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Abstract

Context: Feature Location (FL) is a widespread technique that is used
to maintain and evolve a software product. FL is also helpful in reengineering
a family of software products into a Software Product Line (SPL). Despite
the popularity of FL, there is no study that evaluates the influence of scope
(single product or product family) when engineers perform FL.

Objective: The goal of this paper is to compare the performance, pro-
ductivity, and perceived difficulty of manual FL when scope changes from a
single product to a product family.

Method: We conducted a crossover experiment to compare the per-
formance, productivity, and perceived difficulty of manual FL when scope
changes. The experimental objects are extracted from a real-world SPL that
uses a Domain-Specific Language to generate the firmware of its products.

Results: Performance and productivity decrease significantly when en-
gineers locate features in a product family regardless of their experience. For
these variables the impact of the FL Scope is medium-large. On contrast, for
perceived difficulty, the magnitude of the difference is moderate and is not
significant.

Conclusions: While performance and productivity decrease significantly
when engineers locate features in a product family, the difficulty they perceive
does not predict the significant worsening of the results. Our work also
identifies strengths and weaknesses in FL. This can help in developing better
FL approaches and test cases for evaluation.
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Engineering

1. Introduction

Feature Location (FL) can arguably be seen as one of the most frequent
maintenance tasks undertaken by software engineers [1, 2, 3, 4, 5, 6] since soft-
ware maintenance and evolution involves adding new features to programs,
improving existing functionalities, and removing unwanted functionalities.
To this end, it is essential that software engineers find the elements of soft-
ware features.

FL can also help to reengineer a family of software products into a Soft-
ware Product Line (SPL) [7, 8] since an SPL involves the formalization of
features that are shared by the products. To do this, it is essential for SPL
engineers to be able to find the elements of SPL features.

Both classic FL (cFL) and FL in SPL reengineering (rFL) target the ele-
ments of features, however, the scope is different, i.e., a single product versus
a product family, respectively. One might think that rFL is a particular case
of cFL where the first step is to select a product in the family that has the
feature and then to perform cFL on that product. Thus, one might conclude
that cFL and rFL have similar performance, productivity and difficulty. The
engineers of our industrial partner actually believed this (see Section 2 Mo-
tivation of the experiment). However, to date, no experiment has been done
to compare the scopes of cFL and rFL. This can help engineers to better
understand the problems they encounter when locating features in a product
family. Knowing these problems is relevant in order to be able to develop
new automated or semi-automated FL approaches that could mitigate them.

In this work, we present an experiment that compares different FL scopes
(single product and product families), when engineers locate features manu-
ally, in terms of performance, productivity, and perceived difficulty. The ex-
perimental objects are extracted from a real-world SPL that uses a Domain-
Specific Language (DSL) to generate the firmware of its products. A total
of 18 subjects (classified in two groups based on their DSL experience) per-
formed the FL tasks of the experiment.

In the FL tasks, the subjects had to locate elements of different features.
We use F-measure to measure performance as the percentage of a FL task
solved by a subject. F-measure takes into account both the elements that a
subject includes in its solution and are correct and those that it includes and
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are not correct. We use productivity as the percentage of an FL task solved
by a subject per minute. The subjects rate the perceived difficulty of each
task using a 7-point Likert scale, ranging from too easy to too difficult.

Our results shows how performance and productivity decrease signifi-
cantly when engineers locate features in a product family regardless of their
DSL experience. When the FL is in a product family, it is more difficult
to locate the feature elements and the errors are propagated by the models
throughout the family.

A more in-depth analysis shows how, for example, features with a larger
size get better performance. Dispersion is the feature characteristic that
best explains the changes in performance that occur when the scope changes:
the stronger the dispersion, the lower the performance and the greater the
differences in performance when locating features in a single product or in a
product family.

Our results also indicate a paradox: even though performance and pro-
ductivity are significant worst when the subjects locates features in a product
family, the difficulty they perceive does not predict the significant worsening
of the results. The initial inclination of subjects is to think that locating
features in a product family only takes more time than locating features in a
product. However, it turns out that, in the context of a product family, new
challenges arise with regard to feature propagation, the elimination process,
and feature dispersion. Apparently, the subjects are not aware of the tricky
challenge that FL presents in SPL reengineering.

The paradox introduced in the experiment is important because it could
help engineers to understand and better perform reengineering Feature Loca-
tion (rFL). If engineers realized the real difficulty of rFL, they might leverage
this information to apply and develop techniques that would improve the per-
formance and productivity of rFL tasks. Engineers perform classical Feature
Location (cFL) tasks frequently (i.e., to remove unwanted functionalities in
a feature). When they decide to reengineer a family of software products
into an SPL, they need to perform rFL, and, by inertia, they may think that
cFL is similar to rFL (i.e., they just have to choose a product, perform cFL,
and check other products). However, there might be thousands of products
in industrial settings and an engineer cannot comprehensively check all of
them. The products they choose to locate the feature in can influence the
results. This makes rFL more of a challenge than cFL without the engineers
realizing it.

We hope that our work will raise awareness of the challenge posed by FL
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in SPL reengineering and that what we have learned will help design new
approaches that compensate for the weaknesses of the engineers.

The rest of the paper is organized as follows: Section 2 describes the
context that motivates the experiment. Section 3 reviews the related work,
and Section 4 provides the necessary background in FL in product models
and the software product domain. Section 5 describes the design of our
experiment. Section 6 reports the results that we discuss in Section 7. Section
8 describes the threats to validity. Finally, Section 9 concludes the paper.

2. Motivation of the experiment

For more than ten years, the engineers of our industrial partner, BSH,
have developed software that controls its induction hobs. BSH is one of the
largest manufacturers of home appliances in Europe. Its induction division
produces induction hobs that are sold under the Bosch and Siemens brands,
among others. During those years, BSH has developed a family of software
products and regularly carried out tasks of classic Feature Location (cFL)
to modify the functionalities of its products. In cFL, an engineer has a
description of the feature to be located and the product in the product family
that contains this feature. For example, in such a product, there may be an
unwanted functionality that must be located in order to eliminate it and
replace it with the correct functionality.

Figure 1 illustrates a concrete example of cFL in BSH. To simplify, an
induction hob (product) is composed of several hob plates (the place where
the pots and pans get hot). These require: inverters, which generate the
energy for the hob (triangles); inductors, which convert the energy into heat
(circles); power channels, which transfer the energy from one element to
other (lines); and power managers, which control the path followed by energy
through the channels (rectangles).

In a concrete product (P1 in Figure 1), the users had reported that when
cooking with a pot on the upper hob plate with medium power, the hob turns
itself off after a while. To fix this, the engineers must first locate the relevant
elements for this unwanted functionality. The engineers have the description
of the unwanted functionality and the product where it is located as the input.
To perform cFL, the engineers inspect the properties of the elements that they
consider relevant to the description of the feature. Using the information in
the description, the engineers identify the inverters and channels on the upper
hob plate as being relevant to that unwanted functionality (a1, a2, c1, and c2
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in Figure 1). After the cFL task, the engineers make the decision to replace
these elements with a single inverter and a higher power channel (Figure 1,
right).

P1 P1

Unwanted functionality Corrected functionality

Power ChannelLegend: InductorInverter Power Manager

𝑎𝑎1

𝑎𝑎2

𝑐𝑐1

𝑐𝑐2

Feature
description

+

P1

Product
Model

INPUT OUTPUT
(Feature Located)

cFL

Figure 1: Example of classical Feature Location

At some point, the engineers of BSH decided that they want to start
a Software Product Line (SPL) from the products that they already have.
Software product lines are attractive because the goal is to reduce the devel-
opment cost and time to market while improving the quality of the software
systems by exploiting commonalities and managing the variability across a
product family [9]. In an SPL, the common and variable features among the
products are formalized to be reused in a systematic way in future develop-
ments.

To reengineer a family of software products into an SPL, engineers must
identify the commonalities of their products and formalize them as reusable
assets. Engineers must perform SPL reengineering Feature Location (rFL)
tasks to formalize the features that capture the variability of the systems.
In rFl, an engineer has the text description of the feature to be located and
a set of products where the feature could be found. For example, in several
products of a software family, there is a functionality that must be located
in order to formalize it as a feature of the software product line.

