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ABSTRACT

A family of software products comprises similar products within a
defined scope that share common characteristics, often due to reuse
techniques applied during development. This paper introduces an
approach that applies biological insights to map the landscape of
a software product family, identifying potential gaps within its
scope. Phylogenetics studies the gene similarity among groups of
organisms to understand ancestry among species. Leveraging Phy-
logenetics in software, our approach offers a structured view of a
product family, aiding in the discovery of unexplored areas fitting
the scope of the family. Our approach creates a phylogenetic tree
that enables to easily identify latent products (ancestors) that did
not exist in the original family. Those ancestors can then be recon-
structed from existing products (descendants). The product family
evaluated is a set of industry-scale video game non-playable charac-
ters. We assess this approach through video game simulations and
scope metrics to determine how closely the reconstructed products
align with the family’s scope. The results confirm that the content
generated with phylogenetics aligns better with the family scope
than the state-of-the-art procedural content generation techniques
using evolutionary algorithms. Phylogenetics enhances content
generation by providing a framework to understand and expand
the product family with new content.
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1 INTRODUCTION

Software is mainly created through reuse. Since the term software
engineering was coined at the NATO Conference held in Garmisch
in 1968 [42], its evolution has been tied to the concept of reuse (also
coined during that conference [38]). Either applying an opportunis-
tic approach [36] such as clone-and-own, or applying a systematic
approach as the software product lines propose [13].

These practices result in most products being built by reusing
existing ones. Several studies [6, 25, 29, 30] have reported reuse
percentages across products ranging from 10% to 85% during the late
80s. More recently, the plastic surgeon theory [4] found that 43% of
commits to a large repository of Java projects could be reconstituted
from existing code. Similarly, Gabel and Sue [17] concluded that
to be able to write a new piece of software in a large repository
(sourceforge), an engineer needs to write more than six lines of
code; otherwise, the code already exists somewhere.

However, despite extensive reuse in software creation, the in-
creasing demand for software pressures developers who struggle to
meet expectations. This scenario is even worse in the case of Game
Software Engineering (GSE) [1, 39], where creating new content
for video games is the bottleneck in an industry that has become
the largest entertainment sector, surpassing music and cinema [44]
and accounting for one out of two software developers [54].

To address this need for content, some works from the GSE
community have applied Procedural Content Generation (PCG)
techniques [22, 56] to accelerate the development of new features
for their families of products. However, those techniques are pri-
marily based on evolutionary computation [50], and the generated
elements often fall outside the intended scope due to their reliance
on randomness. Alternatively, other works use Machine Learn-
ing for PCG (PCGML), but the lack of training content remains a
challenge for PCGML [49]. Additionally, interpreting the results
is challenging for game developers [35], who must create content
that meets design expectations.

By contrast, we argue that the inherent reuse across a family of
video game elements enables an analysis to generate new content
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by reusing parts of the family. In this work, we propose using
phylogenetics, a nature-inspired approach from biology, to analyze
ancestry among family products and exploit them to generate new
products within the family scope.

Phylogenetic analysis is used in biology to discover ancestry
relationships among individuals, classify them, and formalize an
evolution tree that arranges them in a succession of evolutions. This
technique yields the discovery of hidden links among the individu-
als that have yet to be discovered. We argue that this technique can
be adapted to a family of software products, yielding the discovery
of missing ancestors that can fit into the family of products.

To validate these ideas, we perform a phylogenetic analysis of
a family of software products (video game elements from a com-
mercial game), arrange the results into a phylogenetic tree, identify
ancestors, reconstruct them using their descendants, and evaluate
them as new family products. We then compare these reconstructed
ancestors with procedurally generated elements using a state-of-
the-art approach, assessing both sets with metrics used in video
games to determine the alignment with the game’s scope.

The results indicate that the elements generated with our ap-
proach align more closely with the original family of products’
scope than those generated with the state-of-the-art approach, rep-
resenting a smaller scope difference 75.88% of the time. The statisti-
cal analysis shows that the differences are significant, and there is
a large effect size between our approach and the baseline. Applying
the proposed technique can create new content and provide a new
perspective on the video game’s product line.

This study paves a new path in content generation. Previous
approaches generate content that is considered secondary content
(e.g., vegetation) because they are not aligned with the scope of
video games. This is a new point of view for SPLs where genetic
divergence points and ancestry branches are exploited. This new
perspective opens new possibilities for understanding variability.
For instance, Phylogenetics has the potential to initialize an SPL
via re-engineering, among other uses.

The paper is structured as follows. Section 2 presents the back-
ground for this work. Section 3 presents the steps in our Latent
Content Generation approach. Section 4 presents the evaluation.
Section 5 answers the research questions and presents a discussion
of the results. Section 6 presents the study’s threats to validity.
Section 7 presents the related work. Section 8 concludes the paper.

2 BACKGROUND

This section introduces Phylogenetic inference and its characteris-
tics borrowed from the Biology field and how it is used to create
phylogenetic trees in nature.

In Biology, it is possible to measure the genetic difference be-
tween two given species or even between groups of individuals
of the same species. That difference is denoted as genetic distance
[43], and, in such a field of study, the genetic distance is calculated
for two specific taxa. Taxon is a concept that refers to a group of
organisms that have a set of genetic characteristics in common.
For example, the Animalia kingdom is a high-level, general taxon
that includes all the animals known, whereas Canis Lupus (Grey
Wolf) is a low-level taxon that refers to a specific species only. The
comparison of a given set of taxa is commonly done using a data
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Figure 1: Example of an inferred phylogenetic tree from a
distance matrix.

structure known as a Genetic Distance Matrix: a square matrix that
represents the genetic distance between each pair of taxa studied
[52]. The top part of Figure 1 shows how the diagonal values are
always zero in a matrix like that. Typically, due to its symmetrical
nature, only the distances above or below the main diagonal are
represented to hide redundant information. In addition, the genetic
distances are usually values between zero and one [23].

