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Abstract

Context: The video game industry is one of the fastest-growing industries in the world. However, the creation of content is the
bottleneck of the industry nowadays.

Objective: In this paper, we propose a new approach for co-creating content by means of combining an evolutionary algorithm
Map-Elites, and software models. Our approach involves generating a large number of software models and selecting the best ones
based on a fitness function. This fitness function is guided by the human, who chooses which content fits their interests best.

Method: We evaluated this approach in the domain of Particle Systems (PS). PS are a popular type of content used to create
visual effects such as explosions, fire, smoke, or rain. Our evaluation also involves industry experts of different roles in the video
game development process. Using our approach, they were tasked to create PS for their games. Then, they compared the generated
models with handmade ones.

Results: Our results show that practitioners chose the generated models four out of five times over handmade ones as a better fit
for their projects. Furthermore, models created with our approach by non-experts in five minutes are similar in quality to the ones
hand-made by an expert in 15 minutes.

Conclusion: In conclusion, using human artistic taste to guide the algorithm renders positive results in creative tasks such as
content generation for video games. With minor adjustments, the generated content can be game-ready, accelerating development.

Keywords: Game Software Engineering, Search-Based Software Engineering, Model-Driven Engineering, Co-creation

1. Introduction

The video game industry is one of the fastest-growing indus-
tries in the world. Almost half of the developers in the world
are involved in the video game sector [1]. Most video games are
developed using game engines, a development environment that
includes the foundations used by most games (such as graphics
and physics), and tools to accelerate development. The most
popular game engines are Unity [2] and Unreal Engine [3].
They allow video game developers to create content directly
using code (e.g., C++ or C#) or software models [4].

Modeling languages, such as UML, are used to create and
design software. Game engines use their own Domain-Specific
Languages (DSLs) to create certain parts of a video game, fol-
lowing a Model-Driven Engineering (MDE) [5] paradigm. The
most notable example is node-based scripting to create shaders:
Unreal Engine has Material Editor [6], and Unity Engine has
Shader Graph [7].

Nowadays, the generation of content is the bottleneck of the
industry. Super productions like Cyberpunk 2077 can take al-
most a decade to make [8]. There is a need for more techniques
to accelerate the video game creation process, as is the case of
Procedural Content Generation (PCG).

However, fully automatic techniques that are traditionally
employed for PCG are not always the best for tasks requiring

creativity, as is the case of content generation for video games.
For instance, search-based techniques optimize a given objec-
tive (or set of objectives) iteration after iteration, focusing on a
specific area of the search space and sometimes suffering from
premature convergence towards local optima [9] and tampering
with the creative process.

In this paper, we claim that thanks to the abstraction of soft-
ware models, it is possible to achieve the co-creation of said
models for video game content creation. Software models can
represent video game content and be used to accelerate the cre-
ation of content as demonstrated by Blasco et al. [10]. To this
end, we propose combining software models with quality di-
versity algorithms to favor a broad representation of the search
space during the search, enabling new, potentially more cre-
ative solutions to emerge throughout the search process. The
computer performs a search and ensures that the whole search
space is represented in the set of solutions. Humans drive the
search according to their creative needs, tailoring the process
toward the desired result.

Specifically, we combine models from the Meta Object Facil-
ity (MOF) [11] with the algorithm Multi-dimensional Archive
of Phenotypic Elites (MAP-Elites) [12] as a companion in the
creative process. It evolves a population of candidate solutions,
assessing them based on a fitness function and evolving them
using some genetic operations until the stop condition is met.
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We use the MAP-Elites algorithm to divide the search space
into matrices of cells based on given dimensions of interest.
Then, the search process will store the best candidate from each
cell (elite) as the population, favoring the diversity of the set of
candidates of the population. To this end, we propose an en-
coder that is able to translate individuals from MOF models to
an encoding that can be manipulated by the algorithm, a set of
operations to evolve those individuals, and a fitness function
based on the feedback given by humans.

As a case study, we use the Particle Systems (PS) domain for
video games. PS are present in most video games nowadays, es-
pecially 3D games [13]. We created a DSL including the main
concepts and relationships of PS that are present in the different
commercial video game engines available (Unity, Unreal, etc.).
Our approach creates the first generation of individuals based
on the model provided as seed. Then, the population of PS is
rendered in a simulation so that the human can select favorites
for the creative task being performed. The loop is repeated until
the stop condition is reached; it can be time-limited or until the
user is satisfied with the result.

The case study has been evaluated with video game models
created by engineers from a video game company. We compare
the created PS of our approach with the handmade PS created
by a visual effects expert. Five developers were asked to create
five PS to be integrated into one of their games, representing
typical desires when creating a video game. A total of 25 PS
were created in five collections: Fire, Rain, Snow, Smoke, and
Sparks. The handmade PS is added to each one of these collec-
tions. Then, the participants were asked to rank each collection
of six PS from the best to the worst.

The results show that game developers tended to prefer co-
created PS over handmade PS in four of the five collections of
PS. Our results suggest that this method provides an efficient
and effective alternative to the traditional handmade approach.
It offers game developers a streamlined and cost-effective way
to produce high-quality PS for their games. Additionally, the
feedback we received from the focus group suggests that the co-
creation approach is particularly accessible to developers with
low expertise in visual effects, an essential factor in the contin-
ued growth of the game development industry.

The rest of the paper is structured as follows. Section 2
presents the motivation and background of the paper. Section
3 outlines works related to this study. Section 4 presents the
proposed co-creation approach. Section 5 shows the evaluation
performed. Section 6 shows the discussion of the results, and,
finally, Section 8 concludes the paper.

2. Background and Motivation

Video games are a mix of art and science. The development
of these pieces of software differs from those that tackle tradi-
tional Software Engineering problems [14]. Because of the cre-
ative nature of video games, developers not only need technical
expertise but also artistic expertise, and algorithms for content
creation must adapt to those needs.

Search-Based Software Engineering (SBSE) [15] proposes
applying a search strategy (such as an evolutionary algorithm)

to solve a software engineering problem. To do so, only three
key ingredients are needed: (1) a suitable encoding for the prob-
lem, which can represent the solution in a format that can be
manipulated by the search strategy; (2) a fitness function that
can assess how close each candidate is to the solution, guid-
ing the search process; and (3) a set of genetic operators that
can evolve individuals of the population, traversing the search
space.

However, traditional evolutionary algorithms are limited by
the small variety of results that they provide to the human. In
a creative process, the developer seeks a wide variety of re-
sults in order to ponder the pros and cons of aspects that a
machine is not yet capable of understanding; i.e., a computer
cannot determine the beauty of a 3D mesh inside a video game
or its cohesion in the video game aesthetic. By providing a
small number of results, the developer does not have the cre-
ative freedom needed. It is desirable to have a large diversity
of high-performing, yet qualitatively different solutions, which
can be more helpful than a single, high-performing solution.

PS are one of the many content creation tasks that involve
creativity when making a video game. The use of PS is one of
the key elements that contribute to the visual richness of video
games.

