Feature Location in model-based Software
Product Lines through a Genetic Algorithm *

Jaime Font'?, Lorena Arcega'?, @Qystein Haugen®, and Carlos Cetina'

1 San Jorge University, SVIT Research Group, Zaragoza, Spain
{jfont,larcega,ccetina}@usj.es
2 University of Oslo, Department of Informatics, Oslo, Norway
3 @stfold University College, Department of Information Technology, Halden, Norway
oystein.haugen@hiof.no

Abstract. When following an extractive approach to build a model-
based Software Product Line (SPL) from a set of existing products, fea-
tures have to be located across the product models. The approaches that
produce best results combine model comparisons with the knowledge
from the domain experts to locate the features. However, when the do-
main expert fails to provide accurate information, the semi-automated
approach faces challenges. To cope with this issue we propose a genetic
algorithm to feature location in model-based SPLs. We have an oracle
from an industrial environment that makes it possible to evaluate the
results of the approaches. As a result, the proposed approach is able to
provide solutions upon inaccurate information on part of the domain ex-
pert while the compared approach fails to provide a solution when the
information provided by the domain expert is not accurate enough.

1 Introduction

A recent survey [2] reveals that most of the Software Product Lines (SPLs)
are built following an extractive approach, where a set of existing products is
reengineered into a SPL [12]. The resulting SPL is capable of generating the
products used as input (among others) with the benefit of having the variability
among the products formalized, enabling a systematic reuse.

Several reverse engineering approaches can be used to identify and locate the
features [4-6,14,16, 18] from the existing product models and formalize them in
the form of a model-based SPL (where the features are realized in the form of
model fragments). In our previous work [5] we show that Conceptualized Model
Patterns to Feature Location (CMP-FL) provides features more recognizable by
the engineers that must use them thanks to the inclusion of information from
the domain experts into the feature location process.

* This work has been partially supported by the Ministry of Economy and Competi-
tiveness (MINECO), through the Spanish National R+D+i Plan and ERDF funds
under The project Model-Driven Variability Extraction for Software Product Lines
Adoption (TIN2015-64397-R)

However, in CMP-FL the set of possible solutions is too big to be evaluated
exhaustively, resulting in the need of very precise information from the domain
engineers to accelerate the process. If the information provided is not accurate
enough the feature location will fail, not being able to provide the expected solu-
tion. When the family of product models is built following clone-and-own tech-
niques, the variability among the products is not always properly documented,
resulting in a lack of precise information.

To cope with the above, we propose an approach based on a Genetic Algo-
rithm to Feature Location (GA-FL) among a set of product models. Specifically,
we propose new model-based genetic operations capable of working with model
fragments: (1) the crossover operation, that combines information from two pos-
sible solutions into a single offspring; (2) the mutation operation, that randomly
mutates one model fragment (while keeping the consistency with the product
model where the fragment was extracted from); (3) a fitness function that evalu-
ates the population of possible solutions and ranks them depending on how they
solve the problem and (4) a parent selection operation to find candidates that
feed the rest of genetic operations.

We have compared the CMP-FL with GA-FL through the use of an oracle
extracted from our industrial partner (BSH), whose induction department pro-
duces the firmware for their induction hobs (sold under the brands of Bosch and
Siemens) based on a model-based SPL. It turns out that our GA-FL is able to
provide the solution expected in scenarios where the CMP-FL fails. When the
information provided is accurate, the GA-FL algorithm is able to enrich the set
of best solutions produced given that it explores a broader search space.

The rest of the paper is organized as follows: next section presents some
background about the domain of our industrial partner and its SPL. In Section 3
we present our approach, the GA-FL. Section 4 compares the presented approach
with the best alternative from literature. In Section 5 we discuss some related
work. Finally, we conclude the paper.

2 Formalizing the Variability

This section presents the Domain Specific Language (DSL) used by our industrial
partner to formalize their products, the IHDSL. It will be used through the
rest of the paper to present a running example. Then, the Common Variability
Language (CVL) is presented, CVL is the language used by our approach (GA-
FL) to formalize the location of the features as reusable model fragments.

