
The Influence of Requirements in Software Model
Development in an Industrial Environment

Jorge Echeverrı́a∗, Francisca Pérez∗, Jose Ignacio Panach†, Carlos Cetina∗ and Óscar Pastor‡
∗Universidad San Jorge

Autovı́a A-23 Zaragoza-Huesca Km.299, Zaragoza, Spain
Email: {jecheverria, mfperez, ccetina}@usj.es

†Universitat de València
Avenida de la Universidad, s/n, 46100 Burjassot, Valencia, Spain

Email: joigpana@uv.es
‡Universitat Politècnica de València

Camino de Vera, s/n, 46022 , Valencia, Spain
Email: opastor@pros.upv.es

Abstract—Textual description of requirements is a specification
technique that is widely used in industry, where time is key for
success. How requirements are specified textually greatly depends
on human factors. In order to study how requirements processing
is affected by the level of detail in textual descriptions, this paper
compares enriched textual requirements specifications with non-
enriched ones. To do this, we have conducted an experiment
in industry with 19 engineers of CAF (Construcciones y Aux-
iliares de Ferrocarril), which is a supplier of railway solutions.
The experiment is a crossover design that analyzes efficiency,
effectiveness, and perceived difficulty starting from a written
specification of requirements that subjects must process in order
to build software models. The results show that effectiveness
and efficiency for enriched requirements are better, while non-
enriched requirements are slightly more difficult to deal with.
Therefore, even though enriched requirements require more time
to be specified, the results are more successfully when using them.

Keywords-Software Requirements, Model-Based Software De-
velopment, Controlled Experiment

I. INTRODUCTION

Requirements elicitation is a process that greatly depends on
human factors. Cappel [1] concluded that non-technical skills
such as oral and written communication, problem solving, and
the ability to learn all apply to the requirements elicitation pro-
cess. How subjective human factors can affect the elicitation
process is usually dealt with in the field of psychology and is
out of the scope of this paper.

There are many techniques for eliciting requirements, such
as prototypes, structured interviews, task observation, surveys,
brainstorming, nominal group techniques, and focus groups,
among many others. There are also theoretical works that have
studied which techniques are better depending on the context
[2]. To establish which requirement elicitation technique is
better from a practical point of view is still a challenging study
for the software engineering community.

Of all of the existing techniques, this paper focuses on
studying the textual description technique, where the analyst
writes down a textual specification that describes all of the
features of the system that are to be developed. The provided

description acts as input for the next steps of the development
process. A textual description is subjective since the degree of
detail of the description can vary depending on the subject.

The goal of this paper is to analyze which type of require-
ment description is better: a non-enriched requirement or an
enriched requirement. A non-enriched requirement description
contains only natural language. On the other hand, the enriched
requirement description contains natural language that is en-
hanced with property-value pairs of elements that are included
in the description.

This paper proposes an experiment design that is based on
a crossover design. The subjects start from an already existing
textual description of requirements and must process them to
build software models. The recruitment of subjects was carried
out with software engineers of our industrial partner company,
CAF (http://www.caf.net/en) at two of their headquarters. One
of the headquarters is located in Zaragoza (Spain), where
we recruited six subjects; and the other one is located in
Beasain (Spain), where we recruited thirteen subjects. CAF
is a worldwide supplier of railway solutions. Their trains can
be found all over the world in different forms (regular trains,
subway, light rail, monorail, etc.).

The experiment was conducted in terms of three variables:
effectiveness (ratio of errors), efficiency (time spent), and
perceived difficulty (subjective feelings of the software en-
gineer). The results show that there are significant differences
between enriched and non-enriched requirements for these
three variables, demonstrating that effectiveness and efficiency
for enriched requirements have better values, while non-
enriched requirements are slightly more difficult to deal with
than enriched ones.

The paper is structured as follows: Section 2 explains the
background of enriched and non-enriched requirements. Sec-
tion 3 describes the design of the experiment. Section 4 shows
the statistical results. Section 5 discusses the results. Section
6 deals with the threats to validity. Section 7 analyzes other
works that have compared requirements elicitation techniques.
Finally, Section 8 presents some relevant conclusions.



II. BACKGROUND

Requirements engineering is treated as one of the most
important parts of the software development process. The
requirements process has been identified as being a crucial
factor for the success of a project. This is particularly valid in
large one-of-a-kind projects that require significant effort in the
initial product-specification stages, where a large proportion
of the product cost is committed. In fact, when developing
products of high complexity in industries such as aerospace, it
is widely acknowledged that almost 60% of the product cost
is allocated during the first 5% of the product development
cycle [3].

In general, requirements are expressed using free natural
language text in a large number of software projects, and
the railway domain is no exception [4]. Natural language
is used to specify requirements due to its high degree of
understandability among all of the stakeholders in industrial
projects [5].

When we focused our analysis on CAF, we identified
that the company works with mainly two types of textual
requirement descriptions (non-enriched and enriched):

• The non-enriched requirement description contains
only natural language. The following statement is an
example of a non-enriched requirement: The PLC will
inhibit the circuit breaker shutdown whenever there is
inhibition from ACR management, when there is outside
power, or when permission isn’t granted from any UCU.