To the best of our knowledge, the first time PS were used
was in the Genesis Demo sequence of the film Star Trek II: The
Wrath of Khan [16]. PS are visual effects used in video games
to simulate various phenomena, such as fire, explosions, smoke,
and other environmental effects. These effects are created by
multiple small sprites (or 3D meshes), also known as particles,
which are controlled by a massive set of parameters such as
velocity, size, and color. They are also used to simulate and
visualize complex physics, such as fluid dynamics [17].

Commercial game engines such as Unreal Engine and Unity
have revolutionized how video games are designed and devel-
oped. These game engines use a combination of pre-built and
customizable parameters to control the behavior, appearance,
and motion of particles in a game scene. Notably, as a case
study, we use the PS of the Unity 3D Engine [18], which is a
parameter-based system that has different modules that can be
added to change the behavior, movement, and appearance of the
particles.

Game engines often make use of MDE, as is the case of the
Material Editor in Unreal or Shader Graph in Unity. MDE is
a software development approach that emphasizes the use of
high-level, platform-independent models (PIMs) for designing
software systems. These models, expressed in languages like
UML or domain-specific languages, allow developers to focus
on system structure and requirements without delving into tech-
nology specifics. This approach ensures a clear understanding
of system design and aligns closely with business goals. The
PIM is then automatically transformed into a platform-specific
model (PSM), which includes details of a specific technology
platform, like a programming language or database system.
This step tailors the abstract model to the specifics of the tar-
get environment.

In the final stage of MDE, the PSM can be converted into
software artifacts (such as source code, or configuration files)
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compatible with the target platform. This process minimizes
human error and maintains consistency between the model and
the software product. MDE’s automation aspect accelerates de-
velopment and facilitates quick adaptation to new platforms and
technologies. Changes made at the model level can be automat-
ically translated to the code or configuration file, significantly
reducing manual coding effort and ensuring efficient platform-
specific adjustments. The presented approach can evolve any
software model that conforms to a DSL created with MOF, the
metalanguage proposed by the Object Management Group for
the creation of DSLs. Those models will be automatically trans-
formed into specific software artifacts (Particle Systems in the
case study provided) when needed (e.g. for visualization pur-
poses or as a final export step). The presented approach can
be used to create software models and their corresponding soft-
ware artifacts from other domains (such as 3d meshes) if a suit-
able DSL that captures the domain is provided.

3. Related Work

This section presents other works that are related to this
study. It focuses on three aspects of this work: the co-creation
of video games, using SBSE for model creation, and putting
the human in the loop. We found works addressing these as-
pects; however, these works do not leverage the characteris-
tics of quality diversity algorithms, or they are not applied to
video games, or they do not leverage the generalizability of
software models. Our work brings together mixed-initiative
model-generation techniques, quality diversity search-based al-
gorithms, and video game content creation. Also, the domain
of video games gives great importance to visuals and graphics.
The previous works on SBSE and MDE for video game content
creation all lack the step in which the developer visualizes and
drives the models generated. Our work empowers developers
to drive model generation and obtain more favorable solutions
in creative domains.

3.1. Co-creation and video games
There are plenty of works that leverage co-creativity for

video games. Lai et al. elaborated a survey on this matter [19].
We focus this section mainly on similar approaches to ours that
use the MAP-Elites algorithm or generate PS.

MAP-Elites is an algorithm that has shown promising re-
sults in video game co-creation between humans and comput-
ers. One of the key strengths of this algorithm is its ability to
provide multiple and diverse solutions [12]. This allows for
a broader range of creative possibilities and can lead to more
interesting and engaging co-created content. As such, MAP-
Elites has the potential to enhance the field of video game co-
creation significantly. Here, we present examples of previous
work in this field.

The MAP-Elites algorithm has been applied in video games
to help with level design. For example, Charity et al. created
Baba is Y’all, a collaborative mixed-initiative system for build-
ing levels for the puzzle game Baba is You [20]. The system
includes several AI-assisted features to help designers, includ-
ing a level evolver and an automated player for playtesting. The

updated version of the system includes a more user-friendly in-
terface, a better level-evolver and recommendation system, and
extended site features [21].

Another work that applies the MAP-Elites algorithm in video
games is Preference-Learning Emitters for Mixed-Initiative
Quality-Diversity Algorithms by Gallotta et al. [22]. Their work
uses an interactive constrained MAP-Elites system to learn the
designer’s preferences and then use them in automated steps.
The algorithm was applied to a procedural content generation
task creating spaceships in the Space Engineers video game.

Content is a broad term that encapsulates a lot of concepts
inside a video game. Another case of content is the narrative;
Alvarez et al. used the MAP-Elites algorithm to generate di-
verse and high-performing solutions for game narratives. The
algorithm is implemented as a new feature of the Evolution-
ary Dungeon Designer, a mixed-initiative co-creativity tool for
designing dungeons. The feature allows developers to incorpo-
rate suggestions produced by the algorithm in the developer’s
designs. At the same time, any modifications performed by the
human will feed back into MAP-Elites, closing a circular work-
flow of constant mutual inspiration.

Another work that uses autonomous algorithms to generate
video game content is by Hastings et al. [23]. Remarkably, the
study generates Particle Effects that serve as weapons of space-
ships. With the help of Artificial Neural Networks it focuses on
generating new content in the form of PS. The authors expanded
their work [24] by using the Galactic Arms Race game as a case
study where players receive new weapons for their spaceships
generated by their approach. These weapons are particles cre-
ated without the control of the developers.

3.2. SBSE and software models
None of the aforementioned works leverage the benefits of

MDE, directly tackling the complexity of their domains. MDE
has proven to be an interesting domain for evolutionary algo-
rithms to thrive. These algorithms can leverage the benefits of
software models for the development of video games, where
platform independence is a significant problem for game de-
velopers who try to publish their games on multiple different
hardware.

Williams et al. [25] explored the use of software models and
SBSE by using an evolutionary algorithm to identify optimal
game character behaviors in a text-based video game. Charac-
ter behavior was specified using a Domain-Specific Language.
The game’s battles were based on text without 3D visuals to
represent them.

A recent study [26] proposes a novel way to locate bugs in
video games by means of evolving simulations. These simula-
tions mimic player behavior through Non-Playable Characters,
producing traces that are relevant to the location of bugs. Their
approach has shown promising results in locating bugs in soft-
ware models of video games.

There is previous work on generating video game content
with software models and SBSE. This is the case of Evolution-
ary Model Generation (EMoGen) by Blasco et al. [10], which
generates models of game bosses that are comparable in qual-
ity to those created by human developers but in significantly
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less time. Their approach is based on a traditional evolutionary
algorithm without human input.

3.3. Humans in the model-generation algorithm
There are many contributions that delve into human inter-

vention in model-generation algorithms. Kessentini et al.[27]
propose an interactive multi-objective approach to address the
challenges arising from the frequent evolution of metamod-
els, which often leads to instance models becoming non-
conforming to the revised metamodels. The approach dynami-
cally suggests edit operations to developers, aiming to minimize
conformance errors, maximize similarity with the initial model,
and reduce the number of proposed edit operations while incor-
porating developers’ feedback. This feedback refines the sub-
sequent rankings of recommended edit operations.

