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Abstract. In the last two decades, researchers have conducted several
empirical evaluations, involving thousands of subjects, to understand the
use of models in software development. The results of these evaluations
show that most of the subjects make informal use of the models, which
is known as ’modeling as sketch’. In this paper, we present an experi-
ment that compares UML-based and DSL-based modeling when subjects
model a part of a commercial video game. In the comparison, we have
used objective and subjective measures, in contrast to other works that
focus either on objective measures to evaluate modeling performance or
on subjective measures to analyze modeling styles. Our results reveal
that subjects underestimate the potential of their own models. Our find-
ing is relevant for the design of future evaluations and for the teaching
and adoption of modeling. If users correctly assess their models, they
might leverage their potential as programs.
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1 Introduction

The software engineering process goes from the initial idea for building a partic-
ular software (problem space) to the code that implements the software (solution
space) through different transformations. The idea is first conceptualized through
models, and then the models are transformed into fully functional code. To un-
derstand the use of modeling languages in software development, in the last two
decades, researchers have conducted surveys [17, 13, 1, 16, 20, 27, 2, 8], case stud-
ies [4, 26, 8], experiments [31, 23, 25, 11, 5, 8], and interviews [8] involving more
than 5,355 subjects. The researchers classified the styles of modeling into three
categories: sketch (informal models to aid in communication, see Figure 1.a),
blueprint (models as the basis for programmers to create code, see Figure 1.b),
and programs (models that include all of the details needed to generate code, see
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Figure 1.c). All of the works that evaluated the style of modeling [17, 8, 16, 27, 2]
concur that most of the subjects make an informal use of the models, which is
known as ’modeling as sketch’. Despite the benefits of using models as programs
[14], models are still mainly used as sketch.
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Fig. 1. (a) Models as sketch, (b) Models as blueprint, (c) Models as programs

The Unified Modeling Language (UML) is a general-purpose modeling lan-
guage that has become the ’de facto’ standard for modeling software systems
[17, 7, 8]. Despite the available evidence about the efficiency of UML model-
ing, UML shortcomings have been identified by several authors [17, 4, 13, 26, 7,
8, 1]. In addition, to reduce the complexity of software development, the use of
domain-specific languages (DSLs), languages closer to the problem domain, has
proven to outperform the use of general-purpose programming languages [19].
We can also find empirical works that indicate that the use of a DSL can reduce
the effort of developers when working in modeling performance testing tasks [5].

In empirical research, comparing UML against DSL is an open problem to-
wards understanding software modeling [22, 7]. Previous works [19, 5] suggest
that the usage of DSLs outperforms the usage of other software artifacts. Our
own previous work in the field [14] points in the same direction. Thus far, works
that have compared UML against other modeling languages [5, 11, 25, 23, 31]
have focused solely on objective measures. In this work, we combine objective
measures (correctness and efficiency) with the subjective assessment of subjects
(model style classification and satisfaction) through a crossover experiment that
compares UML vs DSL when subjects model an element of a commercial video
game. Game software engineering has been identified as a knowledge area that
needs more fundamental research [3]. Moreover, despite video-game development
being one of the fastest growing industries, there are few works in the field, which
makes it an original domain for exploring modeling adoption.

Building upon previous work we hypothesize that the usage of a DSL will
outperform the usage of UML models in the video-games domain. The findings
of this empirical study not only confirm this hypothesis, but in addition, reveal a
problem that was not found in evaluations performed by other authors: no matter
how correct the models are, and their ability to actually generate software, the
subjects think of them more as sketches than as programs.Our results are useful
for teaching modeling and model adoption because they put the focus on the
problem of subjects underestimating the potential of their own models.

The rest of the paper is organized as follows: Section 2 reviews the related
work. Section 3 describes our experiment, and Section 4 shows the results. Sec-
tion 5 describes the threats to validity. Finally, Section 6 concludes the paper.
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2 Related Work

Modeling languages have been identified as a key challenge to increase the adop-
tion of models as programs [22], and the use of DSLs has been identified as more
effective and efficient than general-purpose programming languages [19]. How-
ever, it is difficult to find empirical works that compare UML with an alternative
modeling language. Budgen [7] explained in 2011 that this was because of the un-
derlying assumption that UML did not require testing because it was a de facto
standard. The oldest comparison work we have found dates from 2001. Zendler
et al. [31] compared three object-oriented approaches (UML, Open modeling lan-
guage [OML], and taxonomic object system [TOS]) in two different application
systems with respect to coarse-grained modeling concepts. They conclude that
the coarse-grained concepts of the object-oriented approaches OML and TOS
were superior to those of UML when modeling a database-oriented application.