When the engineers of our industrial partner (who have performed cFL
regularly for years) have to perform rFL, their procedure is as follows: 1)
they select a product in the family where they think the feature is located;
2) they perform cFL on that product; and 3) they search for that feature
in the other products. The inertia of having performed cFL for so many
years has influenced the way the engineers of our industrial partner perform
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rFL. For this reason, they argue that performing cFL and rFL have similar
performance, productivity, and difficulty. After all, for them, the rFL task
is essentially a cFL task where you must choose the product on which to
perform cFL.

Figure 2 illustrates a concrete example in BSH where the engineers per-
form rFL in order to locate the feature of Double Hot Plate. The description
of the Double Hot Plate feature is as follows: some induction hobs have a
plate with an extra cooking space (called Double Hot Plate feature) that al-
lows users to select a small or a large hob plate based on their needs. When
a user selects the larger plate, two inductors are used, and more energy is
needed to heat the plate without reducing the temperature that the plate
must reach or the time in which it must heat up.

To locate the Double Hot Plate feature, the first step is to select a prod-
uct model from the family of products. In industrial environments such as
BSH that have product ranges that are differentiated by brands and are
adapted to different countries, the family has more than a thousand prod-
ucts. This makes a thorough review of all of the products a time-consuming
or even impossible task. The output of the rFL may be different depending
on the products the engineers select to locate the feature. The following are
examples of this:

Example A: The engineers select P2 to locate the feature (the fist
step of Example A of Figure 2). When they locate the feature (the
second step), they might think that the feature is composed of a power
manager (d1 in Example A), two power channels (c1 and c2 in Example
A), and two inductors (b1 and b2 in Example A). In the third step, the
engineers search for that feature in other products, and if they select a
product that confirms their hypothesis (e.g., product P3 in Figure 2),
then they conclude that the feature is composed of the five elements
they had found in the second step.

Example B: The engineers select P1 in the first step (Example B of
Figure 2). When locating the feature in the second step, they might
think that the feature is composed of a power manager (d1 in Example
B), three power channels (c1, c2, and c3 in Example B), and two induc-
tors (b1 and b2 in Example B). In the third step, if they select a product
that confirms their hypothesis (P4 in Example B), they conclude that
the feature has six elements as they had hypothesized in the second
step.
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Example C: The engineers select P1 in the first step. They might
think that the feature is composed of six elements as in Example B.
In this example, the engineers select other products to confirm their
hypothesis (P2 and P3 in Example C, step 3), which could make them
change their first selection of elements to conclude that the feature is
composed of five elements as in Example A.
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Figure 2: Example of reengineering Feature Location

Actually, it is true that rFL and cFL may look similar. In fact, once the
product is known, the core of the localization task is the same: the engineers
inspect the properties of the model elements to identify those model elements
that are the most relevant to the feature description. That is why BSH
engineers think that the difficulty of rFL and cFL is the same. However, the
selection of products for both starting to locate a feature and for checking
the results of the first search affects the performance and the productivity
of the rFL tasks with respect to the cFL tasks without the engineers being
aware of this. As Table 9 shows, in rFL, the engineers can fail in selecting
the product, and they can propagate errors in the location of features. Also,
the elimination process works worse in rFL than in cFL, and the size and
dispersion of the features influence the result of rFL.
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This SPL initialization is not only limited to the industrial partner’s
engineers. According to the results of a survey by Berger et al. [10], starting
an SPL from existing products is widespread in industry. Those engineers
who have previously maintained and evolved a family of products (and thus
performed cFL) will have to perform rFl to initialize an SPL from this family
of products. Thus, they have also been influenced by their experience of
performing cFL before rFL. Consequently, they may also think that cFL and
rFL have similar performance, productivity, and difficulty.

Our experiment has revealed that the subjects, BSH engineers (experts)
and developers without domain-specific knowledge (non-experts), underesti-
mate the rFL task. On the one hand, the subjects state that they do not
perceive differences in difficulty between cFL and rFL, which aligns with
what the engineers of our industrial partner stated before the experiment.
On the other hand, the results for performance and productivity are signifi-
cantly worse in rFL than in cFL, contrary to what BSH engineers believed.
This misperception regarding the rFL task makes the already difficult ini-
tialization of an SPL in an industrial environment even more complicated

3. Related work

Researchers have conducted several studies to improve the understanding
of features and to develop effective techniques to locate features. Some fo-
cus on automated techniques to support developers when locating features.
Others focus on how developers locate features. The first are referred to as
automated FL and the second ones are referred to as manual FL. We also
find the term semi-automated FL because features are being located by de-
velopers that use different kinds of tools to automatize the process. Not only
it is necessary to develop effective FL automated techniques, but it is also
important to improve the way of using these techniques by the developers.

A survey of manual FL by Krüger et al. [25] reviews the literature about
developers performing manual feature location. They compiled case studies
and field studies from 2003 to 2018 that show how manual feature location
is performed in industry. Krüger et al. argue that regardless of whether
automated or semi-automated techniques are used, manual feature location
is relevant. Most of these techniques require a seed to be able to locate the
feature and this seed must be located manually. The seven works analyzed
in the survey,[11, 12, 13, 3, 14, 15, 1] use a single software product for the
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Table 1: Empirical studies on Feature Location
Work
Year

Focus
FL

Scope
Systems Variables

Strategy
Context

Sample size

Wilde et al.
[11] 2003

Manual
Single

Product
FORTRAN Effort to adopt FL Techniques

Case study
Industry

4 subjects with
different

experience

Revelle et al.
[12] 2005

Manual
Single

Product
C and Java Concern overlap and Spread

Case study
Academia

2 researchers

Wang et al.
[13] 2011

Manual
Single

Product
Java Frequencies of physical actions

Experiment
Academia

2 developers
18 students

Wang et al.
[3] 2013

Manual
Single

Product
Java

Frequencies of physical actions
Precision, Recall, and F-measure

Experiment
Academia

2 developers
54 students

Jordan et al.
[14] 2015

Manual
Single

Product
COBOL

DSLs
Search relevance and success

Case study
Industry

2 software
engineers

Damevski et al.
[15] 2016

Manual
Single

Product
Visual Studio

Number of queries, terms in queries,
and navigation command events

Field study
Industry

667 developers

Krüger et al.
[1] 2018

Manual
Single

Product
C

LOC, Scattering Degree,
and Tangling Degree

Case study
Academia

2 researchers

Martinez et al.
[8] 2015

Automated
Product
Family

UML Precision, Recall, and Variability safety
Case study
Academia

No subjects

Assunção et al.
[7] 2020

Automated
Product
Family

UML Number of common model elements
Case study
Academia

No subjects

Font et al.
[16] 2016

Automated
Product
Family

DSL
IHs

Precision, Recall, and F-measure
Case study
Industry

No subjects

Marcén et al.
[17] 2017

Automated
Single

Product
DSL Precision, Recall, and F-measure

Case study
Industry

No subjects

Pérez et al.
[18] 2018

Automated
Product
Family

DSL Precision, Recall, and F-measure
Case study
Industry

No subjects

Font et al.
[19] 2017

Automated
Product
Family

DSL
IHs

Matthew’s Correlation Coefficient (MCC)
Precision, Recall, and F-measure

Case study
Industry

No subjects

Arcega et al.
[20] 2015

Automated
Product
Family

DSL
PervML

Accuracy
Case study
Academia

Masters’ student
as software

engineer

Cetina et al.
[21] 2017

Automated
Product
Family

DSL
Recall, Precision, Area Under

the Receiver Operating
Characteristics curve, and MCC

Case study
Academia

No subjects

Ballaŕın et al.
[22] 2018

Automated
Product
Family

DSL
Precision, Recall, F-measure, and MCC
(Size, volume, density, multiplicity, and

dispersion to report the location problem)

Case study
Industry

No subjects

Pérez et al.
[23] 2019

Semi-automated
Product
Family

DSL Precision, Recall, and F-measure
Case study
Industry

19 Domain
Experts

Pérez et al.
[24] 2020

Manual,
Automated

Single
Product

DSL
Performance, Productivity,

and Satisfaction
Experiment

Industry
18 subjects

This work
2020

Manual

Single
Product

Product
Family

DSL
Performance (F-measure), Productivity,

and Perceived difficulty
Experiment

Industry

18 subjects
13 developers

5 Domain
Experts

feature location tasks and the software products are code developed. Table
1 includes some characteristics of these works.