It is possible to apply inference techniques to produce a diagram
called Phylogenetic Tree [5], which shows how the taxa studied (the
leaves of the tree) are related in terms of genetic divergence points
and ancestry branches using inner nodes, that hypothesize fossil
ancestors, and distance values included in the edges. The lower part
of Figure 1, which uses an animal species-based example, shows that
the objective is to provide additional and useful branching/lineage
information while being coherent with the genetic distances used.
Therefore, for two given taxa, the sum of the distance values of the
path that connects them in the tree should match or be close to the
value present in the distance matrix.

3 LATENT CONTENT GENERATION

Our approach is based on the new perspective that phylogenetics
can provide to a product family by representing the genetic relations
among products in a single tree. From this tree, the game developer
can identify potential gaps (ancestors) that serve as a seed for
creating new content. We call this new content as Latent Content.

Figure 2 represents an overview of our approach. Dotted boxes
represent artifacts generated and solid line boxes represent execu-
tion actions or calculations. The LCG approach is divided into two
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Figure 2: Our Latent Content Generation Approach.

parts: Latent Content Identification and Latent Content Reconstruc-
tion. First, the products in the family are fed into the phylogenetic
algorithm to generate the phylogenetic tree. First, each product is
encoded into genetic information and then analyzed by pairs to
create the distance matrix. To finally create the phylogenetic tree,
we perform phylogenetic inference on the collection of taxa, result-
ing in the visual diagram. Second, With the tree, the developer can
select two genetically related products (descendant products) and
perform the Latent Content Reconstruction operation to raise the
common ancestor between the two products leveraging the infor-
mation on the commonalities and differences of each descendant.
This approach serves as the first step in the formalization of
variability. The generated tree provides an ordered and structured
view of the family. We can also create new content that is ensured
to be within the family scope by reconstructing common ancestors.

3.1 Encoding

The first step in the phylogenetic analysis is to encode the content
into genetic information. Video game development, a wide range of
game content items (e.g., levels/stages or characters) are defined as
software models using commercial tools for visual scripting in en-
gines such as Unreal (Blueprints) or Unity (Unity Visual Scripting).
A recent survey shows that it is also common to apply Domain
Specific Languages (DSLs) [57] for this task. The original DSL used
to specify NPCs in Kromaia is SDML. In this work, we apply a string
encoding to represent the software models, as others have done for
years [8]. It is done by transforming the SDML model into a single
string of characters called a genome. Each NPC element (hull, link,
weapon, etc.) is represented as a single character in the string. It
works similarly to a regular DNA sequence where the order and
value of each character are relevant to encode the data.

3.2 Distance Matrix

When comparing two products, the resulting distance value is
stored in a square matrix called distance matrix, as it is commonly
used in biology [53]. The values are extracted from 0 (exact copy)
to 1 (each gene of the genome is different).

To calculate this distance, we compare each individual’s genome
with the other individuals using the Levenshtein distance algorithm
[31]. The larger this distance, the smaller the chance that a model is
evolved into another model by a series of changes. However, other
distances can be used or created in the future. Each gen is compared
one by one, and then the average is computed (i.e., the gene ABA
compared with the gene ABC would compute a 0.333).

3.3 Phylogenetic Tree Inference

We use the Neighbor-Joining Method from the distance matrix as
an inference technique to produce a phylogenetic tree. This method
is commonly used in biology phylogenetics [46]. From the genetic

distance matrix, each element is compared from the most similar
(closer to 0) to the most different (closer to 1). Each comparison
creates a new element that replaces the compared elements. These
new elements are compared with the other elements using the
average of the original values. Here is an example to illustrate the
inference calculation. The genetic matrix has the following tuples:
A[B = 0.5, A|C = 0.25, B|C = 0.33. The A|C tuple will be processed
by replacing A and C with A"C. Then, the tuple A"C|B is processed
with the average of the original values: A"C|B = (A|B+C|B)/2 = 0,415.

This process is repeated for each pair, storing the creation order
to build the tree until only two elements are linked by the root. This
root will store the highest value, representing the common genes in
all genomes. Figure 1 shows an example of a simple phylogenetic
inferred from a distance matrix. In that case, the distance d; + d2 +
ds + d4 should be similar to the distance included in the matrix.

This tree can serve as a visual representation of the product
family used as input and the relations among products in terms of
genetic similitude. The game developer can spot possible gaps that
can be exploited to create new content. These gaps are known in the
phylogenetic realm as common ancestors. These ancestors are not
present in the original family and serve as hypothetical individuals
from which the current individuals could have evolved. We leverage
the ancestral data to identify novel hypothetical entities called latent
content. While not previously documented, these entities are not
entirely unprecedented, embodying characteristics inferred from
their descendants.

By inferring the characteristics of newly created individuals
from their descendants, we maintain the characteristics of these
individuals aligned with the family scope, whether this scope is
formalized or not. As video game content is creative by nature, the
family scope can sometimes be determined by subjective human
requirements such as visual appeal or the fun of the game. Thus, the
scope of a family of video game content is not always formalized.

3.4 Latent Content Reconstruction

In the phylogenetic tree used in our work, the individuals provided
as starting points act as leaves, while the inner, inferred nodes rep-
resent points of inflection concerning lineage. When the sibling
of a taxon (leaf) is a taxon too and not an inner node, the parent
inner node, which is their Most Recent Common Ancestor (MRCA),
hypothesizes a taxon from which those two existent ones descend
[10]. Our approach uses two taxa with a shared MRCA to recon-
struct its genetic material to produce an individual that realizes the
latent game content represented by that MRCA.