In 2004, Otero and Dolado [23] presented the results of a controlled experi-
ment comparing the comprehension of UML and OML diagrams in the design
of a real-time embedded system. They found that the specification of dynamic
data is faster and easier to comprehend in OML than in UML. A year later,
Iris Reinhartz-Berger and Dov Dori [25] compared UML with Object-Process
Methodology (OPM) with respect to the level of comprehension and the quality
of Web application models. The results of their experiment suggest that OPM
is better than UML when modeling web applications, especially in the dynamics
aspects and in the quality of the models.

In 2010, De Lucia et al.[11] presented the results of three sets of controlled
experiments comparing UML class diagrams and Entity-Relationship (ER) dia-
grams with respect to the comprehension and the interpretation of data models
during maintenance activities. The results demonstrated that the two notations
gave the same support, except during verification activities when UML class dia-
grams provided better support than ER diagrams. In 2016, Bernardino et al. [5]
presented the results of an experiment about the benefits and drawbacks when
using UML or a DSL for modeling performance testing in an IT company. Their
results indicate that the effort using a DSL was lower than using UML.

Table 1 shows the works on adopting models in the industrial context. Mod-
eling as sketch (also known as informal modeling) is the second problem that has
been identified most frequently in the literature [17, 8, 16, 27, 2] (see P1 in Table
1). Other studies have identified other problems such as the lack of understand-
ing [17, 13, 1] (see P2) or training [4, 13, 1, 2] (see P3), or the lack of integration
between modeling tools [4, 26, 8, 1, 20, 2] (see P4 in Table 1).

Through a survey, Grossman et al. [17] investigated if individuals who use
UML perceive it to be beneficial and which characteristics affect the use of UML.
They used the Task Technology Fit index to evaluate the respondents’ percep-
tions. They affirmed that most of the respondents of the survey were using what
Fowler [15] calls ‘UML by sketch’, an informal approach to modeling and the
values of TTF index indicated a slightly positive perception of UML. Chaudron
et al. [8] synthesized a selection of empirical evidence (one experiment, one Case
Study, two Surveys, and more than 20 Interviews) about the efficiency of UML
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Table 1. Empirical studies on modeling adoption

Work
Year

Empirical
strategy

Sample size Context
Modeling
language

Main problems identified

Grossman et al.
[17] 2004

Survey 131 UML users Industry UML
UML as sketch is the most used style of
UML modeling (P1)
Lack of adequate UML understanding (P2)

Anda et al.
[4] 2006

Case Study
16 System developers
and project manager

Industry UML
Inadequate level of UML training (P3)
Inadequate modeling tools (P4)

Dobing and
Parson

[13] 2006
Survey

171 annalist
using UML

Industry UML
Lack of adequate UML understanding (P2)
Inadequate offer of UML training (P3)

Staron
[26] 2006

Case Study 8 Professionals Industry UML Lack of well-integrated tools (P4)

Chaudron et al.
[8] 2012

1 Experiment,
1 Case Study,

2 Surveys,
20+ Interviews

200+
Professionals
and students

Industry
Academia

UML
Modeling as sketch and for communication
are the most used styles of modeling (P1)
Lack of well-integrated tools (P4)

Agner et al.
[1] 2013

Survey
209

Embedded-industry
developers

Industry UML
Lack of adequate UML understanding (P2)
Lack of specialized professionals (P3)
Inappropriate tool support (P4)

Gorschek et al.
[16] 2014

Survey 3785 Developers Industry All
Models are used primarily in communication
and collaboration (P1)
Inadequate modeling tools (P4)

Marko et al.
[20] 2014

Survey
112

Embedded-industry
developers

Industry All Lack of well-integrated tools (P4)

Störrle
[27] 2017

Survey 96 Professionals Industry All
Modeling as sketch is the most used
style of modeling (P1)
Cultural differences in modeling usage (P6)

Akdur et al.
[2] 2018

Survey
627

Embedded-industry
developers

Industry All

Modeling as sketch is the most used
style of modeling (P1)
Lack of modeling expertise(P3)
Inappropriate tool support (P4)

modeling in software development. They concluded that especially for larger and
distributed projects, UML is used to understand a problem at an abstract level
and to share information with other team members. In these cases, UML was
used without rigor and specialized tools were not used for the modeling.

