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Abstract

Search-based model-driven engineering is the application of search-based techniques to specific problems
that are related to software engineering that is driven using software models. In this work, we make use of
measures from the literature to report feature location problems in models (size and volume of the model
and density, multiplicity, and dispersion of the feature being located) and a set of search strategies (random
search, iterated local search, hill climbing, an evolutionary algorithm, and a hybrid between an evolutionary
algorithm and hill climbing). The goal is to analyze of the impact of different values that are used to describe
the feature location problems and the performance obtained by the different search strategies. We apply the
search strategies to 1895 feature location problems that are obtained from 40 industrial software product
lines. This work shows that: 1) the best results overall are obtained by a hybrid between evolutionary
algorithm and hill climbing; 2) the size of the search space has the greatest impact on the results obtained
by the search strategies; and 3) the impact of each of the measures is not the same in the five search
strategies. This work highlights the use of the search strategy that produces the best results. In addition,
we provide recommendations on when to use each search strategy.

Keywords: Feature Location in Models, Search Strategies

1. Introduction

Since the term Search-Based Software Engineering (SBSE) was coined in 2001 [1], many research efforts
have been carried out in this area [2]. Part of its success resides in the fact that many software engineering
problems can be expressed in a form that can be managed by a search strategy, enabling the automation of
some tasks that otherwise must be performed manually.

Model-Driven Engineering (MDE) aims to facilitate the development of complex systems by shifting the
focus from code assets to models [3]. The use of models as first class entities enables an increase in the
abstraction level, simplifying some of the software engineering tasks (such as the specification of a system’s
components) while imposing new challenges (such as maintaining the traceability and consistency between
the models and the generated code [4]).

Recently, the combination of SBSE and MDE has lead to the emergence of a new community around the
topic of Search-Based Model-Driven Engineering (SBMDE) [5], whose focus is the use of SBSE techniques to
address problems that are related to the application of MDE for software development. Specifically, in this
work, Feature Location (FL) is one of the most important and common activities performed during software
maintenance and evolution [6], consisting of the identification of source code elements that implement a
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specific functionality [7, 8, 9]. Similarly, Feature Location in Models (FLiM) deals with the task of identifying
what elements of a model realize a particular feature of a system [10, 11, 12].

FL is a mature field that has received a lot of of attention from researchers [8, 7, 9]. However, there are
not as many works that report experiences with FLiM [5]: surveys that focus on models [5] do not report
FL among their principal application areas. This is a big concern given the evidence of the usage of models
in industry (e.g., around 30% of the case studies in a recent catalogue of Software Product Lines [13] use
models as their main artifacts).

FLiM is particularly useful for the maintenance and evolution of these models’ transformations [14, 15, 16]
or in systems whose models are interpreted at runtime [17]. It can be argued that the abstraction layer
provided by the models ease the tasks of maintenance (as, for example, feature location) when compared to
source code [18] and so this might be a beneficial approach for researchers and practitioners. For example
software product lines based on models, generate the source code of the products directly from the models
using a model-to-text transformation, resulting in a code that does not include as semantic information
in contrast to the original models (where the domain knowledge is formalized). Hence it might be more
effective to locate features in the model to ultimately find them in the code.

In addition, reports of empirical evaluations of FL techniques place the focus on the technique being
applied [8] rather than focusing on the specific characteristics that make the problem challenging (such as
the sizes of the models or the number of elements that need to be located).

To address these gaps, our study includes a comparison of five search strategies for FLiM [11] in the light
of specific characteristics that make the problem challenging. This comparison is performed on 40 Software
Product Lines (SPLs) from the home appliance industry and the railway industry, which are presented in the
context of five feature characteristics from the literature (size and volume of the search space, and density,
multiplicity and dispersion of the model fragment being located) [19].

The results obtained can benefit practitioners when choosing a FLiM technique. The search strategy that
provides the best performance results is a hybrid between an evolutionary algorithm and hill climbing. In
addition, the study shows how the characteristics that are used here to report feature location problems can
yield better results when deciding on the search strategy to address a feature location problem. Specifically,
we claim that:

1. Our work provides recommendations for practitioners when selecting which search strategy to apply
based on their needs regarding precision and recall when performing FLiM.

2. Our work also provides recommendations for practitioners to help determine the best search strategy
based on the information about the nature of the feature location problem [19] that they are facing
(size and volume of the model and density, multiplicity, and dispersion of the feature being located).

3. In the absence of information regarding the above points, our work shows that the hybrid between
an evolutionary algorithm and hill-climbing obtains the best overall results among the five search
strategies studied.

To date, the most popular search strategy in the SBMDE community is the evolutionary algorithm
approach [5]. Our work suggests that SBMDE researchers should possibly evaluate whether the use of a
hybrid between evolutionary algorithm and hill-climbing can improve the quality of their solutions.

The rest of the paper is structured as follows: Section 2 presents an overview of the problem of feature
location in models, the search strategies used to address it, and the measures used to characterize and
describe the problems. Section 3 presents the design of the controlled experiment that will be carried out in
this work. Section 4 shows the results of the experiment and the statistical analysis performed and Section
5 presents the findings of this work. Section 6 discusses the threats to the validity of the work. Section 7
presents a discussion of related work and concludes the paper.

2. Overview of the Problem

This section contains an overview of the problem. First, it describes feature location in models, and
then it presents an overview of the search strategies that are applied here to address the problem. Finally,
it summarizes the measures that are used to report and characterize FLiM problems.
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2.1. Feature Location in Models FLiM

A feature is traditionally defined as “a logical unit of behavior specified by a set of functional and
non-functional requirements” [20], although the definition of feature is itself subject of study [21]. Feature
Location [9, 7] is known as the process of identifying the set of software artifacts that realize a specific
feature. Most of the works from the literature focus on retrieving the portions of source code that are
relevant for the feature; however the artifact identified can be anything that is relevant for the feature, such
as models, documentation, technical reports, etc.

Model-Driven Engineering (MDE) [3] is a generalization of Model-Driven Architecture, which is a frame-
work for software development proposed by the Object Management Group (OMG) where models are central
in the development of software. In MDE, all models are built using a specific language that is formalized
by a metamodel that contains the concepts and their relationships with each other for that specific domain.
General purpose modeling languages (such as UML) can be used, but the common practice in industrial
domains is the use of Domain-Specific Languages (DSL), which are mainly built using the Meta Object
Facility (MOF) [22] metamodel for modeling languages.

When the artifacts where the features are being located are software models we are refering to Feature
Location in Models (FLiM) [11, 10]. The goal is the same (to identify the parts of the model that are
relevant for a specific feature), but the result will come in the form of a model fragment (a subset of the
elements of a parent model) instead of a portion of source code.

In the context of SPLs and MDE, the common practice is to generate the source code of the products
using model transformations [3]. This results in source code that generally contains less embedded domain
knowledge (as the developers have formalized it in the models or the transformations, but not in the result-
ing code); therefore, feature location techniques applied to this code can produce worse results. Another
common problem when following a generative approach is the desynchronization between the models and
the generated code, where modifications are done at the resultant code level only. Instead, modifications
should be done in the models or could be lost when the code is re-generated. Both these issues argue that
the maintenance tasks (such as the feature location) should be done at the model level. Additionally, there
are systems where the models are not turned into source code or this transformation is done at runtime
[17], and therefore feature location cannot be performed at source code level and in those systems feature
location has to be undertaken at the model level.

Figure 1 shows an example of the metamodel, the models, and the model fragments used by one of
our industrial partners to develop the firmware of their induction hobs. For the sake of simplicity and to
preserve intellectual property rights, the metamodels, models, and model fragments shown in the paper are
simplified versions of the original ones. However, all of the work presented in this paper has been done using
the original models from our industrial partners.

The top-left part of Figure 1 shows the metamodel of the Induction Hob Domain-Specific Language, which
is one of the languages used by our industrial partners to build their products. It formalizes the concepts
(’Induction Hob’, ’Inverter’, ’Provider Channel’, ’Power Manager’, ’Consumer Channel’, ’Inductor’) with
their properties (’pow’ in the ’Inverter’) and their relationships with each other (an induction hob can
aggregate 0 or more inverters through the ’inverters’ relationship; a ’Provider Channel’ is related to exactly
one inverter through the ’from’ relationship, etc).

The bottom-left part of Figure 1 shows a model that was built using the IHDSL metamodel. This is just
one of the multiple induction hob models that can be built using the presented metamodel. In this example,
the induction hob aggregates a single 150 power inverter that is connected (through a provider channel) to
a single power manager that is connected (through a consumer channel) to a single inductor. The dotted
lines show the relationship between the metamodel concepts and the model. Additionally, the bottom part
shows the encoding of the model1; this encoding will be used to define model fragments on the model which
is explained in Subsection 2.2.1.

The bottom-right part of Figure 1 shows a model fragment that was defined on the previous model. The
presence or absence of each of the elements of the model (concept, properties, or relationships) is represented

1In this example, the root element (Induction Hob) and the containment relationships (inverters, pchannels, pmanagers,
pchannels, inductors) have been omitted for simplicity)
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Figure 1: Example of a Model Fragment from the Induction Hob Domain-Specific Language

by a bit in the encoding array. All of the model fragments are defined in relation to a parent model (bottom-
left) since the fragment is just a subset of the model elements of the original model. For instance, Model
Fragment 1 is a model fragment that contains the inverter, the provider channel, and the power manager of
the original model.

When performing feature location in models, we identify the model elements of a parent model that are
relevant for a specific feature in the form of a model fragment. For instance, Model Fragment 1 (Figure 1,
bottom-right) could represent the ’Simple Inverter Net 150’ feature, whose description is shown in Figure 1,
top-right. The process of feature location presented in this work will use descriptions such as the one shown
to identify the model elements that realize that particular feature. These descriptions should be constructed
by the owner of the models and will usually come from internal documentation of the products, comments or
annotations in the models, bug reports, and oral descriptions from the engineers. As a result, the language
used to write the description will be similar to the language used for the model elements and properties,
including domain-specific terms.

When performing feature location in source code, different information retrieval techniques have been
applied [23] and the granularity of the results vary from complete source code files to single statements of
the source code. However, when performing FLiM, the result will come in the form of a model fragment
(a subset of the elements of a parent model) instead of a portion of source code. Information retrieval
techniques can be applied to a model fragment to determine its similarity with a textual query, but we
need a method to generate different model fragments so they can be evaluated by the information retrieval
technique.

