
Comprehensibility of Variability in Model
Fragments for Product Configuration

Jorge Echeverría1, Francisca Pérez1, Carlos Cetina1, and Óscar Pastor2

1 SVIT Research Group
Universidad San Jorge

Autovía A-23 Zaragoza-Huesca Km.299, 50830, Zaragoza, Spain
{jecheverria, mfperez, ccetina}@usj.es

2 Centro de Investigación en Métodos de Producción de Software
Universitat Politècnica de València

Camino de Vera, s/n, 46022 Valencia, Spain
opastor@pros.upv.es

Abstract. The ability to manage variability in software has become cru-
cial to overcome the complexity and variety of systems. To this end, a
comprehensible representation of variability is important. Nevertheless,
in previous works, difficulties have been detected to understand vari-
ability in an industrial environment. Specifically, domain experts had
difficulty understanding variability in model fragments to produce the
software for their products. Hence, the aim of this paper is to further
investigate these difficulties by conducting an experiment in which par-
ticipants deal with variability in order to achieve their desired product
configurations. Our results show new insights into product configura-
tion which suggest next steps to improve general variability modeling
approaches, and therefore promoting the adoption of these approaches
in industry.

Keywords: Variability modeling, Software Product Line Engineering,
Model Comprehension, Product configuration

1 Introduction

Since software artifacts have become essential and more complex, a fundamental
challenge in almost any business is how to manage their software variability
to optimize the development process (i.e., improve code reuse). Variability is
extensively studied in the field of Software Product Line Engineering [3,16] to
support the development and maintenance of families of software products.

General variability modeling approaches (that are independent of the lan-
guage in which the software products are specified) include Feature-Oriented
Domain Analysis (FODA) [9], Orthogonal Variability Model (OVM) [16] and
Common Variability Language (CVL) [5]. FODA is widely used for variability
management by describing characteristics (features). OVM is a language and a
methodology for superimposing variability over any software development ar-
tifact without interfering into its contents. CVL is recommended for adoption

as a standard by the Architectural Board of the Object Management Group to
manage variability. These approaches can manage variability of product models
by describing features in terms of model fragments.

In previous work [7], we detected that the domain experts of our industrial
partner (BSH group) had difficulty understanding variability in model fragments
to produce the software for the myriad of induction hob models that they pro-
duce (under the Bosch and Siemens brands among others). Since the ability
to manage variability in models using a comprehensible representation is cru-
cial [19], we further seek to investigate difficulties in understanding the variabil-
ity of model fragments. Hence, the aim of this paper is to examine difficulties in
comprehending variability in model fragments for product configuration.

To do this, we conducted an experiment in which variations points were
expressed in models of a Domain-Specific Language (DSL). Using these models,
the participants had to perform model fragment substitutions in order to reach
a target product configuration.

Our results show four main findings that are relevant for general variability
modeling approaches (FODA, OVM and CVL). First, our previous research [7]
considered that using the concrete syntax of model fragments as configuration
criterion was a source of incorrect solutions, but this experiment reveals that it
is possible to harness this criterion to significantly reduce the time required to
configure products. Second, the participants intuitively combine model fragments
before performing product configuration. This operation turns out to improve
the efficiency of product configurations. However, general variability modeling
approaches do not support these fragment combinations. Third, the participants
obtained the worst results in those fragments substitutions that involve recursive
model fragments. Nevertheless, research on product configuration have neglected
recursive model fragments. Finally, participants perform redundant configuration
steps because they believe that they must perform model fragment substitutions
for each variation point even though it already holds the elements of target
configuration. Available training materials of general variability approaches lack
instructions to avoid these redundant configuration steps. These findings provide
insights into product configuration which suggest next steps to improve general
variability modeling approaches.

The remainder of the paper is structured as follows: Section 2 provides the
required background on product model configuration. Section 3 presents the
experiment design and procedure. Section 4 presents the analysis procedure and
results. Section 5 presents a discussion of the results. Section 6 describes the
threats to validity. Section 7 reviews the related work, and Section 8 concludes
the paper.

2 Background on Product Model Configuration

This section illustrates the relationship between the variability specification and
model fragments. In addition, this section shows examples of model fragment
substitutions to reach a desired product model configuration.