Gorschek et al. [16] presented the results of a survey summarizing the answers
of 3785 developers to a simple question: Which design models are used before
coding? The answer was that design models were not used very extensively in
industry and that when they were used, their use was informal and without tool
support, and the notation was often not UML. Again, they found that models
were used primarily as a communication and collaboration mechanism, where
there is a need to solve problems or to obtain a joint understanding of the over-
all design by a team. Störrle [27] presented the results of an online survey, with
96 industry participants from all over the world. The questions in this case were
’How and what are the models used for?’ He found that models were widely used
in industry and that UML was indeed the leading language. This directly contra-
dicts the results of Gorschek et al.[16]. He reported three distinct usage modes
of models, the most frequent of which was informal usage for communication
and understanding, and program-style [24] usage was rare. A year later, in 2018,
Akdur et al.[2] conducted another online survey with opinions of 627 practicing
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embedded software engineers from 27 different countries. The survey addressed
the state of software modeling and MDE practices in the worldwide embedded
software industry. Their results match those of H. Störrle [27]:the majority of
participants were using UML, and its use was informal.

Our work includes a quantitative perspective to discuss the differences in
performance of the modeling languages, but we also take into account the mod-
eling style in the analysis to reach a more complete understanding of modeling
usage. Furthermore, the classification of models in previous works [17, 8, 16, 27,
2] is taxonomic; the use that subjects made of models is classified into one style
or another in accordance with their responses to certain questions in surveys or
interviews. In our experiment, the subjects evaluate their models according to
the usefulness of the model for each one of the modeling styles (sketch, blueprint
or programs). This offers more complete information on the perception that the
subjects have of the usefulness of their models.

3 Experiment design

3.1 Objectives

According to the guidelines for reporting software engineering experiments [30],
we have organized our research objectives using the Goal Question Metric tem-
plate for goal definition. Our goal is to analyze modeling languages and their
perceived usefulness, for the purpose of comparison, with respect to correct-
ness of the models constructed, efficiency, and user satisfaction, from the point
of view of novice and professional developers, in the context of modeling for
a video-game company.

3.2 Variables

In this study, the factor under investigation is the Modeling Language. There
are two alternatives, UML and DSL, which are the modeling languages used by
subjects to model an enemy of a commercial video game.

Since the goal of this experiment is to evaluate the effects of the use of differ-
ent modeling languages, we selected Correctness and Efficiency as the objective
response variables, which are related to modeling performance. We measured
Correctness using a correction template, which was applied to the models devel-
oped by the subjects after the experiment. To calculate Efficiency, we measured
the time employed by each subject to finish the task, using the start and end time
of each task. Efficiency is the ratio of Correctness to time spent (in minutes) to
perform a task.

We also compared UML and the DSL with respect to Satisfaction using a
5-point Likert-scale questionnaire based on the Technology Acceptance Model
(TAM) [21].

We decompose Satisfaction into three subjective response variables as follows:
Perceived Ease of Use (PEOU), the degree to which a person believes that
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learning and using a particular language would require less effort. Perceived
Usefulness (PU), the degree to which a person believes that using a particular
language will increase performance, and Intention to Use (ITU), the degree to
which a person intends to use a modeling language. Each of these variables
corresponds to specific items in the TAM questionnaire. We average the scores
obtained for these items to obtain the value for each variable.

To analyze the subjective perception of the models, the subjects evaluated
the usefulness of their models using a 5-point Likert-scale for each style of mod-
eling: to understand and communicate (sketch), for developers to create code
(blueprint) and to automatically generate code (programs).

3.3 Design

We chose a factorial crossover design with two periods using two different tasks,
T1 and T2, one for each period. All of the subjects used the two modeling
languages, each one of which was used in a different task. The subjects had
been randomly divided into two groups (G1 and G2). In the first period of the
experiment, all of the subjects solved T1 with G1 using UML and G2 using DSL.
Afterwards, all of the subjects solved T2, G1 using DSL and G2 using UML.