Kessentini and Alizadeh [28] present an interactive multi-
objective approach to address challenges in metamodel/model
co-evolution. The approach dynamically suggests edit opera-
tions to designers, focusing on minimizing deviation from the
initial model, non-conformities with the revised metamodel,
and the number of changes. It clusters recommended co-
evolution solutions, allowing users to select a preferred cluster
and provide feedback on fewer, more focused solutions, which
guides subsequent iterations of the search.

Perez et al.[29] introduce humans to replace the fitness func-
tion in SBSE completely. Their SBSE algorithm generates soft-
ware models that are easier for humans to evaluate rather than
evaluating code directly. The study is grounded in the notion
that humans, despite not being able to assess millions of solu-
tions like heuristics, can offer valuable insights because of the
abstract nature of models.

Bavota et al. [30] explored in their work the introduction
of the developer in a genetic algorithm, making it interactable
throughout the execution. There are also studies related to in-
teractive algorithms, that is the case of Hall et al. [31] propos-
ing SUMO, an algorithm that allows feeding domain knowl-
edge into a remodularization process. There are other works
that leveraged generative algorithms for video development. In
their work, Trufano et al. [32] create smart agents with Rein-
forcement Learning to ease the testing tasks of video games.

4. Co-creation Approach

Fig. 1 shows an overview of the proposed approach. It is di-
vided into two parts, the search process performed by the com-
puter (upper part) and the interactions performed by the human
in control of the co-creation process. The search process starts
with the human providing an initial model to the encoder. Then,
the search will proceed, assessing the fitness of the candidates,
evolving them, and updating the MAP-elites based on the di-
mensions supplied. The human will be able to drive the process,
visualize the generated models, configure the fitness function,
and configure the dimensions in order to explore the interesting
areas of the search space. Additionally, three pseudocodes are
presented: Algorithm 1 shows the pseudocode of our Mixed-
Initiative approach, Algorithm 2 shows the pseudocode for the

genetic algorithm, a modified version of the MAP-Elites algo-
rithm, and Algorithm 3 shows the pseudocode for the fitness
calculation.
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Figure 1: Co-Creation approach overview.

4.1. Co-creation: Search Process

The search process is in charge of traversing the search space,
assessing thousands of potential candidate solutions, and filter-
ing out the most promising ones to be presented to the human
in charge of the co-creation. In this work, we adapt a MAP-
Elites algorithm [12] to work with individuals encoding a MOF
model. Whereas a traditional search strategy will evolve a sin-
gle population of individuals sorted by their fitness value, MAP-
elites will evolve a set of populations, arranged by dimensions
of interest. This ensures that the areas of interest of the human
are explored during the process, and thus, individuals repre-
senting those dimensions are presented as solutions, bringing
diversity to the process. This results in the need for a fourth in-
gredient (apart from the encoding, the fitness function, and the
genetic operators), i.e., the definition of a set of dimensions of
interest of the domain being explored.

By using the MAP-Elites algorithm, we mitigate the prema-
ture convergence towards the local optima problem, as the al-
gorithm is evolving a set of populations distributed across the
search space. This also fosters diversity of individuals pre-
sented to the human, providing means to focus the search on
specific dimensions of interests. For example, when evolving
particle systems, if one of the dimensions selected is size and
quantified as small, medium, or big, the algorithm will evolve
three populations in parallel (a population where all members
are small, another where all members are medium and another
one with all members with big size). As output, the algorithm
will provide the best-performing individual of each population,
ensuring the representation of each cell of the dimension se-
lected (the best small, the best medium, and the best big).
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Algorithm 1 Mixed-Initiative MAP-Elites.
1: i← initial model ▷ human provides the initial model
2: M← ∅ ▷ create an empty N-dimensional MAP of elitesM
3: id ← dimension calculation(i) ▷ calculate dimension of i to determine the corresponding cell in the MAPM
4: M(id)← i ▷ store the initial model i in the corresponding cell of the MAPM
5: F ← ∅ ▷ create an empty set for the fitness calculation
6: while ! final selection do ▷ when the human performs the final selection, the algorithm finishes
7: M← configure dimensions ▷ when the human changes the dimensions, all elements of the MAP are rearranged
8: F ← configure fitness ▷ when the human modifies the set of fitness models, all fitness values are recalculated
9: evolve individuals(n,M,F ) ▷ human decides to evolve new individuals from current population

10: visualize models(M) ▷ models of the MAP are decoded and shown to the human
11: end while
12: return model selected ▷ when the human performs the final selection, the model is stored

Algorithm 2 Evolve individuals and store in MAP Elite
1: function evolve individuals(n,M,F ) ▷ number of individuals to evolve (n), current MAP elite (M) and fitness models (F )
2: for 1→ n do
3: r ← random selection(M) ▷ randomly select an individual r fromM
4: x← genetic manipulation(r) ▷ create a copy of r and randomly modify a gene
5: x f ← fitness assessment(x,F ) ▷ calculate the fitness of x and store it in x f

6: xd ← dimension calculation(x) ▷ calculate dimension of x to determine the cell in the MAPM
7: if M(xd) = ∅ orM(xd) ≤ x f then ▷ if the cell is empty or its occupant’s fitness is ≤ x f , then
8: M(xd)← x ▷ store the new individual x in the appropriate cell of the MAPM
9: end if

10: end for
11: returnM ▷ returns the map withe the new individuals
12: end function

4.1.1. Encoder - Decoder

The search process will start with an initial model provided
by the human. However, the search process will use the en-
coder to turn models into individuals that can be effectively ma-
nipulated by the search strategy. The encoder will explore the
information provided in the metamodel to generate a suitable
representation for models of the explored domain. To this end,
the encoder will map each element that is present in the initial
model to a gene of the individual, as is done in other works from
the literature [33]. However, instead of using a binary value for
each element, our approach will store the element type as part
of the gene. Each type will be managed differently when per-
forming genetic operations and fitness assessments.

In addition, constraints for custom data types will be obtained
to reduce the search space. For instance, a metamodel to create
web templates that define an attribute to store the width of a
given element. The value of the attribute could be of type float,
but this would lead to elements that are too big for a screen or
even negative values. To avoid this, the domain experts creat-
ing the metamodel should embed annotations formalizing their
knowledge about the valid ranges.

As a result of this process, an individual that represents the
initial model will be generated. Each of the genes will corre-
spond to one of the elements of the initial model, and a range
of valid values will also be associated with each of the genes.
Whenever the model is needed (e.g., when the human wants to
visualize it), the Decoder will perform the opposite operation,

turning the genes from the individual back into a model.

4.1.2. Fitness Assessment
The fitness function determines the performance of each in-

dividual, driving the search for the best-performing individuals.
In this work, the fitness function will measure the similitude
of the individual with a set of human-selected models (fitness
models). By doing so, the human will be able to drive the search
toward his/her preferences by choosing the models that exhibit
behaviors similar to those desired.

This fitness assessment made by the human narrows the
search in an organic way driven by the sole intuition and cre-
ativeness of the subject. The humans get to evaluate the model
as it evolves under their control as they choose the models that
are fed to the fitness function.

To determine the similitude of the individual with each of
the fitness models, each of the genes of the individual will be
compared to the genes of the fitness models (after turning them
back to an individual using the encoder), giving a score that
measures the distance between the model and the fitness model.
Each gene will score between 1 (exactly the same) and 0 (the
biggest distance possible). The value will be calculated differ-
ently based on the type of data stored in the gene:

• EBoolean: The score will be 1 if both are the same or 0
otherwise.

