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Abstract
Metamodels evolve over time, which can break the conformance
between the models and the metamodel. Model migration strategies
aim to co-evolve models and metamodels together, but their appli-
cation is not fully automatizable and is thus cumbersome and error
prone. We introduce the Variable MetaModel (VMM) strategy to
address the evolution of the reusable model assets of a model-based
Software Product Line. The VMM strategy applies variability mod-
eling ideas to express the evolution of the metamodel in terms of
commonalities and variabilities. When the metamodel evolves, the
models continue to conform to the VMM, avoiding the need for
migration. We have applied both the traditional migration strategy
and the VMM strategy to a retrospective case study that includes
13 years of evolution of our industrial partner, an induction hobs
manufacturer. The comparison between the two strategies shows
better results for the VMM strategy in terms of model indirection,
automation, and trust leak.

Categories and Subject Descriptors D.2.13 [Software Engineer-
ing]: Reusable Software—Reuse Models

Keywords Model-based Software Product Lines, Variability Mod-
eling, Model and Metamodel Co-evolution

1. Introduction
Model-Driven Development aims to shift the focus of software
development from coding to modeling. Metamodels are used to
formalize a set of concepts and the relationships among those
concepts. A model conforms to a metamodel if it is expressed by
the terms that are encoded in the metamodel.

Model-based Software Product Lines enable a planned reuse of
software components in products that are within the same scope
[14]. Commonalities and variabilities among the products are for-
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malized into a set of models (and metamodels) using a variabil-
ity language; either feature models [2] (the de facto standard for
variability modeling) or Common Variability Language (CVL) [8],
(recommended for adoption as a standard by the Architectural
Board of the Object Management Group). Although the details are
different, all share the idea of modeling commonalities and vari-
abilities among the different products.

Similar to other software components, metamodels evolve over
time [7]; however, changes that are introduced in the evolved meta-
model can invalidate the models that conform to the previous ver-
sion of the metamodel. To address this issue, migration strategies
[3, 10, 12, 15, 17] propose co-evolving models and metamodels
together to maintain consistency.

However, even though migration strategies have proven to be
successful in model-based approaches, their application is not fully
automatizable and can be cumbersome and error prone in large
systems. Evolution is particularly critical for a successful adoption
of model-based Software Product Lines (SPLs) [16].

We believe that the ideas of variability modeling can also be ap-
plied at the metamodel level to address the evolution of SPLs and
at the same time avoid the issues involved with migration strate-
gies. Our contribution is the Variable MetaModel (VMM) strategy,
which enables the evolution of the metamodel without breaking
conformance. In VMM, each metamodel evolution is expressed in
terms of metamodel commonalities and variabilities. As a result,
already existing models continue to conform to the created VMM,
avoiding the need for migration and its related issues.

First, we build a retrospective case study of the evolution under-
gone by our industrial partner (BSH) over the last 13 years regard-
ing the evolution of their models and metamodels. BSH is the lead-
ing manufacturer of home appliances in Europe and its induction
department produces induction hobs (under the brands of Bosch
and Siemens) following an MDD approach [9].

We then apply a migration strategy to the case study, migrating
the models whenever a metamodel change that breaks the confor-
mance between models and metamodels arises. Migration strate-
gies involve the following three issues: 1) model migration intro-
duces indirection to the models; 2) some of the steps of the migra-
tion strategy need human assistance; 3) the trust gained by models
(over years of use) is lost when they are migrated.

Finally, we also apply the VMM strategy to the retrospective
case study and compare both strategies (VMM and migration). The
comparisons shows that the VMM strategy achieves better results
than migration in terms of the three issues related to migration:
1) VMM avoids the need for migration (and the indirection in-
troduced); 2) some of the steps of the migration strategy require
human assistance while in the VMM strategy those steps are auto-
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Figure 1. CVL applied to IH-DSL

matic; 3) the trust gained by models remains the same in the VMM
strategy (since the model does not need to change).

2. The Induction Hobs Domain and CVL
Induction hobs use electromagnetism to generate heat that is trans-
ferred to the cookware. Traditionally, stoves feature four rounded
areas that become hot when turned on. Therefore, the first Induction
Hobs (IHs) created provided similar capabilities. However, the in-
duction hob domain is constantly evolving due to the possibilities
provided by the induction phenomena and the electronic compo-
nents that are present.