The case study of Wilde et al.[11] analyzes the advantages and disadvan-
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tages of three techniques for locating features in C code when using them
to locate features in FORTRAN Code. Two of the techniques are auto-
mated, and the third one is considered manual (grep text search method).
An experienced academic programmer and a graduate student use software
reconnaissance to locate a set of features. The experienced programmer, with
knowledge about the software system used dependency graph method and
the experienced FORTRAN programmer, used the grep text search method
to locate the set of features.

The paper of Revelle, Broadbent, and Coppit [12] analyze the identifica-
tion of the code associated to concerns. A concern is a notion that is more
flexible than the notion of feature, but it does includes features. They pro-
pose guidelines to identify concerns and locate the code associated to them.
They compare the percentage of overlap between the sets of code that each
subject associates to the same concern. They also adapt Lai and Murphy’s
spread metric [26] to take into account the number of different files that
contain code from the same concern. They conclude that the percentage of
overlapping between the sets of code associated to a concern given by dif-
ferent researchers decreases when the number of files containing the code
increases, when the spread increases.

The two papers of Wang et al. [13, 3] collect the results of three FL con-
trolled experiments. Two full-time developers and 54 students participate
in their experiments. In their first experiment they establish a heuristic to
describe phases, patterns, and actions in a feature location task that they
present in their first paper. In this second and third experiments, they refine
their heuristic and analyze factors such as specific knowledge about feature lo-
cation, task properties, or experience, which may influence the performance
of developers when locating features. Their statistical analysis shows how
specific knowledge about feature location phases, patterns and actions im-
prove the developers’ performance locating features.

The case study of Jordan et al. [14] has an industrial context. They
analyze the search actions and the tools used by nomads, who are experienced
software engineers that work on large software systems. They measure the
percentage of relevant search results that are viewed by the subjects and use
a search success indicator for the searches. A non-empty set of results, with
manageable size, and containing relevant results is considered a successful
search. They affirm that nomads are twice as effective locating features as
the non-experts reported in other studies [6, 27].

Damevsky et al. [15] report a field study of how developers perform fea-
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ture location during their daily activity. They report what type of queries,
retrieval strategies, and patterns are used by developers when locating fea-
tures. They also report the search tools used by developers to locate features
and how often developers use them. They use the heuristic defined by Wang
et al.[3] and analyze the tracking data of developers when locating features.

The case study on the Marlin 3D Printer of Kruger et al.[1] is focused
on identifying and locating optional and mandatory features. They explore
and compare the characteristics of these features, describing them through
metrics such as Lines of Cod (LOC), Scattering Degree (the number of lo-
cations where the feature is implemented), or Tangling Degree (the number
of features contained in a feature). The authors also provide a set of feature
fact sheets that could be used in empirical studies about feature location.

The survey elaborated by Julia Rubin and Marsha Chechink [28] analyzes
24 automated FL techniques and explores how to adapt them to feature loca-
tion in family products. They affirm that none of the existing FL techniques
consider families of related products explicitly. To adapt the FL techniques
to a product family, each one of the products of the family is considered an
independent entity. They propose that by considering the relations of the
products in a family, product line commonalities and variations can provide
additional input to improve the accuracy of FL techniques.

Other works ([8, 7]) propose automated approaches for the feature iden-
tification and subsequent generation of SPLs from a set of existing software
variants. Mart́ınez et al. [8] use two real-word systems, with seven and three
model variants, respectively, to evaluate their approach. They compare the
number of model elements of the primitive system with the elements of the
blocks identified in the model-based SPL generated. They affirm that the
generated SPL can regenerate the previous variants and generate new valid
variants. Assunção et al.[7] presents an automated approach to aid the gen-
eration of SPLs from existing UML class diagrams and the list of associated
features. They generate a Feature Model, which expresses common and vari-
able characteristics of a product family, and a Product Line Architecture,
which allows developers to generate, maintain, and evolve system families.
To evaluate their approach, they analyze the results obtained with 10 dif-
ferent applications. In each one of these applications, they use a set of
well-defined features and apply a Genetic Algorithm to locate features in the
Feature Model generated. Optimal values of precision, recall, and variability
safety are obtained when the search results on the Feature Model and the
input features are compared. Both studies use UML models as input instead
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of files of code, but neither of the two studies considers real developers using
their approaches.

Feature location in models at the industrial scale is a central topic in pre-
vious works from our SVIT research group [16, 17, 18, 19, 20, 21, 22, 23, 24].
Given a feature description as input, these works [16, 17, 18] rank the model
fragments that are relevant for the feature and explore different approaches
to guide the automated feature localization: clustering (through Formal Con-
cept Analysis) [16], empirical learning (through Learning to Rank) [17], and
combinations of Similitude, Understandability, and Timing (through Latent
Semantic Indexing, Model Size, and Defect Principle, respectively) [18]. In
[19], the fitness function is fixed (Similitude), and five search strategies are
evaluated (the Evolutionary Algorithm, Random Search, steepest Hill Climb-
ing, Iterated Local Search with restarts, and a hybrid between the Evolution-
ary algorithm and Hill Climbing). In [20], models at run-time are proposed
to be used for increasing the information for feature location. In [21], the
sustainability of long-living software systems is exploited to guide feature lo-
cation. The study of Ballaŕın et al. [22] provides measures to describe model
fragments such as the ones for feature location in models. Collaborative FL is
introduced in [23] when the FL task is complex and significantly exceeds the
knowledge of a single software engineer. In [24], manual FL and automated
FL are compared. The work shows that the subjects are equally satisfied
with the results of the two approaches. Hence, we face the possibility that,
if subjects consider the results to be good enough, they may lack the mo-
tivation to iterate on the query or the results through the usage of guided
techniques.

The works about manual FL use one single software product to locate
features in code. Most of the studies about automated FL also focus their
attention on locating features in single software products (mainly in code),
and the studies about feature location that take into account system variants
or product model families do not take into account the developer who locates
the features.

Our work addresses the research gap in manual FL in model products,
comparing Performance, Productivity, and Perceived difficulty between lo-
cating features in a Single Product Model and locating features in a Product
Model Family.
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4. Background

4.1. Feature Location

Let us consider a software product that is composed of elements from a
specific universe:

U = {e1, e2, .., ei, ..., ej, ..., ek, ..., en}

These elements could be different depending on which artifacts we analyze
(e.g., code, requirements or models). If we analyze code lines, the elements
could be each word, or each line, or specific groupings of lines, depending on
the granularity of the problem. If we analyze requirements or models, these
elements also change.

Assuming the artifact and the granularity are fixed, we can now consider
a software feature that is represented by a subset of elements of the universe
that implements some functionality, for example:

F = {ei, ej, ek}

Thus, we can understand a software product to be a set of elements of U:

P = {F1 = {e1, e2} , ..., F = {ei, ej, ek} , ...FN = {ei, ..., ej}}

In this case, it is not very difficult to find the feature in the software product.
The problem begins when the following occur: a software product changes,
the features that compose a software product evolve, and the information
about them is not as structured. Sometimes the software product is more
similar to the one below:

P = {e1, {e2, ei} , ..., ej, e1, ..., ek, ei, ej, ek, ..., em, ..., er}

We do not always have all of the information about the feature and we
look for sets like F = {ei, x, ek, y}, where x and y are elements from the
specific universe, but they are unknown elements in the feature location.
This set is determined from a feature description, which may be more or
less precise. Feature Location is the process of finding subsets of elements
(not all of which are known), in a collection of elements that represents
a software product, given some artifacts and a determined granularity of
the problem. Artifacts and granularity specify the universe, U , to which the
elements belong. The way the different elements of the universe are composed
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to build a software product, P , or features, F , depends on them and also on
the domain of the problem.