This repeated measures design increases the sensitivity of the experiment
[28]: the observation of the same subject using the two alternatives controls
between-subject differences, improving experiment robustness regarding varia-
tion among subjects. By using two different sequences for each group (G1 used
UML first and DSL afterwards, and G2 used DSL first and UML afterwards) and
different tasks, the design counterbalances some of the effects caused by using
the alternatives of the factor in a specific order (i.e., learning effect, fatigue). To
verify the experiment design, we conducted a pilot study with two subjects. The
subjects in the pilot study did not participate in the experiment.

3.4 Research questions and hypotheses

The research questions and null hypotheses are formulated as follows:
RQ1 Does the modeling language used for modeling software impact the Cor-

rectness of the models? The corresponding null hypothesis is H0,C : The modeling
language does not have an effect on Correctness.

RQ2 Does the modeling language used for modeling software impact the
Efficiency of developers to model? The null hypothesis for Efficiency is H0,E :
The modeling language does not have an effect on Efficiency.

RQ3 Is the user satisfaction different when developers use different modeling
languages? To answer this question, we formulated three hypotheses based on
the variables Perceived Ease of Use, Perceived Usefulness, and Intention to Use,
with their corresponding null hypotheses. These are: H0,PEOU , The modeling
language does not have an effect on Perceived Ease of Use; H0,PU , The modeling
langu age does not have an effect on Perceived Usefulness; H0,ITU , The modeling
language does not have an effect on Intention to Use.

The hypotheses are formulated as two-tailed hypotheses.
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3.5 Participants

The subjects were selected using convenience sampling [30]. We invited 26 third-
year undergraduate students (novices) from a technology program who had
passed previous courses where UML modeling was analyzed and used. Of these
subjects, 25 decided to participate and 22 completed the tasks and forms. We
also invite 17 professionals who are linked to modeling or video-game develop-
ment to participate in the experiment. Nine of them decided to participate and
completed the experiment. A total of 31 subjects with different knowledge about
modeling performed the experiment.

The subjects filled out a demographic questionnaire that was used for charac-
terizing the sample. Table 2 shows the mean and standard deviation of age, hours
per day developing software (Developing time), and hours per day working with
models (Modeling time). We used a 5-point Likert-scale to measure the subjects’
knowledge of programming languages (Programming knowledge), modeling lan-
guages (Modeling Knowledge) and domain-specific languages (DSL knowledge).
The mean and standard deviation of their answers are also shown in Table 2.
The subjects recognized having a medium-high knowledge about software mod-
eling or specific domain languages. All of them spent more time coding than
modeling and evaluated their programming language knowledge or their ability
with models higher than their knowledge about domain-specific languages.

Table 2. Results of the demographic questionnaire

Age
µ± σ

Developing
time±σ

Modeling
time±σ

Programming
known±σ

Modeling
known±σ

DSL
known±σ

All subjects 23.1±4.5 2.5±2.4 0.9±1.1 3.8±0.9 3.0±1.1 2.6±1.1

Novices 21.1±1.8 1.6±1.7 0.7± 0.8 3.5±0.9 2.5±0.8 2.2±0.9

Professionals 27,9±5.4 4.8±2.2 1.3±1.5 4.4±0.5 4.0±0.8 3.7±0.9

The experiment was conducted by two instructors and one expert in the
video-game software domain. The expert provided information about the do-
main and about the Kromaia DSL. This expert was not the same person who was
responsible for designing the tasks. During the experiment, one of the instruc-
tors gave the instructions and managed the focus groups. The other instructor
clarified doubts about the experiment and took notes during the focus group.

3.6 Experimental objects and procedure

The tasks of our experiment were extracted from a real-world software develop-
ment, Kromaia, which is a commercial video game released on PlayStation 4 and
Steam. In Kromaia, the models are interpreted at run-time to create the C++
games’ objects [6]. For modeling, the subjects used Shooter Definition Modeling
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Language, which is the DSL used in Kromaia3 and UML. A video-game soft-
ware engineer, involved in the development of Kromaia, designed the two tasks
of similar difficulty and prepared the correction template for the DSL task. An
expert on modeling prepared the correction template for the UML task. The ex-
perimental objects used in this experiment (which includes the training material,
the tasks and the forms used for the questionnaires) as well as the results and the
statistical analysis are available at http://svit.usj.es/UMLvsDSL-experiment.