The reconstruction of that ancestor is done manually, following a
set of rules that we defined after studying the information retrieved
in interviews with the developers of the video game case study.
These criteria take into account the concepts of age and antecedent
for elements like files or weapon/projectile types, referring to the
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Our Latent Content Generation Approach (LCG)
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Figure 3: Experimental Setup

date when they were implemented by the developers or the type
that could be considered as the antecedent of the other two given
types. The reconstruction rules can be summarized as follows:

e Anatomy: The anatomical structure keeps the base infras-
tructure of the biggest of the two descendants, in terms of
spatial organization, but the amount of hull is the average.
Additionally, the links that need to be broken due to that
new, average organization are removed accordingly.

e Visual Appearance : In the case of anatomical characteris-
tics shared by the two descendants, which only differ in the
mesh file that gives an object its visual appearance, the oldest
of the two visual appearances is kept in the reconstructed
ancestor.

e Weaponry: The weapon amount is the average of the two
descendants, while the weapon types assigned are those
considered to be the antecedents of the two when they differ.
This criterion is applied to projectile types, too. In both cases,
the parameters used could be set by choosing randomly one
of the following options: The complete parameter set from
the oldest of the two weapon/projectile types and averaged
values for every parameter.

e Behavior: In the same manner as weaponry, a random deci-
sion is made with regard to the use of antecedent types or
average parameters.

o Cosmetic Content: The objects embedded in the anatomy
with purely cosmetic purposes and showing, optionally, ani-
mations are only kept if both descendants share them. Oth-
erwise, the reconstructed ancestor will not include those
parts.

e General parameters: The parameters dealing with char-
acteristics like scale or time values present globally in the
descendants in the different aspects described previously are
averaged.

These rules represent the first step in consolidating a specific
Latent content reconstruction operation. Our purpose is to explore,
in the future, possible further installments of that operation, taking
into account new perspectives.

4 EVALUATION

To evaluate our approach, we have designed an evaluation to ad-
dress the following research questions:

e RQ1 - Does our Latent Content Generation approach pro-
duce results that fit the scope of the family in terms of the
metrics used for families of video game content better than
the state-of-the-art approach for PCG?

e RQ2 - If so, how big are the differences between both ap-
proaches?

e RQ3 - Does the Latent Content Identification operation pro-
duce better seeds than random for the state-of-the-art ap-
proach for PCG?

The state-of-the-art PCG approach is presented in Section 4.3.

4.1 Kromaia Product Family

The main artifact in our evaluation is video game content. Specifi-
cally, it is content from Kromaia!, a video game released on both PC
and console. This game is distinguished by its dynamic 360-degree
movement flight system and shooting mechanics.

The game features Non-Playable Characters (NPCs) that players
must overcome. These NPCs vary widely, ranging from small, sta-
tionary enemies to large, articulated ones with complex behaviors
and weapons. All NPCs align with the developer’s vision, adhering
to consistent mechanics, dynamics, and aesthetics [26].

During the development of the game, these NPCs were created
using opportunistic reuse by manually copying and pasting parts
of some NPCs already created. This opportunistic approach created
a product family that has similarities among NPCs. There are com-
mon parts that were borrowed from other NPCs, and there are new
parts that are particular and unique to each NPC.

These NPCs incorporate concepts common to all entities in the
game: hulls, which are rigid bodies in the character’s anatomy,
such as beads on a necklace or body parts of a creature; links
representing joints with varied degrees of freedom that connect
hull pairs; weak points added to regular hulls to define damageable
objects; weapons used to attack other characters via projectiles or
spikes; and AI components that parametrize behaviors.

4.2 Experimental Setup

Figure 3 shows the experimental design of the evaluation. The left
part shows the family of Kromaia video game content used as input
for the evaluation. The family is composed of 48 enemies present
in the commercial release of Kromaia. Then, this family is fed as

Uhttps://store.steampowered.com/app/285980/Kromaia/
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input to the three content generation approaches compared: our
Latent Content Generation approach, the state-of-the-art approach
for PCG used as a baseline, and a version of the baseline enhanced
using our Phylogenetic operation (see grey boxes in Figure 3).

Then, the content generated by the three approaches is evalu-
ated using video game simulations and a set of metrics used by
the GSE community to assess video game content and guarantee
scope alignment (Completion, Duration, Uncertainty, Killer Moves,
Permanence, Lead Change) [8]. In addition, the original content used
in the evaluation is also assessed using those metrics (see dashed
arrow). To compare the new content produced with the original
content in terms of those metrics to determine if the new content
generated is within the scope of the existing content.

Finally, the data is processed to present the results of the evalua-
tion (see right part of Figure 3). First, differences among the scope
metrics of the new content generated and the original content are
computed and presented. Then, a statistical analysis is performed,
including measures of statistical significance (Quade and Holm’s)
[19] and effect size (A12 and Cliff’s Delta) [14, 15, 51].

4.3 Content Generation Approaches

To answer the research questions, we compare our LCG approach
with the baseline PCG. To determine the PCG Baseline, we had
to identify work from PCG literature capable of generating game
elements such as the ones of Kromaia. After surveying the literature,
we chose the work by Gallota et al. [18] because (1) it is one of the
most representative search-based PCG approaches; (2) it generates
spaceships for the Space Engineers videogame, so it seemed capable
of generating content for Kromaia, and (3) it achieves the best results
for this kind of content [18]. The approach from Gallota et al. is
a hybrid Evolutionary Algorithm, combining an L-system with a
Feasible Infeasible Two Population Evolutionary Algorithm.