FL can be classified as manual, semi-automated or automated depending
on the degree of intervention required by a person to determine and to locate
the set of elements that represents a feature. This experiment focuses on
manual FL.

4.2. Feature Location in Product Models

When models are used to develop software, as in Model Driven Develop-
ment (MDD) [29], the main development artifact is the product model. In
MDD contexts, engineers specify the system to be built with the models and
then obtain the source code through model transformations. When mod-
els are the main development artifact, FL is performed on product models.
This is the case of our industrial partner, which uses a DSL to specify the
firmware of its induction hobs. The C++ code that controls its induction
hobs is obtained with a transformation from model to code. There are also
MDD contexts in which the models are interpreted. An example of inter-
preted models is the case of Kromaia, a commercial video game where all of
its elements are specified with a DSL that is interpreted at run-time [30]. In
these cases, no code is generated from the models, so FL is performed on a
product model.

Since a product model is a kind of software product, it can be represented
by a collection of elements from a universe set as we represented a software
product above. The model elements are the elements of a universe, and a
feature is a set of model elements. Locating a feature in a product model
means determining the set of model elements that compose the feature and
finding these elements in the set of product model elements.

A Product Model Family is composed of several Single Product Models
that are similar but different in order to meet certain market needs, i.e., a
family of collections composed of model elements from the same universe.
The set of elements that represent a feature can be in a single model or in
several models. To locate a feature in a Product Model Family, it is necessary
to check the product models in the family.

Induction Hobs constitute a Product Model Family for our partner. There
are thousands of product models in this family, depending on the brand and
the induction hob characteristics (i.e., the number or size of the hob plates,
type of hob plates, etc). All of these product models are composed of elements
from the same DSL that represent inverters, inductors, power channels, and
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power managers. The set of elements that represents a feature (i.e., a hob
plate with extra coocking space) is in several models but not in all of them.

The Induction Hob universe of elements in BSH would be something like
this:

U = {a1, a2, .., ana , b1..., bnb
, c1..., cnc , d1..., dnd

}
where aia , bib , cic , and did represent specific inverters, inductors, power chan-
nels, and power managers, respectively: na being the number of inverters
with 1 ≤ ia ≤ na; nb being the number of inductors with 1 ≤ ib ≤ nb; nc

being the number of power channels with 1 ≤ ic ≤ nc; and nd being the
number of all of the inverters with 1 ≤ id ≤ nd.
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Figure 3: Abstract representation of a Product Model in Induction Hobs Family

Figure 3 shows the abstract representation of the product model P1 used
in Section 2 (See Figures 1 and 2). The product model P1 could be repre-
sented as a a subset of elements of the universe U as follows:

P1 = {a1, a2, b1, b2, b3, c1, c2, c3, c4, c5, c6, d1, d2}

The Double Hot Plate feature of the rFL example (a hob plate with extra
cooking space) could also be represented as a subset of the universe U :

F1 = {b1, b2, c1, c2, c3, d1}

Therefore, the product model could be represented as a set of features as
follows:

P1={F1={b1, b2, c1, c2, c3, d1} , F2={a1, c4} , F3={a2, c5} , F4={b3, c6, d2}}

where F2 and F3 represent different kinds of Simple Inverter features and F4

represents a Simple Hob Plate feature.
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4.3. Software Product Model Domain

In this experiment, we have used a subset of the Induction Hob Prod-
uct Model Family from our industrial partner, BSH, which uses a Software
Product Line (SPL) and a Domain-Specific Language (DSL) to generate the
firmware of its induction hobs. This DSL is composed of 46 meta-classes,
74 references among them, and more than 180 properties. In order to gain
legibility and due to intellectual property rights concerns, a simplified subset
of the DSL is used in this experiment. We considered four kinds of model
elements. Each one of them is characterized by three or four properties with
different ranges of values depending on their functionality and the require-
ments of the induction hob. The metamodel and the graphical syntax of the
DSL elements are shown in Figure 4.

Id
Min Gain
Max Gain
Redundancy

Id 
External
WLevel
Alfa

Id
Main Route
Current Limit Pos_Id

Name
Type
Virtual

Inverter

Power Channel Inductor

Power Manager

DSL Metamodel DSL Grafical syntax

Inverter

Source Target
Power 

Channel

Power
Manager Inductor

Figure 4: Metamodel and Graphical syntax of the DSL

The triangle represents an inverter. The inverter is in charge of convert-
ing input electric supply to the specific requirements of the induction hob.
The power channels are represented as lines and they are in charge of trans-
ferring the energy from the inverter to the inductor. The power manager
is represented by a rectangle and controls the path followed by the energy
through the channels. The inductor is represented by a circle and is in charge
of transforming energy into an electromagnetic field. These elements allow
different characteristics included in an induction hob to be expressed. Each
induction hob is represented by a set of elements, a product model. The
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elements and subsets of elements also allow different features included in an
induction hob to be expressed.

Similarly to other software artifacts, the granularity can vary depending
on the nature of the models and the features being located. Taking into
account the MOF standard from the Object Management Group (OMG)
to define a universal meta-model for describing modeling languages [31], we
divide the relevant elements of a model into a set of atomic elements (Class,
Reference, and Property), and we do not consider further subdivisions of
those units in this work. Class is the core element. It holds a set of properties
and associations ( e.g., see the Inductor class element in the metamodel in
Figure 4 (top-left)). Reference relates two class elements. It includes a
source class and a target class, a multiplicity for the target class and the
source class, and a name. Associations can also be distinguished by whether
or not they are containment associations. For instance, the Inductor class
reference in the metamodel of Figure 4 (top-left) is a containment reference
whose source is the Induction Hob class (multiplicity 1) and whose target is
the Inductor class (multiplicity any), while the source reference is a reference
(non-containment) whose source is the Provider Channel class (multiplicity
1) and whose target is the Inverter class (multiplicity 1). Property gives
information about a class. It includes the property meta-name, the type,
and the value. For instance, the Inverter class element in the metamodel
in Figure 4 (top-left) contains a property named WLevel whose type is a
String. Based on this division, a feature is a subset of the model elements
that are present in the model, with the granularity of the elements being
classes, references, or properties.

The features and the product models used in this experiment are collec-
tions of model elements with specific properties. Figure 5 shows the graphical
representation of the realization of the feature (F) described by the text ’High
power external supply for induction chain’ in a Product Model (PM) from
the Product Model Family used in the experiment. Ordered numbers have
been assigned to each element in the product models to easily identify each
model element during the experiment.

5. Experiment design

5.1. Objectives

We have organized our research objectives using the Goal Question Metric
template for goal definition following the the guidelines for reporting software

17



𝐹

PM

Figure 5: Graphical representation of a Product Model and a Feature in the DSL

engineering experiments in [32]. Our goal is to:
Analyze Different FL Scopes (Single Product Models and Product Model

Families) for the purpose of comparison, with respect to Performance,
Productivity, and Perceived difficulty, from the point of view of experts
and non-experts in the specific domain, in the context of manual FL in
models in a company.

5.2. Research questions and hypotheses

Through this experiment, we seek to answer the following three research
questions about manual FL in models:

RQ1 Does the FL Scope used for locating features impact Performance
in manual FL? The corresponding null hypothesis is H01: The FL Scope does
not have an effect on Performance.

RQ2 Does the FL Scope used for locating features impact Productivity
in manual FL? The null hypothesis for Productivity is H02: The FL Scope
does not have an effect on Productivity.

RQ3 Is the Perceived Difficulty different when subjects use different FL
Scopes for locating features? To answer this question we formulated the
null hypothesis H03: The FL Scope does not have an effect on Perceived
Difficulty.
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The hypotheses are formulated as two-tailed hypotheses since we do not
know of empirical or theoretical studies that support a specific direction for
the effect of scope.