The experiment was conducted on-line due to the COVID19 pandemic re-
strictions. During the experiment, all of the participants joined the same video-
conference via Microsoft Teams, and the chat-session was used to clarify doubts
or share information. Two forms were prepared on Microsoft Forms for data
collection, one for each experimental sequence. The experiment, scheduled for 2
hours, was conducted on two different days with different groups. On the first
day, it was performed by novices and on the second day it was performed by
professionals. The experimental procedure is described as follows:

1. An instructor explained the parts in the session, and he advised to the sub-
jects that it was not a test of their abilities.

2. The subjects attended a tutorial about the video-game enemies to be mod-
eled and about the DSL used in the experiment. The information used in
the tutorial and a UML usage guide were available to the subjects during
the experiment. The time spent on this tutorial was less than 10 minutes.

3. The subjects received clear instructions on where to find the links to access
the forms for the experiment. They were also told about the structure of
these forms and where they could find information about UML and the DSL
if they needed to. The subjects were randomly divided into two groups (G1
and G2); the subjects from G1 received the links to access one form and the
subjects from G2 received a link to another. form.

4. The subjects accessed to the on-line form and read and confirmed having read
the information about the experiment, the data treatment of their personal
information, and the voluntary nature of their participation before accessing
the questionnaires and tasks of the experiment.

5. The subjects completed a demographic questionnaire.
6. The subjects performed the first task. The subjects from G1 had to use DSL

to model a video-game enemy, and the subjects from G2 had to use UML to
model the same enemy. After submitting their solution, the subjects classified
the model they had built according to its usefulness, and they completed a
satisfaction questionnaire about the modeling language used.

7. The subjects performed the second task. The subjects from G1 modeled
another video-game enemy using UML, and the subjects from G2 modeled
the same enemy using the DSL. Then, the subjects classified the model they
had built and completed the satisfaction questionnaire.

8. A focus group interview about the tasks (with average duration of 15 min-
utes) was conducted by one instructor while the other instructor took notes.

9. Finally, the tasks were corrected and a researcher analyzed the results.

3 Learn more of Kromaia DSL at: https://youtu.be/Vp3Zt4qXkoY
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3.7 Analysis procedure

We have chosen the Linear Mixed Model (LMM) [29] for the statistical data
analysis. LMM handles correlated data resulting from repeated measurements,
and it allows us to study the effects of factors that intervene in a crossover design
(period, sequence, or subject) and effects of other blocking variables (e.g., in our
experiment, professional experience) [28].

In this study, we apply the Type III test of fixed effects with unstructured re-
peated covariance. The Modeling Language(ML) was defined as a fixed-repeated
factor to identify the differences between using UML or DSL, and the subjects
were defined as random factor (1|Subject) to reflect the repeated measures de-
sign. The response variables (RV) for this test were Correctness and Efficiency,
and the three other variables correspond to Satisfaction: Perceived Ease of Use
(PEOU), Perceived Usefulness (PU) and Intention to use (ITU).

The assumption for applying LMM is normality of the residuals of the re-
sponse variables. To verify this normality, we used Kolmogorov-Smirnov tests as
well as visual inspections of the histogram and normal Q-Q plots.

The starting statistical model (Model 0) to be tested reflects the principal
factors used in this experiment and is described as:

RV ∼ML+ (1| subject) (Model 0) (1)

In order to take into account the potential effects of factors that intervene in a
crossover design in determining the main effect of Modeling Language, we con-
sidered Period and Sequence to be fixed effects. We also considered fixed factors
that are related to the subject’s experience in the statistical model in order to
explore the potential effects of Experience or the effects of the sequence Modeling
Language and Experience (ML∗Experience) to determine the variability in the
response variables. We tested different statistical models like the ones used in
the following formulas in order to find out which factors, in addition to Modeling
Language, could best explain the changes in the response variables:

RV ∼ML+ Experience+ (1|Subject) (Model 1)
RV ∼ML+ Experience+ML ∗ Experience+ (1|Subject) (Model 2)
RV ∼ML+ Experience+ Period+ (1|Subject) (Model 3)

(2)

The statistical model fit of the tested models was evaluated based on good-
ness of fit measures such as Akaike’s information criterion (AIC) and Schwarz’s
Bayesian Information Criterion (BIC). The model with the smallest AIC or BIC
is considered to be the best fitting model [18]. To describes the changes in each
response variable we selected the statistical model that satisfied the normality
of residuals and also obtained the smallest AIC or BIC value.