The upper half of Fig. 1 shows a hierarchy of features that represent the
variability specification of a induction hob product using the three different
general modeling approaches (FODA, OVM and CVL). These approaches follow
the idea of superimposed variants [6] in which each feature is related to a model
fragment that is expressed in the same terms of the product instances. The lower
half of Fig. 1 shows a model fragment for each feature, which is expressed using
the Induction Hob DSL. The superimposition of a feature in a model fragment
could represent a variation point (see the Hotplate feature of Fig. 1), or an
available option to set the configuration of a variation point (see the Triple
Inductor and Quad Inductor features of Fig. 1 in which one of them can be
selected to configure the Hotplate feature).

Power manager ChannelInductorInverter

FODA OVM CVL

In
d

u
ct

io
n

 H
o

b
 D

S
L

V
ar

ia
b

il
it

y
 S

p
ec

if
ic

at
io

n

Triple

Inductor

Quad

Inductor

Triple

Inductor

Quad

Inductor

Triple

Inductor

Quad

Inductor

Hotplate Hotplate

Xor

Hotplate

Xor Xor

Hotplate Triple Inductor Quad Inductor

Fig. 1. Relationship between the variability specification and model fragments

After the superimposition of features in model fragments, these model frag-
ments may not share any element (isolated fragments) as the upper-left part
of Fig. 2 shows. By contrast, it is also possible that after the superimposition
some elements are shared (crossing fragments) as the upper-middle part of
Fig. 2 shows. Furthermore, all the elements of a model fragment can be shared
with another model fragment (recursive fragments) as the upper-right part
of Fig. 2 depicts.

In order to reach a target product configuration (e.g., the middle part of Fig.
2 shows a target induction hob configuration), model fragment substitutions are
performed. A model fragment substitution is an operation that may substitute

F1

Isolated fragments

F3
F4

Crossing fragments

F5 F6

Recursive fragments

Target

Configuration
Variability

Specification

F1

F3 F5

Xor

F2

F6 F4

Xor

F1 F3
F6

F3

F1 F5

F6

F4
F5

F6

(a) Correct Solution: Fragment substitutions lead to Target Configuration

(b) Incorrect Solution: Fragment substitutions do not lead to Target Configuration

F
3
 s

u
b

st
it

u
te

s
F

1

F
6

 s
u
b
st

it
u
te

s
F

2

F
5

 s
u
b
st

it
u
te

s
F

1

F
4
 s

u
b

st
it

u
te

s
F

2

Power manager ChannelInductorInverter

F2

F2

F2

F2

F2

Fig. 2. Examples of correct and incorrect product configurations

any model fragment (a set of arbitrary model elements and the references among
them) with any other model fragment described in the same DSL according to
the variability specification. For example, the variability specification that is
shown in the middle part of Fig. 2 indicates that the model fragment F1 can be
substituted with the content of either model fragment F3 or F5.

The lower part of Fig. 2 shows two examples of model fragment substitutions.
On the one hand, Fig. 2 (a) shows an example that reaches a correct solution
since the product model obtained after the fragment substitutions corresponds
with the target product configuration. This correct solution encompasses two
model fragment substitutions as follows: first the F3 model fragment substitutes
the content of the F1 model fragment, and second the F6 model fragment sub-
stitutes the content of the F2 model fragment. On the other hand, the example
that is shown in Fig. 2 (b) illustrates an incorrect solution because the target
product configuration is not reached after the fragments substitutions.

A video showing product configuration of induction hobs by means of model
fragments substitutions in an industrial environment can be found at: http:
//svit.usj.es/variabilitytool.htm

http://svit.usj.es/variabilitytool.htm
http://svit.usj.es/variabilitytool.htm

3 Experiment Design and Procedure

3.1 Research Goal and Questions

The main goal of this research is to determine whether there are difficulties
in comprehension of variability in model fragments for product configuration,
and whether there are differences in comprehension of isolated, crossing, and
recursive model fragments for product configuration. In relation to the above
goal, we seek to answer the following research questions:
RQ1: Are there difficulties in comprehending variability in model fragments for
product configuration?
RQ2: Are there differences in comprehension of isolated model fragments, cross-
ing model fragments, and recursive model fragments for product configuration?

To our knowledge, there are no cognitive theories about variability in model
fragments for product configuration. For this reason, we have not created a
hypothesis related to this research question [13].