5.3. Experimental objects

In this experiment we have used a Product Model Family made up of five
product models, that are characterized by the number of model elements and
the number of total properties in each one. Table 2 shows this information.
These Single Product Models are the collections of model elements where the
subjects had to locate features during the experiment. Figure 5 shows the
graphical representation of Product Model 4 (PM4) from the Product Model
Family used in the experiment.

Table 2: Product Model Description

Nº elements Nº properties

Product Model 1 (PM1) 18 64
Product Model 2 (PM2) 14 49
Product Model 3 (PM3) 15 53
Product Model 4 (PM4) 19 67
Product Model 5 (PM5) 15 53

Product Model Family (PMF ) 81 286

The subjects who participated in the experiment had to locate features in
a Single Product Model (SPM) and in a Product Model Family (PMF), which
represent two different Feature Location Scopes. When the subjects located
features in a SPM, a feature text description and the number of the model
was given. To locate features in the PMF only the feature text description
was given to the subjects, and they had to find the model elements of the
feature in the collection of elements of five product models.

Table 3 shows the characteristics of the features used in the experiment in
terms of the size and the percentage of model elements from the feature in the
collection of elements of the SPM or the PMF. Figure 5 shows the realization
of the feature described by the text ’High power external supply for induction
chain’ (F08 Table 3).Since it is composed of three elements, its size is three.
The percentage of model elements from the feature increases when the FL
focuses on one single product model and also when the number of model
elements in the feature increases. The model elements of the features 03, 07,
and 11 appear in two different product models when the feature is located in
the Product Model Family. The table includes information about the model
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Table 3: Description of experimental objects

FL Scope

SPM PMF

Size (F ) Size(F )
Size(PMi)

% PMi
Size(F )

Size(PMF )
% |MF |

F01 1 6% PM1 1% 1
F02 2 11% PM1 2% 1
F03 3 13% PM3 4% 2
F04 8 53% PM5 10% 1
F05 2 13% PM5 2% 1
F06 2 11% PM1 2% 1
F07 2 7% PM2 2% 2
F08 3 16% PM4 4% 1
F09 2 13% PM5 2% 1
F10 4 21% PM4 5% 1
F11 2 7% PM2 2% 2
F12 1 5% PM4 1% 1

used when FL is in SPM and the number of product models containing the
feature (|MF |) when FL is in a PMF.

Each solution output by the subjects is a subset of model elements in the
FL Scope where the feature is being located. To describe performance, the
confusion matrix classifies the solutions output by the subjects [33, 19].

The confusion matrix distinguishes between two values: true or present
and false or absent. The predicted values (model elements in the subject’s
solution) and the model elements of the feature to be located are compared,
and the confusion matrix arranges the results of the comparison into four
categories. These are: True Positive (TP), predicted values that are in the
feature to be located; False Positive (FP), predicted values that are not in the
feature to be located; True Negative (TN ), model elements that are neither
predicted values nor elements in the feature to be located; and False Negative
(FN ), elements in the feature to be located that are not predicted values.

Recall, Precision, and F-measure are defined from these predicted values
of the confusion matrix. Recall is the ratio between TP and TP+FN. It
represents the percentage of the feature elements that appear in the subject’s
solution. Precision is the ratio between TP and (TP+FP). It represents the
percentage of the elements in the subject’s solution that are in the set that
represents the feature. The F-measure is the harmonic mean of Recall and

Precision: F −measure =
(

(Recall)−1+(Precision)−1

2

)−1

.
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The feature realizations of the Family Product Model are known before-
hand. For each feature text description given to the subjects, the set of
product model elements that are implemented in the feature is known. It is
the ground truth (the oracle) that allows us to build the confusion matrix
for the subjects’ solutions when locating features.

With the following example, we illustrate the potential of Recall, Preci-
sion, and F-measure values to describe performance when locating features
and how the F-measure could be interpreted as the percentage of problem
solved by a subject. Figure 5 shows the graphical representation of the real-
ization of the feature (F) described by the text ’High power external supply
for induction chain’ in a Product Model. Let us assume that the solutions
provided by three subjects (A, B, and C) for the feature location of the feature
F, were SA = {10, 11}, SB = {10, 11, 12, 14, 15}, and SC = {9, 3, 11}, respec-
tively. The real value of the feature given by the oracle is F = {10, 11, 12}.

Table 4: Example of performance measurements

TP FP FN Precision Recall F-Measure

Oracle 3 0 0 100% 100% 100%
SA 2 0 1 100% 67% 80%
SB 2 3 1 40% 67% 50%
SC 1 2 2 33% 33% 33%

Table 4 shows the values of TP, FP, and FN in the confusion matrix and
the correspondent values of Recall, Precision, and F-measure for the oracle
and for the solutions SA, SB, and SC . The solution of A (SA) has a precision
of 100%, but its recall value is 67% since it does not contain all of the model
elements of the oracle. For the solution SA, the F-measure is 80%. The
recall value for the solution of B (SB) is also 67%, but the precision value is
only 40% which is the percentage of elements of this solution that are in the
oracle. The F-measure of SB is only 50%. The solution SC obtains values
of 33% for Precision, Recall, and F-measure since the solution only contains
one element of the oracle and it contains two elements that are not in the
oracle.

5.4. Variables

The independent variable in this study is the FL Scope. It has two values,
Single Product Model (SPM) and Product Model Family (PMF), which are
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two different kinds of sets of model elements used by subjects to solve the
FL tasks.

We consider three dependent variables: Performance, Productivity, and
Perceived Difficulty.

To measure Performance, we built the confusion matrix of each one of the
six features that the subjects must locate for each task to calculate its recall,
precision, and F- measure. To represent the Performance of the subjects in
each task, we calculated the arithmetic mean of the F-measures obtained for
each one of the six features to be located in the task.

We measured the time used by each subject to finish each task to calcu-
late Productivity as the ratio of Performance to time spent (in minutes) to
perform a task.

At the end of each task, each subject rated the level of difficulty of the
task using a 7-point Likert-scale, ranging from too easy to very difficult. This
value was used to measure Perceived Difficulty.

5.5. Design

In order to improve experiment robustness regarding variation among
subjects [11], we chose a repeated measurement using the largest possible
sample size. To avoid the order effect, we chose a crossover design, and we
grouped the features to be located in two different tasks, T1 and T2. The
subjects had to locate six different features in each one of the tasks. All of
the subjects located six features in a Single Product Model in one task, and
they located another six different features in a Product Model Family in the
other task.

The subjects had been randomly divided into two groups (G1 and G2).
In the first part of the experiment, all of the subjects solved T1, G1 located
features in the Product Model Family, and G2 located the same features in a
Single Product Model. Afterwards, all of the subjects solved T2, G1 located
features in a single Product Model, and G2 located features in a Product
Model Family. Table 5 shows a summary of the experiment crossover design.

Table 5: Experiment Design

Task

Group Task 1 Task 2

G1 Product Model Family Single Product Model
G2 Single Product Model Product Model Family
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The two tasks were designed by the same instructor. Both were similar
yet independent enough to avoid the learning effect. To verify the experiment
design, we conducted a pilot study with one subject. This pilot study allowed
us to detect typographical and semantic mistakes in some expressions, which
were corrected for the experiment. The subject in the pilot study did not
participate in the experiment described above.

This design avoids the learning problem effect and the variability due to
differences in the average response capacity of the subjects.

5.6. Participants

The subjects were selected according to convenience sampling [32]. A
total of 18 subjects performed the experiment. All of the subjects completed
a demographic questionnaire before entering the experiment, which was used
to characterize the sample. Five subjects were software developers and re-
searchers in the induction hob domain. They stated spending an average of
4 hours per day developing software, and an average of 4.2 hours per day
working with modeling languages. They were the experts in the experiment.
There were also 13 Master’s students from Universidad San Jorge (Zaragoza,
Spain). They were not experts in the induction hob domain. They stated
spending an average of 4.9 hours per day developing software, and 1.34 hours
per day working with modeling languages. They were the non-experts in the
experiment.