2.1 The Induction Hobs Domain Specific Language (IHDSL)

The newest Induction Hobs (IHs) feature full cooking surfaces, where dynamic
heating areas are automatically generated and activated or deactivated depend-
ing on the shape, size, and position of the cookware placed on top. In addition,
there has been an increase in the type of feedback provided to the user while
cooking, such as the exact temperature of the cookware, the temperature of the

food being cooked, or even real-time measurements of the actual consumption
of the TH. All of these changes are made possible at the cost of increasing the
software complexity.

HDSL Metamodel IHDSL syntax Feature Specification layer
Ind:cgon L O Induction
0 Inverter | Inductors Hob
! —~_ | @ __/
Provider Power Consumer Power ,
Channel | Manager Channel Channels manager e

lower
Inverter

Base Model Library Model
small

P2 D—Etg R1
R2 Inductor Inductor Inductor

R4 D—D—O R3 \P2—>RrR2) (P2>R1) \p2—>R3

Product Realization layer

Fig. 1. CVL applied to IHDSL

The Domain Specific Language used by our industrial partner to specify the
Induction Hobs (IHDSL) is composed of 46 meta-classes, 74 references among
them and more than 180 properties. However, in order to gain legibility and due
to intellectual property rights concerns, in this paper we use a simplified subset
of the ITHDSL (see Fig. 1).

Inverters are in charge of transforming the input electric supply to match the
specific requirements of the IH. Then, the energy is transferred to the inductors
through the channels. There can be several alternative channels, which enable
different heating strategies depending on the cookware placed on top of the IH at
runtime. The path followed by the energy through the channels is controlled by
the power manager. Inductors are the elements where the energy is transformed
into an electromagnetic field. Inductors can be organized into groups to heat
larger cookware while sharing the user interface controllers.

2.2 The Common Variability Language applied to IHs

To formalize the variability among the products of the SPL, we need a variability
model that captures which model fragments are used by each of the products that
can be built from the SPL. To build it, the presented approach uses the Common
Variability Language (CVL) [8], given its expressiveness to properly formalize
the feature realizations in terms of model fragments. CVL defines variants of a
base model conforming to MOF (Meta-Object Facility, the Object Management

Group metalanguage for defining modeling languages) by replacing variable parts
of the base model by alternative model replacements found in a library.

The base model is a model described by a given DSL (here, IHDSL) that
serves as the base for different variants defined over it. In CVL the elements
of the base model that are subject to variations are the placement fragments
(hereafter placements). A placement can be any element or set of elements that is
subject to variation. To define alternatives for a placement we use a replacement
library, which is a model that is described in the same DSL as the base model
that will serve as a base to define alternatives for a placement. Each one of the
alternatives for a placement is a replacement fragment (hereafter replacement).
Similarly to placements, a replacement can be any element or set of elements
that can be used as variation for a replacement.

Fig. 1 shows an example of variability specification of IH through CVL. In
the product realization layer, two placements are defined over an IH base model
(P1 and P2). Then, four replacements are defined over an IH library model
(R1, R2, R3, and R4). In the feature specification layer, a Feature Model is
defined that formalizes the variability among the IH based on the placements
and replacements. For instance, P1 can only be substituted by R4 (which is
optional), but P2 can be replaced by R1, R2, or R3. Note that each fragment has
a signature, which is a set of references (boundaries) going from and towards that
replacement. A placement can only be replaced by replacements that match the
signature. For instance, the P2 signature has a reference from a power manager
(outside the placement) to an inductor (inside the placement), while the R4
signature is a reference from a power manager (inside the replacement) to an
inductor (outside the replacement). P2 cannot be substituted by R4 since their
signatures do not match.

Through the rest of the paper, we will use the term feature location in mod-
els formalized through CVL as “the process of obtaining the particular model
fragments (or alternatives e.g. R1, R2 and R3) that are used in a particular
placement (or variation point e.g. P1) among a set of products”. Therefore, we
will refer to the variation point as the feature being located and each of the alter-
native model fragments will be referred as different realizations for that feature
(in fact, they are realizations of the alternatives of the feature).

3 Genetic Algorithm for Feature Location

This section present our approach, a Genetic Algorithm to Feature Location
(GA-FL). Fig. 2 shows an overview of the GA-FL process. The input of the
process is a set of interrelated product models with implicit variability among
them.