To answer the above research questions, we used a experimental design. The
main dependent variables in our research design were comprehension score (as
the percentage of correct product configurations), time spent, and the self-rated
difficulty. The independent variable was the type of model fragments.

3.2 Procedure

The participants were asked to fill out a prequestionnaire and to sign a con-
sent form to process the given data. The prequestionnaire obtained general in-
formation about the participants and their background, including age, gender,
degree and subject of studies, background as software developers, background
in software engineering, knowledge about software modeling, knowledge about
variability specifications, and knowledge about DSLs.

After filling out the prequestionnaire, an instructor (using slides) explained
the Induction Hob DSL used in the exercises. The participants got hard copies
of the slides, which the participants could consult while answering the questions.

During the experiment, the participants were provided with exercises to per-
form product configurations. Each exercise has a target model configuration, a
DSL model, and a set of model fragments. To do each exercise, the participants
were asked to configure the DSL model by means of fragment substitutions. Af-
ter the product configuration the resulting model must match the target model
of the exercise in order to achieve the correct solution as the example shown in
Fig. 2.

The exercises were divided into three groups based on the type of fragments
produced by the superimposition of the features on the DSL model. First, iso-
lated exercises denote exercises where the superimposition of the features pro-
duced isolated models fragments. Second, crossing exercises denote exercises
where the superimposition of the features produced crossing models fragments.
Finally, recursive exercises denote exercises where the superimposition of the fea-
tures produced recursive models fragments. For each target configuration, there

was an isolated exercise and a crossing exercise and a recursive exercise to reach
that target configuration. Specifically, the experiment included three target con-
figurations and three exercises for each configuration, which makes a total of
nine exercises.

No rigid time constraints were imposed on the participants and the time
spent on each question was saved. Once the participants had performed an ex-
ercise, they could not modify their response. Then, participants had to answer a
subjective question about the perceived difficulty for every exercise, before be-
ginning the next one. The answers ranged from 1=very easy to 7=very difficult
[11]. Finally, the participants answered an open question in order to obtain their
opinion about the exercise. After the exercises, a focus group interview [12] was
performed. In this interview, the participants expressed their opinions about the
solutions to the exercises.

The materials used in this experiment (the consent to process the data, the
prequestionnarie, the training material, the exercises, the open questions and
the notes of the focus group interview) are available at http://svit.usj.es/
productconfigurationexperiment.

3.3 Participants

The participants were undergraduate students from Computer Engineering at
San Jorge University of Zaragoza (Spain) and practitioners from Software De-
velopment Companies of Zaragoza. There were 20 students and 12 practitioners.
Of the total, 27 were male (84%) and 5 were female (16%). The mean age was
24.2 years.

In the pre-questionnaire, all students stated that they had never worked as
software developers or as software engineers. On the other hand, all practition-
ers stated that they had knowledge about software modeling, knowledge about
feature diagrams, and familiarity with domain-specific languages. Furthermore,
all the practitioners had developed software (with a mean of 6.5 years).

4 Analysis procedure and results

To analyze the results, we used the dependent variables: the comprehension score
(as the percentage of exercises performed correctly), the time needed to perform
the exercises and the participants’ perceived difficulty. According to a Shapiro-
Wilk test [22], the comprehension score, and time to perform the exercise follow
a normal distribution.

Prior to our analysis, we checked whether the control variable ‘type of par-
ticipant’, i.e. student or practitioner, had an influence on comprehension score
and on time to perform the tasks. Since ‘type of participant’ did not have an
influence on the comprehension score and the on time results, we decided to drop
it from the final statistical tests we report.