The experiment was conducted by two instructors. The instructors are
senior software engineers from the company, and they are also responsible for
training newcomer engineers after a hiring process. One instructor designed
the tasks for the experiment and generated the correction templates. This
instructor clarified general doubts during the the experiment and took notes
during the focus group. The other instructor explained the experiment, pro-
vided information, clarified doubts about the DSL used in the experiment,
managed the focus groups, and corrected the tasks.

5.7. Experiment procedure

The diagram in Figure 6 summarizes the experimental procedure, which
is described as follows:

1. The subjects received information about the experiment. An instructor
explained the parts in the session. He advised that it was not a test of
their abilities.
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2. The subjects attended a tutorial about FL in software models, and
about the DSL used in the experiment. The information used in the
tutorial was available to the subjects during the experiment. The av-
erage time spent on this tutorial was 15 minutes.

3. The subjects completed a demographic questionnaire. One of the in-
structors distributed and collected the questionnaires, verifying that all
of the fields had been answered and that the subject had signed the
voluntary participation form in the experiment.

4. The subjects received clear instructions on where to find the statements
for each task, how to submit their work, and how to complete the task
sheet at the end of each task.

5. The subjects performed the first task. The subjects were randomly
divided into two groups (G1 and G2) to locate features from the first
task. The subjects from G1 had to locate six features in the Product
Model Family, and the subjects from G2 had to locate the same six
features in a Single Product Model.

6. The subjects assessed the difficulty of the task, taking into account
where the feature was located, in a Single Product Model or in the
Product Model Family.

7. The subjects added comments about the process followed to locate the
feature elements of the first task.

8. An instructor checked that each subject had filled in all of the fields on
the task sheet.

9. The subjects performed the second task. The subjects from G1 located
six features in a Single Product Model, and the subjects from G2 lo-
cated the same six features in the Product Model Family. Then, the
subjects assessed the difficulty of the second task and added comments
about the process followed to locate the feature elements of the second
task.

10. A focus group interview about the tasks was conducted by one instruc-
tor, while the other instructor took notes.

11. Finally, an instructor corrected the tasks, and a researcher analyzed
the results.

The experiment was conducted on two different days at Universidad San
Jorge (Zaragoza, Spain). On the first day, it was performed by a group of
thirteen Master’s students (non-experts) in a subject about advanced soft-
ware modeling. On the second day, the same experiment was performed by
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Figure 6: Experimental Procedure

the five experts divided into two groups based on their schedule availability
(Resp., 2experts, 3 experts).

The instructor responsible for designing the tasks was not the same
one who explain the tutorial about FL in software models and the DSL
used in the experiment. The materials used in this experiment, which in-
cludes the training material, the consent to process the data, the demo-
graphic questionnaire, the task sheets, and the results are available at http:
//svit.usj.es/ManualFL-experiment.

5.8. Analysis procedure

For the data analysis, we have chosen the Linear Mixed Model (LMM)
[34]. LMM handles correlated data resulting from repeated measurements. It
is one of the analysis method recommended for crossover experiments in soft-
ware engineering [35]. The dependent variables for this test are Performance,
Productivity, and Perceived Difficulty.

In this study, the subjects who participated are consider random factors
and the FL Scope is the variable that is repeated to identify the differences
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between locating features in a Single Product Model or in a Product Model
Family. The experimental factors, which are considered fixed effects in our
statistical model, are the FL Scope (FLS), the Experience (E), and the
sequence FL Scope and Experience (FLS ∗E). The subjects are the random
effects. The statistical model is expressed in the following formula, where
DV represents the dependent variable:

DV ∼ FLS + E + FLS ∗ E + (1|Subject) (1)

Since the primary focus in our investigation is the FL Scope, it is a fixed
effect. However, we add Experience and the sequence FL Scope and Expe-
rience as be fixed effects for their potential in determining the variability
in the dependent variables due to FL Scope. There are studies on manual
feature location [14, 3] which affirm that human factors such as experience
affect feature location patterns and actions, that are improving the effective-
ness of the FL. Adding fixed factors related to the subject’s experience in
the statistical model improves the quality of the model in order to explain
the variance of the dependent variables.

To quantify the difference between FL in a Single Product Model and FL
in a Product Model Family, we have calculated the effect size using the means
and the standard deviations of the values of Performance, Productivity, and
Perceived Difficulty for each one of the FL Scopes where the subjects locate
features. With these values, we calculated Cohen’s d Value [36], which is the
standardized difference between the two means. Values of Cohen d between
0.2 and 0.3 indicate a small effect, values around 0.5 indicate a medium
effect, and values greater than 0.8 indicate a large effect. This value also
allows us to measure the percentage of overlap, the percenta between the
distributions of the dependent variables for FL in a Single Product Model
and the distributions of the dependent variables for FL in a Product Model
Family.

6. Results

Table 6 shows the values for the mean of the dependent variables Perfor-
mance, Productivity, and Perceived Difficulty for each one of the FL Scopes
in which the subjects locate features: Single Product Model and Product
Model Family.

There are differences in the means of all the dependent variables depend-
ing on which FL Scope was used to locate features. These differences are
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Table 6: Values for the mean of the dependent variables

Performance Productivity Perceived
% %/min Difficulty

Experts SPM 65% 8.3%/min 2.2
PMF 47% 3.6%/min 3.0

Non-experts SPM 35% 3.9%/min 3.0
PMF 23% 2.2%/min 3.3

All subjects SPM 43% 5.1%/min 2.8
PMF 29% 2.6%/min 3.2

found in both, the experts and the non-experts. The hypothesis testing will
allow us to confirm whether or not these differences are significant.

6.1. Hypothesis testing

The use of the Linear Mixed Model test assumed that dependent variables
residuals must be normally distributed. The normality of these residuals had
been verified by the Shapiro-Wilk and Kolmogorov-Smirnov tests, in addition
to visual inspections of the histogram and normal Q-Q plots. We obtained
normally distributed residuals for all of the dependent variables. All of the
residuals obtained a p-value greater than 0.05 with the normality tests.

The results of the Type III test of fixed effects for all of the dependent
variables are shown in Table 7.

Table 7: Results of fixed effects for each variable

Perceived
Performance Productivity Difficulty

FLS (F=12.0, p=.003) (F=10.3, p=.003) (F=3.0, p=.102)
E (F=15.7, p=.001) (F=8.2, p=.007) (F=1.1, p=.307)

FLS ∗ E (F=.5, p=.490) (F=2.3, p=.143) (F=.6, p=.452)

For the variables Performance and Productivity, the factor FL Scope ob-
tained p-values of less than 0.05. Therefore, our first two null hypotheses
are rejected. Thus, the answers to research questions RQ1 and RQ2 are
affirmative. The FL Scope used for locating features has a significant impact
on Performance and Productivity.

However, since FL Scope obtained p-values greater than 0.05 for the vari-
able Perceived Difficulty, we can not reject our third null hypothesis . Thus,
the answer to research question RQ3 is negative. The FL Scope used for
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locating features does not have significant impact on the difficulty perceived
by the subjects.

The factor Experience obtained p-values of less than 0.05 for Performance
and Productivity but greater than 0.05 for Perceived Difficulty. This factor
also explains the changes in the first two dependent variables, but not in
Perceived Difficulty.

Moreover, the fixed factor FL Scope*Experience obtained p-values greater
than 0.05 for all of the dependent variables, which implies that the combina-
tion of FL Scope and Experience had no significant influence on the changes
in Performance, Productivity, or Perceived Difficulty. By changing the FL
Scope, the effects on the dependent variables occur in the same direction and
with a similar intensity for both groups of subjects (experts and non-experts).

