use the product models from BSH as an
oracle to evaluate the presented approach. That is, we make
use of a set of products models whose feature realizations
are known beforehand and will be considered as the ground
truth, enabling us to compare the results provided by the
approach with the oracle.

4.1 Setup
Figure 8 shows an overview of the process followed to eval-

uate the presented approach. Top part shows the oracle for
the case study, a set of product models, features located over
those product models, and documentation obtained from the
model-based SPL of our industrial partner. Those features
correspond to products that are currently being sold or will
be released to the market in the near future. This oracle will
be considered the ground truth and will be used to evaluate
the presented approach.

The oracle is composed of 46 induction hob models where
each product model is composed of more than 500 elements
on average. For each of the 96 features used to build the
product models we got a test case including a product model,
a fragment seed (extracted from the located feature in the
oracle) and a feature description (obtained from the docu-
mentation of the features).

Then, each test case was fed as input for two different
executions: the presented approach where the Genetic Al-
gorithm fitness is performed through FCA and LSI (FLM);
the same Genetic Algorithm but using a random fitness func-
tion to assign random values to each model fragment instead
of using IR techniques (Baseline). As a result we got a pair
(one for FLM and one for Baseline) of Feature Candidates
rankings for each of the test cases.

Finally, we computed the precision, recall and F-measure
values (three of the most common measures for information
retrieval methods [23]) for each of the Feature Candidates

rankings, obtaining a precision and recall report. Precision
measures the number of elements from the solution that are
correct according to the ground truth (the oracle), while
recall measures the number of elements of the solution that
are retrieved by the proposed solution. F-measure combines
precision and recall into a single value and corresponds to
the harmonic mean of precision and recall.

To calculate the precision and recall we need to compute
the true positives (TP); the number of elements in the so-
lution that are actually correct according to the ground
truth (the oracle). That is, the number of elements that
are present in both, the solution and the ground truth. The
precision is calculated dividing the TP by the total number
of elements in the solution. The recall is calculated dividing
the TP by the total number of elements in the ground truth.

In our case, each feature candidate from the rankings is a
model fragment composed of a subset of the model elements
present in the product model (where the feature is being
located). The granularity will be at the level of model ele-
ments, so each model element present in both (the solution
feature candidate and the located feature from the oracle)
will be a TP.

Recall values can range between 0% (which means that
no single model element from the realization of the feature
obtained from the oracle is present in any of the model frag-
ments of the feature candidate) to 100% (which means that
all the model elements from the oracle are present in the
feature candidate).

Precision values can range between 0% (which means that
no single model fragment from the feature candidate is present
in the realization of the feature obtained from the oracle) to
100% (which means that all the model fragments from the
feature candidate are present in the feature realization from
the oracle). A value of 100% precision and 100% recall im-
plies that both feature realizations are the same.

The presented approach has been implemented within the
Eclipse environment. We have used Eclipse Modeling Frame-
work (EMF) to manipulate the models from our industrial
partner, and the Common Variability Language to manage
the fragments of models. The genetic algorithm is built upon
Watchmaker Framework for Evolutionary Computation [7]
that enable us to implement our own genetic operators. Re-
garding the IR techniques, we have used colibri-java [12] to



0%
20

%
40

%
60

%
80

%
10

0%

gen 0 gen 500 gen 1000 gen 1500 gen 2000

gen 0 gen 500 gen 1000 gen 1500 gen 2000

0%
20

%
40

%
60

%
80

%
10

0%

Recall

Precision

F-measure

Recall

Precision

F-measureB
as
el
in
e

F
M
L

Figure 9: Mean Precision, Recall and F-measure for FLM and the Baseline

implement the FCA. The IR techniques used to process the
language have been implemented using OpenNLP [2] for the
POS-Tagger and Snowball [3] for the stemming. Finally, the
LSI has been implemented using the Efficient Java Matrix
Library (EJML [1]).

The evaluation has been executed using a Dell XPS with
a processor Intel(R) Core(TM) i7-2670QM @2.2GHz with 8
GB or RAM and running Windows 10 Pro N 64 bits as the
hosting Operative System. The approach has been executed
under Java(TM) SE Runtime Environment (build 1.8.0 73-
b02).