(a) Comprehension score. An ANOVA test [4] was conducted to compare
the comprehension score for the different model fragments. There was a signifi-

http://svit.usj.es/productconfigurationexperiment
http://svit.usj.es/productconfigurationexperiment

Isolated Crossing Recursive (Type of fragments)

Isolated Crossing Recursive (Type of fragments)

Isolated Crossing Recursive (Type of fragments)

C
om

pr
eh

en
si

on
 s

co
re

 (
%

)
T

im
e

to
 c

om
pl

et
e

th
e

ta
sk

s
(m

in
)

P
ar

ti
ci

pa
nt

s'
 p

er
ce

pt
io

n
(1

 to
 7

)
(a)

(b)

(c)

Fig. 3. (a) Comprehension score. (b) Time spent to complete the tasks. (c) Partici-
pants’ perceived difficulty.

cant effect of the model fragments on the comprehension score at p<0.05 for iso-
lated fragments, crossing fragments, and recursive fragments [F(2,93) = 22.729,
p = 0.000]. Fig. 3 (a) shows that the exercises related to isolated fragments were
the easiest to comprehend and correctly answer (82.29%), followed by exercises
related to crossing fragments (51.04%) and recursive fragments (40.62%). We
performed t-tests to find out differences between model fragment types in terms
of comprehensibility. The differences between the comprehension score for iso-
lated fragments and the scores for crossing and recursive fragments were signifi-
cant. However, there were no significant differences between the comprehension
score for crossing fragments and recursive fragments.

(b) Time spent to complete the tasks. We analyzed the time needed
to complete the exercises with an ANOVA test. The results showed that there
was a significant effect of the different model fragments on the time needed
to perform the exercises [F(2,93) = 17.512, p = 0.000]. Fig. 3 (b) shows that
the participants needed more time to perform the exercises related to recursive
fragments (a mean of 3.55 minutes); the exercises related to isolated fragments

and crossing fragments were performed by the participants in the same amount
of time (a mean of 2.41 minutes). We performed t-tests to find out which model
fragment types significantly differed from each other in terms of time. The t-test
showed that there were no significant differences between the isolated fragments
and the crossing fragments. In contrast, the differences between the recursive
fragment exercises and the others exercises were significant.

(c) Participants’ perceived difficulty. An ANOVA test was conducted
to analyze the participants’ perceived difficulty for different model fragments.
There was a significant effect of the model fragments on the perceived difficulty
at p<0.05 for isolated fragments, crossing fragments and recursive fragments
[F(2,93) = 3.561, p = 0.032]. Fig. 3 (c) shows that the exercises with recursive
fragments (3.79) and crossing fragments (3.70) were more difficult to understand
than the exercises with isolated fragments (3.23). We performed t-tests to find
out the users’ perception of which model fragments significantly differed from
each other. The differences between the users’ perception for isolated fragments
and both crossing and recursive fragments were significant.

The analysis of the data enables to answer the Research Questions as follows.
RQ1: Are there difficulties in comprehending variability in model fragments for
product configuration? As shown by Fig 3 (a), not all product configuration exer-
cises were correctly solved. Specifically, 42.01% of the exercises failed to perform
a product configuration that matches the target configuration. RQ2: Are there
differences in comprehension of isolated model fragments, crossing model frag-
ments, and recursive model fragments for product configuration? Only exercises
that include isolated model fragments for product configuration were compre-
hended by the majority (82.29%). By contrast, exercises that include crossing
model fragments or recursive model fragments obtained the worst results (51.04%
and 40.62% respectively). Next section discusses these results and highlights our
findings.

5 Discussion

Some participants (6.25%) reported that the geometric shape of the model frag-
ments seemed to be significantly important for product configuration. Specifi-
cally, these participants considered a model fragment as valid option whether its
geometric shape fits with the geometric shape of a variation point. This is es-
pecially important because these participants gave to the geometric shape more
priority than to the variability specification, which became shape criterion in a
source of errors. Shape criterion produced incorrect configurations in the 27.5%
of the exercises in which it has been used. The concrete syntax of model frag-
ments misleading product configurations matches with our previous research [7].

Although this geometric shape criterion was a source of errors, we also mea-
sured in this experiment the time spent in the exercises. We detected that the
exercises, which both applied the geometric shape criterion and obtained a cor-
rect solution (72.5%), reduced the time spent in the product configuration a
38%. It turns out that we previously considered the geometric shape criterion as

a source of incorrect solutions only, but this experiment reveals that this criterion
could also significantly reduce the time required to configure products. These re-
sults suggest general variability modeling approaches should devise a mechanism
to align geometric shape and variability specification in order to take advantage
of the time improvement.