For instance, the newest IHs feature full cooking surfaces,
where dynamic heating areas are automatically calculated and ac-
tivated or deactivated depending on the shape, size, and position of
the cookware placed on top. There has been an increase in the type
of feedback provided to the user while cooking, such as the exact
temperature of the cookware, the temperature of the food being
cooked, or real-time measurements of the consumption of the IH.

The Domain Specific Language used by our industrial partner
to specify the Induction Hobs (IHDSL) is composed of 46 meta-
classes, 74 references among the meta-classes and more than 180

properties. However, in order to gain legibility and due to intel-
lectual property rights concerns, in this paper we use a simplified
subset of the IHDSL (top-left corner of Figure 2).

The bottom-right corner of Figure 1 shows an Induction Hob
with the graphical representation of the IHDSL. It is composed of
two power modules (vertical rectangles on both sides of the IH).
Each of them holds two inverters (squares), which are in charge of
providing the electrical supply required to generate the magnetic
field. Inverters are connected to the inductors (circles), which are
the elements where the magnetic field is generated. The number
inside each inductor represents the diameter of the inductor. The
line that connects inverters and inductors represents the channel,
which transfers energy from the inverter to the inductor. The user
interface of an IH has controllers to configure the power level of
each inductor (the horizontal rectangle at the bottom of the IH).

The Common Variability Language (CVL) is a DSL for mod-
eling variability in any model of any DSL based on Meta-Object
Facility (MOF), which is an OMG specification to define a uni-
versal metamodel for describing modeling languages. CVL defines
variants of the base model by replacing parts of the base model with
model replacements that are found in a library.

The variability specification in CVL is divided across two dif-
ferent layers: the feature specification layer (where variability is
specified following a feature model syntax [2]); and the product re-
alization layer (where the variability specified in terms of features
is linked to the actual models in terms of placements, replacements,
and substitutions).

The base model is a model described by a given DSL (here,
IHDSL) that serves as the base for different variants defined over
it. The top-left corner of Figure 1 shows the Base Model, which is a
complete IH model with four inductors and a slider user interface.

The elements of the base model subject to variations are the
placement fragments (hereinafter placements). In the top-left cor-
ner of Figure 1 there are two placements defined over the Base
Model: P1, which is defined over the top-left inductor; and P2,
which is defined over the user interface.

To define alternatives for a placement, we use a replacement
library, which is a model described in the same DSL as the Base
Model. Each alternative for a placement in the Base Model is a
replacement fragment (hereinafter replacement). In the top-right
corner of Figure 1 there are four replacements that are defined over
the library model: three inductor replacements (R1, R2 and R4) and
a user interface replacement (R3).

CVL defines variants of the base model by means of fragment
substitutions (i.e. the substitution of placements by replacements).
The middle part of Figure 1 shows the Feature specification layer
with the substitutions. P2 can be substituted by R3 (this substitution
is optional) and P1 can be substituted by R1, R2, or R4. The
materialization operation of CVL executes the substitutions that
are selected and produces a variation of the base model where the
placements have been substituted by the replacements selected. The
bottom part of Figure 1 shows an example of configuration (over
the feature specification) and materialization where P1 has been
substituted by R1 and P2 has been substituted by R3.

For simplicity throughout the rest of the paper, we will show the
placements superimposed on the base model, even though they are
defined in a separate model. Likewise, the replacements defined in
the replacements library will be shown separately from the rest of
the model where they are defined.

3. SPL Evolution Formalized by CVL
This section presents the retrospective case study that was extracted
from the evolution of our industrial partner’s models and metamod-
els over the last 13 years. Although the evolution data provided in-
volves all the elements present in the initial DSL, for simplicity and
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Figure 2. Model generations of the CVLSPL

due to intellectual property rights concerns, we are going to focus
on the evolution related to the inductor concept.

Let MM be the set of all models that conform to the MOF
language (i.e., the set of all metamodels). Let M be the set of all
models. If mi is in M and mmi is in MM then C(mi,mmi)
means that mi conforms to mmi. Let CV LSPL be the set of
all CVL-based product lines. One such product line, cvlspli, is
denoted as follows:

CV LSPL= MM×M×M
cvlspli =<mmi , bi , li >

(1)

where mmi is the metamodel of the DSL (conforming to MOF), bi
is the base model (over which placements for the variable parts are
defined), li is the library of replacements for those placements, and
the conformance between models C(bi,mmi) and C(li,mmi) is
fulfilled. In addition, let i be a consecutive index that is assigned
based on when models and metamodels are created. That is, we will
refer to the Generation i of the base model, the Generation i of the
metamodel, the Generation i of the library, and the Generation i of
the CVLSPL.