• The enriched requirement description contains nat-
ural language that is enhanced with property val-
ues of model elements that are included in the de-
scription. An example of this kind of requirement
is: The PLC will inhibit the circuit breaker shut-
down (AT INHIB HSCB=1) whenever there is inhi-
bition from ACR management (SC INHIB HSCB=1),
when there is outside power (CV POWER OUT=1,
AT POWER OUT=1) or when permission isn’t granted
from any UCU (UCU Cx ControlW.b HSCBPerm=0).
Fig. 1 shows the description of an enriched requirement
with the property-value pairs. These property-value pairs
are denoted with a dotted line.

Property-value pairs in an enriched requirement

The PLC will inhibit the circuit breaker shutdown (AT_INHIB_HSCB=1) 

whenever there is inhibition from ACR management (SC_INHIB_HSCB=1), 

when there is outside power (CV_POWER_OUT=1, AT_POWER_OUT=1) or, 

when permission isn't granted from any UCU (UCU_Cx_ControlW.b_HSCBPerm=0).

Fig. 1. Enriched requirement with property-value pairs

Both enriched or non-enriched requirements are the input
to build software models that describe the functionality of

their trains. The modeling language is the Train Control and
Management Language (TCML), which is a domain specific
language that has both the expressiveness required to describe
the interaction between the main elements in a train and the
expressiveness required to specify non-functional aspects that
are related to regulation.

Our goal is to analyze which of the two types of textual
descriptions of requirement is better for building software
models in an industrial environment. For this reason, we
conducted an experiment at the CAF company, where subjects
must build a software model according to a requirement
description. Our aim is to compare the results using enriched
requirements versus non-enriched requirements.

III. EXPERIMENT DESIGN

A. Objective

The goal of our research is to analyze which of the two
types of textual description is better as a starting point to build
software models in an industrial environment. Following the
Wohlin et al. guidelines [6], the goal of our study was to:

Analyze the performance of engineers when they process
requirements;

For the purpose of filling in the gap in empirical evaluation
on this topic;

With respect to the different enrichment levels of require-
ments;

From the viewpoint of software engineers;
In the context of a train manufacturing company.
The measures used in our research to achieve the above

goal are effectiveness, efficiency, and perceived difficulty.
Effectiveness and efficiency are widely accepted to measure
the performance of software engineers [7], [8]. In addition,
perceived difficulty is one of the most widely applied theoret-
ical models when analyzing user acceptance in the software
engineering research community [9], [10]. We seek to answer
the following three research questions using these measures:

RQ1 Are there differences when different enrichment levels
of requirements are used regarding effectiveness in building
software models?

RQ2 Are there differences when different enrichment levels
of requirements are used regarding efficiency in building
software models?

RQ3 Is the perceived difficulty different when software
engineers use different enrichment levels of requirements to
build software models?

To answer these research questions, we have formulated the
following null hypotheses:

• H01: There is no difference in the effectiveness of the
performance of software engineers when working with
requirements with different enrichment levels.

• H02: There is no difference in the efficiency of the
performance of software engineers when working with
requirements with different enrichment levels.

• H03: There is no difference in the perceived difficulty of
software engineers when working with requirements with
different enrichment levels.



B. Participants

The subjects were 19 software engineers from the CAF
company. These engineers are experts in developing software
and requirements. In their daily work, these engineers develop
software from both enriched and non-enriched requirements.
Six software engineers work at the company headquarters in
Zaragoza (Spain), and thirteen software engineers work at the
company headquarters in Beasain (Spain). They have spent
from 1 to 15 years working as software engineers (a mean of
6.65 years). They claimed that they spent an average of 3.68
hours per day developing software. In addition, the software
engineers stated that they spent a mean of 3.36 hours per day
developing requirements.

Apart from the subjects, an instructor, two observers, and
one domain expert were also involved. The instructor provided
information about performing the exercises, clarified doubts
during the experiment, and managed the focus groups. The
observers took notes for further analyses. Finally, the domain
expert stated the requirements, designed the correction, cor-
rected the exercises, and solved doubts about the requirement
statements for the subjects during the experiment. The domain
expert was not involved in this paper.

C. Defining Variables

1) Independent Variables: We conducted a single factor
experiment where the independent variable is the enrichment
level of the requirement, which is a nominal variable with two
values: enriched requirements and non-enriched requirements.
These levels are explained in section II.

2) Dependent Variables: In our experiment, the software
engineers had to perform four exercises, where every exercise
contained a requirement description. The outcome of each
exercise was a software model that used concepts that were
known by the subjects. During the transformation from the
requirements specification to software model, we measured
the effectiveness, efficiency, and perceived difficulty. The
dependent variables are defined as follows:

• Effectiveness is defined as the percentage of an exercise
performed correctly by the software engineer. The ex-
ercises are decomposed by a domain expert into a set
of steps, and each step has a weighted percentage with
respect to the whole exercise.

• Efficiency is the ratio between the effectiveness and the
time spent (in minutes) to perform the exercise.

• The perceived difficulty is the perception that a software
engineer has of the complexity of an exercise. It is
measured using a Likert scale. The software engineers
must fill in a value for the perceived difficulty for each
exercise.

D. Instruments

1) Demographic Questionnaire: This includes questions to
identify the profile of each subject. The information requested
in the questionnaire is: their education level, the length of time
working in their current department (in years), their age, their

gender, the time spent per day developing software, and the
time spent per day developing requirements.