The participants also mentioned that they intuitively combined model frag-
ments (creating a new model fragment) in order to inject the combination in
a variation point. The participants said that these combinations of model frag-
ments helped them to solve easier the exercises. The results reveal that the
participants, who combined model fragments (34.4% of participants), reduced
both the number of fragment substitutions (an average of 33.18%) to reach the
target product configuration, and the number of errors (an average of 14%) with
regard to the participants who did not combined model fragments. Neverthe-
less, this operation is not supported in general variability modeling approaches
(FODA, OVM and CVL). As our results reveal that this operation for combin-
ing model fragments is a positive complement for product configuration, new
versions of general variability modeling approaches should consider the inclusion
of this operation.

The results also show that participants obtained the highest percentage of
correct solutions in the isolated model fragments (the mean of correct solutions
is 82.29%). This result matches with previous research works [18], which used
isolated model fragments to perform product configurations. Crossing model
fragments obtained a mean of 51.04% of the correct solutions. The scientific
community is already aware that crossing model fragments are difficult to un-
derstand [24,15,23], which is also confirmed in this experiment. Recursive model
fragments obtained the worst results (a mean of 40.62% correct solutions). Over-
all, the participants got a incorrect solution when they deepened the levels of
recursion to reach the target configuration. To the best of our knowledge, recur-
sive model fragments are neglected by the scientific community. The results of
this experiment suggest that recursive model fragments are the major source of
incorrect solutions to reach a target product configuration. Therefore, new ex-
periments need to be performed in order to further investigate recursive model
fragments in product configurations.

We found that participants made redundant fragment substitutions because
they thought that variation points have to be always substituted with one of its
available options. They considered this substitution mandatory even though the
variation point already holds the model elements of the target product configura-
tion. According to the participants, the tree layout of the variability specification
(e.g., the variability specification that the upper half of Fig. 1 shows) reinforces
the participants’ idea that they should choose an option for each variation point.
The results show that the 5.9% of exercises included redundant fragment substi-
tutions, which increase in a 6.93% the necessary fragment substitutions to reach
the target product configuration. It is important to highlight that we did not
find instructions to avoid this redundancy in the materials [16,5,9] of the general
variability modeling approaches, which were used in this experiment to train

the participants. Hence, the results of this experiment suggest that the training
materials of the variability modeling approaches should be extended to explicitly
avoid this redundancy.

Table 1 summarizes the main findings of this work that are relevant for
general variability modeling approaches. Each finding is tagged as type Confirms
(the finding confirms results of previous research works) or type New (new finding
revealed by this work). Finally, the table also summarizes the next steps for
variability modeling approaches that we suggest taking into account the findings.

Table 1. Summary of findings

Finding Type Next Step

1
Concrete syntax of model fragments
misleads product configuration.

Confirms
[7]

2
Geometric shape criterion reduces the
time required (38% less time) to perform
product configurations.

New

New versions of concrete syntax of model
fragments should align geometric shape and
variability specification in order to take
advantage of the time improvement.

3

Model fragment combination improves
the efficiency (33.18% less steps) of product
configurations and reduce the incorrect
solutions (14%).

New

General variability modeling approaches
should consider the inclusion of the
combination operation as a complement for
product configuration.

4
Highest percentage of correct solutions in
the isolated model fragments (82.29% of
correct solutions).

Confirms
[18]

5
Crossing model fragments are difficult
to understand (51.04% of correct solutions).

Confirms
[24,15,23]

6
Recursive model fragments are the major
source of incorrect solutions
(40.62% of correct solutions).

New

Specific experiments need to be conducted
to further investigate recursive model
fragments in product configurations.

7
Redundant configuration steps are
produced by misunderstanding variation
points as mandatory substitutions.

New
Training materials of the variability modeling
approaches should be extended to explicitly
avoid this redundancy.

6 Threats to Validity

We use the classification of threats to validity of [21,25], which distinguishes four
aspects of validity to acknowledge the limitations of our experiment.

Construct validity: This aspect of validity reflects the extent to which the
operational measures that are studied represent what the researchers have in
mind and what is investigated based on the research questions. In this work, the
proposed exercises do not have a true/false answer. Therefore, it is very difficult
for users to answers correctly if they do not understand the question.

Furthermore, to minimize this threat exercises and the responses were de-
signed by two variability modeling experts. These experts have developed indus-
trial variability modeling tools (in the induction hob domain and train control

software domain). Their participation was limited to the design of the exercises
and they were not involved in this paper.