Additionally, we explore another way of generating new content,
which is the result of combining the operation for selecting the
seeds via phylogenetics (the ancestor identification operation) and
the PCG evolutionary algorithm. We perform this combination to
see how each component affects the results, i.e., we want to observe
how the Latent Content Identification operation can affect the PCG
algorithm and, thus, the content generated and how the Latent
Content Reconstruction operation affects the results.

As a result, there are three sets of new content generated (see
the middle part of Figure 3):

e LCG: Content created by our Latent Content Generation
approach. That is the combination of the seeds obtained
with our Ancestor Identification operation followed by the
selection of descendants using the phylogenetic tree fed to
our ancestor reconstruction operation.

e PCG+R: Content created by the baseline PCG approach, fed
with random seeds (the usual practice in the literature).

e PCG+L: Content created by the baseline PCG approach, fed
with the descendant seeds identified by our Ancestor Iden-
tification operation, followed by a selection of descendants
using the phylogenetic tree.
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4.4 Game Simulations

The generated content is then evaluated using video game sim-
ulations, an accepted practice [11] for video games. Simulations
are easy to find in video games, as many of the elements of the
game are autonomous (NPCs), and other games directly include
contenders (such as racing games).

For the evaluation, we use a simulated player that performs
duels against the enemies, simulating what a human player would
do during a duel and generating tracing data that will be used to
calculate the scope metrics. In the case of Kromaia, the simulated
player has been created by the development team, including the
configurations needed for their specific intention for the game.

The simulated player is used in our evaluation to execute au-
tomatic duels against any type of enemy (the original Kromaia
enemies or the generated ones). In those simulations, the simulated
player confronts the enemy, strategically moving and targeting the
enemy’s different hulls and weak points to destroy them. Mean-
while, the enemy will act based on its anatomical structure, behav-
ioral patterns, and attack/defensive dynamics, aiming to destroy
the simulated player. Both entities actively strive to emerge vic-
torious, avoiding draws or ties and ensuring a definitive win. As
the simulated player is non-deterministic, we will run each duel 50
times to ensure the consistency of the results across executions. It is
no more than 50 times due to time execution constraints. However,
it is within the suggested range in the literature [3].

4.5 Scope Metrics

Video games are complex software because they interconnect work
from various roles (game designers, programmers, 3D artists, or
musicians) into a single piece transmitting a pleasant or fun ex-
perience to the player. However, fun’ is an abstract concept and
depends on the game designers’ intention for their audience. What
is fun for some (e.g., a horror movie) can be unpleasant for others.
The game designer’s mission is to make decisions, take necessary
risks, and ensure all elements fit the intended game scope.

Regarding the content of the video game, it must be properly
aligned with the experience being evoked to empower game design-
ers to effectively convey their intended experience [48]; mechanics,
dynamics, and aesthetics of a video game are interrelated [24],
aligned content avoids disrupting the player experience. Therefore,
when generating new content for an existing video game (e.g., the
family of content from Kromaia), we must ensure that the new
content is aligned and remains within the same scope.

There are measurable indicators of game quality in the literature.
In this work, we will apply six widely accepted indicators that fit
the type of game used in our evaluation (Kromaia, a 3D spaceship
shooter) [8, 11]. Our evaluation measures the six scope criteria from
0 to 1 (values will be clamped when needed). Then, we calculate the
distance between the generated content and the family of content
from Kromaia, obtaining low values for content that is effectively
aligned with the scope of the family.

S1-Completion: A duel against an enemy should end with more
conclusions (victories for any of the two contenders) than ties (no
contender wins, and the duel keeps going for longer than expected
by the game designers). Depending on the type of game, duels can
be designed to last longer or shorter, so the timeout to consider a
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duel as a tie can be adapted. In this type of game, ties are abnormal
and usually indicate a problem with the content (e.g., cannot be
killed by any means). The criterion S1-Completion is the ratio of
conclusions over total duels:

Conclusions

Duels @

S1-Completion =
S2-Duration: The duration of duels between players and ene-
mies is expected to be around an optimal value (Topsimar) stated by
the game designer. Significant deviations from that reference value
are good design-flaw indicators: short games are probably too easy,
and long duels tend to make players lose interest. The criterion
S2-Duration is the average difference between the duration of each
duel (Ty) and the optimal duration (Topimai):

Duels |T0ptimal _le
TOptimal

Duels

S2-Duration = clamp(g 1] |1 - =1

@

S$3-Uncertainty: If a duel outcome can be foreseen in advance,
the player might lose interest when she realizes that she will lose
the duel and will be bored for the remaining time. To keep players
engaged during the duel, the contenders should not get extremely
close to victory or defeat too early before the duel finishes. There-
fore, a duel is considered to be more uncertain the longer the time
until the player’s or the enemy’s health levels are too low, consid-
ered as a dangerous value (P; and By, respectively). For each duel,
S3-Uncertainty measures the average deviation between the time
at which one of the contenders reaches a dangerous health value
and the total duration of the duel (Ty).

Duels Ta—min(Pg,Ba)
dz—:1 Ta
S3-Uncertainty = clampo 1) [1— — Duel (3)
’ uels

S$4-Killer Moves: While in a duel, contenders perform actions
(e.g., moving closer or farther, shooting, using special weapons).
Some actions are considered trivial, and others are considered a
remarkable highlight (H) towards the duel’s outcome. In contrast,
others are considered Killer moves (K) as they truly determine the
duel’s outcome. S4-Killer Moves measures the ratio between killer

moves (K) and remarkable highlights (H).