We perform a CV LSPL evolution (shift from one cvlspli
generation to the next generation, cvlspli+1) whenever there is a
breaking and unresolvable change (hereinafter breaking change)
[3] in the metamodel. Breaking changes break the conformance
of models and metamodel in a way that cannot be resolved by
automatic means [3] (e.g., the addition of a mandatory meta-
class or a restriction in the multiplicities). There are other meta-

model changes that do not break the conformance of models and
metamodel (e.g., the addition of an optional class) or metamodel
changes that can be resolved automatically by existing approaches
[3, 10, 12, 15, 17] (e.g., eliminating a property). However, in this
work we will focus on the evolution triggered by breaking changes.

Figure 2 shows a summary of the CVLSPL generations and the
evolutions performed. Specifically, we present three CVLSPL gen-
erations: the first row shows cvlspl1, which includes the concept of
inductor; the second row shows cvlspl2, which includes the con-
cept of Hotplate; the third row shows cvlspl3, which includes the
concept of cooking zone. The figure shows the breaking changes
that were overcome by our industrial partner, such as the addition
or removal of meta-elements.

Evolution 1 (from cvlspl1 to cvlspl2) is triggered by a new
concept called Hotplate (see the first and second rows of Figure 2).
A Hotplate consists of a group of inductors that can work together.
There is a hierarchy (next relationship) among the inductors; some
must be turned on before their subordinates are turned on. There-
fore, we need to control the whole Hotplate (two inductors) with
just one user interface controller, so the controller will now act over
hotplates instead of inductors. This is reflected in the metamodel
mm2 (see the second row, first column).

There are also modifications at the model level. A new place-
ment is created over the base model b2 to enable substitutions of
the new hotplate replacements. In addition, new replacements (l2)
that instantiate the hotplate concept are created; for example, the
split hotplate (formed by two inductors, one main and one auxil-
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iary) or the double hotplate (formed by two inductors, requiring
twice the space and power as the rest of hotplates).

Evolution 2 (from cvlspl2 to cvlspl3) is triggered by a new
concept called cooking zone (see the second and third rows of Fig-
ure 2). Cooking zones improve the hotplate by introducing the abil-
ity to heat two different pieces of cookware at the same time and
with different power levels. Now each hotplate will have cooking
zones, which will be controlled by the user interface controller. As
the number of combinations of inductors that are working at the
same time increases, the power table is now aggregated by the hot-
plate, and the cooking zones use it. By means of this modification,
several hotplates will share the same power tables (when the induc-
tor configurations are equivalent). Furthermore, the hierarchy that
is present among inductors is now controlled by the cooking zone
(one cooking zone having the main inductor and another cooking
zone having both inductors); therefore, the relationship next is re-
moved from the metamodel (mm3).

A new placement to include hotplates on both sides is created
over the base model b3. Similarly, new replacements that exercise
the new concept of cooking zone are created (l3). For instance, the
pool hotplate has four inductors that are divided into two different
cooking zones, which are controlled by two different buttons.

4. Motivation of the Approach
The evolution presented in Section 3 needs to be properly sup-
ported by the metamodels that are used by our industrial partner
to formalize their SPL. Some of the changes presented can be ad-
dressed without breaking the conformance between the models and
the metamodel, such as the creation of new model fragments or
the addition of new optional elements to the metamodel. However,
when we perform a breaking change to the metamodel (e.g., the
hotplate and cooking zone concepts), the conformance between the
models and the metamodel is lost.

Traditional migration strategies [3, 10, 12, 15, 17] propose mi-
grating all of the models to conform to the new version of the meta-
model. The migration of the SPL can be achieved by the following
steps: Given a metamodel change, 1) the metamodel is upgraded to
a new version introducing the new concept; 2) a model-to-model
(M2M) transformation that migrates models from one version to
another is created (by means of one of the existing approaches in
the literature: manual specification [15], operator-based [12, 17]
or metamodel matching [3, 10]); 3) existing replacements are mi-
grated (by executing the M2M transformation obtained from step
2) to conform to the new generation of the metamodel; 4) if some
common parts that are present in the Base Model have become vari-
able, the user creates placements over the base model and extracts
the model fragments as replacements; 5) new replacements are cre-

ated to instantiate the new concepts that have been incorporated
into the metamodel.