Finally, the measures used in our research are the percentage of correct so-
lutions, the time spent, and a self-rated difficulty. These measures are widely
accepted in the software engineering research community [18,19].

Internal validity: This aspect of validity is of concern when causal rela-
tions are examined. There is a risk that the factor being investigated may be
affected by other neglected factors. In this work, we explained the DSL to the
participants. The slides used in that explanation were given to the participants,
so that lack of comprehension of DSL would not be a problem in performing the
exercises.

External validity: This aspect of validity is concerned with to what extent
it is possible to generalize the finding, and to what extent the findings are of
relevance for other cases. The experiment was performed by students and prac-
titioners, and this students’ participation can be a source of weakness. However,
using students as subjects instead of software engineers is not a major issue
[20,10] as long as the research questions are not specifically focused on experts.
We considered that the variability modeling concepts under study are also rele-
vant to students.

In the analysis procedure we have used a confidence interval p<0.05 where
conclusions are 95% representative. This means that if they followed a normal
distribution, the results would be true 95% of the times.

Since the DSL used in this study is a very simple language in a specific
domain, we think that the generalizability of findings should be undertaken
with caution. The selected DSL is appropriate for easy comprehension by the
participants. However, other experiments with other DSLs should be performed
to validate our findings.

Reliability: This aspect is concerned with to what extent the data and
the analysis are dependent on the specific researchers. To reduce this threat,
two variability modeling experts who were not involved in the research designed
both the exercises and the correct answers. We also performed this research using
methods that are widely accepted by the software engineering community.

7 Related Work

There are research studies in the literature that analyze difficulties in model
fragments for product configuration. In [24], Vasilevskiy and Haugen identify
the problems generated after the superimposition of features in crossing model
fragments. In [15], Oldevik et al. analyze confluence and conflict properties of
multiple variation points. In [23], Svendsen et al. identify difficulties in crossing
model fragments when the DSL models are modified. In our work, we have not
only found that crossing model fragments are difficult to understand (which
confirms the finding of the previous works) but also we analyzed isolated and
recursive model fragments, the necessary time to reach a product configuration
and the participants’ perceived difficulty. This enables us to obtain new findings

about the geometric shape of model fragments, combinations of model fragments,
the major source of incorrect solutions, and redundant configuration steps.

There are research efforts in the literature regarding the comprehension of
variability modeling. In [19], Reinhartz-Berger et al. present a study for com-
prehending feature models by performing an experiment with participants who
are familiar with feature modeling and participants who are not familiar with
it. Furthermore, Reinhartz-Berger and Figl [18] present an approach that in-
vestigates the comprehensibility of orthogonal variability modeling languages.
Specifically, they conducted an experiment to examine potential comprehension
problems in two orthogonal variability modeling languages: CVL and OVM. In
[20], Reinhartz-Berger and Tsoury present a comparative analysis for managing
variability using Feature-oriented and UML-based modeling methods. Never-
theless, these works do not analyze the differences in comprehensibility using
isolated, crossing and recursive model fragments to reach a desired product con-
figuration as our work does.

Medeiros et al. [14] perform interviews with developers about the use of the
C preprocessor to handle variability since developers use conditional directives
to provide optional features or to select between alternative implementations.
Berger et al. [1] present an exploratory case study of three companies that ap-
ply variability modeling to research about practices, characteristics, benefits and
challenges of variability modeling. Even though these works provide empirical
data on variability management in industrial application, they do not investigate
difficulties in understanding product configuration when features are superim-
posed to a realization model.

There are also works that facilitate the comprehension of variability model-
ing by end users. For instance, Grünbacher et al. present a Configurable Product
Line tool that enable customization by end users [8]. The authors abstract the
technical issues of this customization to help end users understand the implica-
tions of the decisions that they make. Furthermore, Rabiser et al. [17] present
an end-user oriented tool that can support diverse end-users such as project
managers, salespeople, or engineers. Botterweck et al. present a metamodel and
a tool that employs visualization techniques to support users in the process of
product configuration [2]. These works focus on augmenting the capabilities of
variability modeling tools to improve the feedback that the tools provide to their
users. By contrast, our work does not address variability tool support an we focus
on general variability modeling languages.