4.2 Results
Figure 9 shows the mean precision and recall values mea-

sured for the 96 features located by both executions (the
presented approach and the Baseline). Top chart shows the
results for the execution of the presented approach while
bottom part shows the results for the Baseline. The values
for the recall measure are in blue, the values for the preci-
sion measure are in red and the values for the F-measure
are in black (in both charts). Each measure includes the
standard deviation (shaded in the same color). The x axis
of the charts indicates the number of generations of the ge-
netic algorithm while the y axis measures the % value of the
recall, precision and F-measures.

Each of the lines corresponds to the mean values for the

location of the 96 test cases obtained from the oracle. First,
we have calculated the values for each of the test cases (in-
cluding all the feature candidates from their rank). Then,
mean values and standard deviations for the 96 test cases
have been calculated.

The recall values for the presented approach (top chart
blue line) start in a range between 0% and 20% for the first
hundreds of generations but then start raising up to the 90%
(around generation 1.400). Beyond generation 1.400, the
recall values keep close to the 100%. The precision values for
the presented approach (top chart red line) start in a range
between 0% and 60% for the first hundreds of generations.
Then, the precision values raise up to the range between 80%
and 90% (around generation 1.500), beyond that generation
there are no further changes in the tendency.

The recall values for the Baseline (bottom chart blue line)
start in a range between 0% and 20% for the first hundreds of
generations. Then, the recall values reach the range between
30% and 40% (around generation 1.400) and oscillate in that
range for the rest of the generations. The precision values
for the Baseline (bottom chart red line) raise sharply to the
20% and then drop slightly to a value around 15%, remaining
steady for the rest of generations.

Overall, results show that the use of IR techniques as the
fitness function of the GA (our approach) guides it to locate
the feature better than if a random guide is provided (Base-



line). The comparison with the oracle enables to obtain the
recall and precision values for both approaches and the IR
provides higher mean values of precision and recall for any
number of generations.

5. DISCUSSION
The evolution of the recall and precision values over the

generations suggests that the proposed fitness function is
performing well and guiding the algorithm to find feature
realization candidates close to the target feature.

5.1 Input data
The presented approach relies on two pieces of information

given by the engineer performing the feature location, the
seed fragment and the query. These two elements will have
an impact on the ranking of feature candidates produced
and must be chosen carefully by the engineer performing
the feature location.

To test out the impact of the seed fragment in the results,
we have executed the approach with different kind of seed
fragments containing one element (single element belonging
to the feature being located or single element not belonging
to the feature being located). But those executions did not
produce noticeable differences in the resulting ranking of
feature candidates or in the number of generations needed
to converge.

However, when selecting seed fragments of sizes closer to
the size of the feature being located, the effect is noticeable.
The number of generations needed by the GA to converge
was reduced when a seed fragment close to the feature be-
ing located was chosen. In particular, when the fragment
seed contained about 50% of the elements belonging to the
feature being located, the number of generations needed for
the GA to converge was reduced up to 15%.

Overall, when the engineer provides a seed that is not
related with the target feature, the recall and precision of
the feature candidates returned is not affected. Therefore,
our recommendation is that when the engineer is pondering
whether to include a model fragment seed or not, he should
do it. The approach is capabale of accepting more than
one model fragment as seed at the same time and we have
performed some test (up to 10 related and unrelated seeds)
that reveals that there is no negative impact when unrelated
seeds are included.

To test out the impact of the query in the results, we have
also executed the approach varying the text description used
as input (using longer and smaller queries by subsetting the
original description, including more or less domain terms
and including more or less meta-element terms).

The search query used to locate the feature is in charge
of driving the search and greatly impacts on the precision
and recall results. In fact, depending on the level of detail
of the query, the recall and precision values obtained will
change. When the query provided is too broad, the preci-
sion decreases as there are several model elements matching
the query not belonging to the target feature. Anyhow, the
elements belonging to the feature will be also matched pos-
itively so the recall value will be high. However, when the
query provided is too specific, some of the elements rele-
vant for the feature being located can be missed out. Thus,
the recall value is decreased although the precision values
remain high.

To achieve good precision and recall values, it is important

to avoid the usage of words included into the meta-elements
of the model elements. That is, if we refer to the meta-
class name of one of the model elements, all instances of
this class will match to that word (e.g. any inductor class
model element will match the query “inductor”). By con-
trast, by using words specific for the model element (as the
value of the name property or values of some of the param-
eters contained in those model elements), those model ele-
ments (and not others with the same class) will be included
into the feature candidates, affecting positively to the preci-
sion values (e.g. only some inductors will match the query
“doubleTwistedCoil” as it is the value of a property of the
inductor class). In fact, when removing the usage of meta-
element names in the queries, the approach obtained similar
values of recall but the precision raised up to a 20% for best
cases.