Let Emig be the operation used to evolve a cvlspli from a given
generation i to the next generation (i+ 1) following the migration
strategy. The operation is defined as follows:

Emig : CV LSPL −→ CV LSPL
Emig (< mmi, bi, li >) = < mmi+1, bi+1, li+1 >

where M2M(Li) = Li+1

(2)

Figure 3 presents the evolution of a model fragment following
a migration strategy. Each column shows the same fragment (In-
ductor 15) for each of the cvlspli generations. Although its func-
tionality remains the same, the model is augmented to conform to
each generation metamodel. In Generation 1, the replacement of
an inductor of size 15 is represented by 2 metamodel classes (In-
ductor and Power Table) and can be connected to a channel and
controlled by a button. In Generation 2, the model fragment is mi-
grated to conform to mm2. Hotplate 1 now aggregates the inductor
and is the one controlled by the button. In this generation we need
3 classes (we add the Hotplate) to model the same functionality. In
Generation 3, we need to include a cooking zone (enabling groups
inside the same hotplate), so the model is now composed of four
model elements. The three versions of the model fragment repre-
sent the same functionality: a heating element of size 15 that is
connected with a channel and controlled from a button. However,
there is an increase in model complexity.

Specifically, the migration of models from our industrial part-
ner involves three related issues: indirection, where there is an in-
crease in the number of elements used to model the same element
of the induction hob (as in this example); automation, since the mi-
gration of the models cannot be performed automatically, an engi-
neer needs to generate the M2M transformation and make decisions
when applying it; trust leak, the modification of the model frag-
ments (through the migrations) decreases the trust gained by those
models during that generation. The fragments need to be modified
to be adapted to the new metamodel, not to improve its functional-
ity, and the modification is regarded as unnecessary and error prone.
The domain of our industrial partner is constantly evolving, but the
original elements are still present in new IHs. New kinds of heating
elements or strategies may appear, but the simplest inductors (e.g.,
the inductor of size 15) are still an important part of modern IHs.

5. The Variable MetaModel Strategy Applied to
the Case Study

In order to avoid the need for migration when a new generation
is created, we want to build a new metamodel that supports both
generations: the Variable MetaModel (VMM). For instance, mod-
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els that conform to Generation 1 and models that conform to Gen-
eration 2 will also conform to this VMM. A model that contains
replacements from both generations will conform to the VMM.

The VMM is the result of applying CVL at the metamodel
level; we have a base model in a given DSL (in this case, MOF)
with placements defined over it and a library of replacements.
VMM is defined as follows:

VMM= MM ×MM
vmmi=< mmbi , mmli >

(3)

where mmbi is the base model at the metamodel level and
mmli is the library of replacements at metamodel level.

Similarly to CVL at the model level, we can materialize models
that conform to the given DSL (in this case, MOF). Let G be the
set of all generations and let P(G) be its power set. We define the
VMMmat (VMM Materialization) operation as follows:

VMMmat : VMM ×P(G)−→MM
VMMmat(< mmbi,mmli > , g) = mmg

where g 6= ∅
(4)

That is, given a vmmi where i generation is included in G and
selecting a non-empty generation set g, VMMmat retrieves the
mmg for the cvlsplg of the given generation set g.

Figure 4 (left) shows an example of VMM , the vmm2 for gen-
eration 2. The top-left corner shows the base model (mmb2). It is
the metamodel from cvlspl1, with a placement (P1) defined over
the inductor. In addition, the bottom-left corner of Figure 4 shows
the replacements library (mml2), which contains two different re-
placements: R1 (in dashed lines) defined over the cvlspl1 meta-
model; R2 (in dotted lines) defined over the cvlspl2 metamodel.