• EEnum: The score will be 1 if both are the same or 0 oth-
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Algorithm 3 Fitness Assessment Function
1: function f itness assessment(x,F ) ▷ the input is the individual to evaluate x and the set of fitness models F
2: dall ← 0 ▷ will hold the average distance to all fitness models
3: for each f in F do
4: d f ← 0 ▷ d f will hold the distance between x and the current fitness model f
5: for each g f in f .genes and each gx in x.genes do ▷ for each gene g f of f and its equivalent gene gx of x
6: d f ← d f+ calculate distance(g f ,gx) ▷ accumulate distances of each pair of genes in d f

7: end for
8: dall ← dall + (d f /genes.size) ▷ Average d f and accumulate in dall

9: end for
10: return dall/F .size ▷ Average dall and return fitness value for x
11: end function

erwise. Depending on how the EEnum is created, a notion
of distance or order between the different options could
exist. As this is not always the case, our fitness assumes
no order.

• EInt: The score will be 1 minus the distance between the
two values, calculated as the absolute value of the differ-
ence between them. A value of 1 means that the values are
the same, and a value of 0 means that the distance between
the values is the biggest possible.

• EFloat: The same calculation as EInt.

• Constrained EFloat: The score will be calculated as in
the EInt case but considering the given boundaries for the
value to determine the maximum distance. For example,
if the value is constrained to the [1.0-3.0] range, the maxi-
mum distance possible will be 2, so the values 1.5 and 2.0
(distance of 0.5) will yield a score of 0.75 (0.5/2).

• Constrained EInt: The same calculation as Constrained
EFloat.

The score of similitude between an individual and a fitness
model will be the average score of each gene. Therefore, the fit-
ness value of the individual will be the average similitude value
of the individual and all of the fitness models. This will result
in a value between 0 and 1 on how similar the individual is to
the set of models used as fitness. Note that having several fit-
ness models with different values for a given gene implies that
obtaining the highest score for that gene will not be possible.

4.1.3. Dimension Calculation
A traditional evolutionary algorithm maintains a list of the

best-performing individuals across generations. However, in
MAP-Elites, the population is organized across N dimensions
of variation of interest to the human. MAP-Elites will provide
a set of high-performing individuals for each point in the space
defined by the given dimensions. This will enrich the diversity
of the individuals found by the algorithm.

The set of N given dimensions defines a feature space of
interest to the human. The dimensions are discretized (based
on human preferences or computational resources available),
yielding an N-dimensional feature space where each cell corre-
sponds to one of all of the possible combinations of dimensions.

Once the fitness has been assessed, the dimensions for the in-
dividual are calculated, and the corresponding cell is retrieved.
If the cell is empty, the candidate is stored in that cell. If the
cell is already occupied, the fitness values are compared, and
the best-performing one is stored in the cell.

4.1.4. Genetic Manipulation
The genetic operators are the mechanism that the search pro-

cess uses to traverse the search space. An individual (or set
of individuals) is selected based on given criteria, with fitness
performance being the most common criteria (selection opera-
tor). Then, some genes are changed (mutation operator) and/or
combined with other individuals (crossover operator) to gen-
erate a new offspring. Finally, the newly created offspring is
incorporated into the population based on the given criteria (re-
placement operator).

In the case of the MAP-elites algorithm, the set of operators
needed to traverse the search space properly is reduced. Having
a set of individuals spanning different dimensions encourages
the diversity of the solutions. It avoids common problems such
as the local optima (where an individual has to cross a valley
of low-performing solutions to become a global optimum). If
the dimensions are appropriately selected, the MAP-Elites algo-
rithm is able to explore the search space using only the mutation
operator (and a default selection operator and a replacement op-
erator).

First, a random cell is selected (out of all of the cells in the
MAP-Elite). The process is repeated if the cell is empty until
a cell with an individual is found. Then, the individual from
the cell is copied, and the mutation operator is applied to that
individual. Our mutation operator needs to act over individuals
encoded as MOF models. It will randomly select a gene and
mutate its value based on the type of value stored:

• EBoolean: The mutation operator will invert the boolean
value.

• EEnum: The mutation operator will randomly select an
option from the options declared in the metamodel for that
EEnum type.

• EInt: The mutation operator will assign a random value
out of all of the possible values that can be held in that type
(int or float).
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• Constrained EInt: The mutation operator will assign a
random value within the boundaries declared for that type
in the metamodel.

• EFloat: The same as EInt.

• Constrained EFloat: The same as Constrained EInt.

The resulting individual will continue the flow of the algo-
rithm, having its fitness assessed and its dimensions calculated,
and will be assigned to its corresponding cell (substituting the
existing individual if its fitness value is greater).

4.2. Co-creation: Human Decision

The human will have different mechanisms to interact with
the search process, allowing him/her to effectively drive the
search toward their needs. Specifically, the humans can provide
an initial model and start the search process, inspect the mod-
els of the MAP-Elite, change the dimensions of the MAP-Elite,
and modify the models being used as fitness.

4.2.1. Initial model
The first step in the search process will always come from the

human side. The human will provide an initial model (conform-
ing to the Domain Specific Language for which models will be
co-created) and start the process based on it. Depending on the
needs of the human, the search will start with a default model
(to create a new model) or with a more complex model (to re-
fine it). For the specific case of PS we use Unity’s default PS.
Although the user could use PS already present in their game or
downloaded from asset databases on the internet.

Depending on the development stage and the intentions of the
developer, this initial model can be any PS. However, starting
from an already existing PS inside the scope of the videogame
is better for both the developer and the algorithm. The devel-
oper has a constant reference of what is being created, and the
algorithm can use it for the fitness calculation, always present-
ing newly generated PS with some degree of similarity to the
initial one.

4.2.2. New generations
Then, the human can execute the MAP-Elites algorithm to

evolve the individuals and obtain new solutions from the search
space. This will trigger the complete loop of genetic operations,
fitness calculation, dimension calculation, and MAP-Elite up-
date, resulting in (potentially) new individuals in the popula-
tion.

The number of iterations of the search that should be exe-
cuted will depend on the search phase. Initially, the population
will only contain the initial model, and the offspring will have
more chances of being stored as part of the population. There-
fore, the human will want to execute a low number of genera-
tions. As the search proceeds and the fitness level of individuals
rises, more iterations will be needed to generate offspring that
obtain better fitness levels and are stored in the population. In
this situation, the human will require a higher number of gener-
ations.

Similarly, the number of generations executed could also be
determined using different strategies: execute until the popula-
tion is filled; execute until a given number of new candidates
enter the population; execute until the average fitness value is
above a given value.

4.2.3. Model visualization
One of the most important mechanisms that the human has

for driving the search process is the visualization and inspection
of the population of models. This action will requires that be
individuals are decoded back as models of the DSL being used.
The representation of the models will depend on the nature of
the domain and the editors or abstract syntax available for the
DSL. For example, some models will be visualized using a tree-
viewer, while others will include their graphical representation.