It is important to notice that we have made use of an ora-
cle (obtained from our industrial partner model-based SPL
and considering the ground truth) to evaluate the approach
using test cases where the expected solution was known be-
forehand. By doing so, we were able to compute the recall,
precision and F-measure for the feature candidates rankings
provided by the approach. However, when applying the pre-
sented approach to locate features (and thus not having an
oracle), the approach should be used iteratively, refining the
query and the seed fragment as described above.

5.2 Scalability
The presented approach has been executed to locate 96

features over 46 product models of sizes ranging from around
400 elements to around 600 elements (around 500 elements
on average). Each feature being located has a relative size
in the range between 3% and 10% of the product model
where the feature is being located. The mean number of
generations needed to locate those features (when the ge-
netic algorithm converges) is about 1500 generations.

The time needed to locate the features ranged between
12 seconds and 26 seconds. That is, the 1.500 generations
where generated in an average time of 19 seconds. Most
of the time (around 85%) was spent on the execution of
the fitness function while the rest was used to process the
query (3%) and execute the genetic operations (12%). The
approach is able to reach a million of generations within
less than 5 minutes when locating features over models with
dimensions similar to the models of our industrial partner.

The implementation of the approach is far from being op-
timized. Furthermore, the computer used to run the case
study is a four years old laptop. Therefore, the performance
of the approach could be increased by some means if neces-
sary.

5.3 Generalization
The presented approach has been designed to be applied,

not only to our industrial partner domain, but to any do-
main. The only requisite to apply the approach is that the
set of models where features have to be located conform to
MOF (the OMG metalanguage for defining modeling lan-
guages). The query must be provided as a textual descrip-
tion.

The generation and management of fragments is performed
using the Common Variability Language (CVL), which can
be applied to any MOF-based languages. With the use of
CVL, the approach is able to work with the model fragments



provided as seed and evolve them applying the genetic algo-
rithms. As output, the approach produces a set of feature
candidates rankings in the form of CVL model fragments.

Furthermore, the fitness function can also be applied to
any MOF-based model. The text elements associated to
the models are extracted automatically by the approach us-
ing the reflective methods provided by the Eclipse Modeing
Framework. That is, there is no need of knowledge about
the domain of application in order to extract the relevant
terms.

However, the approach can be tailored to fit the needs
of different domains if necessary. For instance, the naming
conventions used by companies for model elements, prop-
erties and functions can follow different formats, but the
approach can be tailored to handle them. In our case study
some model elements follow the CamelCase convention while
others follow the Underscore convention. To address that,
we applied different tokenizers in order to obtain the terms
properly. Similarly, the Part-of-Speech tagger that is used
to eliminate non-relevant words based on their grammatical
category is language dependant, but can be configured to
other languages when necessary.

In summary, the approach can be applied to locate fea-
tures on any MOF-based model from any domain. If neces-
sary, some tweaks and modifications can be applied to tailor
the approach to particular needs of the domains, but the
core of the approach will remain unchanged.

6. RELATED WORK
Some works report their industrial experiences in a wide

range of fields transforming legacy products into Product
Line assets [15, 16, 18]. These approaches focus on captur-
ing guidelines and techniques for manual transformations.
In contrast, our approach introduces automation into the
process while taking advantage from the knowledge of the
domain experts.

Some works [25, 14, 26, 27, 20, 10, 8] focus on the location
of features over models by comparing the models with each
other to formalize the variability among them in the form of
a Software Product Line.

Wille et al. [25] present an approach where the similar-
ity between models is measured following an exchangeable
metric, taking into account different attributes of the mod-
els. Then, the approach is further refined [14] to reduce the
number of comparisons needed to mine the family model.

The authors in [26] propose a generic approach to auto-
matically compare products and locate the feature realiza-
tions in terms of a CVL model. In [27] the approach is
refined to automatically formalize the feature realizations of
new product models added to the system. A similar ap-
proach is proposed in [10] where the feature location results
is validated against an industrial environemnt.