Generating model fragments is not a trivial task, as there are restrictions present in the modeling language
that determine how the models are built. In addition, the number of model fragments that can be generated
from a single model fragment can grow too big (up to 1029 elements for a model with 500 elements), yielding
a search space that is too big to be explored manually [24]. Search strategies are applied to help in traversing
the search space and to determine what model fragments should be evaluated as realization of the feature
being located. Next subsection presents these search strategies.
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2.2. Search-Based Model-Driven Engineering (SBMDE)

Search-Based Software Engineering attempts to address software engineering problems through the ap-
plication of already existing search strategies or metaheuristics [1]. Similarly, Search-Based Model Driven
Engineering (SBMDE) deals with the application of searches or metaheuristics to specific MDE problems,
such as the location of features in models. Part of the success of this emerging field resides in its versatility
[1, 5] as many of the MDE problems can be expressed in a way that can be addressed by an already existing
search strategy or metaheuristic. To do so, only three key ingredients are needed: 1) an encoding of the
problem that can be used to represent the candidate solutions; 2) a fitness function that can be used to
assess how good each candidate solution is as a solution to the problem; and 3) a set of genetic operations
that can be applied to modify and evolve the set of candidate solutions.

There are many different search strategies and metaherustics, but all of them share similar ideas. Can-
didate solutions (that follow a specific encoding) are evaluated (with the fitness function) and evolved (by
applying the genetic operators) until more optimal solutions are found. Different search strategies will use
different operations to evolve the candidates, different sets of candidate solutions evolved in parallel or
different ways of combining those ingredients, but all of them try to find an optimal solution to the problem.

Population Assessed
Population

[stop]

[not stop]

Encoding and 
Initialization Fitness

stop 
condition?

parent
selectioncrossovermutationreplacement

Genetic Operations

Figure 2: Overview of an Evolutionary Algorithm

Figure 2 shows an overview of a generic evolutionary algorithm (the search strategy that is most used by
the SDMDE community) [5]). First, a population is initialized following a specific encoding (see Figure 2,
left). Then, the loop starts and the fitness of each individual is calculated (see Figure 2, center). Individuals
of the population are then evolved by applying a set of genetic operations, the most common being a selection
of parents, followed by a crossover a mutation and a replacement, (see Figure 2, bottom)). This process of
evaluation and evolution is repeated until the stop condition is met (see Figure 2, right) and then the search
ends. Next subsections present the three key ingredients (encoding, fitness function and genetic operations)
and the five search strategies used in this work.

2.2.1. Encoding

FLiM results in model fragments, and, therefore, the candidates will be model fragments. To represent
and manipulate those candidates, we need an encoding that is capable of describing those model fragments.
The encoding presented in Figure 1 is the one used by the five search strategies and, therefore, all of them
will be able to create the same model fragments. This encoding allows fragments of a parent model to be
defined by expressing the presence or absence of each of the model elements of the parent.This encoding
allows the fast manipulation of the individuals (by the search strategies) and the generation of random
individuals. In addition, since the encoding ensures that model fragments are subsets of the original model,
the resulting model fragments are well-formed and valid (i.e., the model fragments keep the conformance to
the metamodel) although they could be incomplete (the feasibility of the model fragments is not the focus
in this work, detailed work on this topic can be found elsewhere [25].

2.2.2. Fitness

When applying SBMDE, a fitness function is used to evaluate how good each of the candidate solutions
is as a solution to the problem. In other words, if we are locating features, we need to evaluate how good a
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model fragment is as the realization of the feature being located. In this case, features are represented by
a feature description obtained from the engineers of our industrial partners (for an example, see Figure 1,
top-right).

The feature description is provided in natural language and the similarity of a model fragment with
the feature description is assessed through Information Retrieval techniques. Specifically, we apply Latent
Semantic Analysis (LSA) [26] to determine the degree of similarity between the textual description provided
and the solution candidates being generated by the search strategies. LSA has been used before as fitness
for the problem of FL in source code and in models with good results [11].

LSA builds a vector representation of the query and a set of text documents in the form of a term-by-
document co-occurrence matrix. This matrix is composed of several columns (each column corresponds to
a document, and the last column corresponds to the query) and rows (each row corresponds to a relevant
term). The cells of the matrix capture the number of occurrences of each of the relevant terms in each of
the documents and in the query.

To apply LSA to model fragments, the text in each of the model fragments is extracted and turned into
one of the documents used by LSA. In other words, the text is extracted from the model fragment processing
each of the concepts, relationships, or attributes; depending on whether or not each element is part of the
model fragment, it will be included on the resulting document. The text from the feature description is used
to build the query used by LSA.

Additionally, all of the texts need to be homogenized by applying well-known natural language processing
techniques [27]. This is done to ensure that the language used by the different documents is similar and
can be properly compared. In addition, this serves as a filter to remove the irrelevant words that could add
noise to the process. This process is performed with both the textual description and the text obtained from
model fragments.

Tokenization: First, all texts are divided into separate words. This is usually done using a white space
tokenizer that breaks strings whenever it finds a white space. However, depending on the source of
the texts, a different tokenizer may be applied (e.g., names of model elements do not allow for white
spaces, so they usually follow a camelCase naming).

Parts-Of-Speech: After breaking the documents into words, a grammatical analysis must be performed
to tag each word based on its role in the document. This allows some grammatical categories whose
relevance is low to be removed (e.g., conjunctions, articles, or prepositions). After this step, only the
words with relevant information are part of the document.

Stop-words: Some words may not contain semantic information when used in particular domains (given
their widespread use), so they can be automatically removed if a list of stop-words or domain terms is
provided (e.g., in the induction hob domain, the word ’hob’ will appear too many times, resulting in
not being useful at all).

Stemming: Finally, the language is unified through stemming techniques. In other words, each word is
reduced to its root, allowing different words that refer to similar concepts to be considered as the same
word (e.g., plurals are turned into singulars, or verb tenses are unified by using the root).

Figure 3 (left) shows an example of a co-occurrence matrix applied to model fragments. Each cell of
the matrix shows the number of occurrences of a specific term (rows) in the text extracted from the model
fragment (columns). The last column shows the occurrences for the query of the feature being located.

After the matrix is built, it is decomposed and normalized into a set of vectors using Singular Value
Decomposition (SVD) [26]. SVD performs a reduction of the dimensional space, projecting the original
matrix into a lower dimensional space. Then, similarities between the vectors representing each of the
documents (or , in this case, model fragments) can be calculated. Figure 3 (center) shows a representation
of the model fragments after the SVD has been applied.

fitness(mf) = cos(θ) =
A ·B
‖A‖ · ‖B‖

(1)
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Figure 3: Example of a co-occurrence term-by-document matrix (left), Singular Value Decomposition representation (center),
and fitness values (right).

Similarities between the vectors are calculated as the cosine similarity, as shown in Equation 1 where
the fitness of a model fragment (mf) is calculated as the cosine of the angle θ, which is the angle formed
between the vector representing the latent semantic of the model fragment (A) and the vector representing
the latent semantic of the query (B). This results in values between -1 (no similarity at all) and 1 (total
similarity). The fitness results are shown in Figure 3 (right), where all of the model fragments have been
ordered according to their similarity with the query.

2.2.3. Genetic Operations

The four genetic operations [28, 10, 11] applied to evolve the individuals are independent from the domain
and can be applied to any model fragment following the presented encoding. The idea is to reuse the parents
to generate new individuals as occurs in nature.

First, the Parent Selection operation, selects two individuals based on their fitness values, giving more
probability of being selected to fitter individuals. Then, the Crossover operation mixes both parents into
two new individuals that inherit their genes from both of the parents. A random binary string with the
same length as the parents is generated to indicate which genes will be inherit from each parent. Then,
the Mutation operator modifies the value of some of the genes of the new individual following a mutation
probability, changing its value to the opposite. Finally, the Replacement operator introduces the new
individuals generated into the population, some of the least fittest individuals of the population are replaced
by the new individuals.

2.2.4. Search Strategies

This subsection describes the five different search strategies applied in this work to perform feature
location over the models from our industrial partners. The different search strategies have been selected as
they have been previously applied to similar problems in literature [29, 11, 30]. All search strategies will
be using the same encoding for the individuals and guided using the same fitness function. Therefore, the
differences reside on how the solution space is traversed looking for the best solution. The pseudo code of
each of them is Available in the Appendix.

The first search algorithm used in this work is a traditional Evolutionary Algorithm (EA) that
iterates a population of model fragments and evolves them using the genetic operations described above.
As output, the algorithm provides the model fragment that best realizes the feature according to the fitness
function. The generation of model fragments is done by applying genetic operators that have been adapted
to work with our encoding of model fragments. Algorithm 2 (Available in the Appendix) shows the pseudo
code of the EA being used.

The second search strategy that we use in this experiment is a standard Random Search (RS) that is
used as a sanity check. We want to determine if the presented search strategies perform better than mere
chance (represented by this Random Search algorithm). If the search strategies do not add value and only
impose a burden over the underlying LSA driving the search, this algorithm should perform better than the
rest. The pseudo code for the search strategy can be seen in Algorithm 3 (Available in the Appendix).
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The third search strategy applied is a Hill-Climbing (HC) algorithm (specifically we use a steepest
ascent hill-climbing with replacement [30]). The search starts with a random individual and then some
neighbors (small modifications of the individual) are assessed to find the best one (in terms of the fitness
function). Those steps are repeated until the stop condition is met. The quality of the solutions found by this
algorithm greatly depends on the first individual generated, as the search is reduced to its neighbourhood.
We applied the algorithm as outlined in Algorithm 4 (Available in the Appendix).

The fourth search strategy that is used is the Iterated Local Search (ILS) with random restarts.
Since 1981, alternative versions of this algorithm have been used ([31, 32]). The strategy searches for a
local optimum during a certain period of time. Then, it switches to a near hill (restart) and performs a
new search for a local optimum. The main particularity of this search strategy is the selection of a new
hill (which is performed by the newHomeBase function). We applied this search strategy as outlined in
Algorithm 5 (Available in the Appendix).

The fifth search strategy compared in this experiment is a hybrid between an Evolutionary algo-
rithm and Hill-climbing (EHC). It leverages the hill-climbing capabilities of searching local optimum
values, while it makes use of the crossover operation to move to different hills (and then repeat the local
search again through the hill-climbing). We used this search strategy as outlined in Algorithm 6 (Available
in the Appendix). First, a population of model fragments is randomly generated (P , line 2). Then, hill-
climbing is performed to explore Nsize neighbours (line 1) around each of the individuals in the population.
If a better solution is found in this process, it is saved in Best (lines 6-11). Finally, when the local searches
of the hill-climb have ended, new individuals are obtained through the breedPopulation operation (line 12),
adding new hills that will be explored in the next iteration. The process is repeated until the StopCondition
is met (lines 3-12).

2.3. Measures to Report Model Fragment Location Problems (MR-MFLP)

In [19], the authors tackle how Model Fragment Location Problems (MFLP) are reported in the literature.
They realize that most of the work from the literature only reports the size of the the search space (the model
where the search is being performed) and propose a set of five measures to better report and characterize
model fragment location problems (MR-MFLP), as is the case for feature location in models. In this work, we
apply those measures to the feature location problems from our industrial partners and look for relationships
in the results obtained by the five search strategies and the values for the different MR-MFLP.