In addition, some models will require transformations to be
visualized, like transforming them to code using a given Model-
to-Text transformation. The representation used should be the
one that is useful for the human making the decisions. For in-
stance, if the DSL represents a template for a web page, the
valuable representation for the human could be a preview of the
HTML code generated from that model.

As the MAP-elites algorithm stores cells arranged in dimen-
sions, the individuals will be laid out across two axes, one for
each dimension (e.g., a matrix of individuals). Depending on
the nature of the DSL, the models could need to be visualized
using an external platform (such as a web browser in the case of
the web page DSL). The approach includes the means to export
the models or their transformation in order to be consumed by
those external platforms.

4.2.4. Dimension Configuration
If more than two dimensions are provided for a given domain,

the human can modify the dimensions that are used to arrange
the population. Thus, the human can select which dimension
should be represented by each matrix axis. In addition, the vi-
sualization platform should be able to provide this information
to the MAP-Elites algorithm in order to determine the dimen-
sions to be used while generating the best-performing models
(MAP-Elite).

By changing the dimension, the human can efficiently ex-
plore the search space (through the individuals generated) and
visualize models corresponding to each cell, there by encour-
aging the diversity of the results and facilitating the creative
process.

4.2.5. Fitness Selection
The fitness function is based on the similitude between the in-

dividuals and the set of models that the human selects. Through
the fitness selection mechanism, the human can change the
models being used as fitness, driving the search in the desired
direction. Having a single model as fitness will imply prema-
ture convergence, as all of the models will tend to be too similar
to the selected one, thus making the steering of the search pro-
cess impractical. Having the possibility of changing the fitness
during the search and pointing to multiple models as individuals
will empower the human to drive the search.
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A change in the fitness function will invalidate current fitness
calculations and will therefore require a recalculation of the fit-
ness values for all of the individuals stored in the MAP-Elite.

5. Evaluation

This section presents the evaluation performed to address the
following research question regarding the co-creation approach
proposed:

RQ: Can the approach be used to refine an initial model into
a model that better fits the needs of game developers? If so, is
the perceived quality of the refined model better than the per-
ceived quality of the original model?

5.1. Experimental Setup
In order to answer the research questions, we follow an eval-

uation where video game developers interact with the proposed
approach to refine models.

We developed a DSL for PS, creating a Model-to-Text trans-
formation that converts models into a representation that the
visualizing platform can interpret. This creates a visualizing
platform for the PS and the definition of a set of nine dimen-
sions of interest for the PS co-creation.

We conducted a quantitative experiment with video game de-
velopers. They created variants of a model, and then they eval-
uated the generated models against handmade models made by
an expert. Then, we performed a qualitative evaluation in the
form of a focus group.

5.2. Case Study: Particle System domain
We chose the Particle System (PS) domain as our case study.

We deemed this domain to be appropriate because it combines
technical and artistic knowledge. It is also generic enough that
almost all video games nowadays use PS in their development.
This provides our specific case study with value on its own be-
cause it is applicable to multiple kinds of developments. PS can
also be used outside the visual effects domain, i.e., for simula-
tions.

5.2.1. Particle System Modeling Language (PSML)
The Particle System Modeling Language (PSML) is a DSL

that allows the creation of models representing PS. Fig. 2 shows
an excerpt of the PSML metamodel. It describes the following
concepts: Main, Emission, Shape, Color over Lifetime, Size
over Lifetime, and Renderer.

• Main. Describes the starting parameters of the particles
(i.e., start color) and general parameters (i.e., looping).

• Emission. Describes the number of particles emitted per
second.

• Shape. Describes the shape of the emission volume and its
size. These shapes can be a sphere, a hemisphere, a cone,
a box, or a rectangle.

• Color over Lifetime. Describes how the color of each
particle varies over the time that it is alive.

• Size over Lifetime. Describes how the size of each parti-
cle varies over the time that it is alive.

• Renderer. Describes how the particles are rendered into
the screen, selecting the shader that will be executed and
the projection matrix that will be used.

In order to evolve the models created and conform to the
DSL, each attribute has annotations that limit the range of val-
ues. By doing this, the mutations are within reasonable values
that allow the human to properly visualize the PS created, i.e.,
each color channel (RGBA) goes from 0.0 to 1.0.

These effects often simulate organic and pseudo-random be-
haviors. Developers do not always want to set a fixed parame-
ter for the attributes but rather prefer to choose a random value
within a range or along a curve. For example, to simulate a
snow effect it is desirable for the flakes to have different sizes.
To this end, some attributes are not primitives like float but
rather a custom type called MinMaxCurve that encloses the data
needed to provide the developer with more features over the val-
ues to be set. Similarly, the attributes related to color are of the
type MinMaxGradient, enabling the definition of color transi-
tions.

5.2.2. Dimensions
For the MAP-Elites algorithm to provide a variety of solu-

tions, it needs multiple dimensions to showcase the matrix of
solutions. In our case, the matrix is two-dimensional, and the
human can choose which dimensions to use for each matrix
axis. The list of nine dimensions provided to the human is the
following:

• ColorHueDimension. This dimension provides a variety
of colors to the human by calculating the hue of the color
from the RGB values. The hue of a color is represented in
degrees ranging from 0 to 360 and is calculated with the
following formula:

Cmax = max(R,G, B)

Cmin = min(R,G, B)

∆ = Cmax −Cmin

H =


0◦ ,∆ = 0
60◦ × (G−B

∆
mod6) ,Cmax = R

60◦ × ( B−R
∆
+ 2) ,Cmax = G

60◦ × ( R−G
∆
+ 4) ,Cmax = B

• ShapeTypeDimension. This dimension represents the
five types of shapes from which the particles are emitted.
These are Sphere, Hemisphere, Cone, Box, and Rectangle.
Each one of the shapes is showcased as a single row or
column of the matrix.

• EmissionDimension. This dimension represents the parti-
cles emitted per second. It is not represented as a primitive
float but as a MinMaxCurve data type that can represent a
constant float, a random value between two constants, or
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Figure 2: Excerpt of the Particle System Modeling Language metamodel.

a value along a curve between two constants. If the mode
is Constant, the dimension is a single float ranging from
0 to 100. If the mode is other than Constant, the average
value between the two constants is selected, again ranging
between 0 and 100.

• GravityDimension. This dimension lets the human
choose among different values on how gravity affects the
particles. This value modifies the direction of gravity and
ranges from -5 to 5. If the modifier is positive, gravity
works as usual, making the particles fall downwards. The
higher the modifier, the higher the acceleration. If the
modifier is 0, gravity does not affect the particles. Finally,
if the modifier is negative, gravity moves the particles up-
wards.

• LifetimeDimension. This dimension determines the time
that the particle is alive before it is destroyed. It has the
same calculation as the EmissionDimension, ranging be-
tween 0 and 100.

• MaterialDimension. This dimension represents the ap-
pearance of each particle, selecting a different material that
dictates how to render the particles. Each one of the ma-
terials has two main characteristics: shape (i.e., changes
the image used to be rendered) and blending mode (i.e.,
changes how each particle is rendered). The four shapes
are circle, square, triangle, and line. The three blending
modes are alpha blending, additive blending, and opaque.
There is a total of 12 materials combining each shape with
each blending mode. It is represented by an enum that is
distributed between the rows or columns depending on the
value. This value ranges from 0 to 11.