2) Task sheet: A task sheet for each requirement was
given to the subjects. Every task sheet contains a requirement
description, a Likert scale, a text area, and two text fields. The
requirement description is the requirement to be processed.
The subjects also had to fill in the value within the Likert
scale ranging from 1=very easy to 7=very difficult. This
value is used to calculate the perceived difficulty. In the text
area, the subjects could write down any opinions they had
about the process of converting requirements into software
models. Finally, the subjects had to write down both the
time they started the exercise to build software models from
requirements and the time they finished. These times provide
the calculation for efficiency.

E TrainUnit

E CircuitBreakerE

P AT_INHIB_HSCB

E ACR_ManagementE

P SC_INHIB_HSCB

E UCUE

P UCU_Cx_ControlW.b_HSCBPerm

E PowerOutE

P CV_Power_Out

P AT_Power_Out

E OrderInhibitionR

Legend: EE P ER

Equipment Property Rule

Fig. 2. Software Model

3) Software Model: A software model is the outcome of
each exercise when the subject processes the requirements.
The resulting software models are corrected by a domain
expert, who determines the percentage of steps that are cor-
rectly performed within each task. The percentage of correct
steps provides the calculation for effectiveness and efficiency.
Fig. 2 shows a tree representation of the software model
and https://www.youtube.com/watch?v=Ypcl2evEQB8 shows
the concrete syntax of the software model.

4) Focus Group Interview: The objective of this focus
group interview [11] was to obtain qualitative data from
comments of the subjects. This focus group interview is
composed of open questions. The aim of these questions
is to detect the concepts or processes in the performance



Explanation of 

Experiment

Tutorial about

Building Software 

Models 

Fill in Demographic 

Questionnaire

Explanation of 

Instructions

Process to Build

a Software Model

Fill in Likert

Scale

Check the Fields 

of the Task Sheet

5 6

Take Notes about the

Requirements Processing

Fig. 3. Procedure of the experiment

of the exercise that are more problematic for subjects as
well as to determinate the real causes of the problems.
The materials used in this experiment are available at
http://svit.usj.es/requerimentinfluenceexperiment.

E. Experimental Procedure

We chose a crossover design where two treatments (enriched
and non-enriched requirements) were applied randomly by the
subjects. The pros of this design are: (1) it uses the largest
possible sample size due to repeated measures; (2) the learning
effect is minimized since the treatments alternate; and (3) it
is easy to justify in an industrial environment where both
treatments are used frequently [12].

In order to verify the experimental parameters, we con-
ducted a pilot study [13] with one participant. This participant
did not take part in the experiment later. As a result of the pilot
study, we decided to reduce the number of exercises due to the
long time that was required to process all of the requirements.
Initially, the domain expert designed thirteen requirements for
the experiment. After the pilot study, the domain expert re-
duced the set of exercises to four representative requirements.
The criteria for selecting the four requirements was to choose
the most important ones for the specification of the software
system.

The experiment was conducted on two different days. The
first day was performed at the CAF headquarters in Zaragoza
(Spain) with a group of six software engineers. The second
day, the experiment was replicated at the CAF headquarters
in Beasain (Spain) with thirteen software engineers. In this
last case, the experiment was performed by three groups of
software engineers based their schedule availability. In the first
and second groups, there were five software engineers; in the
third group there were three software engineers. The procedure
(see Fig. 3) for all of the subjects was the following:

1) The subjects were given information about the experi-
ment development. They were told that it was not a test
of their abilities.

2) The subjects attended a tutorial about how to build the
software models according to requirements. This tutorial
was taught by the instructor. The average time spent on
this tutorial was 24 minutes. The subjects could develop
an example during the explanation of this tutorial. Hard
copies of the slides that were used in the tutorial were
given to the subjects and were available to them during
the experiment.

3) The subjects were asked to fill in a demographic ques-
tionnaire prior to the experimental tasks.

4) The subjects were then given a series of clear instruc-
tions to process the requirements and how to fill out the
task sheet.

5) The subjects were asked to interpret four requirements
(two enriched requirements and two non-enriched re-
quirements). As a result of this interpretation, the sub-
jects had to build a software model that expressed all
the ideas articulated in the requirements. This model
was used to calculate the effectiveness and efficiency
of the process of interpreting requirements. To avoid
a possible ceiling effect, there was no time limit in
interpreting requirements. On the other hand, the two
types of requirements were assigned to the subjects
randomly to avoid the learning effect.

6) The subjects were asked to fill in a Likert scale about
perceived difficulty for each requirement. These answers
were used to calculate the perceived difficulty about the
understandability of requirements.

7) When a subject finished the development of one re-
quirement, before beginning the next one, an observer



checked that the subject had filled in all of the fields in
the task sheet.

8) The observers took notes about the comments and doubts
of the subjects when processing requirements.

9) A focus group interview about the exercises was con-
ducted by the instructor with every group of the subjects.

10) Finally, the domain expert corrected the models and
the observers analyzed the results. The percentage of
successfully completed exercises provided a value for
effectiveness.

IV. RESULTS

For our design, the most suitable statistical test is the
Linear Mixed Model [14] test. The Dependent Variables for
this test are efficiency, effectiveness, and perceived difficulty.
The Fixed Factor is the method, and the Random Factor is
the subject since we need to represent the subject of each
measure. The conclusions extracted from the Linear Mixed
Model are supported with descriptive data through box-and-
whiskers plots and histograms.