To quantify the differences in the response variables due to significant fixed
factors, we calculated the the Cohen d value [9] between the alternatives of these
factors. Values of Cohen d between 0.2 and 0.3 indicate a small effect, values
around of 0.5 indicate a medium effect, and values greater than 0.8 indicate a
large effect. We selected histograms and box plots to graphically describe the
data and the results.
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4 Results

4.1 Changes in the response variables

There were differences in the means of all of the response variables depending on
which Modeling Language was used to model a video-game enemy. Table 3 shows
the values for the mean and standard deviation of the dependent variables Cor-
rection, Efficiency, Perceived Ease of Use (PEOU), Perceived Usefulness (PU),
and Intention to use (ITU) for each one of the Modeling Languages compared:
UML and DSL.

Table 3. Values for the mean and standard deviation of the response variables

Correctness Effectiveness Satisfaction µ± σ

µ % ±σ µ %/min ±σ PEOU PU ITU

DSL 90.32 % ± 12.36 6.16 %/min ± 2.91 4.27 ± 0.61 4.11 ± 0.63 3.9 ± 0.99
UML 71.87 % ± 25.16 4.10 %/min ± 3.51 2.85 ± 0.95 2.83 ± 1.02 2.45 ± 1.23

According to the Cohen d values of the response variables, we can affirm
that the effect of the Modeling Language on Correctness is large, with a Cohen
d value of 0.930 and that the effect on Efficiency is medium-large, with a Cohen
d value of 0.639. The effect size for Satisfaction is very large, with Cohen d values
of 1.786, 1.515, and 1.327 for Perceived Ease of Use, Perceived Usefulness, and
Intention to use, respectively. These values are related to the percentage of non-
overlap between the distributions of the response variables for each modeling
language. Higher values correspond with greater percentages of non-overlap and
larger differences. The histograms of Figure 2 illustrate the differences in the
response variables. In the histograms, the non-overlapping parts have a single
pattern (either dots or shaded), while the overlapping parts have both patterns
(dots and shaded).

For all of the variables, the factor Modeling Language obtained p-values of
less than 0.05, regardless of the statistical model used for its calculation. There-
fore, all of the null hypotheses are rejected. Thus, the answers to the research
questions RQ1, RQ2, and RQ3 are affirmative. The Modeling Language used
for developing software has a significant impact on the correctness of the model,
efficiency, and the satisfaction of software developers.

For Correctness, the chosen statistical model was Model 1 (See formula (2)),
which was the best fitting model that satisfied normality in the residuals of the re-
sponse variable. The fixed factors, Modeling Language (F=15.156, p=0.001) and
Experience (F=4.393, p=0.045), were considered to be statistically significant to
explain the changes in correctness. The Cohen d value of -0.654 calculated with
the standardized difference between the means of Correctness for novices and
professionals indicates a medium-large effect in favour of the professionals. The
models made by professionals are more correct than the ones made by novices.
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Fig. 2. Histograms with normal distributions and box plots for the response variables

For Efficiency the chosen statistical model was Model 3 (See formula (2)).
The fixed factors Modeling Language (F=12.337, p=0.001), Experience (F=5.275,
p=0.029), and Period (F=16.451, p=0.000) were considered to be statistically
significant to explain the changes in correctness. The Cohen d value of -0.592
for Efficiency between novices and professionals indicates a medium-large effect
in favour of the professionals. The professionals are more efficient than novices
when modeling. The Cohen d value of -0.788 for Efficiency between the first
period and the second period, indicates a large effect in favour of the second
period. The subjects were more efficient when modeling the second task.

For Satisfaction the Modeling Language factor was the one fixed factor that
was found to be significant for all the statistical models tested. For Perceived Ease
of Use and Perceived Usefulness, the chosen model was the starting statistical
model, Model 0 (See formula (1)) and the Modeling Language factor obtained
p-values of 0.000 for Perceived Ease of Use (F=963.137, p=0.000) and Per-
ceived Usefulness (F=892.660, p=0.000). For Intention to use, the chosen model
was Model 2 (See formula (2)); however, only the Modeling Language factor
(F=13.846, p=0.001) was statistically significant in explaining the changes in this
response variable. The changes in Intention to use due to Experience (F=0.604,
p=0.443) or the sequence Modeling Language and Experience (ML∗Experience)
(F=0.115, p=0.737) were not considered to be statistically significant.