Figure 4 (right) shows the models produced with the vmm2

presented. The materialization of CVL produces models that con-
form to the same language that the base model and replacements
conform to; therefore, in this case the produced models will con-
form to MOF. With the library that is available (two replacements),
we can produce three different models: 1) mm1 (the metamodel
of cvlspl1) with a substitution of P1 by R1; 2) mm2 (the meta-
model of cvlspl2) with a substitution of P1 by R2; 3) mm1&2 (a

new metamodel with the concepts from the mm1 and the mm2

metamodels) with the substitution of P1 by R1 and P1 by R2.
The cardinality property of placements in CVL enables the

creation of mm1&2. In other words, a placement can be substituted
more than once. The first time that a placement is substituted, the
existing references of the placement are replaced. The second time
that the same placement is substituted, new references that are
analogous to the existing ones need to be created. For instance,
the aggregation of Inductors reference in mmi is duplicated into
an aggregation of Inductor Gen1 (in dashed lines) and aggregation
of Hotplate (in dotted lines) in the mm1&2.

The mm1&2 metamodels contains concepts from both cvlspl1
and cvlspl2 at the same time. To achieve this, VMM renames the
elements that conflict (e.g., Inductor from mm1 and from mm2).
The advantages of this mm1&2 is that any model that conforms to
mm1 also conforms to mm1&2 and any model that conforms to
mm2 also conforms to mm1&2. In other words, mm1&2 is used
when materializing IH models that contain replacements from both
libraries (l1 and l2) and the resulting model conforms to mm1&2.

The vmm2 enables the materialization of mm1 and mm2 that
are used directly by the engineers to create new replacements.
By doing so, the replacements created will conform to a specific
generation, and will not include unnecessary indirection. If the
functionality required for a particular replacement can be achieved
with the expressiveness of a previous generation, that metamodel
will be used.

Furthermore, if the engineers try to create new replacements
using the mm1&2 directly, they could end up creating models that
do not conform to either mm1 or to mm2. Therefore, we need to
keep the original metamodels (mm1 and mm2) in order to enable
the creation of new replacements.

5.1 Steps of the VMM Strategy
The evolution of a cvlspli following the VMM-strategy is denoted
as follows:

EV MM : CV LSPL −→ VMM
< mmi, bi, li >−→< mmbi+1,mmli+1 >

(5)

VMMmat is used with the generated vmmi to retrieve the differ-
ent CVLSPL generations needed by the company.
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Figure 5 shows the method to perform the Evolution 1 from
cvlspl1 to cvlspl2. Each of the columns of the tables represent one
step in the application of the VMM strategy. The top part shows
the cvlspl1 with its base model b1 (depicted as a diamond), its
metamodel mm1 (depicted as a rectangle), and its fragment library
li (depicted as a circle). The bottom part shows the cvlspl2, the first
row shows vmm2, and the second row shows the cvlspl2.

Step 1 shows the edition of the metamodel by the user. The
mm1 metamodel is edited to include the new concepts of the next
generation (Hotplate), resulting in the mm2 metamodel.

Step 2 shows our Diff2CVL operation, which is used to spot the
differences between the two metamodels and to describe them in
terms of a base model and replacements. Diff2CVL is built upon
EMFCompare1. This is an eclipse plugin that provides generic sup-
port for any kind of metamodel in order to compare and merge
models. The common parts of the two metamodels (mm1 and
mm2) are included in the mmb2 and placements are created over
it for the differences between mm1 and mm2. Furthermore, re-
placements that contain these differences are created and included
in the mml2. The VMMmat operation can be applied to vmmi

to obtain mm1, mm2, and mm1&2.
In Step 3, the l1 and b1 from cvlspl1 are copied without any

modification to be used in cvlspl2. Both conform to the material-
ized mm1, and they also conform to the materialized mm1&2.

In Step 4, some common parts of the base model (b1) may be-
come variable because of the new concepts introduced in Genera-
tion 2. In that case, the engineer edits the base model b1 (that has
been copied in the previous step) from the cvlspl2 to extract the
variable parts as replacements.

In Step 5, the engineer creates new replacements that instantiate
the new concepts of this generation (Hotplate) and includes them

1 https://www.eclipse.org/emf/compare/

in l2. These new replacements conform to mm2, and they also
conform to mm1&2.

Following the above steps, we can evolve the SPL from one gen-
eration to the next, while avoiding the need for migrating existing
fragments. Then, when the engineer wants to create new replace-
ments, the engineer will be able to use the metamodel of just one
generation and not the mm1&2. As a result, the engineer can cre-
ate replacements for the most recent generation (using mm2) to
instantiate the new concepts of that generation. In contrast, the en-
gineer can use the previous generation metamodel (mm1) to create
replacements that do not exercise the expressiveness provided by
the new generation, avoiding the overcharge of the model (as the
case of the motivating example, see Section 4). When materializ-
ing an IH model containing replacements from both generations (l1
and l2), the resulting IH model will conform to mm1&2.