The use of the Linear Mixed Model test involves the
assumption that residuals must be normally distributed. With
the collected data, all residuals obtain a p-value that is higher
than 0.05 with the K-S test, meaning that residuals are
normally distributed. The effect size shows the magnitude of
differences for each factor. It is usually applied when null
hypotheses are rejected in order to study the level of significant
differences between the treatment means. We calculate the
effect size through Cohen d, which describes the proportion
of the variability in the dependent measure that is attributable
to a factor. The most common interpretation is the following:
between 0.2 and 0.3 is a small effect; around 0.5 is a medium
effect; and more than 0.8 is a large effect [15].

A. Effectiveness

A Linear Mixed Model test was conducted to compare the
effectiveness with the two different types of requirements. The
results show that there is a significant effect of the different
requirements on effectiveness [F(2,18) = 559.78 p=0.000].
Since the p-value is less than 0.05, we can conclude that there
are significant differences between the two treatments. The
effect size of 0.601 shows that the magnitude of this difference
is medium.

Fig. 4(a) shows the box-and-whiskers plot for the response
variable effectiveness. It can be observed that the value for
enriched requirements is better than for non-enriched require-
ments. The median, the first quartile, and the third quartile get
better values for enriched requirements.

The average of effectiveness for enriched requirements
(86.578%) is also better than for non-enriched requirements
(77.605%). Fig. 4(b) shows the histograms for effective-
ness with enriched requirements, and Fig. 4(c) shows the
histograms for effectiveness with non-enriched requirements.
Note that an effectiveness of 100% is more frequent in en-
riched requirements than in non-enriched requirements. There
are five samples of 100% in effectiveness when enriched

Effectiveness (%)

40 60 80 100

100

90

80

70

60

50

40

Type of requirement

Enriched requirement Non-enriched requirement

(a)

(b)

(c)

F
re

q
u
en

cy
E

ff
ec

ti
v
en

es
s 

(%
)

6

4

2

0

6

4

2

0

Fig. 4. (a) Box-Plot for effectiveness. (b) Histogram for effectiveness with
enriched requirements. (c) Histogram for effectiveness with non-enriched
requirements.

requirements are used, and two samples when using non-
enriched requirements. The normal curve shows that values
for effectiveness tend to be higher (around 80%) with enriched
requirements.

According to our analysis, we can state that there are
significant differences between enriched and non-enriched
requirements in terms of effectiveness. The values for enriched
requirements are better than the values for non-enriched re-
quirements. Therefore, we reject H01, which claims that the
effectiveness when working with enriched requirements is the
same as when working with non-enriched requirements.

B. Efficiency

The results with the Linear Mixed Model test show that
there is a significant effect of the two different types of re-
quirements on efficiency [F(2,18) = 56.574 p=0.000] since the



0 5 10 15 20 25

25

20

15

10

5

0

Type of requirement

Enriched requirement Non-enriched requirement

(a)

(b)

(c)

F
re

q
u
en

cy
E

ff
ic

ie
n
cy

 (
%

/m
in

)

12

8

4

0

12

8

4

0

Efficiency (%/min)

Fig. 5. (a) Box-Plot for efficiency. (b) Histogram for efficiency with enriched
requirements. (c) Histogram for efficiency with non-enriched requirements.

p-value is less than 0.05. The effect-size of 0.627 is medium,
which means that this difference between the treatments is
considerable.

Fig. 5(a) shows the box-and-whiskers plot for the response
variable efficiency. The median, the first quartile and the third
quartile get better values for enriched requirements. Moreover,
the average for enriched requirements (7.969%/min) is higher
than for non-enriched requirements (5.434%/min). Fig. 5(b)
shows the histograms for efficiency with enriched require-
ments, and Fig. 5(c) shows the histogram for efficiency with
non-enriched requirements. It can be observed that most of
the samples for non-enriched requirements (12 samples) are
between 2.5%/min and 5%/min; on the other hand, the interval
with the highest number of samples for enriched requirements
(8 samples) is between 7.5%/min and 10%/min. The normal
curve shows that values for efficiency tend to be around
8%/min.

According to our analysis, we can state that there are
significant differences between enriched and non-enriched
requirements in terms of efficiency. The values for enriched
requirements are better than the values for non-enriched re-
quirements. Therefore, we reject H02, which claims that the
efficiency when working with enriched requirements is the
same as when working with non-enriched requirements.

C. Perceived Difficulty

A Linear Mixed Model test was conducted to compare the
perceived difficulty of subjects with the two different types
of requirements. There is a significant effect of the different
requirements on the perceived difficulty since the p-value is
less than 0.05 [F(2,18) = 185.77 p=0.000]. The effect size of
0.102 shows that the magnitude of this difference is small.

Fig. 6(a) shows the box-and-whiskers plot for the response
variable perceived difficulty. The difference between the aver-
ages of the two treatments is small, the average of perceived
difficulty for enriched requirements is 3.868, and the average
of non-enriched requirements is 3.974. Fig. 6(b) shows the
histogram for perceived difficulty with enriched requirements,
and Fig. 6(c) shows the histogram for perceived difficulty with
non-enriched requirements. Note that the value of means of the
two treatments are close. On the other hand, the interval with
the highest number of samples (interval around 4) is the same
for both treatments. There are four samples in this interval
for enriched requirements and six samples for non-enriched
requirements.