12 África Domingo et al.

4.2 Model assessment by subjects

All of the subjects evaluated their DSL models better than their UML models.
The novices considered their models to be more useful as sketch than as blueprint
or as programs. The professionals evaluated the usefulness of their DSL model
better as programs than as sketch or blueprint, and they evaluated their UML
model to be more useful as sketch than as blueprint or as programs. Table 4 shows
the values for the mean and standard deviation of the subjects’ evaluation of
their own models for each modeling style.

Table 4. Values for the mean and standard deviation for models usefulness

As sketch As blueprint As a program
µ± σ µ± σ µ± σ

DSL Novices 4.1 ± 1.0 3.9 ± 1.1 3.5 ± 1.4
Professionals 4.2 ± 0.8 3.7 ± 0.8 4.3 ± 0.5

UML Novices 3.0 ± 1.0 3.3 ± 0.8 2.6 ± 1.1
Professionals 3.8 ± 1.0 3.0 ± 1.1 2.9 ± 1.2

During the focus group, the novices declared that they found the DSL to be
useful for communication, but they believed that UML would be necessary to
generate a video-game enemy with all of its characteristics. The professionals
(especially those linked to video games) said that UML could be useful to define
a video-game enemy in general, at the beginning of the development, but that
they would choose a DSL to define a specific video-game enemy.

4.3 Interpretation of the results

During the training of the experiment, the subjects were introduced to Kromaia,
and the use of models made in Kromaia was explained to them. In Kromaia,
models are used as programs (see Figure 1.c). It is very striking that, despite the
fact that a successful case of models as programs was used and that the subjects
were explicitly told that Kromaia developers use models as programs, most of
the subjects continue to view their models as sketch rather than as programs.

Furthermore, the results also show that models are not far from scoring a
value of 100% correct. On average, only 28% would have to be corrected in UML
models and 10% in DSL models to be used as programs. Actually, more than five
subjects produced models with a value of 100% correct. These models can be
run on top of the Kromaia model interpreter. Nevertheless, they did not give a
higher score to programs than to sketch. This is a problem that was not covered
in evaluations by others authors: no matter how correct the models are, the
subjects value them more as sketches than as programs. We suggest that this is
a major problem: it is not that the models are not ready to be used as programs
because we must improve tools and teaching, it is that subjects think of models
more as sketches than as programs.
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5 Threats To Validity

To describe the threats to validity of our work, we use the classification of [30]:
Conclusion validity. The low statistical power threat was minimized be-

cause the confidence interval is 95%. The fishing and the error rate threat was
minimized using tasks and fixes designed by a video-game software engineer. The
Reliability of measures threat was mitigated because the objective measurements
were obtained from the digital artifacts generated by the subjects when they
performed the tasks. The reliability of treatment implementation threat was al-
leviated because the procedure was identical in the two sessions. Also, the tasks
were designed with similar difficulty.

Internal validity. The compensatory rivalry threat affected the experiment;
the subjects may have been motivated to perform the task with a higher level of
quality by using the modeling language that was the most familiar to them. The
interactions with selection threat affected the experiment because of the volun-
tary nature of participation. To avoid student demotivation, we selected students
of a course whose contents fit the design of the experiment. In addition, the sub-
jects had different levels of modeling language knowledge and different levels
of knowledge of the video-game domain. To mitigate this threat, the treatment
was applied randomly. However, we found two outliers during the analysis of
correctness and efficiency. The extreme values that were found correspond to
subjects with scores of less than 25% in correctness in the UML task. Following
the recommendations of Dean et al. [12], we repeated the statistical analysis by
excluding the data of these two subjects, and we found that the language factor
remained statistically significant to explain the changes in all of the response
variables for all of the models tested. Hence, our conclusions were not sensi-
tive to the responses of subjects with low scores in correctness. Even though
the tasks were designed with similar complexity, the effect of the task (period)
was significant for efficiency. The effect of the language being the same for both
tasks suggests a learning effect; the subjects spent less time performing the sec-
ond task. We minimized this maturation threat by using a crossover design.
Construct validity. All of the measurements were affected by Mono-method
bias. To mitigate this threat for the correctness and efficiency measurements,
we mechanized these measurements as much as possible by means of correction
templates. We mitigated the threat to satisfaction by using a widely applied
model (TAM) [10]. The hypothesis guessing threat was mitigated because we
did not explain the research questions to the subjects. To weaken the evalua-
tion apprehension threat, at the beginning of the experiment, the instructor told
the subjects that the experiment was not a test of their abilities. To mitigate
the Author bias threat, the tasks were extracted from a commercial video game
and designed with similar difficulty. Finally, the experiment was affected by the
mono-operation bias threat because we worked with a single treatment.