In the Genetic Algorithm process, the set of solutions that will be iterated
need to be properly encoded (see A - Encoding of the Population), enabling
the GA to work with them. The DE (domain expert or domain engineer) provides
information about the set of product models to initialize the population of model
fragments (see B - Initialize Population), the DE will select some product

Set of e,
/(B. Initializate .] Ranked \
%?,g:g ‘f_Cm)pulatioD— Population C. Fitness population

A. Encoding

of Population
Offspring —GMutation

D. Parent
Selection)/

E. Crossover

Fig. 2. Overview of the Genetic Algorithm to Feature Location

models to locate a particular feature and an initial model fragment for each of
the selected product models. Next, each possible individual from the population
is evaluated to determine how good is as a solution to the problem (see C -
Fitness), as a result the population of solutions is ranked depending on their
fitness value. Based on the ranked population, the parents for the new element
are randomly selected (see D - Parent Selection), giving a higher probability
to the solutions with higher fitness values. The first operation applied to the
parents is the crossover, that joins two parents into a new solution (see E -
Crossover). The resulting model fragment will be bound by a different product
model and thus will evolve differently than the original one. The second operation
applied to the solution resulting from the crossover is the mutation (see F -
Mutation), the model fragment will evolve, growing or shrinking, resulting in
a different model fragment that will be evaluated as possible solution in further
generations. Finally, the set of solutions obtained will be presented to the DE, to
select the solution that best represent their understanding of the feature being
located.

3.1 Encoding of the Population

Traditionally, genetic algorithms encoded each possible solution of the problem
(or chromosome) as a fixed-size string of binary values. Each position of the
chromosome string (called locus) has two possible values (called alleles): 0 or 1.

However, to encode each model fragment as a string of binary values is not
straightforward. As suggested by Davis [3], we decided to use an encoding natural
for our problem and then devise a GA for that specific encoding. Therefore, we
will encode our individuals as model fragments. To do so, we rely on MOF as the
standard to define the models and CVL to specify fragments over those models
and manipulate them.

Each individual of our Genetic Algorithm will be a model fragment defined
over one of the product models. That is, each individual is a set of model elements
and relationships among them that is present in one of the product models (see
right part of Fig. 3 to see the representation of the individual). Therefore, to
work with these individuals (model fragment defined over a product model),
we will present genetic operations that can be applied directly to those model
fragments. Through the rest of the paper we will refer to each individual as a
model fragment that is always part of a product model.

3.2 Initialize Population

The first step of the process is to initialize the population of the GA. This is
done by the DEs, preferably the same DE that created the products or work
directly with them. The initialization is done based on DE’s knowledge of the
domain and the products themselves. This step is performed only one time for
each feature that wants to be located.

Input: Set of similar product models — -
P. F.). Initial Population
Product 1 Product 2 :
: Product Model 1 Product Model 2 Product Model 3
O S I
Product 3 Product4 | |
D_E§ o o : ! : ! :
D—D—O : Model Fragment 1 Model Fragment 2 Model Fragment 3

Fig. 3. Initialize Population

Fig. 3 shows an overview of this step. Top part shows the set of similar
product models that where the feature will be located (Product Model 1 to 4).
First, (1) the DE selects a subset of product models representative of the feature
that will be used as input (in this example Product Model 1, 2 and 3), then,
(2) for each product model from the subset the DE selects a model fragment
that he believes will be part of the realization of that particular feature (Model
Fragment 1, 2 and 3). As a result we get an initial population composed of pairs
of model fragments and the product models where they were extracted from.

It is important to remark that we focus in the location of the features, leaving
out of the scope of this work the features constraints discovery. That is, there
could exists a cross-tree constraint among the feature 'upper heating spot’ and
the feature ’lower heating spot’ (e.g. power consumption of combination of sev-
eral inductors is higher than power consumption of single small inductors), but
feature constraint discovery is not covered by this work.

3.3 Fitness Function

The fitness function is used as an heuristic to find the best solutions for the
given problem. It is applied to each individual in the population and the function
assigns a value that assesses how good is the solution. This information can be
used in two ways: to determine that the algorithm should terminate as a desirable

level of fitness has been reached and to determine the best candidates as parents
for the next generation.