Duels K

£
d=1 ¢

S4-Killer Moves = clampg 1) |1 - (4)

Duels

S5-Permanence: Permanence measures how often the advan-
tages given by significant actions or moves by one of the contenders
are immediately reverted by the opponent in terms of dominance.
Recovery moves (R) are those that quickly cancel the advantages
gained by the opponent by a killer or highlight move. The criterion
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S5-Permanence is measured as follows:
lels - RdK
zrme
42y HatKa

©)

S5-Permanence = clamp(g 1) |1 — Duel
’ uels

S6-Lead Change: The lead of a duel is determined at any given
moment by considering the contender with the highest health level.
S6-Lead Change measures how often a highlight or killer move
changes the lead of the duel (L) as the ratio between changes in the
lead (L) and the number of highlight or killer moves (H,K) during
the duel:

Duels

S6-Lead Change = clampyq 1) (6)

Duels

Overall Finally, the six scope criteria are combined into a single
average value representing the overall scope differences of the
evaluated content. This will ease the interpretation of the results:

Mz

. Sl
Overall = =2 (7)
N

4.6 Implementation Details

The evaluation has been performed using a commercial HP laptop
with an Intel i7-10750H processor, 16Gb of RAM, and Windows 10 64
bits as the host operating system. The execution of the phylogenetic
phase took around 10 minutes, with the calculation of the genetic
distance matrix being the most time-consuming part (95% of the
execution time). This bottleneck happens due to the expensive
distance calculation as it needs to iterate for each character of the
NPC files. The presented approach for Latent Content Generation
has been implemented using the .NET 6 runtime environment and
C# 10 as the programming language.

The scope metrics include configurable parameters tailored to
the needs of the game designers. In this work, parameters for those
metrics have been provided by the Kromaia development team
(determined based on their own experience, desires, or through
questionnaires with players) and are as follows: S1-Completion, 20
min. is the maximum time for a duel; S2-Duration, the optimal time
for a duel, is 10 min.; S4-Killer Moves, a highlight move happens
when either the boss unit or the player experiences a decrease in
health, and killer moves are those that make the difference in health
between the contenders reach 30%.

The statistical analysis has been performed using R-Studio. The
results of the evaluation, the implementation of the approach, the
game simulations, and the scripts used for the statistical analysis
are made publicly available to the reader?.

4.7 Results

This section presents the results obtained after applying the content
generation approaches.

The phylogenetic tree generated from the Kromaia product fam-
ily is presented in Figure 4. This tree has a structured view of the

Zhttps://anonymous.4open.science/r/LatentContentGeneration-4F32
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Figure 4: Phylogenetic Tree of the family of enemies from Kromaia. Each enemy used as input is depicted as a blue rectangle;
ancestors identified are depicted as green diamonds; ancestors reconstructed are depicted as red dotted diamonds.

S1 - Completion

S2 - Duration

S3 - Uncertainty

S4 - Killer Moves

S5 - Permanence

S6 - Lead Change

Overall

0.82573 + 0.00232

0.9929 + 0.0021

0.16053 + 0.00412

0.52982 + 0.00399

Scope  0.99997 £ 0.00015 0.18663 + 0.01565 0.01313 + 0.00754

LCG 0.00003 + 0 0.07369 + 0.05910  0.01340 + 0.00449
PCG+L 0.00003 + 0 0.13263 + 0.06105 0.01792 + 0.01856
PCG+R 0.00003 + 0 0.14780 + 0.05186  0.02005 + 0.02252

0.05175 + 0.03893
0.14479 + 0.11813
0.14359 + 0.12938

0.00790 + 0.00881
0.00941 + 0.00905
0.00954 + 0.00820

0.03169 + 0.4389
0.08366 + 0.06686
0.08178 + 0.07408

0.01122 + 0.01077
0.02865 + 0.02102
0.02989 + 0.02057

Table 1: Reference values for each scope metric and differences for each content generation approach and scope metric. The
lower the values the better. The smallest value for each scope metric is highlighted in grey.

mLCG

B PCG+L @APCG+R

Figure 5: Scope differences between the content generated
and the family of products from Kromaia. The lower the
differences, the better.

product’s family and the genetic relations between products. It
serves as the starting point for the reconstruction of latent content.
The phylogenetic tree provides descendants from the tree’s leaves
(blue rectangles) and its ancestor to be reconstructed (green dia-
monds). Each ancestor used in the evaluation is represented as a red
dotted diamond, and the root of the tree, the common ancestor to all
NPCs, is shaded in blue. The selection of ancestry was performed by
one professional video game developer of Kromaia with 20 years of
experience, and his selection was corroborated by another Kromaia

developer. The bottom-right part of Figure 4 shows a zoom of two
latent ancestors and their corresponding descendants.

As an example, we will use the reconstructed ancestor of the en-
emies DaimonMobulaBlade and DaimonMobulaBolt. Both enemies
have similar anatomy, visual appearance, and behavior. The main
difference is the weaponry. Then, the reconstructed ancestor has
the common parts and a random weapon from each enemy with
averaged parameters.

The six metrics are obtained by simulations executed for each
NPC created and for each product in the Kromaia family. The results
show that with LCG, we can create new content more similar to the
NPCs in video games. Figure 5 and Table 1 show the differences for
each scope metric between the content generated and the Kromaia
family for each approach evaluated. The lower, the better. The
differences between our LCG approach and the reference scope
metrics from the family (see the first row of Table 1) are smaller
than those created by the baselines (PCG+R, PCG+L).

We can see that the S1-Completion metric is identical to the
scope in the three approaches measured. S1-Completion is the
minimum requirement an enemy should meet, for it is expected
that the battles, at least, can be completed. Every approach can
create content with basic functionality as well as those present in
the family. S3-Uncertainty and S5-Permanence are the two other
metrics that are more similar to the scope. With these metrics,
we can see how LCG starts to outperform the baseline, but the
differences seem negligible.
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S2-Duration, S4-Killer Moves, and S6-Lead Change are the met-
rics that show the most difference from the scope. The S2-Duration
for LCG is similar to the optimal duration, as indicated by the game
designer. S4-Killer Moves and S6-Lead Change show similar perfor-
mance among approaches, as was expected because these metrics
are related with almost three times more in scope in favor of LCG.