According to our analysis, we can state that there are
significant differences between enriched requirements and
non-enriched requirements in terms of perceived difficulty.
The values for enriched requirements are better than the
values for non-enriched requirements. Therefore, we reject
H03, which claims that the perceived difficulty when working
with enriched requirements is the same as when working with
non-enriched requirements.

V. DISCUSSION

The focus group and the results presented in the previous
section enables us to perceive non-enriched and enriched re-
quirements in terms of effectiveness, efficiency, and perceived
difficulty as follows:

Effectiveness: Unlike non-enriched requirements, enriched
requirements include specific property-value pairs that soft-
ware engineers can use during the construction of a model
from a requirements specification. Nevertheless, the results of
our experiment show that properties and values included in
an enriched requirement do not always match the properties
and values needed in models. In some cases, the software
engineers changed the names of the properties, the number of
properties used, and the values because they needed to perform
intermediate operations to achieve the goal of the requirement.

Even though the software engineers did not include the
properties and values in the models as they were in the
requirement, we detected that the software engineers used
these properties and values as check points, enabling them



1 2 3 4 5 6 7 

6

5

4

3

2

Type of requirement

Enriched requirement Non-enriched requirement

(a)

(b)

(c)

F
re

q
u
en

cy
P

er
ce

iv
ed

 D
if

fi
cu

lt
y

 (
1

 t
o

 7
)

6

4

2

0

6

4

2

0

Perceived Difficulty (1 to 7)

Fig. 6. (a) Box-Plot for perceived difficulty. (b) Histogram for perceived
difficulty with enriched requirements. (c) Histogram for perceived difficulty
with non-enriched requirements.

to check whether the requirement had been fully described.
In other words, enriched requirements had n properties that
the software engineers considered as n check points, while
non-enriched requirements were considered as a whole. These
check points helped the software engineers to fully transfer
the requirements to the model.

Efficiency: When asked about their use of property-value
pairs to enrich the requirements, the software engineers an-
swered that property-value pairs did not increase the difficulty
for customers to read requirements and served CAF engineers
as a guide to transfer requirements to models. In other words,
(1) natural language provides engineers with flexibility, (2)
natural language enables CAF to share the requirements with
their customers, and (3) property-value pairs improve the
efficiency of software engineers.

Perceived difficulty: Our results showed that the difference

in perceived difficulty is small between non-enriched and
enriched requirements. The main difficulty in non-enriched
requirements is to know their magnitude, whereas the difficulty
in enriched requirements is to understand the property-value
pairs. The results are aligned with the responses that we
obtained during the focus group interview, where the acquired
knowledge indicated that the software engineers perceived a
similar difficulty between non-enriched and enriched require-
ments. As a matter of fact, the company did not require from
its engineers to use a specific type of requirement nor to have
a consensus on which type of requirement was more beneficial
than the other. Nevertheless, the effectiveness, efficiency, and
perceived difficulty showed a significant difference in favor
of enriched requirements, which motivates their usage in the
future.

VI. THREATS TO VALIDITY

This section describes the threats that we have avoided, the
threats that we could not avoid but that we mitigated, and the
threats that we could not tackle. We use the classification of
threats to validity of [16]; this classification distinguishes four
aspects of validity:

Construct validity: This type of validity reflects the extent
to which the operational measures that are studied represent
what the researchers have in mind and what is investigated
based on the research questions.

• Author bias: This threats means that the people that define
the artifacts can subjectively influence the obtainment of
the results that they are looking for. In order to mitigate
this threat, the exercises and responses were designed
by a domain expert who was external to the design of
the experiment and who was not involved in this paper.
This expert has developed modeling tools in industrial
environments (in the induction hob domain and train
control software domain).

• Task design: This threat appears when the tasks can be
correctly performed just by chance. To mitigate this threat
the proposed exercises did not have a true/false answer;
the subjects had to build a model; this is very difficult for
subjects to answer correctly if they do not understand the
exercise. On the other hand, the requirements statements
were real requirements that were extracted from the CAF
company’s catalog.

• Mono-method bias: This threat is due to using a single
type of measure [12]. Satisfaction, effectiveness, and
efficiency measurements were affected by this threat. To
mitigate this threat for the effectiveness and efficiency
measurements, we mechanized these measurements as
much as possible by means of exercise decomposition.

• Hypothesis guessing: This threat means that the subject
may guess the hypotheses and work to fulfill them. To
mitigate this, we did not talk with the subjects about the
research questions or the objective of the experiment.

• Evaluation apprehension: This threat appears when the
subjects are afraid of being evaluated. To mitigate this



threat the instructor told all of the subjects that it was
not a test of their abilities.

• Interaction of different treatments: This threat appears
when there are several treatments applied at the same
time. To solve this threat, the treatments were applied
randomly at different times.

• Mono-operation bias: This threat appears when treat-
ments depend on a single tool only. The experiment was
affected by this threat since we worked with a single tool
for each exercise. For this reason, the generalization of
results must be done with caution.

Internal validity: This type of validity appears when causal
relations are examined. There is a risk that the studied response
variables may be affected by other factors that are not consid-
ered in the experiment.

• Learning effect: This threat appears when the subjects
learn something during the experiment that may influence
later tasks. We mitigated this threat by randomizing the
order of the exercises.

• Information exchange: Since the experiment was de-
signed to take place in two sessions, the subjects might
have been able to exchange information during the time
between the sessions. This was minimized because the
experiment was performed in two different locations on
two different days.