Initial Population
Product Model Model Fragment

Matching Compute the
PM1 PM2 PM3 |fitness value

Signature

IS e RIVANZ AR

X | X I\ | 13

Fig. 4. Fitness function application

Our fitness function proceeds as follows: (1), the process abstracts from each
model fragment to a placement signature in their referenced model fragment;
(2), placement signatures are compared and grouped together if they are equal;
(3), each placement signature is matched against all the product models from the
initial subset of product models; (4), the fitness is computed for each placement
signature and the fitness values are spread to the elements of the population.

Fig. 4 depicts an overview of the model pattern extraction process [5] adapted
to be used as a fitness function. The input of the process is the present population
(the set of model fragments and their reference to a product model), see first
and second column.

Step 1: The first step (see third column of Fig. 4) is to obtain a placement
signature for each of the individuals (model fragment and the product model).
The placement signature formalizes the set of elements that must be present in a
model in order to connect the given model fragment. This is done comparing the
model fragment with the product model from which it was originally extracted
(when the initial population was created). The model fragment is present in the
product model and connected to other model elements of the product model.
The process looks for those boundary elements that link an element from the
model fragment with the rest of the product model and extracts them as a place-

ment signature. That is, the set of elements needed to connect the given model
fragment. Therefore, the model fragment used as input match this placement
signature. As a result, step 1 produces a placement signature for each model
fragment used as input.

Step 2: The second step (not shown in Fig. 4, there are no duplicates) is
to compare the placement signatures and group the ones that are equal. To do
S0, the process compares pairwise the placement signatures. If two placement
signatures have the same elements in the boundaries, they are considered to be
equal. Then, both placement signatures are grouped together. As a result, this
step produces a set of unique placement signatures and each model fragment is
associated to a single placement signature.

Step 3: The third step (see fourth, fifth and sixth columns of Fig. 4) is
to match each placement signature with all the product models present in the
initial subset of product models. That is, the process looks for spots where a
given placement signature matches in each of the given product models. When a
placement signature matches a particular spot of a product model, means that
the model fragments associated to that placement signature could be inserted in
the given spot. As a result, step 3 provides a set of spots (across all the product
models) where the given placement signature matches.

Step 4: The fourth step (see seventh column of Fig. 4) is to compute the
fitness value for each of the placement fragments and spread it to the associated
model fragments. The process computes the number of product models where
the placement matches (no matter how many times). This value indicates the
number of product models where the resulting placement could be used. As
the purpose of the genetic algorithm is to locate variation points and alternative
realizations across the product models, the higher the number of product models
that match the better. Finally, the value of each placement signature is spread
to the associated model fragments. As a result, step 4 assigns a fitness value for
each model fragment present in the population.

After applying these steps, each model fragment gets a fitness value. The
higher the number of products where the placement signature is present the
better, as this means that it will be able to formalize the variability of a higher
number of product models.

Once the population fitness has been assessed, it is time to create the next
generation of individuals. This new generation will be based on present genera-
tion and the fitness value will be used to ensure that best candidates are chosen
as parents for the evolution process. To do so, the process makes use of three
different genetic operations that will act over the individuals of the population
to generate new ones. First, a selection operation will be used to select the el-
ements that will be used as parents of the new individual. Then, a crossover
operation will be used to broad the solution space that a particular solution can
reach. Finally a mutation operation will be used to introduce variations in the
individual hoping that the new individual performs better than its antecessor.

3.4 Selection of Parents

The selection of parents is performed following the roulette wheel selection
method [1], one of the most common methods used in GA. In this method,
each individual is assigned with a share of a wheel roulette proportional to their
fitness. By doing so, fitter individuals will have higher chance to be selected
and go forward with the rest of genetic operations while weaker individuals will
have lower probability of being selected. Other selection strategies present in
literature can be used with our model fragments, as the operation simply selects
individuals, the encoding does not affect the selection.

This operation selects the individuals that will be parents of the new indi-
vidual that is going to be generated. Traditionally, genetic algorithms select two
elements as parents with the only restriction of avoiding the same element being
"father’ and 'mother’ (as this would nullify the effect of the crossover operation).
However, when applying our genetic algorithm to model fragments a new restric-
tion applies: both fragment selected must reference different product models. By
doing so we ensure that the crossover operation can be properly applied.