All these metrics are summarized with the Overall metric and
show that, with LCG, developers can create content that is more
similar to the scope than PCG, which is more than twice as different.

4.8 Statistical Analysis

To address RQ2, we compare the results obtained from the different
content generation approaches. All the data obtained from the
simulations were compared to the scope of the family of products
and then analyzed following established guidelines [3].

First, a statistical significance analysis will provide formal and
quantitative evidence of the differences among approaches, deter-
mining whether the differences observed are due to the application
of different generation approaches or mere chance. Then, an effect
size analysis will be performed to determine if those differences are
significant in practice.

4.8.1 Statistical Significance. To determine the statistical signifi-
cance, we defined two hypotheses: Hy is the null hypothesis, which
states that there are no differences among the content generation
approaches; Hj is the alternative hypothesis, which states that the
results of at least one content generation approach differ from
another.

Then, a statistical test that returns a probability value (p-value)
in the range of 0 to 1 is run. The p-value indicates the probability
of the null hypothesis being false (and thus Hj is rejected, and the
alternative hypothesis Hj is accepted). In this field, a p-value under
0.05 is considered statistically significant.

The statistical test to be applied depends on the nature of the
data; in this case, our data does not follow a normal distribution
and then requires a non-parametric test. We chose the Quade test,
which has shown more power than the rest when applied to a low
number of approaches (under 5) and using real data [19].

The first row of Table 2 shows the results for the Quade test
applied to each scope metric separately. The p-value is below the
0.05 threshold for all metrics except S1-Completion, resulting in
an inconclusive test (expected as all values were 0 or almost 0).
Therefore, we conclude there are no differences in the first metric
(S1-Completion) and differences due to the use of different content
generation approaches for the rest of the metrics.

However, the Quade test is only valid to conclude that there are
differences but is not able to point out which content generation
strategy is better. We need to compare the results of each pair of ap-
proaches separately. Holm’s post hoc procedure does this, another
statistical test commonly used in conjunction with Quade [19]. The
test is run for each metric separately, omitting the S1 metric as
Quade already showed that differences were not significant.

The second to the fourth row of Table 2 shows the p-values of
Holm’s Post Hoc for each quality metric (columns) and each pair
of generation approaches (rows). Values below the threshold (0.05)
are highlighted in grey, indicating that the difference in the results
for that pair of approaches and scope metric is significant.
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We can see that the differences between LCG and the two PCG
approaches are significant for the six metrics analyzed in this test
(S2, S3, 54, S5, S6, and Overall). According to Holm’s test, the dif-
ferences between both PCG approaches, with latent input or with
random input, are not significant except for S3 - Uncertainty.

4.8.2  Effect Size. After concluding that there are differences among
the results of the different content generation approaches, we have
to determine the effect size of those differences, that is, how big
those differences are [21]. Even when having differences, they can
be too small and have no practical value (especially when the num-
ber of runs is big enough). Therefore, we assess the magnitude of
that difference by applying two non-parametric measures, Vargha
and Delaney’s Ay [51] and Cliff’s Delta [14, 15].

Table 3 shows the A3 statistic for each scope metric (columns)
and pair of generation approaches (rows). For example, the first
row, the third column in Table 3 shows the A1, value for LCG vs
PCG+L for the S2-Duration metric, 23.40%. It indicates the prob-
ability that an observation from the first group (LCG) is greater
than an observation from the second group (PCG+L). In this case,
as the data represents scope differences, the lower the difference,
the better. That is, in 23.40% of the runs, the differences in scope
between the LCG results and the reference values in terms of the
S2 metric are bigger (or worse in this case) than the corresponding
differences of the PCG+L approach. Similarly, the opposite is also
valid, so in 76.6% of the runs, the differences in the scope of LCG
are smaller than the differences of PCG+R for the S2 metric.

Table 4 shows the Cliff’s Delta statistic for each scope metric
(columns) and pair of generation approaches (rows). It indicates the
degree to which two distributions overlap. Negative values indicate
that values from the first approach are smaller than those from
the second. In this case, the lower the value, the better for the first
approach (as the differences in the scope reference are smaller).

For both A3 and Cliff’s Delta, we observe again that S2-Duration,
S4-Killer Moves, and S6-Lead Change are the metrics that present
the biggest differences between LCG and the PCG baseline. The
other metrics perform similarly for the three approaches. Based
on the Cliff’s Delta statistic, we can conclude that LCG can create
content that is a better fit for the family’s scope than PCG+L (with
a medium effect size) and PCG+R (with a large effect size).

5 ANSWER TO RQS AND DISCUSSION

As an answer to RQ1, we can conclude that our LCG approach can
produce results that fit the scope of the family of products in terms
of the metrics studied better than a state-of-the-art approach. In
particular, the differences in scope between the family of products
and the content generated by our LCG approach are smaller than
the corresponding differences for the baselines for all the scope
metrics studied (see Table 1).