• Understandability: This threat appears when the sub-
jects do not understand how to proceed to conduct the
experiment. This threat was mitigated by writing the
experimental materials in the mother tongue of subjects.
In addition, a tutorial about how to build the software
models according to requirements was explained by the
instructor before the experiment.

• Fatigue effects: This threat appears when the subjects
get tired during the experiment. This was solved by
establishing a total time of 90 minutes for the whole
experiment (including the training). This time was short
enough when compared with the regular work time of the
subjects.

• Subject motivation: This threat appears when the subjects
are not motivated to participate in the experiment. The
experiment was affected by this threat since the subjects
were recruited as part of their daily work (they were not
volunteers).

• Selection: This threat appears when outcomes of the
experiment may depend on the type of subjects. The
experiment was affected by this threat since all of the
subjects were recruited from the CAF company.

External validity: This type of validity is concerned with
to what extent it is possible to generalize the findings and to
what extent the findings are of relevance for other cases.

• Statistical power: This threat appears when the number
of subjects is not enough to generalize results. Our exper-
iment was affected by this threat, because the number of
subjects (19) was not high enough to generalize results.
However, it is important to note that the role of the

subjects (software engineers in an industrial environment)
makes an interesting contribution in an area where most
experiments are conducted with students. On the other
hand, we have tried to use a confidence interval where
conclusions are 95% representative. This means that if
they followed a normal distribution, the results would be
true 95% of the time.

• Influence of the domain: This threat appears when the
outcomes depend on a specific domain. This experiment
was affected by this threat since we only analyzed the
Railway domain.

Reliability: This type of validity is concerned with to what
extent the data and the analysis are dependent on the specific
researchers.

• Data collection: This threat appears when data collection
is not done in the same way throughout the different ses-
sions. This was mitigated by applying the same procedure
to each session and using the same formula to calculate
the dependent variable values.

• Completion data: This threat appears when there are some
missing data after the data collection process. To mitigate
this threat, two observers tested the data coherence when
the subjects finished each exercise because the subjects
themselves wrote down the data used in the metrics of
the experiment.

VII. RELATED WORK: COMPARISON WITH OUR
CONTRIBUTION

The process to elicit, report, and use requirements as input
for the next steps in the software development process is
greatly dependent on human factors. According to Ahmed
[17], there are non-technical skills that might affect the process
of requirements elicitation. This strong dependency on human
skills and on the type of analyst can lead to some requirements
specifications being ambiguous in some cases. According to
the literature review performed by Bano [18], 81% of papers
focus on detecting ambiguity in textual specifications. Bano
also states that there is a lack of empirical evaluation of natural
language processing techniques for addressing ambiguity in
requirements.

Several works have dealt with processing requirements
specifications for model building. These works aim to extract
conceptual models from texts with natural language require-
ments. One example of these works was developed by Robeer
et al [19], who propose to automatically derive conceptual
models from user stories that are written in natural language.
The approach is based on an algorithm that combines several
heuristics and is evaluated through two case studies. The
metrics used in the evaluation are precision and recall to
compare the accuracy of the proposed technique with respect
to a manual tagging. Bhala and Abirami [20] also proposed
an automatic transformation from functional specifications in
natural language to conceptual models. The proposal is based
on the analysis of grammatical constructs. The result of the
transformation is the construction of an entity-relationship
diagram with notations. The proposal is evaluated through



a case study that compares the model built through the
transformations versus a model built by hand by two users:
one expert and one novice. The metric used in the experiment
is performance. Ferrari et al. [21] conducted an evaluation
of a tool (named CAR) that supports a textual definition of
requirements. The evaluation was done using metric com-
pleteness, where the experiments compare the completeness
of requirements using CAR versus using no tool. The authors
of that paper are also the subjects of the study.

There are works that focus on detecting ambiguity in textual
specifications, such as Fantechi et al. [22]. These authors
defined a set of metrics to perform a quality evaluation of
requirements documents that is based on Use Cases templates.
These metrics are based on three variables that analyze re-
quirement specifications through linguistic techniques: expres-
siveness, consistency, and completeness. Linguistic techniques
are not sufficient to completely address aspects that are related
to the correctness and consistency of requirements. Gnova et
al. [23] defined indicators for measuring quality in textual
requirements as well as a tool that computes quality measures
in a fully automated way. The approach aims to improve the
quality of requirements and to improve the writing skills of
analysts. Mund et al. [24] conducted two replications of an
experiment to study the extent to which software requirements
specifications are created and used in practice as well as the
degree to which the quality of such specifications affect the
next development activities in the process. Quality is measured
through a quality questionnaire filled in by professionals in
industry. The goal of the experiment is to identify the quality
of software requirements specifications.

Apart from the quality of requirement reports, another
important issue to consider is how these reports are analyzed
in next steps of the software development process. Information
reported in documents must be filtered and processed in
order to continue with the software development process.
Garca-Flores [25] defined semantic filtering techniques for
the analysis of large textual requirements descriptions. The
approach makes use of a contextual exploration method to
identify specific linguistic markers that show the structure
of the semantic knowledge. Kof [26] proposed a method to
extract ideas from a textual description of requirements using
heuristics. The approach consists of a systematic comparison
of different term extraction heuristics. According to Kof,
heuristics based on named entity recognition are the ones that
provide the best performance.