First, we perform the selection of the first parent with no restrictions. Then,
when selecting the second parent, we will only allow selections of elements ref-
erencing a product model different from the first parent. However, in order to
allow the algorithm to browse into a broader search space, the product models
not included into the input subset by the DE will be also eligible (with a low
fitness value). That is, elements already present in the population will have the
fitness value from the previous step while product models not present in the
population will have a fitness value of 1.

As a result, the selection operation provides a parent model fragment (ob-
tained from the present population) and another product model (that could not
be present in the actual population) that will be used for the crossover operation.

3.5 Crossover

In genetic algorithms, crossover enables the creation of a new individual gen-
erated combining the genetic material of both parents. In our encoding there
are two elements that can be mapped across the different individuals: the model
fragment and the referenced product model. Therefore, our crossover operation
will take the model fragment from the first parent and the product model from
the second parent, generating a new individual that contains elements from both
parents and thus preserving the basic mechanics of the crossover operation.

To achieve the latter, our crossover operation is based on model comparisons.
Fig 5 shows an example of application of the crossover operation over model
fragments. First we select the model fragment from the first parent. Then we
select the product model from the second parent. Then the model fragment (from
first parent) is compared with the product model (from the second parent). If
the comparison finds the model fragment in the product model, the process
creates a new individual with the model fragment taken from the first parent
but referencing the product model from the second parent. In the case that the

10

Parent 1
Product Model 2

Model Fragment

o). T ;
o l i Offspring
o—=-0 5 : Crossover operation ™\ Product Model 4

Model Fragment 1 (from Parent 1)
Parent 2 +
Product Model 4 Product Model 4 (from Parent 2)

Fig. 5. Crossover Operation

comparison does not find a similar element, the crossover will return the first
parent unchanged.

This operation enables to broad the search space to a different product model.
That is, both model fragments (the one from the first parent and the one from
the new individual) will be the same. However, as each of them is referencing
a different product model, they will mutate differently and provide different
individuals in further generations. As the solution we are looking for should
apply to all the models provided as input, it can be reached from any of them,
but some product models can yield to the solution faster than others.

3.6 Mutation

In genetic algorithms, mutation operation introduces a random variation to the
new individuals generated by the crossover operation. The mutation operation of-
ten results in a weaker individual, but occasionally the result might be a stronger
individual.

Fig. 6 shows an example of our mutation for model fragments. Each model
fragment is associated to a product model and the model fragment mutates in
the context of their associated product model. That is, the model fragment will
gain or drop some elements, but the resulting model fragment will be still part
of the referenced product model. The mutation possibilities of a given model
fragment are driven by their associated product model.

To perform the mutation, the type of mutation that will occur (either addi-
tion or removal of elements) is decided randomly:

Removal of elements: This kind of mutation randomly removes some
elements from the model fragment. The only constraint is that elements are
selected from the edges of the model fragment (they are connected with a single
element), so the resulting model fragment is still connected (we can navigate
from any element to any other element through the connections between the
elements) and is not split in two isolated groups of elements. As the resulting
model fragment is a subset of the original model fragment, and the original was

11

present in the referenced product model, the resulting product model will be
always present in the referenced product model.

Addition of elements: This kind of mutation randomly adds some ele-
ments to the model fragment. The only constraint is that the resulting model
fragment is present in the referenced product model. To achieve it, the bound-
aries of the model fragment with the rest of the product model are identified and
then a random element from the boundary is added to the resulting model frag-
ment. By doing so, the mutated model fragment will be part of the referenced
product model.

Offspring Mutated Offspring

Product Model 7 Model Fragment 4 / Mutation operation \ Product Model 7 ModeINFfr\;vgmen

MY <l T 3 Model Fragment 4 0N | [3
i W) T —o—(in ; - 4
%_O : Product Model 7 B’—_-l’_o : :g :

Fig. 6. Mutation operation

As a result, a new model fragment is created but it still references the same
product model. That is, the individual represent other possible feature realization
present in the product model for the particular feature being located. The next
time the fitness is calculated, the placement signature described by this model
fragment will be extracted and evaluated to assess how good it is as a solution.