The first two measures are related to the search space, which in this case is the parent model where
the feature is going to be located. The other three measures characterize the solution, which is the model
fragment that realizes the feature being located. Below, we describe the five measures and how they are
applied in this work:

Search Space Volume (SS-Volume): This measures the number of models where the location is taking
place. Sometimes, the engineers that are performing the location of a feature are not able to limit
the search to a single model and need to search in more than one model. In the example from Figure
1 the search is only being performed in a single model, so the SS-Volume would have a value of 1.
When the SS-Volume is bigger than one, we repeat the feature location process, resulting in one model
fragment located in each of the models provided. This results in the need of several model fragments
to represent a single feature.

Search Space Size (SS-Size): This measures the number of elements that the model(s) where the feature
is located has/have (i.e., the number of concepts, relationships and properties used to build the parent
model). Following with the example in Figure 1 (bottom left), the SS-size would have a value of 10
(the same as the number of bits in the encoding).

Model Fragment Density (MF-Density): This measures the ratio between the size of the model frag-
ment being located and the size of the parent model(s) (i.e., the ratio between the number of model
elements that form part of the solution and the total number of model elements present in the search
space). In the example of Figure 1, the MF-Density would be the number of elements present in the
solution (6) divided by the total size of the parent (10), giving a value of 0.6 (6/10).
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Model Fragment Multiplicity (MF-Multiplicity): This measures the number of times that the solu-
tion appears in the search space. Some of the features being located may appear several times in the
search space. The example in Figure 1 would correspond to a MF-Multiplicity of 1.

Model Fragment Dispersion (MF-Dispersion): This measures the degree of connection between the
different elements of the model fragment. To calculate it, we first identify the number of groups of
connected elements in the model fragment. Then, MF-Dispersion is computed as the ratio between
the number of groups and the number of model elements. In the example in Figure 1, there is only
one group (as all of the elements are connected), so the MF-Dispersion would be the number of groups
(1) divided by the total number of elements present in the solution (6), giving a value of 0.17.

3. Controlled Experiment Design

This section presents the design of the controlled experiment that is carried out in this work. Subsection
3.1 introduces the research questions that the experiment addresses. Then, Subsection 3.2 presents the
objects of the experiment, which is the set of 1895 MFLPs obtained from industrial SPLs. Subsection
3.3 describes the experimental procedure, including a set of four performance metrics (Precision, Recall,
F-Measure, and MCC) and the details of the implementation of the five search strategies.

3.1. Objective

The experiment has been designed to address the following research questions:

RQ1: Which search strategy (EA, EHC, HC, ILS, and RS) provides the best results in terms of performance
for the MFLPs?

RQ2: What are the differences in performance (Precision, Recall, F-Measure, and MCC) between the
HIGH and LOW values of the MR-MFLP (SS-Size, SS-Volume, MF-Density, MF-Multiplicity, and
MF-Dispersion)?

RQ3: Are there any interactions between the MR-MFLP values (SS-Size, SS-Volume, MF-Density, MF-
Multiplicity, and MF-Dispersion) and the search strategies (EA, EHC, HC, ILS, and RS) that affect
the strategies’ performance?

3.2. Objects

This study was performed on a total number of 1895 MFLP obtained from 40 industrial SPLs from two
different industrial domains. The following subsections introduce both domains (induction hob firmware
and train control software) and show how oracles provided by the companies are organized to be useful in
evaluating the different search strategies applied to the problem of feature location in models.

3.2.1. Induction Hob Firmware

The first domain used in this study was obtained from BSH, the leading manufacturer of home appliances
in Europe. Their induction division has been producing induction hobs under several brands that are sold
in different countries around the world for the last 17 years. Each induction hob that is available on the
market has different configurations of hotplates and characteristics that are made possible though the use
of software.

An induction hob is composed of a set of inverters and hotplates that are interconnected and managed
through a network of power managers and relays. Basic induction hobs consist of a set of inverters that are
directly mapped to the inductors through simple channels. High-end induction hobs include more complex
features such as several inverters that share the load to provide current to the same inductor, optional
inductors that can be enabled or disabled based on the characteristics of the pot placed on top, or even
a dynamic cooking surface where groups of inverters that provide current and inductors that receive that
current are determined at runtime.

9



To develop the products, the company maintains different SPLs based on the needs of different markets
(different brands, countries, or platforms of induction hobs). Specifically, for this study we use the models
and features obtained from six different SPLs, with a total number of 608 features that can be part (or
not) of the products being developed. The description of each of the features (obtained from the domain
experts), the models of the products, and the model fragments corresponding to each of the features have
been provided as an oracle and will be used to evaluate the different search strategies.

3.2.2. Train Control Software

The second domain used in this study was obtained from CAF, a worldwide provider of railway solutions.
Their solutions can be seen all over the world in the form of regular trains, subways, light rails, monorails,
etc. Although all of these solutions may seem different, all of them share a substantial, common core and
are formalized using the same DSL.

A train unit is composed of several vehicles and cabins, each of which needs to be furnished with
different pieces of equipment. Each equipment piece is designed and manufactured by a different provider
and performs a specific task for the train, but all of the equipment needs to be coordinated to drive the train
properly. Some examples of that equipment are the traction system, the compressors that feed the brakes,
the pantograph that is used to get power from the overhead wires, or the sand delivery system that is used
to improve grip when the rails are slippery.

The control software of the train is responsible for the management and cooperation of all of the equip-
ment, achieving the train functionality while guaranteeing compliance with the specific regulations of each
country. This control software is generated from a software model that represents the train, applying a
model-to-text transformation.

Each railway solution is developed for a specific client, which requires different characteristics for the
train (e.g., speed, passenger capacity, energy system). Each solution will be deployed in different countries,
with different weather conditions (e.g., locomotives designed to provide service under extreme environmental
conditions up to 55ºC for Saudi Arabia) and regulations that the train must adhere to (e.g., the different
levels of installed redundancy). Additionally, some railway solutions can be reconfigured dynamically based
on specific needs (e.g., use different configurations of train units based on the number of passengers).

All of this variability leads to the development of different families of products that are managed as
different SPLs. Specifically in the case of CAF, there are 34 different SPLs composed of a total number of
1287 features that can be part (or not) of the products generated from those SPLs. The description of each
of the features (formalized in the internal documentation of the company by the engineers that maintain
the SPLs,) the models (where the features must be located), and the model fragments (the approved feature
realization that is currently being used by the company) have been provided to be used as an oracle that
will be used to evaluate the different search strategies.

Search Space (SS) Model Fragment (MF)

measure size volume density multiplicity dispersion

min 889 1 0.0081 1 0.0053
Q1 1023 9 0.0208 2 0.0462
Q2 1699 11 0.0251 4 0.0600
Q3 1869 14 0.0307 9 0.0667

max 2241 88 0.1834 18 0.1111
mean 1553 14 0.0316 6 0.0604

sd 425.2792 16.63175 0.02705922 4.569013 0.02461526

Table 1: Report of the search problems used for the experiment

In total, there are 1895 different feature location problems that have been provided by our industrial
partners and will be used as oracles.In other words, each feature location problem is composed of a feature
description, models where the feature should be located, and the realization of the feature that is currently
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Figure 4: Boxplots with the value for each MR-MFLP obtained from the 1895 MFLPs

accepted by the companies (so it can be used as a golden set to measure the performance of the different
search strategies). Using two different domains from real industrial environments increases the variety of
feature location problems studied and their casuistry. As a consequence, the generalization of our experiment
is improved. Table 7 (available in the Appendix) shows how many MFLPs are taken from each of the SPLs
in the domains. Each SPL contains models for a different subsystem of the domain; therefore, the variations
in number of MFLPs for each different SPL. In this work we use the complete set of MFLP present in
the SPLs provided by our industrial partners and the only check that has been performed is to remove
incomplete MFLP (e.g.: the description is not provided or the solution model fragment is not formalized)

In this work we use a median-based discretization of the MR-MFLP. For each MR-MFLP in the set of
feature location problems we split the value at the sample median, thereby defining HIGH and LOW groups;
this approach is referred to as a median split [33, 34]. Figure 4 and Table 1 show the values for each of the
five MR-MFLP achieved by the MFLPs that are used in this study. For each MR-MFLP, values above the
median will be regarded as HIGH while values below the median will be considered LOW. For instance, the
median of the SS-Size of all the MFLP is 1699; all MFLPs whose SS-Size value are above 1699 are defined
as HIGH for SS-Size; in contrast, all MFLPs whose SS-Size value are below 1699 are defined as LOW for
SS-Size.

3.3. Experimental Procedure

Figure 5 shows an overview of the experimental procedure followed. The part on the left shows the
Oracles obtained from the 40 SPLs of our industrial partners. Overall, the oracles contain a total of 1895
different MFLPs. Each MFLP is composed of: 1) a feature description provided by the software engineers
that work with those SPLs, 2) the set of models where the feature can be present, and 3) a model fragment
that realizes the feature. In other words, each MFLP in the oracle is composed of a feature location
problem and the solution to that problem. The solution is only used as part of the experiment to assess the
performance of each of the search strategies, but is not used by the search strategy to explore the search
space and is not needed when the approach is applied.

The part in the center shows the five search strategies driven by LSA. Each strategy will be run to
locate the feature present in each of the MFLPs 30 different times (to ensure an average value, given the
stochastic nature of the search strategies) as recommended in the literature [35]. Each run of a search
strategy will result in a model fragment that realizes the feature. Then, those model fragments will be
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Figure 5: Overview of the experimental procedure. The 40 oracles containing the 1895 MFLP (left) are feed to the five search
strategies that will locate the features using the LSA fitness and the genetic operations (middle). The results will be processed
to calculate the four performance metrics and those results will be used for the statistical analysis (right).

compared against the solutions from the oracle to calculate the performance metrics (see Figure 5, top-
right). The 30 different values of the performance metrics achieved by each search strategy and MFLP
were averaged and the standard deviation in that case was below 1% for all them, showing the robustness
of the search strategies and ensuring that solutions of similar quality are produced each time that the
searches are performed. Finally, a statistical analysis will be performed on the performance results. The
following subsections provide details about the implementation of the search strategies and present how the
performance metrics are calculated.

3.3.1. Implementation Details

The presented search strategies were implemented within the Eclipse environment. We have used the
Eclipse Modeling Framework [36] to manipulate the models and model fragments from our industrial partner.
The search strategies are based on the watchmaker framework for evolutionary computation [37]. Using it we
have created a custom encoding and genetic operators to implement the search strategies. The information
retrieval techniques that were used to process the language were implemented using OpenNLP [38] for
the POS-Tagger and the English (Porter2) [39] as stemming algorithm. Finally, the LSA fitness has been
implemented using the Efficient Java Matrix Library (EJML [40]). We performed the execution of the search
strategies using ten identical laptops (model Asus GL502VM-FY040T) with i7-6700HQ processors (2.6 Ghz
clock speed), and 16 GB of RAM. All of them were running Windows 10 Pro N 64 bits as the hosting
operative system and the Java SE runtime environment (build 1.8.0 73-b02).