There are several works that have compared two elicitation
requirements techniques. For instance, Besrour et al. [27]
conducted a study to evaluate and compare requirements
elicitation techniques using students as subjects. The tech-
niques that are compared are: natural language, a specific
requirements template called DIRT, and the IEEE software
requirements specification. España et al. [28] compared Use
Cases versus Communication Analysis through the framework
called Method Evaluation Model (MEM). MEM distinguishes
between the actual efficacy and the perceived efficacy of
the method. The comparison was conducted using students

as subjects and questionnaires. Hadar et al. [29] compared
the comprehensibility of requirements models in Use Cases
versus Tropos through a family of experiments using students
as subjects. The experiments focus on three categories of
problem-solving comprehension questions and on the effort
required to perform them in terms of the time.

Author Metrics
Robeer et al. [19] Precision amnd Recall
Bhala and Abirami [20] Performance
Ferrari et al. [21] Completeness

Fantechi et al. [22]
Expressiveness, consistency,

and completeness

Génova et al. [23]
Morphological, lexical,

analytical, relational
Mund et al. [24] Quality questionnaire
Garcı́a-Flores [25] Semantic metrics
Kof [26] Heuristics
Besrour et al. [27] Syntactic, semantic
España et al. [28] Actual efficacy, perceived efficacy
Hadar et al. [29] Comprehension an effort

TABLE I
COMPARISON WITH OTHER WORKS

Table I shows a comparison of our study with previous
ones conducted in the field of interpreting textual requirements
specifications. In general, metrics in existing works focus on
measuring quality, syntax, semantics, and time. Moreover, all
the empirical studies that have been conducted to compare
elicitation techniques have been done with students. To our
knowledge, there are no previous papers that have conducted
empirical experiments in industry with the aim of comparing
different enrichment levels in the requirements specification.
Of all of the related works studied, only the experiment
of Mund et al. [24] (based on quality questionnaires) was
conducted in industry. As Ambreen et al. [30] state, there is a
need to conduct empirical studies in industry since the context
is not the same as in academia. Thus, our work aims to help
cover the dearth of studies that analyze how the description
level of the requirements can affect the developer in industry.

VIII. CONCLUSION

Techniques to specify requirements are still a key topic in
the software engineering community. Empirical studies need to
be conducted in industry since the context is not the same as in
academia. In this work, we conducted a crossover experiment
to analyze which type of textual requirement description is bet-
ter for requirements specification: a non-enriched requirement
or an enriched requirement. The subjects of the experiment
were 19 software engineers from CAF, a worldwide supplier
of railway solutions.

The subjects started from an already existing textual de-
scription of requirements (non-enriched or enriched) that
they had to process to build software models. We measured
three variables: effectiveness (ratio of errors), efficiency (time



spent), and perceived difficulty (subjective feelings of the soft-
ware engineers). Our results showed that there are significant
differences between enriched and non-enriched requirements
for these three variables, demonstrating that effectiveness and
efficiency for enriched requirements have better values, while
non-enriched requirements are slightly more difficult to deal
with than enriched ones. In addition, we detected that the
subjects used the property-value pairs of enriched requirements
as check points that they should verify in order to determinate
whether the requirement was fully processed. More time was
required to process enriched requirements than non-enriched
requirements, but it influenced effectiveness and efficiency
positively.

As future work, we plan to replicate this experiment in more
companies in order to generalize the results, independently
of the subjects’ profile. Moreover, we also plan to analyze
enriched requirements for building software models as well as
for implementing code.

ACKNOWLEDGMENT

This work has been partially supported by the Ministry of
Economy and Competitiveness (MINECO) through the Span-
ish National R+D+i Plan and ERDF funds under the project
Model-Driven Variability Extraction for Software Product
Line Adoption (TIN2015-64397-R). We also thank DataMe
(TIN2016-80811-P) from MINECO and IDEO (PROME-
TEOII/2014/039) from Generalitat Valenciana.

REFERENCES

[1] J. J. Cappel, “Entry-level is job skills: A survey of employers,” Journal
of Computer Information Systems, vol. 42, no. 2, pp. 76–82, 2002.

[2] D. Carrizo, O. Dieste, and N. Juristo, “Systematizing requirements
elicitation technique selection,” Information and Software Technology,
vol. 56, no. 6, pp. 644–669, Jun. 2014.

[3] S. M. Ratchev, K. S. Pawar, E. Urwin, and D. Mueller, “Knowledge-
enriched requirement specification for one-of-a-kind complex systems,”
Concurrent Engineering: R&A, vol. 13, no. 3, pp. 171–183, 2005.

[4] B. Rosadini, A. Ferrari, G. Gori, A. Fantechi, S. Gnesi, I. Trotta,
and S. Bacherini, “Using NLP to detect requirements defects: An
industrial experience in the railway domain,” in Requirements Engi-
neering: Foundation for Software Quality - 23rd International Working
Conference, REFSQ 2017, Essen, Germany, February 27 - March 2,
2017, Proceedings, 2017, pp. 344–360.

[5] G. Fanmuy, A. Fraga, and J. Lloréns, “Requirements verification in
the industry,” in Proceedings of the Second International Conference
on Complex Systems Design & Management, CSDM 2011, Paris, 7-9
December 2011, 2011, pp. 145–160.

[6] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering: An Introduction.
Norwell, MA, USA: Kluwer Academic Publishers, 2000.