4 Case Study

To evaluate the approach we are going to compare the presented GA-FL ap-
proach with CMP-FL, an approach to Feature Location in product models that
makes use of the information provided by DEs. We are going to validate the
results from both approaches against an oracle obtained from our industrial
partner (BSH), the leading manufacturer of home appliances in Europe. Their
induction division has been producing induction hobs (under the brands of Bosch
and Siemens among others) for the last 15 years. The firmware of the different
induction hobs is generated following a model-based SPL approach. First, a res-
olution for a product is created choosing from the set of features present in
the variability model (each feature is formalized as model fragments). Then, a
product model is generated by executing the product resolution (CVL execution
capabilities produce a product model including the model fragments from the
features selected). Finally, the firmware of the induction hob is obtained applying
a model transformation to the resulting product model.

12

4.1 Case Study Setup

Fig. 7 presents an overview of the process followed to evaluate the presented
approach. Top part shows the oracle, a set of product models and their formal-
ization of features. The product models from the oracle are used to construct
three different scenarios regarding how good is the input fed to the approaches
(left part of Fig. 7). Then each scenario is test against both approaches, (CMP-
FL) and the presented approach (GA-FL). As a result each approach provides
a set of placement signatures that realize the feature being located. Each set of
solutions is compared with the placement signature present in the oracle for that
particular feature being located (right part of Fig. 7). We want to determine if
the solution used by our industrial partner (from the oracle) is present among
the solutions provided by each approach in each scenario.

Oracle from BSH

Product Features
Models located

S1
Y Y

w
- x
Product CMP-FL < | |Features
S2 o
Models GA-FL g located
O

Fig. 7. Overview of the evaluation with the oracle

S3

The oracle is composed of a set of product models and the set of features
(used to define the products) properly located. That is, for each feature used by
the products (around 100 features) has been previously located and validated by
our industrial partner (the oracle is extracted from a set of product models that
are currently under production). Therefore, we will consider the oracle as the
ground truth for the evaluation process. The set of product models consist of 46
induction hob models, each of them model composed of around 100 elements (on
average) that can be part or not of a model fragment. Therefore, the number of
possible combinations can be calculated as the power set of the set .S of elements
P(S), resulting in around 2% (|P(S)| = 2" where |S| = n) different potential
model fragments. We generate the product models attending to the oracle to
distinguish three different scenarios regarding how accurate is the input fed to
the approaches:

13

S1 high accuracy: The first scenario corresponds to what we consider a
high accuracy input from the user. More than a 75% of the products used as
input for the approaches corresponds to the subset of product models (46 avail-
able) that actually include a formalization of the feature that is being located
(extracted from the oracle); and thus the placement signature will match with
those product models.

S2 medium accuracy: The second scenario corresponds to a medium
accuracy input from the user. Between 25% and 75% of the products used as
input for the approaches include a formalization of the feature that is being
located. Therefore, a similar percentage (25% to 75%) of the products do not
contain a formalization of the feature being located.

S3 low accuracy: The third scenario corresponds to a low accuracy input
from the user. Only less than a 25% of the products used as input include a
formalization of the feature that is being located. This results in some deliber-
ately bad cases (e.g. select only products that do not include the feature being
located).

In the three scenarios, the size of the input is randomly selected and ranges
from 1 to 5 product models. The seed fragments have been obtained randomly.
For each of the features present in the oracle we generate 100 different test
cases for each of the three scenarios (S1, S2 and S3). Then, each test case is
tested against both approaches (CMP-FL and GA-FL). Finally, the solutions
sets (placement signatures) provided by the approaches are compared against
the oracle. As a result, we can determine if the feature realizations that is ac-
tually being used by our industrial partner (the expected solution) is present
among the solution sets returned by the approaches. We do this comparing the
placement signature from the oracle with the set of placement signatures pro-
vided as solution and determining whether it is present or not.

4.2 Results

The CMP-FL was able to provide a set of solutions that included the expected
solution in 86% of the cases from S1 (high accuracy input). Nevertheless, the
presented GA-FL was able to include the expected solution in 79% of the cases.
The CMP-FL was able to include the expected solution into the solutions set
in 48% of the cases from S2 (medium accuracy input). When the information
provided by the user is not accurate enough, the approach fails to include the
expected (oracle) option into the resulting set. By contrast, the GA-FL was able
to include it in 73% of the cases. Finally, the CMP-FL was able to include the
expected solution into the solutions set in 16% of the cases from S3 (low accuracy
input). The approach only search in the product models provided by the user
and is not able to look for the solution in other product models. By contrast, the
GA-FL approach was able to include the expected solution in 63% of the cases
from S3. Given the stochastic nature of the Genetic Algorithm, the approach is
able to find the solution even if the input provided is not accurate.