Parameter Description Value
Popsize Size of the population being evolved 100
Pc Probability of crossover 0.75

Pm
Probability of mutation

where n is the number of genes of the individual
1/n

stopCondition time budget allocated for the execution of each MFLP 60s.
Repsize number of individuals replaced each generation 20

Table 2: Parameters for the search strategies

Table 2 shows the values of the parameters that need to be configured for the search strategies. We use
default parameter values extracted from the literature [35] (and previously tested for this search strategies
[11]). Regarding the genetic operations, the selection operation is a roulette wheel selection, the crossover is
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Figure 6: Example of the calculation of the confusion matrix and quality metrics (Precision, Recall, F-Measure, and MCC)

a multiple point crossover adapted to work with model fragments [10] and the replacement operator follows
elitism, preserving the fittest individuals across generations. The stopCondition will represent the time
budget allocated for each of the runs for each of the algorithms. Some prior test have been run to determine
the time needed by each search strategy to reach the convergence point (from that point there are no further
improvements in the solutions provided by the search). The same time (60 seconds) is used for all the
algorithms, ensuring the fairness of the experiment.

3.3.2. Performance Metric Calculation

To evaluate how good each of the search strategy is, it is necessary to determine the accuracy of the
resultant MFs. To do this, the model fragments will be compared to the solution that is present in the
oracle in order to assess its quality in terms of Precision, Recall, F-measure and MCC.

Figure 6 shows an example of the assessment of the solution quality. Figure 6 (left) shows a feature
realization obtained from the oracle, which is the actual feature realization provided by our industrial partner
(the search strategy should ideally produce that model fragment as the output of the feature location). Figure
6 (right) shows the predicted realization of the feature, which is the output of the search strategy. Both the
actual and predicted fragment models are compared using a confusion matrix (see Figure 6, center). Tables
of this kind are used to describe the performance of classification models (the search strategies) on a set
of known test data (the oracle). To build this matrix, each of the elements from both models fragments is
compared in order to measure the number of:

True Positives (TP): elements predicted as true (in the solution) that are actually true (in the oracle),
such as G2 in Figure 6.

True Negatives (TN): elements predicted as false (in the solution) that are actually false (in the oracle),
such as G9 in Figure 6.

False Positives (FP): elements predicted as true (in the solution) that are actually false (in the oracle),
such as G7 in Figure 6.

False Negatives (FN): elements predicted as false (in the solution) that are actually true (in the oracle),
such as G0 in Figure 6.

Once the confusion matrix is built, it can be used to calculate performance metrics. In this case, we
will calculate the precision, recall, F-Measure, and MCC. Precision indicates the number of elements from
the solution that are correctly placed according to the oracle, using a range from 0 (no element is correctly
placed) to 1 (all elements are correctly placed). This is calculated in Equation 2; the example in Figure 6
has a precision value of 0.57.

Precision =
TP

TP + FP
=

4

4 + 3
= 0.57 (2)

Recall indicates the number of elements from the oracle that have been properly retrieved by the search
strategy, using a range from 0 (no element is present) to 1 (all elements from the oracle are present in the
prediction). This is calculated in Equation 3; the example in Figure 6 has a recall value of 0.67.

Recall =
TP

TP + FN
=

4

4 + 2
= 0.67 (3)
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The F-Measure is the harmonic mean between Precision and Recall. It is possible to obtain high values
of precision or recall separately (the empty model fragment will obtain a 1 in precision, while the whole
model fragment will always achieve a 1 in recall); therefore, there is a need for a performance indicator that
combines both. This is calculated as Equation 4; the example in Figure 6 has an F-Measure value of 0.62.

F−Measure =
2 · precision · recall
precision+ recall

=
2 · TP

2 · TP + FP + FN
=

8

8 + 3 + 2
= 0.62 (4)

Finally, the Matthews Correlation Coefficient (MCC) is another alternative for describing the confusion
matrix that has been widely used in the field of machine learning. It takes into account all of the values that
are present in the confusion matrix, capturing the effect of the True Negative values (which are neglected
by the other performance metrics). The MCC is reported in a range from 1 (perfect match) to -1 (total
disagreement between the oracle and the prediction); a value of 0 is what is expected to be achieved by a
random system. This is calculated in Equation 5; the example in Figure 6 has an MCC value of -0.09.

MCC =
TP · TN − FP · FN√

(TP + FP ) · (TP + FN) · (TN + FP ) · (TN + FN)
=

4− 6√
7 · 6 · 4 · 3

= −0.09 (5)

4. Results

This section shows the results obtained following the experimental procedure described above. The
analysis is divided into a descriptive analysis of the results followed by hypothesis testing.

4.1. Descriptive Statistics

4.1.1. Performance by Search Strategy

Table 3 shows the mean values and standard deviations that were calculated for each performance metric
and each search strategy. Each row is the result of applying the search strategy (indicated in first column)
to solve the 1895 feature location problems that are part of the case study. Similarly, Figure 7 shows the
boxplots obtained from those results.

Search
Strategy

Precision ± σ Recall ± σ F-Measure ± σ MCC ± σ

EA 0.50 ± 0.27 0.52 ± 0.28 0.50 ± 0.27 0.49 ± 0.27
EHC 0.81 ± 0.17 0.88 ± 0.13 0.83 ± 0.15 0.83 ± 0.14
HC 0.21 ± 0.25 0.63 ± 0.21 0.27 ± 0.28 0.25 ± 0.30
ILS 0.57 ± 0.24 0.59 ± 0.24 0.58 ± 0.24 0.57 ± 0.24
RS 0.03 ± 0.03 0.51 ± 0.10 0.06 ± 0.04 0.00 ± 0.03

Table 3: Mean values and standard deviation for the Precision, Recall F-Measure and MCC values by each of the search
strategies

There exists strong similarities among the mean values of Precision, F-Measure, and MCC for each search
strategy. The best values were obtained by the Evolutionary Hill Climbing (EHC) search strategy, achieving
mean values of 0.81 in Precision, 0.83 in F-Measure, and 0.83 in MCC. EHC is followed by Iterated Local
Search (ILS), which achieved values of 0.57 in precision and MCC, and 0.58 in F-Measure. The third search
strategy is the traditional Evolutionary Algorithm (EA), which achieved mean values of 0.5 in precision and
F-Measure, and 0.49 in MCC. The fourth search strategy is the Hill Climbing (HC) achieving mean values
of 0.21 in precision, 0.27 in F-Measure, and 0.25 MCC. Finally the Random Search (RS) obtained mean
values of 0.03 in precision, 0.06 in F-Measure, and 0.0 in MCC.

However, for Recall, there are some differences compared to the other three performance metrics. The
first three search strategies obtained mean values that are similar to the ones obtained in Precision, F-
Measure, and MCC: 0.88 for the EHC, 0.59 for the ILS, and 0.52 for the EA. In contrast, HC and RS
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Figure 7: Boxplots of the Precision, Recall, F-Measure, and MCC values obtained by each of the search strategies

obtained Recall values that were much higher than the ones for Precision, F-Measure, and MCC: 0.63 for
HC and 0.51 for RS.

The EHC provides the best results thanks to its balance between local search and global search. We have
manually inspected some of the resulting model fragments and observed that the local search algorithms
tend to properly identify portions of the feature when they are connected but tend to fail in identifying
isolated elements (a single gene) or portions of the feature that are small (two or three bits).

The RS was included in the comparison as a sanity check, to determine if the search strategies where
needed or the search space could be analyzed without the need of a search strategy. In the light of the results
we can conclude that the search strategy is needed to properly traverse the search space; otherwise, the LSA
is able to evaluate some model fragments but not enough to find a near optimal solution. Surprisingly, the
RS was able to achieve recall values close to 50%. We have observed that medium sized model fragments
(where around half of the elements of the model are part of the model fragment) tend to obtain good average
fitness values and, therefore, result as the best model fragment found by the search strategy. As those model
fragments contains around half of the elements of the model, they have a high chance of containing also
elements that are part of the feature being located, resulting in those recall values. Those model fragments
also contain several elements that are not part of the feature being located and thus their precision value is
low.

From these results it is clear that there are some differences in the performance of each of the search
strategies; however, we cannot see whether or not these differences are related to the different MR-MFLP.

4.1.2. Performance by Metric to Report Fragment Location Problem

Table 4 shows the mean values and standard deviations that were calculated for each performance metric
by each MR-MFLP. Each row shows the results for each of the five MR-MFLP (SS-Size, SS-Volume, MF-
Density, MF-Multiplicity, MF-Dispersion) for the set of feature location problems defined as LOW and
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HIGH for each of the five MR-MFLP. Similarly, Figure 8 shows the boxplots obtained from those results.

Metric to report MFLP Value Precision ± σ Recall ± σ F-Measure ± σ MCC ± σ

SS Size
LOW 0.50 ± 0.36 0.69 ± 0.26 0.53 ± 0.35 0.51 ± 0.36
HIGH 0.34 ± 0.31 0.55 ± 0.20 0.36 ± 0.31 0.33 ± 0.33

SS Volume
LOW 0.42 ± 0.34 0.61 ± 0.24 0.44 ± 0.34 0.42 ± 0.36
HIGH 0.43 ± 0.35 0.65 ± 0.25 0.46 ± 0.34 0.44 ± 0.36

MF Density
LOW 0.41 ± 0.35 0.64 ± 0.26 0.44 ± 0.35 0.43 ± 0.37
HIGH 0.44 ± 0.33 0.61 ± 0.23 0.46 ± 0.33 0.43 ± 0.35

MF Multiplicity
LOW 0.49 ± 0.37 0.70 ± 0.26 0.52 ± 0.36 0.51 ± 0.38
HIGH 0.35 ± 0.30 0.54 ± 0.20 0.37 ± 0.30 0.34 ± 0.31

MF Dispersion
LOW 0.46 ± 0.35 0.66 ± 0.24 0.49 ± 0.35 0.46 ± 0.37
HIGH 0.38 ± 0.32 0.58 ± 0.24 0.40 ± 0.32 0.39 ± 0.34

Table 4: Mean values and standard deviation of the Precision, Recall, F-Measure, and MCC values obtained by each of the
MR-MFLP
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Figure 8: Boxplots of the Precision, Recall, F-Measure, and MCC values obtained by each of the five MR-MFLP. Each measure
is reported as a two-value factor (HIGH and LOW).