• SizeDimension. This dimension showcases a different se-
lection of particle sizes ranging between 0 and 5. The
higher the number, the bigger the particle. Similarly to the
other dimensions that rely on values with the type Min-
MaxCurve, this dimension is calculated the same way.

• SpeedDimension. This dimension distributes the PS
along the rows or columns depending on the initial speed
of the particles. Values range from -5 to 5, where negative
values make the particles start moving backward and pos-
itive values make the particles start moving forward. Val-
ues equal to 0 make the particles remain still at the start of
their lifetime.

• SpreadDimension. This dimension represents the dis-
tance among particles when instanced inside the emission
shape. It ranges between 0 and 5. Higher values make the
particles appear at more distant positions between them,
and lower values bring the particles together. If the value
is 0, the particles start their lifetimes at the exact same
point.
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5.2.3. Implementation Details

The presented approach has been implemented and released
to the public as part of this work. It can be found at
https://svit.usj.es/SBSE Co-creation PS/. The search strategy
has been implemented within the Eclipse Environment, using
the Eclipse Modeling Framework to manipulate the models
[34], and based on the pseudo-code provided for the MAP-
Elites algorithm [12]. This is the search process part of the
co-creation approach. It takes care of the evolution of the mod-
els and the transformation of the models to be used later.

The human part of the co-creation approach has been im-
plemented using the Unity video game engine [2], including a
visualizer that can consume the model transformations and turn
them into PS that the human can visualize. In addition, all of
the mechanisms described as part of the approach are included:
fitness selection, dimension configuration, and the possibility
of evolving the models.

Fig. 3 shows a set of screenshots of our implementation of
the human part for the co-creation of PS. It allows the human
to visualize each PS created by the search strategy. The pop-
ulation of PS is shown arranged as a matrix in the part of the
right. Each axis corresponds to one of the dimensions of in-
terest, which can be selected from a pair of dropdown menus.
The lower part shows the set of PS currently selected for the fit-
ness function. On top of the fitness selection, there are controls
to add or remove models from the fitness, to finish the search
process, and to evolve the models further (either one thousand
generations or 10 thousand generations). Finally, the reference
PS is in the center.

Specifically, Fig. 3 shows four screenshots of a co-creation
session as seen by the human. The first screenshot shows the
initial state of the interface: an empty grid except for one par-
ticle system, the initial model that is the default particle system
in Unity; an empty line of squares that will show the selected
models for the fitness; and the reference PS that is a small fire
in this case. The second screenshot shows the state after per-
forming 10k evolutions and then selecting two PS as fitness for
the next generations. We can see, in the second screenshot,
that the PS are distributed by Color Hue (X-axis) and Emission
shape (Y-axis). The use of those dimensions guarantees vari-
ety in the set of PS presented to the user, covering the whole
spectrum of Color Hue and Emission shape (the dimensions se-
lected). The third screenshot shows the state of the tool after
changing the dimensions and performing evolutions with the
new selected fitness. We can see, in the third screenshot, that
the PS are distributed by Size (X-axis) and Color Hue (Y-axis).
Finally, the fourth screenshot shows the final state of the inter-
face after many generations before selecting the desired PS and
ending the co-creation process. In this example, the final selec-
tion is made after 71k generations in eight different iterations
of the algorithm, where each iteration shows 25 different PS to
the human, making a total of 200 PS taken into account by the
human during the session. The complete session can be seen in
the example video from which these screenshots are taken via
this link: https://www.youtube.com/watch?v=vxyGvYp-mYw.

5.3. Results

To evaluate the approach, we conducted an experiment in
which five professional video game developers used the tool to
create new PS for their games. They belong to the same video
game company with considerable heterogeneity of video game
genres, and they use PS for all of them. Their games range
from a high-speed racing game in VR to a slow-paced point-
and-click narrative experience and a physics-based co-op party
game. These developments were created using Unity.

First of all, the subjects were asked to fill out a demographic
questionnaire. Table 1 shows the answers. The Subject column
is the subject represented by a letter. The Age column is the
age in years. The Dev. Time column is the number of hours
the subjects spend developing video games per day. The Pro-
gramming column is the self-evaluation of their programming
knowledge, and the Effects column is a self-evaluation of their
PS knowledge, both of which are measured on a 5-point Likert
scale.

Subject Age Dev. Time Programming Effects
A 26 8 4 3
B 30 6 5 4
C 25 7 3 2
D 25 8 4 3
E 27 8 2 1

Table 1: Demographic information

The subjects represent a variety of roles in the development
process. Two of them are programmers (A, B), one designer
(C), one 3D artist (D), and one producer (E). None of them
have full proficiency in creating visual effects. While stating
somewhat high knowledge of PS, subjects A and B reported that
their knowledge is related to the programming of PS without
taking into account the artistic part.

After the demographic questionnaire, the subjects were
tasked to create five different PS for their games using our ap-
proach. The PS to create were Fire, Rain, Snow, Smoke, and
Sparks. They had five minutes per particle system and the pop-
ulation of the matrix started with a single PS, which is the de-
fault PS provided by Unity.

A professional visual effects artist has previously hand made
the five types of PS in Unity (15 minutes each). These PS were
provided to the subjects as a reference for them to create a more
refined variant to be used in one of their developments.

After the five subjects finished their tasks, we presented them
with five series of six PS (5 subject-created + 1 handmade-
created) to be ranked. They needed to order each type by an-
swering the following question: Which one of the PS is the best
fit for one of your developments? With the first being the best,
and the last being the worst.

In order to have a numerical metric from the rankings, we
assigned each position a score based on the following formula:
S core = 6− Position. This way, the first model selected would
have a score of 5, and the last model would have a score of 0.
We used a ranking system in the evaluation of our approach to
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Figure 3: Human-part of the Co-Creation Approach for Particle Systems.

ascertain the feasibility and potential of the proof of concept.
It is mostly based on the subjectivity of the taste of each sub-
ject and aims to understand the satisfaction with the approach.
In this experiment (from the design phase), we ruled out that
subjects would use independent values to evaluate the quality
of the models (e.g. Likert scale or similar) since in cases where
subjects perceive similar quality between the models presented,
it would not help us to detect whether they prefer the model
they have made with the approach to the handmade model (e.g.
to indicate that a model is ’comparable’ to the handmade one
they could give both the same score).

The use of rankings prevents us from applying common ana-
lytic approaches such as histograms or analysis of variance [35]
as the scores in a ranking are not independent of each other.
However, this ranking system allows us to detect when the sub-
jects consider that the model they have made with the approach
is better than the handmade model. Furthermore, if the mean
values obtained by several models are similar, we can conclude
that the differences between them are very small (if I do not
know how to classify, I classify at random, then the mean of all
models would tend to be the same).

First of all, we will test the rankings provided by the sub-
jects for randomness [35], to determine if there are differences
among their preferences expressed through their rankings, or if
the differences are mere chance. To do so we have to test the
null hypothesis that the mean rank is equal to (t+1)

2 for t ranked
items. For the six models used in our evaluation, the mean rank-
ing under the null hypothesis of a random ranking would be 3.5
(a score of 2.5 as our score system starts from 0). The test

Chi-square Fire Rain Snow Smoke Sparks

Statistic 15.05 13.41 6.14 18.89 20.95
p-value 0.004 0.008 0.09 0.0008 0.0004

Table 2: Chi-square statistic and p-values for the rankings of the five PS of the
experiment.

statistic for this null hypothesis is that the mean is distributed
as a Chi-square statistic with degrees of freedom of t-1.