In [7], we performed a usability evaluation of a variability modeling tool in
which we detected that the domain experts of our industrial partner (BSH group)
had difficulty understanding variability due to the concrete syntax of model
fragments. The work that this paper presents confirms that the concrete syntax
of model fragments misleads participants during product configurations but this
paper reveals that it is possible to harness concrete syntax to significantly reduce
the time required to configure products. This paper also obtains new findings
about combinations of model fragments, the major source of incorrect solutions,
and redundant configuration steps.

8 Conclusions

In previous work [7], we detected that the domain experts of BSH group had
difficulty understanding variability to configure the firmware of their products
(induction hobs under the Bosch and Siemens brands). Specifically, domain ex-
perts had difficulty understanding variability in the model fragments that results
of superimposing features [6], of the variability specification, on a DSL model.

In this work, we conducted an experiment in which participants deal with
variability in model fragments to achieve their desired product configurations.
The exercises were divided into three groups based on the type of fragments
produced by the superimposition of the features on the DSL model: isolated
model fragments, crossing model fragments and recursive model fragments. We
measured comprehension score, time spent, and the self-rated difficulty. In ad-
dition, we obtained participants’ opinion about the exercises by means of open
questions and a focus group interview.

Our results show findings that are relevant for general variability modeling
approaches (FODA, OVM and CVL). Specifically, results show four new findings
revealed by this work:

– Geometric shape criterion reduces the time required to perform product
configurations.

– Model fragment combination improves the efficiency of product configura-
tions and reduce the incorrect solutions.

– Recursive model fragments are the major source of incorrect solutions.
– Redundant configuration steps are produced by misunderstanding variation

points as mandatory substitutions.

And three findings that confirm results of previous research works:

– Concrete syntax of model fragments misleads product configuration.
– Highest percentage of correct solutions in the isolated model fragments.
– Crossing model fragments are difficult to understand.

Taking into account the above findings, we suggested next steps for variability
modeling approaches that cover (1) new concrete syntax of model fragments, (2)
the inclusion of the model fragment combination operation, (3) further investiga-
tion of recursive model fragments in product configurations and (4) clarification
of training materials of the variability modeling approaches. These next steps
would contribute to promote the adoption of variability management approaches
in industry.

Acknowledgments

This work has been partially supported by the Ministry of Economy and Com-
petitiveness (MINECO), through the Spanish National R+D+i Plan and ERDF
funds under The project Model-Driven Variability Extraction for Software Prod-
uct Lines Adoption (TIN2015-64397-R).

References

1. T. Berger, D. Nair, R. Rublack, J. M. Atlee, K. Czarnecki, and A. Wąsowski.
Three cases of feature-based variability modeling in industry. In ACM/IEEE 17th
International Conference on Model Driven Engineering Languages and Systems
(MODELS), 2014.

2. G. Botterweck, S. Thiel, D. Nestor, S. bin Abid, and C. Cawley. Visual tool support
for configuring and understanding software product lines. In Software Product Line
Conference, 2008. SPLC ’08. 12th International, pages 77–86, Sept 2008.

3. P. Clements and L. Northrop. Software Product Lines: Practices and Patterns.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.

4. N. Condori-Fernández, J. I. Panach, A. I. Baars, T. E. J. Vos, and O. Pastor. An
empirical approach for evaluating the usability of model-driven tools. Sci. Comput.
Program., 78(11):2245–2258, 2013.

5. CVL Submission Team. Common variability language (CVL), OMG revised sub-
mission. http://www.omgwiki.org/variability/lib/exe/fetch.php?id=start&
cache=cache&media=cvl-revised-submission.pdf, 2012.

6. K. Czarnecki and M. Antkiewicz. Mapping features to models: A template ap-
proach based on superimposed variants. In Generative Programming and Com-
ponent Engineering, volume 3676 of Lecture Notes in Computer Science, pages
422–437. Springer Berlin Heidelberg, 2005.

7. J. Echeverría, J. Font, C. Cetina, and O. Pastor. Usability evaluation of vari-
ability modeling by means of common variability language. In Proceedings of the
CAiSE 2015 Forum at the 27th International Conference on Advanced Information
Systems Engineering co-located with 27th International Conference on Advanced
Information Systems Engineering (CAiSE 2015), Stockholm, Sweden, June 10th,
2015., pages 105–112, 2015.