The results show some differences when comparing the HIGH and LOW factor levels for the MR-MFLP.
Specifically, the difference between a HIGH and a LOW SS-Size are above 0.15 points for the four performance
metrics, obtaining better results when the SS-Size is LOW. Similarly, the differences between a HIGH
and a LOW MF-Multiplicity are around 0.15 points for all of the performance metrics, achieving better
performance when the MF-Multiplicity is LOW. The differences for MF-Dispersion are smaller, around 0.7
points for the four performance metrics, achieving better performance for LOW MF-Dispersion values. The
differences between the LOW and HIGH factor level for the other two measures (SS-Volume and MF-Density)
are much smaller, being below 0.4 in all cases.
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4.1.3. Performance by Search Strategy and Metric to report Fragment Location Problem

Figure 9 shows the boxplots of the results for each of the four performance metrics grouped by the
factor value of each of the MR-MFLP and search strategy. The figure is divided into four columns for the
performance metrics (Precision, Recall, F-Measure, and MCC) and five rows for the MR-MFLP (SS-Size,
SS-Volume, MF-Density, MF-Multiplicity, MF-Dispersion). For each row and column, there is a group of
10 boxplots showing the results of that particular performance metric (column) and MR-MFLP (row) for
each of the five search strategies being analyzed (EA, EHC, HC, ILS, and RS) and each factor level of the
MR-MFLP (LOW and HIGH). In addition, Table 8 (available in the Appendix) shows the mean values and
standard deviations.
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Figure 9: Boxplots of the Precision, Recall, F-Measure, and MCC values obtained by each of the five MR-MFLP and the search
strategy
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For the MR-MFLP that exhibits the biggest differences between high and low values (SS-Size, MF-
Multiplicity, and MF-Dispersion), we can see the influence of the search strategy. For instance, the SS-Size
showed a difference of around 0.15 points for the four performance metrics, and the difference is smaller for
some search strategies (around 0.10 for EHC) and much bigger for others (around 0.30 for HC).

Similarly, the MF-Dispersion metric showed a mean difference of around 0.7 points; however when taking
into account the different search strategies, the differences vary. For instance, EA differences are around
0.15 points, while differences for EHC are below 0.5 points.

It is clear that there are differences in the performance of the different search strategies depending on the
factor values of the different MR-MFLP. In the following subsection, we perform an analysis of the variance
and assess the significance of the differences.

4.2. Hypothesis Testing

We used the repeated measures General Linear Model (GLM) to analyze the collected data. Our design is
a split-plot design where the search strategy is the within subject factor and every MR-MFLP is the between
subject factor. There are two requirements for applying a GLM test: homogeneity of the covariance matrices
and sphericity. The box’s M test is used to check the condition of homogeneity of covariance matrices using
as null hypothesis that the observed covariance matrices of the dependent variables are equal across groups
[41]. If group sizes are over 30, then the method is robust against violations of homogeneity of variance-
covariance matrices assumption. Furthermore, if sample sizes are equal, heterogeneity is not an issue [42].
Our group sizes are equal to and over 30, so it is possible to assume the homogeneity of the covariance
matrices. On the other hand, Mauchly’s test is used to check the sphericity condition. When our data does
not conform to the sphericity assumption to decrease the risk of Type I error, we use the Greenhouse–Geisser
adjustment [43]. This adjustment corrects the degrees of freedom for the repeated measures and provides
better control for the Type I error rate. The GLM analysis allows us to determine if the differences among
search strategies and among scenarios are significant enough. If they are, we will perform the post hoc
analysis to determine the significance between pairs using the Bonferroni correction.

In the first analysis, we have used the GLM with the five search strategies (EA, EHC, HC, ILS, and RS)
as the within subjects factor (or repeated measures), all of the possible scenarios as the between subjects
factor, and the performance metrics (Precision, Recall, F-Measure, and MCC) as the dependent variables.
Each of the scenarios belongs to a combination of values for each of the five MR-MFLP (Table 9 shows
the complete list of scenarios and values). Figure 10 shows the estimated marginal means for each of the
performance metrics and scenarios. Each search strategy is shown with a different color and symbol (green
triangles for the HC, purple crosses for the ILS, blue circles for the EA, red squares for the EHC, and cyan
asterisks for the RS).

EHC stands out because is the search strategy that provides the best results for the majority of scenarios
and performance metrics. However, the differences with the rest of the search strategies is much smaller for
some of the scenarios (such as 14, 16, 26, 28, 29, 30, and 32; most of those scenarios have a LOW SS-Size
value).

In the case of the ILS and the EA, the differences are much smaller and vary depending on the specific
scenario being analyzed for the four performance metrics studied. Similarly, the differences between HC and
RS vary depending on each of the scenarios. The case for Recall is worth mentioning, as is the case where
the differences between the HC, RS, ILS, and EA are smaller; the search strategy that produces the best
results is not the same for all of the scenarios.

The significance test of the results provides values below 0.001 for all of the performance metrics, showing
that the scenario, the search strategy, and the interaction between the two is significant for all of the
performance metrics (Precision, Recall, F-Measure, and MCC).

The post hoc analysis to determine the significance between pairs shows that the differences among all
of the search strategies are significant for each of the four performance metrics with the exception of one
case (see Table 10 available on Appendix). The differences are considered significant for values below 0.05.
The exceptional case is observed in the comparison between the EA and RS search strategies for the Recall
metric, where the value obtained is 0.538 and therefore the difference is not significant.

18



Pr
ec
is
io
n

R
ec
al
l

F-
M
ea
su
re

M
C
C

Figure 10: Measure of estimated marginal means for each of the performance metrics (y axis) and scenarios (x axis)

4.2.1. Interaction effects

In this subsection, we apply the GLM using the five search strategies (EA, EHC, HC, ILS, and RS) as the
within subjects factor (or repeated measures), the performance metrics (Precision, Recall, F-Measure, and
MCC) as the dependent variables and the MR-MFLP (SS-Size, SS-Volume, MF-Density, MF-Multiplicity,
MF-Dispersion) as the between subjects factor. We analyze the interaction effects between each search
strategy and each MR-MFLP. Figure 11 shows the estimated marginal means of the interaction between
each search strategy and MR-MFLP for each of the four performance metrics reported. Each column shows
one of the performance metrics, while each row shows one of the MR-MFLP. Each of the cells shows the
interaction among each of the five search strategies and the two values (red squares for HIGH values and
blue triangles for LOW values) of the corresponding factor (row) for the corresponding performance metric
(column).

In addition, a summary table with the differences between the LOW value minus the HIGH value for
each search strategy and interaction is shown in Table 5. Dark grey is used to highlight cells with large
differences (above 0.250); medium grey is used to highlight cells with medium differences (from 0.150 to
0.250); light grey is used to highlight cells with low differences (from 0.050 to 0.150); finally, white is used
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Figure 11: Estimated marginal means of the interaction between each search strategy and MR-MFLP for each of the four
performance metrics reported. HIGH values are depicted as red squares and LOW values are depicted as blue triangles.
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Precision Recall F-Measure MCC

SS-Size

EA 0.140 0.177 0.145 0.152
EHC 0.106 0.089 0.085 0.092
HC 0.350 0.243 0.418 0.470
ILS 0.171 0.207 0.176 0.183
RS 0.014 0.008 0.021 0.003

SS-Volume

EA -0.028 -0.059 -0.031 -0.040
EHC 0.001 -0.008 0.008 0.003
HC -0.012 -0.066 -0.031 -0.050
ILS -0.036 -0.067 -0.039 -0.047
RS 0.009 -0.005 0.015 -0.001

MF-Density

EA 0.011 0.041 0.017 0.030
EHC -0.049 -0.014 -0.043 -0.036
HC -0.114 0.042 -0.094 -0.063
ILS 0.037 0.068 0.043 0.055
RS -0.026 0.004 -0.043 0.001

MF-Multiplicity

EA 0.192 0.228 0.196 0.206
EHC 0.077 0.075 0.062 0.070
HC 0.232 0.223 0.282 0.325
ILS 0.211 0.246 0.215 0.225
RS 0.011 0.010 0.015 0.003

MF-Dispersion

EA 0.147 0.167 0.150 0.150
EHC 0.037 0.048 0.036 0.038
HC 0.118 0.056 0.113 0.097
ILS 0.093 0.110 0.095 0.094
RS 0.021 0.005 0.035 0.002

Table 5: Differences on the estimated marginal means of the interaction between each search strategy and MFLP for each of
the four performance metrics reported. Each cell shows the difference between the LOW value minus the HIGH value of the
MFLP. Dark grey means high interaction effect (above 0.250). Middle grey means middle interaction effect (from 0.150 to
0.250). Light grey means low interaction effect (from 0.050 to 0.150). White means almost no interaction effect (from 0 to
0.050)
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to highlight cells with smallest differences (below 0.050). Notice that the sign of the value will indicate the
direction of the effect; positive values correspond to LOW values obtaining better results than HIGH values.

First of all, it is important to remark that the EHC provides the best results, no matter the value of the
MR-MFLP or the performance metric being analyzed for this case study.

The post hoc analysis has been applied to the pairwise comparison of all of the results of every search
strategy, performance metric, and MR-MFLP. The results show significant differences for all of the compar-
isons except for the comparison between EA and RS for the Recall values for the five MR-MFLP.

The interaction between the SS-Size of the MFLP (the first row of Figure 11) and the performance
metrics is as follows: The results for the four performance metrics are better for smaller SS-Size, no matter
the search strategy used. The HC is the search strategy that is most affected by the SS-Size, obtaining
high differences in Precision, F-Measure, and MCC and medium differences in Recall. The ILS is also
heavily affected by the SS-Size, resulting in medium differences between high and low values for the four
performance metrics. The EA is also affected by the SS-size, obtaining medium differences in Recall and
MCC and low values in Precision and F-Measure. Similarly, the EHC obtains low difference values for the
four performance metrics. The RS is hardly affected by the SS-Size. The HC search strategy obtains values
in MCC and F-Measure as low as those from the RS when the SS-Size is HIGH. In addition, the values of
Recall for the EA, the HC, and the ILS are worse than those from the RS when the SS-Size is HIGH.

The interaction between the SS-Volume of the MFLP (the second row of Figure 11) and the performance
metrics is as follows: There are no significant differences for Precision; the effect is low in general for F-
Measure and MCC (very small values) and slightly higher for Recall (small values). In general, better
performance values are achieved for HIGH SS-Volume values with some exceptions (Precision and F-Measure
of EHC and RS, and MCC of EHC ), but the improvements are really low. The EA search strategy achieves
values that are worse than the RS for LOW values of SS-Volume

The interaction between the MF-Density of the MFLP (the third row of Figure 11) and the performance
metrics is as follows: The effects of the interaction are low in general (very small values) and slightly higher
for the HC and ILS (some small difference values). The EA and the ILS achieve better results in the four
performance metrics with LOW MF-Density values, while the EHC achieves better results with HIGH values.
The HC achieves better results for HIGH MF-Density values for all of the performance metrics except for
Recall (which provides better results with LOW MF-Density values). The RS achieves better results with
LOW MF-Density values for Precision and F-Measure. The EA produces results as low as those from RS
for HIGH values of MF-Density.