6.2. Effect size

Figure 7: Box plots and histograms with normal distribution for Performance ((a.1) and
(a.2), respectively); for Productivity ((b.1) and (b.2)); and for Perceived Difficulty ((c.1)
and (c.2))

The effect size of the differences based on manual FL in a Single Product
Model or in a Product Model Family for Performance is medium-large, with
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a Cohen d value of 0.703. The effect size for Productivity is large, with a
Cohen d value of 0.847. These values indicate that the percentage of overlap
between the distribution of the variables, when the FL is in a Single Product
Model and when the FL is in a Family Product, is less than 60%. Taking into
account the area covered by each of the two distributions, the percentage of
area shared by both distributions is less than 60%. The percentage of area
covered by one of the distributions, but not the other, is more than 40%
(percentage of non-overlap)

The distribution of Performance when the FL is in a Single Product
Model with the distribution of Performance when the FL is in a Family
Product model is more than 43%. The percentage of non-overlap of Produc-
tivity distributions for FL in a Single Model and FL in a Family Product
Model is more than 47%. The box plots and the histograms of Figure 7 il-
lustrate the differences in Performance ((a.1) and (a.2)) and in Productivity
((b.1) and (b.2)). In histograms of Figure 7, the non-overlapping parts have
a single pattern (either dots or shaded), while the overlapping parts have
both patterns (dots and shaded).

The box plots and the histograms of Figure 7 for Perceived Difficulty,(c.1)
and (c.2), respectively, illustrate that the difference when the FL Scope
changes is not larges. A Cohen d value of -0.381 suggested a moderate effect
in favour of FL in a Product Model Family. The subjects perceived slightly
more difficult FL in a Product Model Family than in a Single Product Model.
The percentage of non-overlap of Perceived Difficulty distributions for FL in
a Single Model and FL in a Family Product Model is less than 29%. Its
histogram has about 70% overlapping.

This data allows us to give more precise answers to RQ1, RQ2, and
RQ3. For Performance and Productivity, the impact of the FL Scope used
for locating features is medium-large, and large and the difference is statisti-
cally significant. On contrast, for Perceived Difficulty, the magnitude of the
difference is moderate and is not significant.

7. Discussion

To better explain the results, we analyzed the performance values for each
feature. For 89% of the features, 100% of Precision, Recall, and F-measure
was not reached (87% for SPM, 92% for PMF). All of the subjects had errors
in some of the features they located. Only two subjects (experts) found
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elements for all of the features to be located in a SPM. No subject located
the elements for all of the features when they located features in the PMF.

We analyzed the confusion matrix to measure the subjects’ errors in each
feature when the 100% performance was not reached. False Positive was
the error that most frequently appeared, and the number of errors increased
when FL was in a PMF. When FL was in a PMF, there were 25% more False
Positives. Some subjects acknowledged that after locating feature elements,
they reviewed the other product models looking for these elements. When
the subjects select a non-feature element, if that element is shared by other
product models in the family, then the error is propagated. We found that
8% of the subjects’ solutions (9 of 108) were affected by fault propagation.
This fault propagation was detected in the solutions of four non-experts (30%
of the non-experts). The solutions of the experts were not affected by fault
propagation.

PMF also brings another type of error to the table. When the FL was in
a PMF, there were 67% more False Negative elements than when FL was in
a SPM. Both the experts and non-experts described a process of elimination
to locate features. The elimination process was not taught in the training
session. One expert and one non-expert explicitly described an elimination
process on their task sheets. Two experts and three non-experts stated that
they used something that was unique in the feature description as a filter
to discard elements or models during the focus group. As the number of
elements of the FL scope increases, the more difficult it is to find the correct
feature elements using a process of elimination.

When the subjects were locating features in the PMF, they did not always
select the correct product model where the feature elements were located.
Some subjects indicated that the feature was not in any product model. On
average, the experts selected the product model where the feature elements
were located for 60% of the features to be located. The non-experts selected
the correct product model for the 50% of the features, on average. The only
time that all the subjects selected the correct product model was for the
feature F04. This is the largest feature in the set of features. This feature
also had the best performance: 85% when the feature is beeing located in
a SPM, and 78% when the feature is locating in a PMF. Performance is
also related to the number of feature elements; features with more elements
obtained better performance.

We also analyzed the changes in performance based on other charac-
teristics of the features to be located. We used the five measurements (Size,
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volume, density, multiplicity, and dispersion) proposed by Ballaŕın et al. [22].
We found that dispersion was the measurement that best explains the differ-
ence in performance when the FL scope changes, based on the characteristics
of the location problem. The dispersion measures the ratio of connected el-
ements in the feature. If a feature is composed by three elements but only
two of them are connected it is considered that the feature has two groups of
elements. Dispersion is computed as the ratio between the number of groups
and the number of elements of a feature [22]. For example, if a feature is
composed of three elements in two groups, the dispersion is 2/3.

Table 8: Performance Measures by Dispersion

Dispersion
Range

Precision Recall F-measure FL Scope

0-0.3
65% 70% 63% SPM
64% 56% 57% PMF

0.5-0.7
56% 61% 55% SPM
34% 40% 35% PMF

1
12% 44% 36% SPM
6% 18% 9% PMF

We classified the features using dispersion. In our experiment, there are
two features with a dispersion values of less than 0.3, six features with dis-
persion values between 0.5 and 0.7, and four features with a dispersion value
of one. Table 8 shows the average values of performance for the features of
each range. As can be observed, the stronger the dispersion, the lower the
performance and the greater the differences in performance between locating
features in a SPM and locating features in a PMF.

Table 9 summarizes the results, the answers, and the findings related
to each research question. The above findings (the largest features, feature
dispersion, feature propagation, and the elimination process) can help the
research community to develop better approaches in the context of feature
location.

• Largest features: We recommend that the scientific community con-
duct experiments to study the influence of feature size on FL tasks in
detail. To date, no related work has identified the influence of this
factor on the performance of FL tasks. The feature size may have
the potential to help determine when to use manual, automated, or
semi-automated FL. So far, there are no concrete recommendations on
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Table 9: Summary of Results, Answers, and Findings by Research Questions

RQ1 Results

For Performance, the factor FL Scope obtained a p-value of less than 0.05 in the hypothesis
contrast test; therefore, the null hypothesis of equal distributions is rejected.
The effect size for Performance is medium-large in favour of FL in a SPM, with a Cohen
d value of 0.703.

Answer
The FL Scope used for locating features has a significant impact on Performance. The
Performance is worse when FL is in a PMF, with the impact being medium-large.

Findings

· The number of errors increased when FL was in a PMF.
· When FL is in a PMF, error propagation affects 30% of non-experts but does not affect
experts.
· When subjects locate features in PMF, they can fail in selecting the product model
where the feature is actually located.
· The process of elimination as a FL Technique works worse in PMF than in SPM.
· Features with a larger size (more elements) get better performance in SMP and in PMF.
· Dispersion was the measurement that best explains the difference in performance when
the FL Scope changes.
· The stronger the dispersion, the lower the performance and the greater the differences
between locating features in a SPM and locating features in a PMF.

RQ2 Results
For Productivity, the factor FL Scope obtained a p-value of less than 0.05 in the hypothesis
contrast test; therefore, the null hypothesis of equal distributions is rejected.
The effect size for Productivity is large in favour of SPM, with a Cohen d value of 0.847.

Answer
The FL Scope used for locating features has a significant impact on Productivity. The
Productivity is worse when FL is in a PMF, with the impact being large.

Findings

· The initial inclination of subjects is to think that locating features in a PMF only takes
more time than locating features in a SPM.
· Features with a larger size (more elements) get better productivity in SMP and in PMF.
· Dispersion was the measurement that best explains the difference in productivity when
the FL Scope changes.
· The stronger the dispersion, the lower the productivity and the greater the differences
between locating features in a SPM and locating features in a PMF.

RQ3 Results

For Perceived Difficulty, the factor FL Scope obtained a p-value of more than 0.05 in
the hypothesis contrast test; therefore, the null hypothesis of equal distributions is not
rejected.
The effect size of the differences for Perceived Difficulty is moderate in favour of FL in a
PMF, with a Cohen d value of -0.381.

Answer
FL Scope used for locating features does not have a significant impact on Perceived Dif-
ficulty.