The justification of the different results provided by both approaches resides
in how the search space is traversed. That is, the different elements evaluated

14

as possible solutions by each of the approaches. The CMP-FL approach only
explores the portion of the solution space delimited by the product models used
as input. In contrast, the GA-FL approach is capable of traversing the entire
solution space, independently of the input.

The GA-FL approach is capable of reaching any possible solution from the
search space, as it can move across the search space in any direction. The mu-
tation enables the exploration of solutions within the same product, while the
crossover operation enables to switch to another product (an further explore
it with subsequent random mutations). By contrast, the CMP-FL approach is
bounded by the input of the user and only explores solutions within the product
provided as input; thus, some areas of the search space cannot be reached.

As a result, the CMP-FL is not able to provide better results than the input
provided; that is, upon a 75% of accuracy will provide the expected result 75%
of the cases. In particular in all the cases where the accuracy was 0% (from S3)
the expected solution was not included. In contrast, the presented approach is
able to explore solutions beyond the input provided by the user. This means
that upon the scenarios where the input is not accurate enough, the crossover
operation will (eventually) be able to switch to different product models that
convey to the expected solution.

5 Related Work

Some works report their industrial experiences in a wide range of fields trans-
forming legacy products into Product Line assets [10,11,13]. These approaches
focus on capturing guidelines and techniques for manual transformations. In
contrast, our approach introduces automation into the process while taking ad-
vantage from the knowledge of the domain experts.

Other works focus on the automation of the extraction process [6,9,14,16-18],
obtaining the variability from legacy products by comparing the products with
each other. In [17], the similarity between models is measured following an ex-
changeable metric, taking into account different attributes of the models. Then,
the approach is further refined [9] to reduce the number of comparisons needed to
mine the family model. Rubin et al. [16] propose a generic framework for mining
legacy product lines and automating their refactoring. They compare the ele-
ments of the input with each other, matching those whose similarity is above
a certain threshold and merging them together. The authors in [18], propose a
generic approach to automatically compare products and extract the variability
among them in terms of a CVL variability model. The authors in [14] propose
an approach based on comparisons to extract the variability of any kind of asset.
However, these approaches are based on mechanical comparisons, automatically
turning identical elements into common parts of the SPL, similar elements as
alternatives for a feature and unmatched elements into optional features. In con-
trast, our work enables the DE to decide which elements should be formalized
as part of a feature based on the results of the comparisons.

15

Finally, there are some research efforts that apply genetic algorithms to the
SPLs domain. For instance, the authors in [7] present GAFES, an artificial in-
telligence approach for optimized feature selection in SPLs. The authors in [15]
present a genetic algorithm that finds optimal configurations of a Dynamic SPL
at run-time. However, the solutions of those genetic algorithms are encoded as
strings of binary values specifying the presence or absence of each feature. By
contrast, our approach is applied directly to the product models and model frag-
ments, resulting in a different encoding and set of genetic operations customized
to work with model fragments.

6 Conclusion

In this paper we have presented a Genetic Algorithm to Feature Location (GA-
FL) approach. To the best of our knowledge it is the first Genetic Algorithm
applied to feature location over models. We have provided a custom encoding
that enable the GA to work with model fragments and a set of genetic operations
that can be applied to individuals following that encoding. We have presented a
fitness function, a parent selection operation, a crossover operation (capable of
bring together elements from two parents into a single offspring) and a mutation
operation (that produces slight variations of the individual being mutated).

Finally we have compared the presented GA-FL with CMP-FL in terms on
how both approaches traverse the search space. This comparison shows that
CMP-FL does not traverse the whole space, failing to find a solution under
some scenarios, while the GA-FL is capable of traversing the whole search space
reaching the solutions. In addition, in scenarios where the CMP-FL approach
is able to find the best solution, our GA-FL approach is also able to do so
while traversing more elements from the search space, providing a more complete
solution.