The interaction between the MF-Multiplicity of the MFLP (the fourth row of Figure 11) and the
performance metrics is as follows: The results for the four performance metrics are better for LOW MF-
Multiplicity values, no matter the search strategy used. The HC is the search strategy that is most affected by
the MF-Multiplicty, obtaining high differences values (between HIGH and LOW values of MF-Multiplicity)
for F-Measure and MCC, and medium for Precision and Recall. The ILS and the EA are also heavily
affected, achieving medium difference values for the four performance metrics. The EHC is hardly affected,
and the differences measured are small. The RS is the least affected search strategy, with values close to
zero. The ILS and the EA search strategies obtain values that are below those obtained by the RS for Recall
when the MF-Multiplicity is HIGH. The HC achieves results for F-Measure as low as those from RS when
the MF-Multiplicity is HIGH.

The interaction between the MF-Dispersion of the MFLP (the fifth row of Figure 11) and the perfor-
mance metrics is as follows: The results for the four performance metrics are better for LOW MF-Dispersion
values, no matter the search strategy used. The influence of the MF-Dispersion is lower than the influence
of the SS-Size or the MF-Multiplicity. The EA search strategy is the one that is most affected by the
MF-Dispersion obtaining medium difference values (around 0.150) for the four performance metrics. The
HC and ILS obtain small difference values for the four performance metrics. The EHC and RS show almost
no affect by the MF-Dispersion, obtaining difference values below 0.050. The EA search strategy obtains
values that are worse than those from RS for Recall when the MF-Dispersion is HIGH.
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5. Findings

The results presented in the section 4 allows us to provide answers to the research questions:
RQ1: Which search strategy (EA, EHC, HC, ILS, RS) provides the best results in terms

of performance (Precision, Recall, F-Measure, MCC) for the MFLPs?
The experiment presented in this work provides a detailed analysis of the values for four performance

metrics obtained by the results of the application of five different search strategies to 1895 feature location
problems extracted from 40 different industrial SPLs.

Measure Acceptable Good Excellent

Precision 20% - 29% 30% - 49% >50%
Recall 60% - 69% 70% - 79% >80%

Table 6: Classification of the precision and recall results. Obtained from [44]

Those performance results are classified by Hayes et al. in [44] as acceptable, good, or excellent, as
shown in Table 6. The EHC obtains overall excellent results for precision and recall; the EA and the ILS
are able to obtain excellent precision results, but the recall obtained by both is not acceptable. In contrast,
HC achieves acceptable precision and recall values. Finally, RS is not able to provide acceptable results (as
expected). This information can be useful for practitioners when selecting which search strategy to apply
based on their needs regard precision and recall.

It is important to note that achieving a good result on either precision or recall while getting a low value
on the other is a straightforward task for any search strategy (the empty solution achieves 100% recall while
obtaining a 0% precision and the complete solution does the opposite). Therefore, we add the F-Measure
and MCC measurements because they are better indicators of the overall quality.

The results show that the best search strategy overall is the EHC. It provides the best results in Precision,
Recall, F-Measure, and MCC no matter what the levels for the MR-MFLP are. However, even though it
is the best search strategy for this type of problem, it is not the most commonly used strategy among the
works in the field [5]. We believe that works like this one will help in raising its popularity among the
community.

RQ2: What are the differences in performance (Precision, Recall, F-Measure, MCC) be-
tween the HIGH and LOW values of the MR-MFLP (SS-Size, SS-Volume, MF-Density, MF-
Multiplicity, MF-Dispersion)?

There are differences in the performance metrics (Precision, Recall, F-Measure, and MCC) between HIGH
and LOW values of the MR-MFLP. The results show that the highest differences of performance between
HIGH and LOW values are obtained for SS-Size and MF-Multiplicity, the differences in performance for the
HIGH and LOW values of MF-Dispersion are medium, and differences in performance for the HIGH and
LOW values of SS-Volume and MF-Density are the smallest ones.

The directional difference obtained in performance due to the LOW and HIGH values of each of the
MR-MFLPs (SS-Size, SS-Volume, MF-Density, MF-Multiplicity, MF-Dispersion) is homogeneous for all
performance metrics. The SS-Size and the MF-Multiplicity achieve the best values in the performance
metrics with the LOW values. The difference in the performance metrics generated by the LOW and HIGH
values of SS-Volume are small and the best results are achieved with the HIGH value. For MF-Density,
the best values of Precision and F-measure are obtained with the HIGH value; on the other hand, the best
value of Recall is achieved with the LOW value, and for MCC there is not difference. Finally, the best
performance metrics values for the MF-Dispersion are obtained with the LOW value.

The analysis presented in this work provides detailed quality measurements based on the values of the five
MR-MFLP analyzed (see Table 3). In other words, depending on the nature of the feature location problems
that will be addressed, the results provided by each of the search strategies will vary. This information will
be valuable for practitioners so that they can decide the best search strategy based on the information about
the nature of the feature location problem they are facing.
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RQ3: Are there any interactions between the MR-MFLP values (SS-Size, SS-Volume, MF-
Density, MF-Multiplicity, MF-Dispersion) and the search strategies (EA, EHC, HC, ILS, RS)
that affect the strategies’ performance (Precision, Recall, F-Measure, MCC)?

There are significant interactions between the MR-MFLP and the search strategies affecting the perfor-
mance metrics in all possible pairwise combinations (see Figure 11). Considering all the MR-MFLPs, the
highest interactions with the search strategies can be seen between different values of the SS-Size, followed
by different values for the MF-Multiplicty; and to a less extent when the MF-Dispersion, MF-Density, or
SS-Volume values vary.

Figure 10 shows that EHC obtains the best values for all performance metrics regardless of the MR-MFLP
values. Only in one scenario (scenario 30, see Table 9 in Appendix) the EA and ILS search strategies obtain
similar values to the values achieved by EHC for Precision, F-measure and MCC. In the same scenario,
EA, ILS, HC ,and EHC achieve similar values of Recall. On the other hand, EHC and RS are the search
strategies least affected by the difference of LOW and HIGH values of MR-MFLP.

In relation to the influence of the MR-MFLP on the performance of search strategies, we have found that
the search strategies more influenced are HC, ILS and EA. We have shown how the different MR-MFLP can
have an impact on the results of the feature location, but there is a need for further research on the impact
of these MR-MFLP when using other search strategies and also more works aiming for new MR-MFLP that
can be used to better characterize the feature location problems and that could yield to a better selection
of the appropriate search strategy.

In addition, a better characterization and description of the case studies (as can be done with the use
of the MR-MFLP) would enable fairer comparisons among different studies. Otherwise it is not easy to
compare properly the performance results from approaches using different case studies as they can greatly
depend on the characteristics of the feature location problem (as shown in this work).

6. Threats to Validity

To describe the threats to validity of our work, we use the classification of [45], which distinguishes
four aspects of validity (conclusion validity, internal validity, construct validity, and external validity). This
section presents the threats that we could not avoid.

Conclusion validity is concerned with issues that affect the ability to draw the correct conclusion
about relations between the treatment and the outcome of an experiment. There are two threats of this
type: low statistical power, and violated assumptions of statistical test. With low statistical power , there is
a high risk that an erroneous conclusion can be drawn. To mitigate this threat, we have used a confidence
interval where conclusions are 95% representative. To improve the statistical power, it would be interesting
to replicate the experiment with more sets of feature location problems from industrial SPLs in order to
increase the sample size. The experiment was affected by violated assumptions of statistical test that are
related to normally distributed data. This threat was mitigated by the number of samples used in the
experiment [46].

Internal validity threats appear when causal relations are examined, since there is a risk that the
studied response variables may be affected by other factors that are not considered in the experiment.
There are two threats of this kind: instrumentation and ambiguity about direction of casual influence. The
instrumentation threat is the effect caused by the artifacts used for the execution of the experiment. We
mitigated this threat by using the same laptops to perform the experiment ensuring that are strategies have
the same computational power to locate the features. Furthermore, the experiment was performed with
SPLs extracted from real contexts. The ambiguity about direction of casual influence threat occurs when
the influence of the treatments is not clear. To mitigate this threat, we studied the influence of the different
scenarios, the five dimensions, and the five treatments. We have mitigated this threat but it is possible that
other values for the variables or other variables not considered in this work influence the results.

Construct validity concerns generalizing the result of the experiment to the concept or theory behind
the experiment. There are two threats of this kind: mono-operation bias, and confounding constructs and
levels of constructs. The mono-operation bias appears when the experiment includes a single independent
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variable, case, or treatment; as a result, the experiment may under-represent the construct and thus not
give the full picture of the theory. Our experiment was affected by this threat, since we worked with only
two domains. For this reason, generalization of results must be approached with caution. The confounding
constructs and levels of constructs threat appears when in some relations it is not primarily the presence or
absence of a construct, but the level of the construct which is important for the results. The experiment
was affected by this threat because we considered only two levels for each studied dimension.

External validity threats are concerned with to what extent the findings are of relevance for industrial
practice. There are two threats of this kind: interaction of setting and treatment, and the lack of a clear
object selection strategy.

The interaction of setting and treatment threat appears when the experimental setting or material is not
representative of industrial contexts. We tried to mitigate this threat by using MFLPs from a large number
of SPLs (40). However, the experiment could be affected by this threat since MFLPs come from only two
domains: induction hob firmware and train control.

The lack of clear object selection strategy could prevent the application of the findings of this study by
two reasons:

• Search strategy and fitness selection strategy: Apart from the five search strategies included in this
work, there could be other feature location approaches (that do not rely on SBSE) more similar to
those used in code [23] that provide different results than those presented in this work. Similarly,
other fitness functions that do not rely on LSA could perform better than those presented here (e.i.
VSM-Lucene). To mitigate this threat the search strategies and the fitness function have been selected
from the literature [5, 11, 30, 29] for being the ones providing the best results for the FLiM problem.
However, more studies would be needed to generalize and determine if the results can be extrapolated
to other feature location approaches and/or fitness functions and we plan to conduct this study in the
future.

• Incomplete model fragments: When working with software models, there is a need to check the well-
formedness of the models (or otherwise could not be automatically manipulated by some tools). Incom-
plete model fragments could not fit the needs of some practitioners when performing feature location
in models. To mitigate this thread we have used an encoding that only allows the existence of model
fragments in the form of subsets of the original model fragment. However, more restricting measures
could be taken as the use of a strong encoding or repair operators [25].

7. Related Work

This section provides some discussion about works from literature that provide empirical evaluations of
feature location approaches.