8. P. Grünbacher, R. Rabiser, and D. Dhungana. Product line tools are product
lines too: Lessons learned from developing a tool suite. In Automated Software
Engineering, 2008. 23rd IEEE/ACM International Conference on, pages 351–354,
Sep 2008.

9. K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-
oriented domain analysis (foda) feasibility study. Technical report, Carnegie-Mellon
University Software Engineering Institute, November 1990.

10. B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C. Hoaglin, K. E.
Emam, and J. Rosenberg. Preliminary guidelines for empirical research in software
engineering. IEEE Trans. Softw. Eng., 28(8):721–734, Aug. 2002.

11. J. A. Krosnick and S. Presser. Question and questionnaire design. Handbook of
survey research, 2:263–314, 2010.

12. R. A. Krueger and M. A. Casey. Designing and conducting focus group inter-
views. Social Analysis, Selected Tools and Techniques, Krueger, RA, MA Casey,
J. Donner, S. Kirsch and JN Maack, pages 4–23, 2002.

13. S. Kumar and V. Karoli. Handbook Of Business Research Methods. Thakur Pub-
lishers, 2011.

14. F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi, and R. Gheyi. The love/hate rela-
tionship with the C preprocessor: An interview study (artifact). DARTS, 1(1):07:1–
07:32, 2015.

15. J. Oldevik, Ø. Haugen, and B. Møller-Pedersen. Confluence in domain-independent
product line transformations. In M. Chechik and M. Wirsing, editors, FASE,
volume 5503 of Lecture Notes in Computer Science, pages 34–48. Springer, 2009.

http://www.omgwiki.org/variability/lib/exe/fetch.php?id=start&cache=cache&media=cvl-revised-submission.pdf
http://www.omgwiki.org/variability/lib/exe/fetch.php?id=start&cache=cache&media=cvl-revised-submission.pdf

16. K. Pohl, G. Böckle, and F. J. v. d. Linden. Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2005.

17. R. Rabiser, D. Dhungana, W. Heider, and P. Grünbacher. Flexibility and end-user
support in model-based product line tools. In Software Engineering and Advanced
Applications, 2009. SEAA ’09. 35th Euromicro Conference, pages 508–511, 2009.

18. I. Reinhartz-Berger and K. Figl. Comprehensibility of orthogonal variability mod-
eling languages: The cases of CVL and OVM. In Proceedings of the 18th Interna-
tional Software Product Line Conference - Volume 1, SPLC ’14, pages 42–51, New
York, NY, USA, 2014. ACM.

19. I. Reinhartz-Berger, K. Figl, and Ø. Haugen. Comprehending feature models ex-
pressed in CVL. In Model-Driven Engineering Languages and Systems, volume
8767 of Lecture Notes in Computer Science, pages 501–517. Springer International
Publishing, 2014.

20. I. Reinhartz-Berger and A. Tsoury. Experimenting with the comprehension of
feature-oriented and UML-based core assets. In Enterprise, Business-Process and
Information Systems Modeling, volume 81 of Lecture Notes in Business Information
Processing, pages 468–482. Springer Berlin Heidelberg, 2011.

21. P. Runeson and M. Höst. Guidelines for conducting and reporting case study
research in software engineering. Empirical Software Engineering, 14(2):131–164,
2009.

22. S. S. Shapiro and M. B. Wilk. An analysis of variance test for normality (complete
samples). Biometrika, 52(3/4):591–611, 1965.

23. A. Svendsen, X. Zhang, Ø. Haugen, and B. Møller-Pedersen. Towards evolution of
generic variability models. In J. Kienzle, editor, Models in Software Engineering,
volume 7167 of Lecture Notes in Computer Science, pages 53–67. Springer Berlin
Heidelberg, 2012.

24. A. Vasilevskiy and Ø. Haugen. Resolution of interfering product fragments in soft-
ware product line engineering. In Model-Driven Engineering Languages and Sys-
tems, volume 8767 of Lecture Notes in Computer Science, pages 467–483. Springer
International Publishing, 2014.

25. C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén. Ex-
perimentation in Software Engineering: An Introduction. Kluwer Academic Pub-
lishers, Norwell, MA, USA, 2000.

	Comprehensibility of Variability in Model Fragments for Product Configuration