External validity. The domain threat occurs because the experiment has
been conducted in a specific domain, i.e., video-game development. We think
that the generalizability of the findings should be undertaken with caution. Other
experiments in different domains should be performed to validate our findings.
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6 Conclusion

In this work, we present an experiment that compares UML and a DSL when
subjects model in the video-game domain. To that extent, we combined objective
measures and subjective measures. Our results reveal that the subjects under-
estimate the potential of their own models. This problem was not discovered
by previous works that focus either on objective measures to evaluate modeling
performance or on subjective measures to classify modeling styles. Our findings
suggest that future evaluations should take into account both objective and sub-
jective measures to better understand modeling languages. Our results are also
relevant for teaching modeling and model adoption. If users were able to assess
their models correctly, they might leverage their latent potential as programs.
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14. Domingo, Á., Echeverŕıa, J., Pastor, Ó., Cetina, C.: Evaluating the benefits of
model-driven development. In: International Conference on Advanced Information
Systems Engineering. pp. 353–367. Springer (2020)

15. Fowler, M.: UML distilled: a brief guide to the standard object modeling language.
Addison-Wesley Professional (2004)

16. Gorschek, T., Tempero, E., Angelis, L.: On the use of software design models in
software development practice: An empirical investigation. Journal of Systems and
Software 95, 176–193 (2014)

17. Grossman, M., Aronson, J.E., McCarthy, R.V.: Does UML make the grade? In-
sights from the software development community. Information and Software Tech-
nology 47(6), 383–397 (2005)

18. Karac, E.I., Turhan, B., Juristo, N.: A Controlled Experiment with Novice De-
velopers on the Impact of Task Description Granularity on Software Quality in
Test-Driven Development. IEEE Transactions on Software Engineering (2019)

19. Kosar, T., Gaberc, S., Carver, J.C., Mernik, M.: Program comprehension of
domain-specific and general-purpose languages: replication of a family of experi-
ments using integrated development environments. Empirical Software Engineering
23(5), 2734–2763 (2018)

20. Marko, N.C., Liebel, G., Sauter, D., Lodwich, A., Tichy, M., Leitner, A., Hansson,
J.: model-based engineering for embedded systems in practice. Research reports in
software engineering and management pp. 1–48 (2014)

21. Moody, D.L.: The method evaluation model: a theoretical model for validating
information systems design methods. ECIS 2003 proceedings p. 79 (2003)

22. Mussbacher, G., Amyot, D., Breu, R., Bruel, J.M., Cheng, B.H., Collet, P., Combe-
male, B., France, R.B., Heldal, R., Hill, J., et al.: The relevance of model-driven
engineering thirty years from now. In: International Conference on Model Driven
Engineering Languages and Systems. pp. 183–200. Springer (2014)

23. Otero, M.C., Dolado, J.J.: Evaluation of the comprehension of the dynamic mod-
eling in UML. Information and Software Technology 46(1), 35–53 (2004)

24. Pastor, O., Molina, J.C.: Model-driven architecture in practice: a software pro-
duction environment based on conceptual modeling. Springer Science & Business
Media (2007)

25. Reinhartz-Berger, I., Dori, D.: OPM vs. UML–Experimenting with Comprehen-
sion and Construction of Web Application Models. Empirical Software Engineering
10(1), 57–80 (2005)

26. Staron, M.: Adopting model driven software development in industry–a case study
at two companies. In: International Conference on Model Driven Engineering Lan-
guages and Systems. pp. 57–72. Springer (2006)
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