A case study of automated feature location in industry is presented in [47]. The authors tested two
textual/static feature location approaches (Lucene and a combination of Lucene with the PageRank algo-
rithm) against a large software system with a development lifespan of over 20 years. They compared both
algorithms by surveying their industrial partner about the accuracy of the list of function points produced
by each algorithm. The objective was to determine which feature location technique should be used in their
industrial context of cost estimation. Their search consists in the identification of function points in code.
The combination of Lucene with PageRank was able to produce results with a precision value of 75.24% and
a recall value of 0.43%. When varying the minimum confidence score used by Lucene the recall raised up
to more than 43% (but the precision drop to less than 29%). In [48], the authors evaluated three standard
search-based techniques for reverse engineering feature models from the feature descriptions of each individ-
ual variant. These techniques (evolutionary algorithms, hill climbing, and random search) were evaluated on
74 SPLs. Their evaluation revealed a clear trade-off between recall and precision in two objective functions.
Hill climbing obtained the best precision values for both objective functions (23% and 66% respectively)
while The evolutionary algorithm obtained the best recall values (96% and 33% respectively). These works
did not consider the five MR-MFLP as we do.
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Paper [49] presents the results of a systematic study about SBSE techniques to solve SPL problems.
The study identified a need to improve the empirical evaluation and some common pitfalls, and it provided
a short guideline to address them. The study concludes that SBSE techniques are applied mainly for
testing at the Domain Engineering level, and the most common technique used is genetic algorithms with
an increasing interest in multi-objective optimization problems. The work in [2] presents a survey of work
on SBSE for SPLs. The authors studied 58 papers on SBSE for SPL, where the authors highlighted the
use of genetic programming in SBSE research. These might address searching based branch merge and
Grow and Graft Genetic Improvement to automatically augment a SPL with new branches. In [8] , the
authors present a systematic review of 170 articles about empirical evaluation in feature location. They
concluded that it is difficult to answer questions like “What are the best Feature Location Techniques?”.
On the other hand, they showed a set of best practices for empirical work in the feature location field.
These works do not perform an empirical evaluation. Paper [23] focuses on providing means for comparisons
among different feature location in source code techniques. The authors assessed eight baseline techniques
in twelve case studies to rank their performance. Results of the case studies suggest that different baseline
techniques perform differently and two techniques (VSM-Lucene and LSI-Matlab) performed better than
other implementations. Similar to this work, the results suggest that the performance of feature location
techniques depends on system/benchmark characteristics, in addition to the techniques themselves. This
idea is widely confirmed in a recently published paper [50] that proposes a suite of feature-characteristic
metrics that are postulated to control Feature Location Techniques (FLT) performance. They perform a
controlled study including four FLTs (VSM-Lucene, LSI-Matlab, LDA-R and a combination of PageRank
and LSI), using four commonly used evaluation measures (precision, recall, mean average precision and mean
reciprocal rank) and a set of 41 source-code metrics. Their evaluation explains the variance in performance
of the different FLTs and illustrates the effect of feature characteristics on those FLT’s performance. They
also provide an online tool that allows researchers to obtain a feature set profile, helping them in choosing
the best FLT for the characteristics of their data set. We believe that our work is similar in the sense that
we try to guide practitioners when selecting a search strategy based on the characteristics of their data set
(in our case software models instead of source code).

The work in [51] introduced a solution called LDA-GA, which uses Genetic Algorithms to determine a
near-optimal configuration for a modelling technique in the context of three different software engineering
tasks: traceability link recovery, feature location, and software artifact labeling. The authors performed an
empirical study that includes feature location on two software systems (jEdit and ArgoUML). The paper
applies the idea of data fusion to feature location, which is the process of identifying the source code that
implements specific functionality in software. A data fusion model for feature location is presented which
defines new feature location techniques based on combining information from textual, dynamic, and web-
mining analyses applied to software. A novel contribution of the proposed model is the use of advanced
web mining algorithms to analyze execution information during feature location. The results of an extensive
evaluation indicate that the new feature location techniques based on web mining improve the effectiveness
of existing approaches by as much as 62%.

Following, we discuss the overlap between this work and our previous works: In one of our previous
works [11], we show the feasibility of applying SBSE techniques to address feature location problems in
software models. The work included the execution of 217 MFLPs with five different search strategies and
the statistical analysis of the results in terms of performance metrics. The work concluded that the search
strategy that provides the best results was the hybrid between evolutionary algorithm and hill climbing. In
another previous work [19], we proposed the five MR-MFLP, describing them and showing their applicability
to report feature location problems. The work included a statistical analysis of the results applied to a case
study, highlighting the most common cases found in that industrial study. However, there were no analyses
of the interaction among the different measures and their impact on the different search techniques applied.
In the present work, we confirm the results from the previous work, as the EHC is again the search strategy
that provides the best performance results overall. However, in this work, we extend the set of MFLPs,
obtaining them from 40 different industrial SPLs and reaching a total figure of 1895 MFLPs. In addition, we
study the impact of the MR-MFLP on the performance results provided by the search strategies, through
a repeated measures General Linear Model analysis. This leads to interesting findings; for instance, the
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differences on performance metrics are different for LOW or HIGH values of the MR-MFLP, and are not the
same for every MR-MFLP or search strategy. We also conclude that the SS-Size is the measure that has the
greatest impact on the results, followed by the MF-Multiplicity. All in all, this is the first work that provides
recommendations when selecting which search strategy to apply based on 1) the needs regarding Precision
and Recall; and 2) the nature of the feature location problem at hand (SS-Size, SS-Volume, MF-Density,
MF-Multiplicity, MF-Dispersion).

8. Conclusion

This work presents the application of five different search strategies (EA, EHC, HC, ILS, RS) to 1895
feature location problems in models obtained from 40 industrial SPLs. It analyzes the impact of five
different measures used to report model fragment location problems (SS-Size, SS-Volume, MF-Density, MF-
Multiplicity, MF-Dispersion) that can be used to characterize the problems based on the results provided by
the search strategies in the form of four measurements of performance (Precision, Recall, F-Measure, and
MCC).

In our study EHC was provided the best results overall, being resilient to differences in the values of the
five MR-MFLP and providing better results for the four performance metrics studied. Given these findings
and the fact that is not the most used search strategy nowaday, we suggest that EHC should be further
explored by the search-based model driven community .

The use of MR-MFLP can yield better results and ease the task of comparing the results of different
approaches and studies. We believe that its use by the community should increase and new MR-MFLP should
be created in order to allow for a better characterization for the problem. However, further experimentation
is needed to confirm/generalize the results and perform experiments with other search strategies or fitness
functions. In particular, as our future work, we want to extend this study with the state-of-the-art techniques
used to locate features in source code [23, 7] to determine if the results are similar.

This study provides practical information for practitioners when deciding which search strategy should
be applied to a specific problem of feature location in models. Depending on the nature of the problem,
the search strategies will yield results with different levels of performance. Specifically, the SS-Size, MF-
Multiplicity and MF-Dispersion have shown the greatest impact on the performance results and could provide
relevant information for other practitioners when performing FLiM or selecting search strategies.

Even if the EHC is the approach that provides the best results in general, another approach may be
better suited when different constraints apply (as could be the case for the budget time for the search when
the system must run in real time). Therefore, we hope that this work encourages further research on the
impact of the measures used to report feature location problems in different scenarios.
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9. Appendix

Algorithm 1 Shared functions and parameters

1: function initPopulation(Csize, Popsize) . Generates a random initial population
2: Population← []
3: for i = 1 to Popsize do
4: Fragment← randomFragment(Csize) . Generate random fragment
5: Population← Population+ Fragment . Add new random fragment
6: end for
7: return Population
8: end function

9: function breedPopulation(Population,Repsize) . Generates a Repsize offspring
10: Offspring ← []
11: for i = 1 to Repsize do
12: Parents← selectParents(Population)
13: Crossed← crossover(parents, pc)
14: Mutated← mutation(crossed, pm)
15: Offspring ← Offspring +Mutated . Add the new offspring
16: end for
17: return Offspring
18: end function

19: function doHillClimb(Nsize, Original) . Finds the best neighbour of Original
20: BestNeighbour ← Original
21: for i = 1 to Nsize do
22: Candidate← tweak(Original)
23: if (fitness(Candidate) > fitness(BestNeighbour)) then
24: BestNeighbour ← Candidate
25: end if
26: end for
27: return BestNeigbour
28: end function
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Algorithm 2 Evolutionary Algorithm

1: Population← initPopulation(Csize)
2: while (!StopCondition) do
3: Population← fitness(Population)
4: Offspring ← breedPopulation(Population)
5: Population← replace(Popuplation,Offspring)
6: end while
7: return Population[0]

Algorithm 3 Random Search

1: Best← randomFragment(Csize)
2: while (!StopCondition)) do
3: Candidate← randomFragment(Csize)
4: if (fitness(Candidate) > fitness(Best)) then
5: Best← Candidate
6: end if
7: end while
8: return Best

Algorithm 4 Steepest Ascent Hill Climbing with Replacement

1: Candidate← randomFragment(Csize)
2: NSize ← 100 . number of neighbors desired
3: Best← Candidate
4: while (!StopCondition) do
5: Candidate← doHillClimb(Nsize, Candidate)
6: if (fitness(Candidate) > fitness(Best)) then
7: Best← Candidate
8: end if
9: end while

10: return Best
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Algorithm 5 Iterated Local Search (ILS) with Random Restarts

1: Current← randomFragment(Csize)
2: Times← distribution of time intervals
3: Home← Current
4: Best← Current
5: while (!StopCondition) do
6: time← random time chosen from Times
7: while (!StopCondition && time 6= 0) do
8: Aux← tweak(Current)
9: if (fitness(Aux) > fitness(Current) then

10: Current← Aux
11: end if
12: end while
13: if (fitness(Current) > fitness(Best) then
14: Best← Current
15: end if
16: Home← newHomeBase(Home,Current)
17: Current← perturb(Home)
18: end while
19: return Best

Algorithm 6 Hybrid between Evolutionary and Hill-Climbing

1: Nsize ← 100 . number of iterations to Hill-Climb
2: Population← initPopulation(Csize, Popsize)
3: Best← randomFragment(Csize)
4: while (!StopCondition) do
5: fitness(Population)
6: for Pi in P do
7: Pi ← doHillClimb(Nsize, Pi)
8: if (fitness(Pi) > fitness(Best)) then
9: Best← Pi

10: end if
11: end for
12: P ← breedPopulation(Population)
13: end while
14: return Best
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SPL number of MFLP
CAF 1 41
CAF 2 43
CAF 3 39
CAF 4 32
CAF 5 33
CAF 6 44
CAF 7 26
CAF 8 34
CAF 9 37
CAF 10 37
CAF 11 38
CAF 12 33
CAF 13 38
CAF 14 37
CAF 15 31
CAF 16 39
CAF 17 32
CAF 18 46
CAF 19 38
CAF 20 37
CAF 21 41
CAF 22 42
CAF 23 37
CAF 24 35
CAF 25 35
CAF 26 48
CAF 27 38
CAF 28 41
CAF 29 41
CAF 30 37
CAF 31 45
CAF 32 38
CAF 33 43
CAF 34 31
BSH 1 101
BSH 2 75
BSH 3 73
BSH 4 113
BSH 5 89
BSH 6 157