In addition, the recursion capabilities of CVL enable us to
create placements inside a replacement and hence apply the VMM
strategy to further generations. That is, when creating the next
generation, the step 2 of the process could end up in the creation
of a new replacement that includes previously defined placements
(if the replacement is not common for both metamodels).

5.2 Resulting Models after Applying VMM Strategy
Figure 6 shows an overview of our industrial partner’s CV LSPL
models (rows) after applying the VMM strategy to manage Evolu-
tion 1 and Evolution 2 (columns).

In Evolution 1 a new concept (hotplate) is introduced (see the
first and second columns). This concept affects the inductor, which
is now aggregated by the hotplate; therefore, we apply the method
explained above to perform Evolution 1. Diff2CVL produces a base
model (mmb2) that contains a placement (P1) with cardinality 2
(i.e., it can be replaced up to two times). Diff2CVL also produces
mml2, which contains two replacements: R1 (which holds the
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Figure 6. IHDSL Metamodel level for each generation of the CVLSPL

particularities of Gen1) and R2 (which holds the particularities of
Gen2). VMMmat operation can be applied to those models to
produce three different metamodels: 1) the substitution of P1 by R1
produces mm1; 2) the substitution of P1 by R2 produces mm2; 3)
the substitution of P1 twice, by R1 and by R2 produces mm1&2.

When creating new fragments, the engineer must stick to only
one generation in order to create a valid fragment. In other words,
fragments must conform to a specific metamodel generation, ei-
ther mm1 or mm2. As a result the engineer can create replace-
ments only using concepts from mm1, avoiding the indirection in-
troduced by the migration strategy ( see Section 4).

When materializing an IH model that contains replacements
from both generations (l1 and l2), the resulting IH model conforms
to mm1&2. Overall, vmm2 enables the materialization of IH mod-
els with replacements from both generations (l1 and l2), while at
the same time allowing the creation of fragments pertaining to one
generation (either conforming to mm1 or to mm2).

In Evolution 2 a new breaking change that introduces the con-
cept of cooking zones occurs (see the second and third columns).
Similarly to Evolution 1, we apply the method to perform Evolution
2 (from Generation 2 to Generation 3).

The CVL capabilities of recursion (placements inside replace-
ments) and cardinalities over the placements applied to the meta-
model level have proven to provide enough expressiveness to over-
come all of the evolution situations of our industrial partner over
13 years. In addition, the VMM strategy of this work enables our
industrial partner’s engineers to derive products by means of re-
placements from any generation, while avoiding the disadvantages
of migrating the replacements after each evolution.

5.3 Derivation of SPL Products after Applying VMM
The VMM strategy has been tooled within the Eclipse environment
and integrated into our industrial partner’s SPL. The resulting tool
is used by our industrial partner (BSH, the leading manufacturer
of home appliances in Europe) to generate the firmware of their
Induction Hobs (sold under the brands of Bosh and Siemens). An
example of the resulting tool in action can be seen here 2. This
section present an example of using the SPL evolved with the
VMM strategy: an engineer of our industrial partner deriving a new
product.

2 http://www.carloscetina.com/variablemetamodel.htm
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Figure 7. Fragment substitutions to derive a SPL product

The engineer will act at the model level, choosing which re-
placements should be substituted in the base model and building
the Induction Hob model; in the meantime, at the metamodel level,
the metamodel is built up automatically reflecting those model level
substitutions. Each time a replacement is chosen by the engineer (at
model level), the replacement (at metamodel level) corresponding
to the replacement chosen by the engineer at the model level will
be automatically substituted in the base model metamodel (only if
it is the first occurrence of that generation).

Figure 7 show an example of the derivation when the SPL is in
Generation 3. At the model level (the first and second columns),
the engineer chooses the replacements (the first column) for the
placements of the base model (the second column), while at the
metamodel level (the third and fourth columns), the metamodel
replacements (the third column) are automatically substituted for
the placements of the Base Model (the fourth column). Note that
the metamodel level elements presented in Figure 7 (the third and
fourth columns) and the metamodel level elements presented in
Figure 6 (the third column) are the same.