Table 2 shows the results of running the statistic against the
null hypothesis for each of the PS effects of the experiment.
If the p-value associated with the statistic is smaller than 0.05,
we can reject the null hypothesis and conclude that there was a
nonrandom pattern in the ranks provided by the subjects. For
the snow PS, we cannot reject the null hypothesis, the values
provided are too similar to a random ranking, and the subjects’
preferences expressed through rankings cannot be distinguished
from random chance. We can reject the null hypothesis for the
rest of PS: Fire, Rain, Smoke, and Sparks. We can conclude that
subjects have uneven preferences over the models, and some are
regarded as a better fit than others.

The following figures show the average score of each PS
as bars and the self-score each developer gives to his/her own
model as red Xs. The red dashed line shows the average of the
self-scores. Each graph is accompanied by a screenshot of the
video presented to each subject for ranking the models. The full
videos are accessible via the link in Section 5.2.3.

Fig. 4, shows the scores for the Fire PS. We can see that
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Figure 4: Scoring for each Fire PS and a screenshot of the ranking video.

Model C is ranked higher than the handmade. However, the av-
erage self-score was lower than the average score for the hand-
made PS by 0.6 points. Except Model C the handmade per-
formed better than the other generated models. Additionally,
four out of five self-scores are higher or equal to the average
score, remarking the difference in perception among subjects
when ranking their own models. From these results, we claim
that the approach can generate models similar, in satisfaction,
to the handmade one.
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Figure 5: Scoring for each Rain PS and a screenshot of the ranking video.

For Rain, Fig. 5 shows that each subject deemed his/her own
PS to be a better fit than the average. Furthermore, on aver-
age, they chose their own particle system over the handmade
one. Judging by the average of subjects A, B, and C, they
performed similarly to the handmade one by only 0.4 points
lower each, while the other two generated models performed
the worst. While subjects prefer the handmade model in gen-
eral, they prefer their own models over the handmade one. We
can claim that they were satisfied with their own results but not
with the results of all the generated models.

For Snow, Fig. 6 shows that the subjects considered their own
models to be better than the handmade one, with over a point
of difference. Similarly to Rain, all of the subjects considered
their own models to be better than the handmade. Two of the
models (A and C) are considered better than the handmade on
average. We claim that the subjects creating the Snow particles
were satisfied with their results using the approach.
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Figure 6: Scoring for each Snow PS and a screenshot of the ranking video.

For Smoke, Fig. 7 shows the best performance for the gener-
ated models of all of the PS. The subjects created three models
better than the handmade one on average. Also, the self-score
was higher than the handmade one (over 0.6 points). In this
case, we claim that the subjects were satisfied with their work.

0

1

2

3

4

5

Model A Model B Model C Model D Model E Handmade

Smoke

Figure 7: Scoring for each Smoke PS and a screenshot of the ranking video.

For Sparks, the results favor the handmade PS. It can be ob-
served that all of the subjects considered it to be the best fit,
and the average self-score was the lowest of them all. However,
they still prefer their own generated model rather than the ones
generated by other subjects. We claim that the subjects were
less satisfied with their work on this type of PS.
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Figure 8: Scoring for each Sparks PS and a screenshot of the ranking video.

Overall, the self-scores were similar to or higher than the
handmade score. Also, the subjects preferred generated models
to the handmade ones in four out of the five types. The ex-
periment yielded positive outcomes for this proof-of-concept ,
considering that our approach took only five minutes by non-
experts in visual effects, and the handmade ones took 15 min-
utes by an expert. Our approach is more accessible and fast,
obtaining solutions with equivalent in satisfaction to those tra-
ditionally made PS.

To conclude, our results show that the subjects consider the
models generated by our approach as a similar fit for their
games to the one handmade. The exception was the Sparks, in
which the handmade PS was considered superior. Another key
insight that can be derived from these results is the subjectivity
of the tasks themselves, where subjects had a focused intention
when creating a PS, selecting their own PS 23 out of 25 times
as a better fit than the others (the red X is higher than the blue
bar).

5.4. Focus group

To better understand these results, we conducted a focus
group with the subjects in order to obtain their opinions on the
tasks and their rationale behind the usage of the approach and
the ranks given. To conduct the focus group, we followed the
guidelines of Kontio et al. [36] and Krueger [37]. We asked
the participants their opinions on the approach with open-ended
questions like: “What was your thought process when perform-
ing the task?”, “What did you find useful (or not) in this ap-
proach?”, or “How would you improve the tool?”. With these
questions, we aim to understand what participants think about
the approach if they understood its objectives, its flaws, and its
strengths. All of the subjects agreed on the usefulness of the
approach, highlighting the ease of use and the benefits of the
real-time visualization of the PS. We performed the focus group
with the same subjects that participated in the experiment. The
duration was 30 minutes, and the discussion themes were re-
lated to the satisfaction of the users: the usefulness of the tool,

the perceived speed of the development using the approach, and
the interface.

In the focus group, the subjects stated that it was difficult to
assess the fitness of each PS because the same type of PS can be
created for different games with drastically different behaviors.
When each subject created a PS, he/she did it with a specific
game in mind. For example, one of the Sparks can portray a
machine malfunction in a video game environment with small
bursts of incandescent debris. However, other Sparks repre-
sent the continuous clash of two metals like a radial saw cutting
metal. Participants reported that the task given was broad, and
they had to fill a gap in the instruction given (i.e., create a ’rain’
for one of your games). Each participant created their own par-
ticle system in a particular context, which was open for the in-
terpretation of each participant. Then, in the ranking phase,
participants were not looking for the universally best Sparks,
but the one that better fits the context they added to the task.
This context is open to interpretation and differences in opin-
ions and decisions. This thought process that the participants
developed is the main reason they were tasked later to rank all
the generated PS. Because to evaluate these PS properly, they
had to be contextualized. Then, each subject’s self-assessment
of their models is particularly important. It takes into account
how each subject regards their work, and this outcome is sup-
ported by the fact that subjects often prefer their own PS over
the other ones generated. Ultimately, this approach is destined
to be used by the developer, and being able to fulfill the inten-
tions of the human is key for the approach to be successful.

Participants reported that the creation process of a PS with
this approach could be divided into two parts we call explo-
ration and refinement. Exploration is the first phase in which
participants change dimensions more frequently selecting only
a few (from zero to two) PS for the fitness. In this phase, the
participant wants to see more variation and thus explore more
the domain. The refinement phase begins when the participant
is somewhat satisfied with one or two PS. In this second phase,
more evolutions are performed without changing dimensions
that much, and more PS are selected for the fitness. Finally, the
participant selects the final candidate when the algorithm con-
verges into a suitable candidate or when there are only small
changes between evolutions.