Martinez et al. [20] propose an extensible approach based
on comparisons to extract the feature formalization over a
family of models. In addition, they provide means to extend
the approach to locate features over any kind of asset based
on comparisons.

However, all of these approaches are based on mechani-
cal comparisons among the models, classifying the elements
based on their similarity and identifying the dissimilar el-
ements as the features realizations. In contrast, our work
is applied to a single product model, so it does not rely on
model comparisons to locate the features but in comparisons

with a textual description of the target feature.
Font et al. [8] propose a generic approach to locate fea-

tures among a family of product models based on a human-
in-the-loop process. The features are located by comparison
of models and the interaction of engineers that provide their
knowledge of the domain. The approach is further refined
in [9] and generalized through the use of a genetic algorithm
to locate features among a family of models in the form of a
variation point (model placements and a set of correspond-
ing replacements).

However, the work from [9] cannot be applied to a sin-
gle model as the fitness function is based on the number of
occurrences of one model fragment among the family of mod-
els. In the present work, the feature location is performed
over a single model; no family of models is required to apply
the approach. We introduce a new crossover operator (that
applies to model fragments extracted from the same product
model) and a fitness function that combines FCA and LSA
to determine the similarity between the query provided and
the “evolving” model fragments. The approaches in [9] and
the present work differ on (1) the scenarios where they can
be applied (variability formalization of a family of products
for SPL creation VS isolation of a feature realization from
a single product for maintenance purposes), (2) the models
that can be fed to the approach (family of models VS single
model with meaningful identifier names and other natural
language items present in the models), (3) the fitness func-
tion (occurrences of model fragment VS textual similarity
between a search query and the model elements performed
through FCA+LSA) and (4) the evaluation performed (im-
pact of model fragments seed VS impact of the query used
as input).

7. CONCLUSION AND FUTURE WORKS
As part of this work we have presented a Genetic Algo-

rithm to Feature Location that target models as the feature
realization artifacts. We propose a new crossover operator
that combines two model fragments extracted from the same
product model and generates a new individual that contains
elements from both parents. We propose a fitness function
that clusters model fragments into feature candidates and
then assigns them a fitness value based on their similarity
with a query. As a result, the features located by using the
approach shows a recall and precision measures of around
90% while the baseline remains below 40%. Finally, we dis-
cuss the approach and provide recommendations on how to
provide the input to the approach to improve the location
of features over the models.

Our next steps involve the application of the presented
approach to other domains. In particular we plan to apply
the approach to locate the features on train models from
CAF1, an international company that builds and deploys
railways solutions around the world.

Acknowledgment
This work has been partially supported by the Ministry
of Economy and Competitiveness (MINECO) through the
Spanish National R+D+i Plan and ERDF funds under the
project Model-Driven Variability Extraction for Software
Product Line Adoption (TIN2015-64397-R).

1http://www.caf.net/en



8. REFERENCES
[1] Efficient java matrix library. http://ejml.org/. [Online;

accessed 7-April-2016].

[2] Apache opennlp: Toolkit for the processing of natural
language text. https://opennlp.apache.org/, 2016.
[Online; accessed 7-April-2016].

[3] Snowball : Snowball is a small string processing
language designed for creating stemming algorithms
for use in information retrieval.
http://snowball.tartarus.org/, 2016. [Online; accessed
7-April-2016].

[4] M. Affenzeller, S. Winkler, S. Wagner, and A. Beham.
Genetic Algorithms and Genetic Programming:
Modern Concepts and Practical Applications.
Chapman & Hall/CRC, 1st edition, 2009.

[5] L. Davis. Handbook of Genetic Algorithms. Van
Nostrand Reinhold, New York, 1991.

[6] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk.
Feature location in source code: a taxonomy and
survey. Journal of Software: Evolution and Process,
25(1):53–95, 2013.

[7] D. Dyer. The watchmaker framework for evolutionary
computation (evolutionary/genetic algorithms for
java). http://watchmaker.uncommons.org/, 2016.
[Online; accessed 7-April-2016].

[8] J. Font, L. Arcega, Ø. Haugen, and C. Cetina.
Building software product lines from conceptualized
model patterns. In Proceedings of the 19th
International Conference on Software Product Line
(SPLC), pages 46–55, 2015.

[9] J. Font, L. Arcega, Ø. Haugen, and C. Cetina. Feature
location in model-based software product lines
through a genetic algorithm. In 15th International
Conference on Software Reuse, ICSR 2016, Limassol,
Cyprus, Jun 2016.