As an answer to RQ2, the results for our LCG approach are better
than those produced by a state-of-the-art approach, generating
individuals with smaller scope differences, 75.88% of the runs for
the overall scope metric according to the Ay effect size (see Table
3). This can be interpreted as a medium/large difference according
to the Cliff’s Delta effect size (see Table 4).
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S1 - Completion S2 - Duration S3 - Uncertainty =S4 - Killer Moves S5 - Permanence  S6 - Lead Change Overall

16

Quade  All - < 2x10716 3.0x10~13 < 2x10716 7.0x10~8 < 2x10716 < 2x10~
LCG vs PCG+L - < 2x10716 0.00014 < 2x10710 0.02 < 2x10710 < 2x10710

Holm’s LCG vs PCG+R - < 2x10716 1.1x107° < 2x10716 0.02 < 2x10716 < 2x10716
PCG+L vs PCG+R - 0.12 0.01928 0.059 0.99 0.63 0.36

Table 2: Quade test (first row) and Holm’s Post Hoc (second to fourth rows) p-values. Values below 0.05 are highlighted in grey

Ay S1- Completion S2 - Duration S3 - Uncertainty S4 - Killer Moves S5 - Permanence S6 - Lead Change Overall

LCG vs PCG+L 50% 23.40% 45.58% 26.70% 44.91% 25.76% 26.55%
LCG vs PCG+R 50% 18.31% 42.74 31.10% 45.47% 27.43% 24.12%
PCG+L vs PCG+R 50% 44.62% 47.26% 51.98% 50.03% 51.09% 47.55%

Table 3: A statistic. The lower the values the better for the first approach compared. Values below 30% are highlighted in grey.

Cliff’s Delta S1 - Completion S2 - Duration S3 - Uncertainty S4 - Killer Moves S5 - Permanence S6 - Lead Change Overall
LCG vs PCG+L 0 (negligible) -0.532072 (large) -0.088312 (negligible) = -0.465984 (medium) -0.10184 (negligible) -0.484864 (large) -0.468916 (medium)
LCG vs PCG+R 0 (negligible) -0.633744 (large) -0.14512 (negligible) = -0.378092 (medium) -0.090664 (negligible) = -0.451472 (medium) -0.517696 (large)
PCG+L vs PCG+R 0 (negligible)  -0.10768 (negligible) -0.054824 (negligible)  0.0396 (negligible) ~ 0.000544 (negligible)  0.021892 (negligible) -0.04898 (negligible)

Table 4: Cliff’s Delta statistic. Medium and large effect sizes are highlighted in grey.

As an answer to RQ3, when using the seeds obtained by our
Ancestor Identification operation to generate content with a state-
of-the-art approach, the differences in scope are smaller than when
using randomly selected seeds. However, those differences are small
and only produce better scope values 52.45% of the runs.

We can explore video game content from a new perspective by
mixing the two concepts of Phylogenetics from the biology domain
and Product Family from the Software Product Line domain. We
can leverage the already-created content with its information and
knowledge to discover new content that was already there waiting
to be discovered. This latent content is particularly interesting as it
is ensured to follow the present design guidelines whether they are
formalized or not; the content is within the family scope.

Our results demonstrate that content created with LCG is more
similar to the already present content. This means the content is
nearer to the production-ready state for quick incorporation into
the final game. The content created via LCG also has a higher
chance of following the creative intentions of the game designers.

Additionally, the structured view that the tree provides can help
developers understand the product family’s relations and scope thus
easing software variability. This can help developers make creative
decisions on how the game should be structured in terms of content
variability. Designers can choose genetically near NPCs to place
them at the same level as they are more similar and, thus, cohesive
with the general intent of said level. Or if the designer wants a wide
variety of NPCs for creative (narrative, aesthetics, mechanics, etc.)
reasons, the phylogenetic tree provides that information.

Video games have large amounts of content and the phylogenetic
tree can be a good way to introduce SPLs into video games that
are already advanced in development. The fact that developers can
see genetic relations among content can derive into feature models
that conform to the discovered relations, similar to the approach of
Konig et al. [27] called taxonomy mining.

Finally, referring to the simple phylogenetic tree in Figure 1:
Would the common ancestor between the owl and the gecko be
a valid product? Our results say yes, but more importantly, LCG
invites developers to explore that specific content as it may produce
a better individual within the video game’s scope.

6 THREATS TO VALIDITY

To address the limitations of our evaluation, we adopt the valid-
ity threat classification framework from Wohlin et al. [55], which
identifies four dimensions of validity threats:

Construct Validity: This dimension examines whether the op-
erational measures accurately reflect the true theoretical constructs
they aim to represent. We addressed this threat by performing a
fair comparison between our approach and the baseline using the
same metrics and the same simulated player. Additionally, the six
metrics used in the evaluation are accepted by the game software
engineering community [8, 11].

Internal Validity: This dimension is concerned with the causal-
ity relationships established within the study. It evaluates whether
the outcomes can genuinely be attributed to the treatment or in-
tervention being researched rather than being affected by other
variables. The results could be affected by implementation details;
to mitigate this, we created ten different new products with each
approach and executed the simulated player 50 times for each, ac-
counting for random variation. Additionally, we have provided the
implementation details and the source code.

External Validity: This dimension pertains to the generalizabil-
ity of the study results to other settings, environments, or groups.
The phylogenetic encoding generalizes the implementation, and
thus, the distance calculation and inference are agnostic to the do-
main. The genetic relations present in the phylogenetic tree do not
represent an ad hoc implementation for the video game content
domain, as that content was genetically encoded. Our evaluation
was performed over a single industry-scale video game, mitigating



SPLC’24, September 2-6, 2024, Luxembourg

the lack of real problem instances. However, our findings should
be replicated using other video games and alternative content to
confirm the generalizability properly.

Conclusion Validity: This dimension focuses on the reliability
and accuracy of the conclusions drawn from the study. It involves
ensuring that the conclusions about relationships or differences are
statistically and methodologically sound. We provided ten individ-
uals for each approach comparison and executed the simulation 50
times for each individual. We also performed a statistical analysis
that is widely accepted in software engineering [3] including statis-
tical significance (Quade test and Holm’s Post Hoc) and effect size
(Cliff’s Delta and A;5) statistics.

Finally, one limitation of this approach is that it needs an existing
set of products to create the phylogenetic tree. This is not the case
for other PCG approaches. Our approach can render better results
for specific stages of game development where there is already
content created.