[7] J. Echeverrı́a, F. Pérez, A. Abellanas, J. I. Panach, C. Cetina, and O. Pas-
tor, “Evaluating bug-fixing in software product lines: An industrial case
study,” in Proceedings of the 10th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement. New York, NY,
USA: ACM, 2016, pp. 24:1–24:6.

[8] J. Gonzalez-Huerta, E. Insfran, S. Abrahão, and G. Scanniello, “Vali-
dating a model-driven software architecture evaluation and improvement
method: A family of experiments,” Information and Software Technol-
ogy, vol. 57, pp. 405–429, 2015.

[9] J. Echeverria, F. Pérez, C. Cetina, and O. Pastor, “Comprehensibility
of variability in model fragments for product configuration,” in CAiSE
2016, Ljubljana, Slovenia, June 13-17, 2016. Proceedings, 2016, pp.
476–490.

[10] I. Reinhartz-Berger, K. Figl, and Ø. Haugen, “Comprehending feature
models expressed in cvl,” in International Conference on Model Driven
Engineering Languages and Systems. Springer, 2014, pp. 501–517.

[11] R. A. Krueger and M. A. Casey, Focus groups: A practical guide for
applied research. Sage publications, 2014.

[12] J. I. Panach, S. España, O. Dieste, O. Pastor, and N. Juristo, “In search
of evidence for model-driven development claims,” Inf. Soft. Techn.,
vol. 62, no. C, pp. 164–186, Jun. 2015.

[13] M. Asadi, S. Soltani, D. Gašević, and M. Hatala, “The effects of
visualization and interaction techniques on feature model configuration,”
Empirical Software Engineering, pp. 1–38, 2014.

[14] B. T. West, K. B. Welch, and A. T. Galecki, Linear Mixed Models: A
Practical Guide Using Statistical Software, Second Ed. Chapman and
Hall/CRC Press, 2014.

[15] J. Cohen, “Statistical power analysis for the behavior science,” Lawrance
Eribaum Association, 1988.

[16] P. Runeson and M. Hst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Software Engineer-
ing, vol. 14, no. 2, pp. 131–164, 2009.

[17] F. Ahmed, “Software requirements engineer: An empirical study about
non-technical skills.” JSW, vol. 7, no. 2, pp. 389–397, 2012.

[18] M. Bano and N. Ikram, Addressing the Challenges of Alignment of
Requirements and Services: A Vision for User-Centered Method. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2014, pp. 83–89.

[19] M. Robeer, G. Lucassen, J. M. E. M. v. d. Werf, F. Dalpiaz, and
S. Brinkkemper, “Automated extraction of conceptual models from
user stories via nlp,” in 2016 IEEE 24th International Requirements
Engineering Conference (RE), Sept 2016, pp. 196–205.

[20] V. B. R. V. Sagar and S. Abirami, “Conceptual modeling of natural
language functional requirements,” Journal of Systems and Software,
vol. 88, pp. 25 – 41, 2014.

[21] A. Ferrari, F. Dell’Orletta, G. Spagnolo, and S. Gnesi, “Measuring
and improving the completeness of natural language requirements,”
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8396
LNCS, pp. 23–38, 2014.

[22] A. Fantechi, S. Gnesi, G. Lami, and A. Maccari, “Application of
linguistic techniques for use case analysis,” in Proceedings IEEE Joint
International Conference on Requirements Engineering, 2002, pp. 157–
164.

[23] G. Génova, J. M. Fuentes, J. Llorens, O. Hurtado, and V. Moreno, “A
framework to measure and improve the quality of textual requirements,”
Requirements Engineering, vol. 18, no. 1, pp. 25–41, 2013.

[24] J. Mund, D. Mndez Fernndez, H. Femmer, and J. Eckhardt, “Does
quality of requirements specifications matter? combined results of two
empirical studies,” vol. 2015-November, 2015, pp. 144–153, cited By 0.

[25] J. J. G. Flores, Semantic Filtering of Textual Requirements Descriptions.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 427–433.

[26] L. Kof, “Requirements analysis: Concept extraction and translation
of textual specifications to executable models,” in Proceedings of the
14th International Conference on Applications of Natural Language
to Information Systems, ser. NLDB’09. Berlin, Heidelberg: Springer-
Verlag, 2010, pp. 79–90.

[27] S. Besrour, L. B. Ab Rahim, and P. Dominic, “Exploratory study to
assess and evaluate requirement specification techniques using analysis
determination requirements framework,” Research Journal of Applied
Sciences, Engineering and Technology, vol. 9, no. 3, pp. 165–171, 2015.

[28] S. España, N. Condori-Fernandez, A. González, and Ó. Pastor, “An
empirical comparative evaluation of requirements engineering methods,”
Journal of the Brazilian Computer Society, vol. 16, no. 1, pp. 3–19, 2010.

[29] I. Hadar, I. Reinhartz-Berger, T. Kuflik, A. Perini, F. Ricca, and A. Susi,
“Comparing the comprehensibility of requirements models expressed in
use case and tropos: Results from a family of experiments,” Information
and Software Technology, vol. 55, no. 10, pp. 1823 – 1843, 2013.

[30] T. Ambreen, N. Ikram, M. Usman, and M. Niazi, “Empirical research
in requirements engineering: trends and opportunities,” Requirements
Engineering, pp. 1–33, 2016.