[10] J. Font, M. Ballaŕın, Ø. Haugen, and C. Cetina.
Automating the variability formalization of a model
family by means of common variability language. In
Proceedings of the 19th International Conference on
Software Product Line (SPLC), pages 411–418, 2015.

[11] B. Ganter and R. Wille. Formal Concept Analysis:
Mathematical Foundations. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 1st edition, 1997.

[12] D. Götzmann. Formal concept analysis implemented
in java (colibri-java).
https://code.google.com/archive/p/colibri-java/,
2016. [Online; accessed 7-April-2016].

[13] Ø. Haugen, B. Moller-Pedersen, J. Oldevik, G. Olsen,
and A. Svendsen. Adding standardized variability to
domain specific languages. In Software Product Line
Conference, 2008. SPLC ’08. 12th International,
pages 139–148, Sept 2008.

[14] S. Holthusen, D. Wille, C. Legat, S. Beddig,
I. Schaefer, and B. Vogel-Heuser. Family model mining
for function block diagrams in automation software. In
Proceedings of the 18th International Software Product
Line Conference: Volume 2, pages 36–43, 2014.

[15] K. Kim, H. Kim, and W. Kim. Building software
product line from the legacy systems ”experience in
the digital audio and video domain”. In Software
Product Line Conference, 2007. SPLC 2007. 11th
International, pages 171–180, Sept 2007.

[16] R. Kolb, D. Muthig, T. Patzke, and K. Yamauchi.
Refactoring a legacy component for reuse in a software
product line: A case study: Practice articles. J. Softw.
Maint. Evol., 18(2):109–132, Mar. 2006.

[17] T. K. Landauer, P. W. Foltz, and D. Laham. An
introduction to latent semantic analysis. Discourse
processes, 25(2-3):259–284, 1998.

[18] H. Lee, H. Choi, K. Kang, D. Kim, and Z. Lee.
Experience report on using a domain model-based
extractive approach to software product line asset
development. In Formal Foundations of Reuse and
Domain Engineering, volume 5791 of Lecture Notes in
Computer Science, pages 137–149. Springer Berlin
Heidelberg, 2009.

[19] M. M. Lehman, J. Ramil, and G. Kahen. A paradigm
for the behavioural modelling of software processes
using system dynamics. Technical report, Imperial
College of Science, Technology and Medicine,
Department of Computing, Sep 2001.

[20] J. Martinez, T. Ziadi, T. F. Bissyandé, J. Klein, and
Y. L. Traon. Bottom-up adoption of software product
lines: a generic and extensible approach. In
Proceedings of the 19th International Conference on
Software Product Line (SPLC), pages 101–110, 2015.

[21] J. Rubin and M. Chechik. Combining related products
into product lines. In Fundamental Approaches to
Software Engineering, volume 7212, pages 285–300.
Springer Berlin Heidelberg, 2012.

[22] J. Rubin and M. Chechik. A survey of feature location
techniques. In I. Reinhartz-Berger, A. Sturm,
T. Clark, S. Cohen, and J. Bettin, editors, Domain
Engineering, pages 29–58. Springer Berlin Heidelberg,
2013.

[23] G. Salton and C. Buckley. Term-weighting approaches
in automatic text retrieval. Information processing &
management, 24(5):513–523, 1988.

[24] A. Svendsen, X. Zhang, R. Lind-Tviberg, F. Fleurey,
Ø. Haugen, B. Møller-Pedersen, and G. K. Olsen.
Developing a software product line for train control: a
case study of cvl. In 14th international conference on
Software product lines (SPLC), 2010.

[25] D. Wille, S. Holthusen, S. Schulze, and I. Schaefer.
Interface variability in family model mining. In
Proceedings of the 17th International Software Product
Line Conference: Co-located Workshops, pages 44–51,
2013.

[26] X. Zhang, Ø. Haugen, and B. Moller-Pedersen. Model
comparison to synthesize a model-driven software
product line. In Proceedings of the 2011 15th
International Software Product Line Conference
(SPLC), pages 90–99, 2011.

[27] X. Zhang, Ø. Haugen, and B. Møller-Pedersen.
Augmenting product lines. In Software Engineering
Conference (APSEC), 2012 19th Asia-Pacific,
volume 1, pages 766–771, Dec 2012.