The ideas of the presented approach are generic and can be applied to any
MOF-based models. Our next steps will involve the application of the presented
GA-FL approach to CAF 4, an international company that builds and deploy
railway solutions. They are currently shifting to a model-based SPL approach
and there is a need of locating the features among their existing product models.

References

1. M. Affenzeller, S. Winkler, S. Wagner, and A. Beham. Genetic Algorithms and
Genetic Programming: Modern Concepts and Practical Applications. Chapman &
Hall/CRC, 1st edition, 2009.

2. T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker, K. Czarnecki, and A. Wa-
sowski. A survey of variability modeling in industrial practice. In 7th International
Workshop on Variability Modelling of Software-intensive Systems (VaMoS), 2013.

3. L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York,
1991.

* www.caf.es/en

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk. Feature location in source
code: a taxonomy and survey. Journal of Software: Evolution and Process,
25(1):53-95, 2013.

J. Font, L. Arcega, @. Haugen, and C. Cetina. Building software product lines from
conceptualized model patterns. In Proceedings of the 19th International Conference
on Software Product Line (SPLC), pages 46-55, 2015.

J. Font, M. Ballarin, @. Haugen, and C. Cetina. Automating the variability formal-
ization of a model family by means of common variability language. In Proceedings
of the 19th International Conference on Software Product Line (SPLC), pages 411—
418, 2015.

J. Guo, J. White, G. Wang, J. Li, and Y. Wang. A genetic algorithm for optimized
feature selection with resource constraints in software product lines. J. Syst. Softw.,
84(12):2208-2221, Dec. 2011.

(. Haugen, B. Moller-Pedersen, J. Oldevik, G. Olsen, and A. Svendsen. Adding
standardized variability to domain specific languages. In Software Product Line
Conference, 2008. SPLC °08. 12th International, pages 139-148, Sept 2008.

S. Holthusen, D. Wille, C. Legat, S. Beddig, I. Schaefer, and B. Vogel-Heuser.
Family model mining for function block diagrams in automation software. In
Proceedings of the 18th International Software Product Line Conference: Volume
2, pages 3643, 2014.

K. Kim, H. Kim, and W. Kim. Building software product line from the legacy
systems ”experience in the digital audio and video domain”. In Software Product
Line Conference, 2007. SPLC 2007. 11th International, pages 171-180, Sept 2007.
R. Kolb, D. Muthig, T. Patzke, and K. Yamauchi. Refactoring a legacy component
for reuse in a software product line: A case study: Practice articles. J. Softw. Maint.
Ewvol., 18(2):109-132, Mar. 2006.

C. W. Krueger. Easing the transition to software mass customization. In Revised
Papers from the 4th International Workshop on Software Product-Family Engi-
neering, PFE ’01, pages 282-293, London, UK, UK, 2002. Springer-Verlag.

H. Lee, H. Choi, K. Kang, D. Kim, and Z. Lee. Experience report on using a domain
model-based extractive approach to software product line asset development. In
Formal Foundations of Reuse and Domain Engineering, volume 5791 of Lecture
Notes in Computer Science, pages 137—-149. Springer Berlin Heidelberg, 2009.

J. Martinez, T. Ziadi, T. F. Bissyandé, J. Klein, and Y. L. Traon. Bottom-up
adoption of software product lines: a generic and extensible approach. In Proceed-
ings of the 19th International Conference on Software Product Line (SPLC), pages
101-110, 2015.

G. G. Pascual, M. Pinto, and L. Fuentes. Self-adaptation of mobile systems driven
by the common variability language. Future Generation Computer Systems, 47:127
— 144, 2015. Special Section: Advanced Architectures for the Future Generation of
Software-Intensive Systems.

J. Rubin and M. Chechik. Combining related products into product lines. In
Fundamental Approaches to Software Engineering, volume 7212, pages 285-300.
Springer Berlin Heidelberg, 2012.

D. Wille, S. Holthusen, S. Schulze, and I. Schaefer. Interface variability in family
model mining. In Proceedings of the 17th International Software Product Line
Conference: Co-located Workshops, pages 44-51, 2013.

X. Zhang, . Haugen, and B. Moller-Pedersen. Model comparison to synthesize a
model-driven software product line. In Proceedings of the 2011 15th International
Software Product Line Conference (SPLC), pages 90-99, 2011.