Table 7: Number of MFLP for each of the SPLs
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MR-MFL
Search

Strategy
Factor
Level

Precision
± σ

Recall
± σ

F-Measure
± σ

MCC
± σ

S
S

S
iz

e
EA

HIGH 0.42 ± 0.19 0.43 ± 0.19 0.43 ± 0.19 0.41 ± 0.20
LOW 0.56 ± 0.31 0.60 ± 0.31 0.57 ± 0.30 0.56 ± 0.31

EHC
HIGH 0.75 ± 0.12 0.83 ± 0.13 0.79 ± 0.12 0.78 ± 0.13
LOW 0.86 ± 0.18 0.92 ± 0.12 0.87 ± 0.15 0.88 ± 0.14

HC
HIGH 0.03 ± 0.04 0.50 ± 0.07 0.05 ± 0.04 0.01 ± 0.05
LOW 0.38 ± 0.23 0.74 ± 0.23 0.47 ± 0.25 0.48 ± 0.26

ILS
HIGH 0.48 ± 0.16 0.48 ± 0.16 0.48 ± 0.16 0.47 ± 0.17
LOW 0.65 ± 0.27 0.69 ± 0.26 0.66 ± 0.26 0.65 ± 0.26

RS
HIGH 0.02 ± 0.01 0.50 ± 0.08 0.05 ± 0.01 0.00 ± 0.02
LOW 0.04 ± 0.04 0.51 ± 0.12 0.07 ± 0.06 0.00 ± 0.03

S
S

V
ol

u
m

e

EA
HIGH 0.51 ± 0.28 0.55 ± 0.29 0.52 ± 0.27 0.51 ± 0.28
LOW 0.49 ± 0.26 0.49 ± 0.26 0.49 ± 0.26 0.47 ± 0.26

EHC
HIGH 0.80 ± 0.19 0.88 ± 0.13 0.83 ± 0.16 0.83 ± 0.15
LOW 0.81 ± 0.14 0.88 ± 0.13 0.84 ± 0.13 0.83 ± 0.13

HC
HIGH 0.22 ± 0.23 0.66 ± 0.23 0.29 ± 0.27 0.28 ± 0.30
LOW 0.21 ± 0.26 0.60 ± 0.19 0.26 ± 0.28 0.23 ± 0.31

ILS
HIGH 0.59 ± 0.26 0.63 ± 0.26 0.60 ± 0.25 0.59 ± 0.25
LOW 0.56 ± 0.23 0.56 ± 0.23 0.56 ± 0.23 0.55 ± 0.23

RS
HIGH 0.03 ± 0.02 0.51 ± 0.11 0.05 ± 0.03 0.00 ± 0.03
LOW 0.04 ± 0.03 0.50 ± 0.10 0.06 ± 0.05 0.00 ± 0.03

M
F

D
en

si
ty

EA
HIGH 0.49 ± 0.24 0.50 ± 0.24 0.49 ± 0.24 0.48 ± 0.24
LOW 0.50 ± 0.30 0.54 ± 0.31 0.51 ± 0.29 0.51 ± 0.30

EHC
HIGH 0.83 ± 0.13 0.89 ± 0.12 0.85 ± 0.12 0.85 ± 0.12
LOW 0.78 ± 0.19 0.87 ± 0.15 0.81 ± 0.17 0.81 ± 0.16

HC
HIGH 0.27 ± 0.29 0.61 ± 0.19 0.32 ± 0.31 0.29 ± 0.33
LOW 0.16 ± 0.18 0.65 ± 0.23 0.23 ± 0.23 0.22 ± 0.27

ILS
HIGH 0.56 ± 0.21 0.56 ± 0.20 0.56 ± 0.20 0.54 ± 0.21
LOW 0.59 ± 0.27 0.63 ± 0.27 0.60 ± 0.26 0.60 ± 0.27

RS
HIGH 0.04 ± 0.03 0.50 ± 0.08 0.08 ± 0.05 0.00 ± 0.03
LOW 0.02 ± 0.01 0.51 ± 0.13 0.04 ± 0.01 0.00 ± 0.03

M
F

M
u

lt
ip

li
ci

ty

EA
HIGH 0.40 ± 0.16 0.40 ± 0.16 0.40 ± 0.16 0.38 ± 0.16
LOW 0.59 ± 0.31 0.63 ± 0.31 0.59 ± 0.30 0.59 ± 0.31

EHC
HIGH 0.76 ± 0.12 0.84 ± 0.13 0.80 ± 0.12 0.80 ± 0.13
LOW 0.84 ± 0.19 0.91 ± 0.13 0.86 ± 0.16 0.86 ± 0.15

HC
HIGH 0.09 ± 0.14 0.51 ± 0.09 0.12 ± 0.16 0.08 ± 0.17
LOW 0.32 ± 0.27 0.73 ± 0.23 0.40 ± 0.29 0.41 ± 0.31

ILS
HIGH 0.46 ± 0.13 0.46 ± 0.13 0.46 ± 0.13 0.45 ± 0.14
LOW 0.67 ± 0.27 0.71 ± 0.26 0.68 ± 0.26 0.67 ± 0.26

RS
HIGH 0.03 ± 0.01 0.50 ± 0.08 0.05 ± 0.01 -0.00 ± 0.03
LOW 0.04 ± 0.04 0.51 ± 0.12 0.06 ± 0.06 0.00 ± 0.03

M
F

D
is

p
er

si
o
n

EA
HIGH 0.42 ± 0.24 0.43 ± 0.25 0.42 ± 0.24 0.41 ± 0.24
LOW 0.57 ± 0.28 0.60 ± 0.28 0.57 ± 0.27 0.56 ± 0.27

EHC
HIGH 0.79 ± 0.16 0.85 ± 0.14 0.81 ± 0.15 0.81 ± 0.15
LOW 0.82 ± 0.17 0.90 ± 0.12 0.85 ± 0.14 0.85 ± 0.14

HC
HIGH 0.15 ± 0.15 0.60 ± 0.20 0.21 ± 0.20 0.20 ± 0.24
LOW 0.27 ± 0.29 0.65 ± 0.22 0.32 ± 0.32 0.30 ± 0.34

ILS
HIGH 0.52 ± 0.23 0.53 ± 0.24 0.53 ± 0.23 0.52 ± 0.23
LOW 0.62 ± 0.24 0.64 ± 0.24 0.62 ± 0.23 0.61 ± 0.24

RS
HIGH 0.02 ± 0.01 0.50 ± 0.12 0.04 ± 0.01 0.00 ± 0.03
LOW 0.04 ± 0.03 0.51 ± 0.09 0.07 ± 0.05 0.00 ± 0.03

Table 8: Mean values and standard deviation for the Precision, Recall F-Measure and MCC values by each of the Search
Strategies and Metrics to report FL problems
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SS Size SS Volume MF Density MF Multiplicity MF Dispersion
1 HIGH HIGH HIGH HIGH HIGH
2 LOW HIGH HIGH HIGH HIGH
3 HIGH LOW HIGH HIGH HIGH
4 LOW LOW HIGH HIGH HIGH
5 HIGH HIGH LOW HIGH HIGH
6 LOW HIGH LOW HIGH HIGH
7 HIGH LOW LOW HIGH HIGH
8 LOW LOW LOW HIGH HIGH

10 LOW HIGH HIGH LOW HIGH
12 LOW LOW HIGH LOW HIGH
13 HIGH HIGH LOW LOW HIGH
14 LOW HIGH LOW LOW HIGH
15 HIGH LOW LOW LOW HIGH
16 LOW LOW LOW LOW HIGH
17 HIGH HIGH HIGH HIGH LOW
18 LOW HIGH HIGH HIGH LOW
19 HIGH LOW HIGH HIGH LOW
20 LOW LOW HIGH HIGH LOW
21 HIGH HIGH LOW HIGH LOW
23 HIGH LOW LOW HIGH LOW
25 HIGH HIGH HIGH LOW LOW
26 LOW HIGH HIGH LOW LOW
27 HIGH LOW HIGH LOW LOW
28 LOW LOW HIGH LOW LOW
29 HIGH HIGH LOW LOW LOW
30 LOW HIGH LOW LOW LOW
31 HIGH LOW LOW LOW LOW
32 LOW LOW LOW LOW LOW

Table 9: Composition of the scenarios based on the metrics values. Scenarios 9, 11, 22 and 24 are missing due to the lack of
test cases with those combinations of Metrics to report Feature Location problems.
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Precision Recall F-Measure MCC

EA

EHC 0.000 0.000 0.000 0.000
HC 0.000 0.000 0.000 0.000
ILS 0.000 0.000 0.000 0.000
RS 0.000 0.538 0.000 0.000

EHC

EA 0.000 0.000 0.000 0.000
HC 0.000 0.000 0.000 0.000
ILS 0.000 0.000 0.000 0.000
RS 0.000 0.000 0.000 0.000

HC

EA 0.000 0.000 0.000 0.000
EHC 0.000 0.000 0.000 0.000
ILS 0.000 0.001 0.000 0.000
RS 0.000 0.000 0.000 0.000

ILS

EA 0.000 0.000 0.000 0.000
EHC 0.000 0.000 0.000 0.000
HC 0.000 0.001 0.000 0.000
RS 0.000 0.000 0.000 0.000

RS

EA 0.000 0.538 0.000 0.000
EHC 0.000 0.000 0.000 0.000
HC 0.000 0.000 0.000 0.000
ILS 0.000 0.000 0.000 0.000

Table 10: Significance between pairs of search strategies (confidence interval 95%).

34



References

[1] M. Harman, B. F. Jones, Search-based software engineering, Information and software Technology 43 (14) (2001) 833–839.
[2] M. Harman, Y. Jia, J. Krinke, W. B. Langdon, J. Petke, Y. Zhang, Search based software engineering for software product

line engineering: A survey and directions for future work, in: Proceedings of the 18th International Software Product Line
Conference - Volume 1, SPLC ’14, ACM, New York, NY, USA, 2014, pp. 5–18. doi:10.1145/2648511.2648513.
URL http://doi.acm.org/10.1145/2648511.2648513

[3] S. Kent, Model driven engineering, in: M. Butler, L. Petre, K. Sere (Eds.), Integrated Formal Methods, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2002, pp. 286–298.

[4] J. Font, L. Arcega, Ø. Haugen, C. Cetina, Leveraging variability modeling to address metamodel revisions
in model-based software product lines, Computer Languages, Systems Structures 48 (2017) 20–38, special Is-
sue on the 14th International Conference on Generative Programming: Concepts Experiences (GPCE’15).
doi:http://dx.doi.org/10.1016/j.cl.2016.08.003.
URL http://www.sciencedirect.com/science/article/pii/S147784241630001X
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