7 RELATED WORK

This section presents the related works taking into account the
terms SPL in Video Games, Content Generation in Video Games,
and Phylogenetics in Software. We can see that while there are
works that tackle these concepts or similar ones, none of them use
phylogenetics to generate content through the lens of SPL in an
industry-scale case. Our research aims to create video game content
that is not only novel but also in line with the developers’ vision.

7.1 SPLs in Video Games

Some papers address the variability of video games’ content and
software. Some approaches are focused on creating engines that
help game developers make games more scalable, independent, and
reusable. Such is the case of the Minimal Engine for Digital Games
(MEnDiGa) created by Boaventura and Sarinho [9], an extension of
their previous engine called FEnDiGa [47]. In MEnDiGa, they re-
fined the development of logic features and modules that represent
and adapt game features, enabling functionality across multiple
gaming platforms. Additionally, Castro and Werner [12] discuss a
game prototype developed using a dynamic SPL to generate game
modifications systematically. This prototype showcases the feasibil-
ity of automating the modification process, positioning the original
game as the central component of the game’s functionalities.
Additional research efforts delve into developing Software Prod-
uct Lines (SPLs) through re-engineering processes. Lima et al. [32,
34] introduce two studies concerning the recovery of Product Line
Architecture (PLA). They implemented their previously proposed
guidelines [33] to establish the PLA for the Apo-Games project [28].
Moreira et al. [41] examine empirical data from the re-engineering
efforts of two open-source projects, ArgoUML and Phaser. Their
findings reveal significant differences in the re-engineering pro-
cesses between ArgoUML-SPL and Phaser. Common challenges are
encountered in both projects, including a scarcity of tools, resulting
in incomplete and inconsistent feature extractions, complexities in
managing feature dependencies with a compositional approach, and
the absence of a variability model to address feature constraints.
Similarly, Martinez et al. [37] share insights from their experience
in creating a Software Product Line (SPL) through re-engineering
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system variants centered around an educational game called Robocode.
They explore their findings from various angles, including the ed-
ucational value, the extraction process, and the time and effort
involved. Debbiche et al. [16] investigate the Apo-Games to pin-
point reusable code or artifacts. Their analysis covered five Java
games, with three of these games subsequently transitioned into

a composition-based SPL using FeatureHouse [2]. They claim that
maintaining the testability of the SPL ensures accurate code trans-
formations and recommend the incremental incorporation of new
features to ease the extraction process.

7.2 Procedural Content Generation from Game
Software Engineering

Relevant to PCG, Preuss et al. [45] examine the interplay between
quality and diversity in PCG for game development. Their research
involved an experimental evaluation of various algorithms and dis-
tance measures using a tool designed for generating game levels.
They concluded that the Niching Evolutionary Algorithm 2 (NEA2)
effectively balances quality and diversity, contingent upon the em-
ployment of a robust distance function. Subsequently, Gravina et
al. [20] characterized quality diversity as a pivotal search strategy
within search-based PCG.

The study conducted by Melotti et al. [40] introduces and imple-
ments the Deluged Novelty Search Local Competition algorithm
(D-NSLC), which utilizes morphological niches to promote solution
diversity in PCG for a game. D-NSLC segments the population into
distinct niches and targets the optimal individuals within each while
exploring the search space. They conducted an experiment within
a roguelike video game context using four different setups. The
findings underscored the advantages of the Novelty Search, notably
its significant contribution to generating diverse individuals.

Finally, Blasco et al. explored the application of Search-Based
Software Engineering (SBSE) for content generation [7, 8]. These
studies utilized an evolutionary algorithm steered by simulations
that incorporate the generated content. They use an evolutionary
algorithm known as Evolutionary Model Generation (EMoGen)
to produce software models quickly and efficiently. The research
demonstrated that models generated by EMoGen for the commer-
cial video game Kromaia were comparable in quality to those cre-
ated manually by developers but took significantly less time.

None of the aforementioned studies leverage the idea of latent
content with genetic divergence points and ancestry branches. This
work opens a new path where the focus is that the content is aligned
with the scope precisely with the bottom-up relationship. In the
video game domain, the scope is crucial because the developers’
vision for the game is critical and difficult to formalize.

7.3 Phylogenetics in Software

To the best of our knowledge, there is no study that applies phyloge-
netics to software. However, the study by Konig et al. [27] focuses
on enhancing the understanding and application of software vari-
ability through the technique of taxonomy mining. The authors
present a methodological approach aimed at extracting and utilizing
taxonomies to manage variability in software product lines better.
Their approach is applied to generate taxonomy graphs of different
SPLs in Software Engineering. Taxonomy and Phylogeny are closely
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related sciences in the realm of biology. Taxonomy focuses on the
study of the classification of species, and Phylogeny focuses on the
study of evolutionary relationships between organisms. They have
different objectives using the same information.

8 CONCLUSION

Our LCG approach proves itself to be a valid approach for content
creation in video games. The evaluation has demonstrated its ca-
pabilities to identify gaps within a product family, hidden content
waiting to be discovered. The content created via LCG is more
similar to the current scope of an industry-scale video game.

Phylogenetics can manage variability by pointing out genetic
relations among individuals of the same product family. Identifying
these relations can be key for the future of software variability,
providing developers with a full view of an SPL at a glance. This
can enhance strategic decision-making regarding the development
and deployment of additional products.

Specifically, in video games, the phylogenetic tree can help de-
signers arrange and manage their content while guiding the next
steps in the creation of new content. Also, our approach can poten-
tially be used in other domains beyond video game content creation.
Genetic divergence points and ancestry branches can provide new
perspectives to variability thanks to the phylogenetic approach.
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