The subjects had difficulties understanding the concept of di-
mensions, and they tended only to vary one of the axes while
the other stayed fixed for most of the experiment. They also
suggested improvements for the user interface and the user ex-
perience like accessibility features: “Would be nice that the
color setting had some accessibility features, like telling me the
amounts of RGB being used” or features improvements like:
“being able to clamp the values of the evolutions”. Even with
the accessibility limitations of the tool, the subjects preferred
this approach rather than the traditional slider adjustment.

6. Discussion

From our interpretation, the Sparks and Rain PS presented
optimal solutions in the handmade model because those particle
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systems require high speed to better portray them. As our ap-
proach limits some values when using the Constrained EFloat
data type, we observed that the PS generated for Sparks and
Rain move slower than the one handmade. That is, the search
space for some parameters is limited in order to explore the do-
main efficiently by the approach. This leads to hindered solu-
tions that do not reach the variety of solutions that can be hand-
made. This limitation can be sorted out if the search is properly
guided by the human by selecting the speed dimension to favor
the PS with the highest speeds. However, this was unclear for
the participants as they reported in the focus group.

This approach is more accessible than learning to use custom
tools for each engine. This approach is meant to be a compan-
ion for the developer. After generating PS with this approach,
the developer can tweak it to their needs. We have seen that
the results for the best models created do not necessarily match
their assessment of PS knowledge. This suggests that the ap-
proach is within everyone’s reach.

Even if this approach is more accessible than the traditional
techniques, it is not without its limitations.

In order to accelerate development, some developers buy vi-
sual assets from storefronts such as the Unity Store. Our ap-
proach will help teams generate unique content with a better fit
for their games by creating new content or modifying existing
content. The subjects reported that our approach is a good way
to prototype and introduce variety in the game. The genera-
tion of content is still the biggest bottleneck in the video game
industry.

One key point of the approach is the boundaries of the possi-
ble values of the attributes. By embedding the domain knowl-
edge into the DSL, we have achieved a reduced search space.
This has led to quick and reliable solutions. We can create more
boundaries specific to a certain video game context. For exam-
ple, if the video game uses a specific color palette, the Col-
orHueDimension can be reduced to those colors in the palette,
or if the video game is a 2D-pixel art game, the MaterialDimen-
sion can be limited to square-like particles, and the ShapeType-
Dimension can be limited to 2D shapes. However, as we have
seen in the speed example, these boundaries can limit the search
space in a negative way. When using this approach, a balance
must be found between domain explorability and solution vari-
ety.

These solutions are helpful because of their variety rather
than their fitness value. With the MAP-Elites algorithm, we
have achieved multiple solutions that the developers can work
with, thus, giving them more control over the creative process.
The final solutions selected by the subjects did not possess the
optimal calculated value by the fitness function. This indicates
the significant influence of human decision-making and subjec-
tive preferences, suggesting that non-mathematical factors play
a critical role in solution selection. This supports the idea of
using co-creation algorithms over traditional SBSE ones when
applied to creative tasks.

The dimensions used to divide the search space were also
beneficial for the search process. When interacting with the ap-
proach, the subjects were changing the dimensions based on the
specific aspect they wanted to refine; For instance, first obtain-

ing the shape of the PS (using the ShapeType, Material, and
Size dimensions) and then switching to ColorHue dimensions
to refine the colors and transitions of the effect being co-created.
The approach also tackles the main challenges in co-creation:
fatigue, lack of control by the human, and little interactivity
[19]. Our approach created competitive PS within five minutes
because of the human’s high level of guidance of the algorithm.

The algorithm is executed over software models that are
MOF-compliant, the domain-specific part is Particle Systems
that are fed to the human to select and guide the fitness of the
algorithm. Although this part is crucial to the execution, any
creative domain that can be represented with a MOF metamodel
should be usable with this approach. Evaluation with more do-
mains is presented as a future work.

Finally, the approach could be used to iterate and evolve ex-
isting particle systems. We can use an example previously made
and use it as a selection for fitness from the beginning of the
execution of the algorithm. This way, the next generations will
tend to be similar to the given model while evolving it providing
quality diversity among different dimensions.

7. Threats to Validity

To describe the threats to validity of our evaluation, we have
used the classification of Wohlin et al. [38]:

External validity is achieved when the results can be gen-
eralized outside the settings of the experiment. By applying
the algorithm to MOF-compliant models, we ensure that the al-
gorithm can be applied to any DSL that can be visualized and
evaluated by a human. The approach is being evaluated in PS
content creation and more use cases of the approach have to
be evaluated to demonstrate the capabilities of the approach.
Moreover, the participants in our experiment are potential users
of this tool, which favors the generalization of our results to the
industrial environment.

Internal validity is achieved when the observed relation-
ships between treatment and outcome are causal relationships
and these relationships are not the result of a factor over which
we have no control or we have not measured. The results ob-
tained with the tool may be affected by the parameterizations
made in the algorithms used. It is possible that other param-
eterizations may produce different results. The presented pa-
rameters use the experimental parameters terminology from the
original MAP-Elites study [12]:

• starting size of the map: 5 × 5

• final size of the map: 5 × 5

• genetic operator: mutation

• initial batch: 1

• batch size: 1,000 or 10,000 per iteration, depending on
human decision

• number of iterations: human decision

• features (dimensions): 9 showcased in pairs selected by
the human
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• performance: similarity to human-selected individuals

Construct validity is achieved when the measures actually
represent what is being investigated based on the research ques-
tions. As it is mentioned before in this paper the fact that hu-
mans evaluate the fitness of each model inevitably produces a
bias in the findings. However, creating a formula that evaluates
the visual appeal of creative content is a subjective task. With
the mixed-initiative between machine and human, the approach
makes use of that bias. The quality measure used to classify
the models is subjective; each subject in the experiment clas-
sifies the models according to his or her criteria and interests.
The objective of the approach is to be able to fulfill the creative
intentions of the developer.

Conclusion validity is achieved when there is a statistical
relationship (with a certain significance) between the treatment
and the results. Our experiment is affected by the threat low
statistical power, since we have few subjects. To validate our
assertion that the tool produces comparable results in quality, a
controlled experiment could be performed where different sub-
jects would evaluate the quality of the models presented in this
work without knowing their origin (whether they are generated
by our approach or handmade) and statistically contrast whether
or not they perceive differences in quality.

8. Conclusion and future work

Our co-creation approach has proven to work when applied
to a real-world scenario, such as the creation of PS for video
games. It has been able to support humans in the co-creation of
models of the given DSL. Specifically, the fitness function and
the configuration options are given to the humans, which can
empower them to drive the search toward a model that satisfies
their needs.

Five professional video game developers were able to use
the approach to refine handmade models into models that better
fit their needs in just five minutes. In addition, the develop-
ers highlighted the variety of alternatives proposed by the ap-
proach, bringing new design ideas that were not part of their
initial design but were integrated as part of the final model cre-
ated.

The proposed approach is generic, and the provided imple-
mentation is ready to be applied to co-create models of any
MOF-compliant DSL. We expect this to encourage the com-
munity to use it and to grow the co-creation of software mod-
els. New fitness functions and genetic operators should emerge,
empowering humans with efficient ways for driving the search
and traversing space towards more exciting paths. Our plans
for future works include new validations to determine if the ad-
vantages shown in the case of PS can be extended to different
creative domains.
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