The first row in Figure 7 shows the first substitution of the
product derivation: the engineer can use replacements from the
three different generations available. In this case, the engineer is
going to use replacements from the second generation (the first
column). The base model of the current generation (the second
column) is used. The metamodel level has the replacements R2 and
R3 (third column) that correspond to the model level replacements,
and the metamodel base B2 (fourth column) with all the common
elements from all of the generations.

The second row in Figure 7 shows the result of the first frag-
ment substitution. The fragments chosen by the engineer have

been substituted at the model level (the second column). At meta-
model level, corresponding fragments have been automatically sub-
stituted (the fourth column), resulting in the Generation 2 meta-
model (Gen2). Now, if more model level replacements from Gen-
eration 2 are added, the metamodel does not vary (it only varies the
first time that a generation is used). We repeat the operation with
more replacements: this time they belong to Generation 1. At the
metamodel level, the corresponding metamodel level replacements
R1 and R3 are used.

The third row shows the results of the second fragment sub-
stitution. The model now has elements from two SPL generations;
therefore, the metamodel has automatically been increased to be the
combination of those two generations (Gen1&Gen2) maintaining
the conformance between the model (the second column) and the
metamodel (the fourth column). The engineer then performs more
fragment substitutions until all the placements of the IH model are
substituted; the metamodel is automatically increased as necessary.

The VMM strategy of this work enables our industrial partner’s
engineers to derive products by means of replacements from any
generation, while avoiding the disadvantages of migrating the re-
placements after each evolution. The following Section discusses
the advantages and disadvantages of each of the strategies, taking
into account the experience acquired from our industrial partner.

6. Discussion
We have applied both strategies to the retrospective of 13 years of
our industrial partner’s SPL models. In this paper, we only show a
simplification of the evolution related to the inductor concept even
though we have applied it to all of the concepts. This involves about
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32 different IH models composed of approximately 72 different
model replacements (each of them composed of multiple model
elements). The average number of model elements of a fragment
replacement is 43, while the average number of elements of an IH
model is about 470. Figure 8 shows a summary of the comparison
obtained from the collaboration with our industrial partner of both,
the migration strategy and the VMM strategy, in terms of three
dimensions: (a) indirection, (b) automation and, (c) trust leak.

6.1 Indirection
Indirection refers to an increase in model elements in order to con-
form to an evolved metamodel while keeping the same functional-
ity. For instance, the inductor that migrates into a hotplate and then
into a cooking zone (see Section 4).

Figure 8 (a) shows the comparison of both strategies in terms of
the indirection that is present in the replacements. The graph shows
the number of model elements (classes and structural properties)
used in each generation to represent an inductor. In the migration
strategy (solid lines), the inductor grows from a total of 11 elements
in Gen 1 to a total of 29 elements in Gen 3. This growth trend is
common for all of the concepts studied in this work. Although it
is out of the scope of this paper, there are transformations based
on the metamodel to transform IHDSL models into code, and
this indirection requires modifications and produces an increase in
the complexity of the transformations and the code generated. In
contrast, the VMM strategy (dashed lines) avoids the migration of
replacements, and the number of elements needed to represent the
inductor concept (11) remains the same over all of the generations.

6.2 Automation
Depending on the degree of involvement of the user, the execution
of the steps of both strategies can be either manual, assisted, or
automatic. A step is automatic when it is done without user inter-
vention; it is assisted when user must help in the process; and it is
manual when the whole process is performed by the user.

Figure 8 (b) shows the comparison of the two strategies in terms
of automation for each of the steps of the strategies. Step 1 (Edit

Metamodel) is the same for both strategies and must be performed
manually. Step 2 is different; the migration strategy requires the
definition of a M2M transformation. With the options that are avail-
able (manual [15], operator-based [12, 17] or metamodel matching
[3, 10]), the process is, at best, assisted [3, 11]. In contrast, in the
VMM Strategy Step 2 (Diff2CVL) is fully automatizable, (CVL
applied to the model and the metamodel level enabled us to resolve
all kind of changes presented by [3] in an automatic way). Step
3 in the migration strategy is the execution of the M2M transfor-
mation. Breaking changes (e.g., the addition of obligatory proper-
ties) are not automatically resolvable ([3, 11]), so the step needs
to be assisted. In contrast, in the VMM strategy replacements are
used “as is”: no migration is required and only an automatic copy is
performed. Finally Steps 4 (Adapt base model) and 5 (Create new
replacements) are performed manually in both strategies.