Findings

· The subjects (experts and non-experts) underestimate the difficulty of FL in a Poduct
Model Family.
· The difficulty that subjects perceive does not predict the significant worsening of the
results in performance and productivity.
· The subjects are not aware of the tricky challenge that FL presents in SPL reengineering.

when to use each of these approaches. Engineers may think that it is
not worth using automated FL to locate a small feature, so they locate
it manually. This idea can backfire, and according to our findings, the
size of the feature could help engineers to select the best approaches.
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• Feature propagation: As Krüger et al. [25] stated, many automated
and semi-automated FL techniques require a seed for the feature to be
located, and this seed must be located manually. When these seeds
are obtained by manual FL, they may contain wrong elements and this
error could be propagated, as we have shown in our work. Acknowledg-
ing this weakness is the first step in designing input filters that improve
the quality of the seeds.

• Elimination process: Automated and semi-automated FL techniques
explore different approaches to guide feature location (e.g., latent se-
mantic analysis [19] or empirical learning [17]). These techniques search
for the relevant elements of the feature. However, the process of elimi-
nation could provide inspiration to complement these techniques. For
example, these techniques could add a phase in which the model el-
ements were scored based on their differences with the description of
a certain feature. The implementation of this process of elimination
in FL techniques is out of the scope of this work; however, we want
to emphasize that this explicit process of elimination could be a new
direction in research to improve FL techniques.

• Feature dispersion: This factor, like the ones above, can also con-
tribute to defining feature profiles to recommend which FL approach
to use. Therefore, we recommend that experiments delve into how this
factor can influence the performance of FL tasks. This factor may also
be relevant in rethinking the way in which the results of feature location
techniques are presented to engineers. Most of the FL techniques use
feature rankings in order to present the results by relevance. Since the
dispersion is related to the performance of the engineers, the rankings
should offer the possibility of also presenting the results by dispersion
ranges and groups of elements. This more complete information could
help engineers decide which result in the feature ranking should be
chosen.

Furthermore, understanding the difficulties in manual FL is also helpful
in order to not miss relevant test cases when FL is evaluated. Our results
identify cases where the performance of the engineers in this respect is worse,
and these cases can be used as test-cases to evaluate whether an automated
or a semi-automated technique could compensate for this.
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With regard to generalization, the design of our experiment not only con-
siders the specific characteristics of the domain used by our industrial partner.
In fact, it could be applied to any domain that uses the widespread MOF
modeling standard. This is why the tasks and the results are expressed in
terms of model elements (classes, references, and properties) and not in terms
of domain-dependent concepts (inverter, power channel, power manager, or
inductor). For example, the five measurements (size, volume, density, mul-
tiplicity, and dispersion) that we have used in the discussion were defined in
another work [22] using examples from a completely different domain (train
control software) and are applicable to any domain.

8. Threats to validity

To describe the threats of validity of our work, we use the classification
of [32]:

Conclusion validity. The low statistical power was minimized because
the confidence interval is 95%. To minimize the fishing and the error rate
threat, the tasks and corrections were designed by an instructor, with expe-
rience in the DSL used, who did not participate in the correction process.
The Reliability of measures threat was mitigated because two instructors
tested the data coherence of the subjects task sheets at the end of each task.
The reliability of treatment implementation threat was alleviated because the
treatment implementation was identical in the two sessions.

Internal validity. To avoid the instrumentation threat, we conducted
a pilot study to verify the design and the instrumentation. The interactions
with selection threat affected the experiment because there were subjects who
had different levels of experience. To mitigate this threat, the treatment was
applied randomly.

Construct validity. Mono-method bias occurs due to the use of a single
type of measure [37]. All of the measurements were affected by this threat.
To mitigate this threat, an instructor checked that the subjects performed
the tasks, and we mechanized these measurements as much as possible by
means of correction templates. The hypothesis guessing threat appears when
the subject thinks about the objective and the results of the experiment. To
mitigate this threat, we did not explain the research questions or the exper-
iment design to the subjects. The evaluation apprehension threat appears
when the subjects are afraid of being evaluated. To weaken this threat, at
the beginning of the experiment, the instructor explained to the subjects
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that the experiment was not a test about their abilities. Author bias occurs
when the people involved in the process of creating the experiment artifacts
subjectively influence the results. In order to mitigate this threat, the tasks
were balanced, i.e., their sizes and difficulty were the same for the two tasks.
Finally, the mono-operation bias threat occurs when the treatments depend
on a single operationalization. The experiment was affected by this threat
since we worked with a specific DSL.

External validity. The interaction of selection and treatment threat
is an effect of having a subject that is not representative of the population
that we want to generalize.The experiment was performed by non-experts
and experts. The participation of non-experts can be a source of experiment
weakness; nevertheless, using students instead of software engineers is not a
major issue as long as the research questions are not specifically focused on
experts [38, 39]. Our results are similar to those of other studies in which
the performance of experts and students is compared when locating features
in code: experts perform better than non-experts on FL tasks [13, 3, 14].
In our experiment, we also found that regardless of experience, when the
scope changes and the FL tasks are performed on a family of products, the
performance and productivity worsens. The performance and productivity
of experts and non-experts is equally impaired when FL tasks are performed
in a product family. The interaction of setting and treatment threat is an
effect of not having material that is representative of the industrial context
of study. The domain used in the experiment is sufficient to perform FL
tasks that are analogous to those commonly performed by the engineers of
our industrial partner. The values achieved for performance show that all
of the subjects had errors in some of the features they located. Only two
subjects (experts) found elements for all of the features to be located and
only in a single product model. These facts suggest that the tasks are non-
trivial. Furthermore, the domain used in this experiment has already been
used in previous works [24][40]. The domain threat appears since we only
analyzed the induction hob domain. We think that the generalizability of
findings should be undertaken with caution. Other experiments in different
domains should be performed to validate our findings.

9. Conclusion

In this work, we present an experiment that compares performance, pro-
ductivity, and perceived difficulty in manual FL when the scope changes from
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a single product to a product family. The experimental objects are extracted
from a real-world SPL that uses a DSL. While the performance and the pro-
ductivity decreases significantly when engineers locate features in a product
family, the perceived difficulty does not have very significant changes.

A more thorough analysis seems to indicate how the feature size or the
feature dispersion can explain the changes in performance when the scope
changes. These results suggest a new research direction that can increase
the understanding of the feature problem in order to take advantage of
strengths and compensate for weaknesses when developing or evaluating new
approaches to FL.

In this work the subjects located features in isolation, but in feature-based
product lines when features are added to a product model, interactions may
appear between the features of that product or the features of other prod-
ucts in the family. Interactions can be severely damaging to system devel-
opment and to user expectations [41]. The analysis of interactions between
features could also be used to determine the original feature module defini-
tions [42, 43]. None of the authors referenced in the Related Work section
has explicitly analyzed the effects of feature interaction on the performance
of FL tasks. With the aim of understanding the feature problem in an SPL,
feature interactions must also be considered, which is what we plan to do in
future works.
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[25] J. Krüger, T. Berger, T. Leich, Features and how to find them: A
survey of manual feature location, Software Engineering for Variability
Intensive Systems (2019) 153–172.

[26] A. Lai, G. C. Murphy, The structure of features in java code: An ex-
ploratory investigation, in: Position Paper for Multi-Dimensional Sepa-
ration of Concerns Workshop, OOPSLA, 1999.

[27] J. Starke, C. Luce, J. Sillito, Searching and skimming: An exploratory
study, in: 2009 IEEE International Conference on Software Mainte-
nance, IEEE, 2009, pp. 157–166.

[28] J. Rubin, M. Chechik, A survey of feature location techniques, in: Do-
main Engineering, Springer, 2013, pp. 29–58.

[29] O. Pastor, J. C. Molina, Model-driven architecture in practice: a soft-
ware production environment based on conceptual modeling, Springer
Science & Business Media, 2007.

[30] D. Blasco, J. Font, M. Zamorano, C. Cetina, An evolutionary approach
for generating software models: The case of Kromaia in Game Software
Engineering, Journal of Systems and Software 171 (2021) 110804.

[31] O.M.G.: Meta object facility (mof) version 2.4.1,
http://www.omg.org/spec/MOF/2.4.1/ (2013).
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