6.3 Trust Leak
Models are used to produce code: once they have been used re-
peatedly on many IHs, they gain the trust of our industrial partner’s
engineers. However, when the replacements are modified, there is
a loss in this trust on the part of the engineers, which has been re-
ported as trust leak.

Figure 8 (c) shows a comparison of both strategies in terms
of trust leak. The graph shows the weight of the replacements of
each generation in relation to the total number of products created
with the SPL (i.e., average percentage of replacements from each
generation present in the induction hobs taking into account all
the IHs derived from the SPL). For instance, using the migration
strategy for Evolution 2 (from Gen2 to Gen3), the replacements that
represent 83% of the total products built need to be migrated (58%
of them twice, from Gen1 to Gen2 and then to Gen3). It turns out
that the replacements from Generation 1 are the ones that are most
frequently used to build IHs (in all generations), and they are also
the ones that require more migrations when following the migration
strategy. Therefore, they are the replacements that have the highest
level of trust leak. In contrast, when using the VMM strategy there
is no need to migrate replacements, thus avoiding the trust leak.



7. Related Work
To the best of our knowledge, there are no works that address the
evolution of SPLs using variability modeling ideas at the meta-
model level; However, there are research efforts on SPL evolution
that can complement model-based SPL evolution.

In [1] Batory et al. present the AHEAD model, based on the
step-wise refinement paradigm, enables the synthesization of mul-
tiple complex programs from a simple program. In AHEAD the
software is expresed as nested sets of equations describing feature
refinements. The composition function (specific for each kind of
asset) is used to stack the refinements applied to the base program
to produce the different variants. However we do not focus on how
to specify variants of the base product, the main focus in our ap-
proach is to avoid the migration of the models from one generation
to the next by applying variability at the metamodel level.

Dhungana et al. [6] present an approach that is based on model
fragments applied at the model level. They provide tool support for
the automated detection of changes, facilitating metamodel evo-
lution and propagating changes in the domain to already existing
variability models. However, in contrast to our approach, they do
not use fragments at the metamodel level having to update their
fragments when changes occur at the metamodel level.

Deng et al. [5] argue that adding new requirements to a model-
based Product Line Architecture (PLA) often causes invasive mod-
ifications to the PLA‘s component frameworks and DSLs. To ad-
dress these modifications, they show how structural-based model
transformations help maintain the stability of domain evolution by
automatically transforming domain models. Although the details
are different, their approach is similar to the migration strategy with
support of model transformations. However, our work shows that,
in the case of a CVLSPL, the VMM strategy offers the best results.

Creff et al. [4] propose an incremental evolution by extension of
the product line. They aim to benefit from the investments supplied
during the product derivation and re-invest them into the SPL
models. Specifically, they introduce an assisted feedback algorithm
to extend the SPL to emerging product derivation requirements. We
believe that their feedback algorithm could be tailored to help in
the detection for the need of new metamodel changes (new SPL
Generations) when product derivations occur, triggering our VMM
strategy to address the evolution at the metamodel level.

Passos et al. [13] developed a vision of software evolution that
is based on a feature-oriented perspective. They provided a feature-
oriented project management and system development platform
that supports traceability and analyses. In our work, the SPL is
specified by means of base models, fragment substitution and meta-
model expressiveness. However, we can represent the variability
model of our industrial partner’s SPL by means of a feature model,
therefore strategy can benefit from the analysis and traceability of
the work of Passos et al. [13].

8. Conclusions
The CVL capabilities of recursion (placements inside replace-
ments) and cardinalities over the placements applied to the meta-
model level have proven to provide enough expressiveness to over-
come all the evolution situations of our industrial partner over 13
years. In addition, the VMM strategy of this work enables our
industrial partner’s engineers to derive products by means of re-
placements from any generation, while avoiding the disadvantages
of migrating the replacements after each evolution.

This work indicates that the VMM achieves better results than
the migration strategy in domains like the domain of our industrial
partner in terms of indirection, automation, and trust leak. Further-
more, using already existing variability management approaches
(like CVL) enables us to bring efforts from the variability research

community to address the evolution challenge. Nevertheless, there
are still open issues (e.g., evolutions that turn variabilities into com-
monalities) that will be addressed in our work in the future.
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