
The Consolidation of Game Software Engineering: A Systematic Literature Review of
Software Engineering for Industry-scale Computer Games

Jorge Chuecaa, Javier Veróna, Jaime Fonta, Francisca Péreza, Carlos Cetinaa,b

aSVIT Research Group, Universidad San Jorge, Zaragoza, Spain
bUniversity College London, London, United Kingdom

Abstract

Context: Game Software Engineering (GSE) is a branch of Software Engineering (SE) that focuses on the development of video
game applications. In past years, GSE has achieved enough volume, differences from traditional software engineering, and interest
by the community to be considered an independent scientific domain, veering out from traditional SE.

Objective: This study evaluates the current state of the art in software engineering for industry-scale computer games identifying
gaps and consolidating the magnitude and growth of this field.

Method: A Systematic Literature Review is performed following best practices to ensure the relevance of the studies included
in the review. We analyzed 98 GSE studies to extract the current intensity, topics, methods, and quality of GSE.

Results: The GSE research community has been growing over the years, producing over four times more research than before
the previous GSE survey. However, this community is still very dispersed, with no main venues holding most of the GSE scientific
studies. A broader range of topics is covered in this area, evolving towards those of a mature field such as architecture and design.
Also, the reviewed studies employ more elaborated empirical research methods, even though the study reports need to be more
rigorous in sections related to the critical examination of the work.

Conclusion: The results of the SLR lead to the identification of 13 potential future research directions for this domain. GSE is an
independent, mature, and growing field that presents new ways of software creation where the gap between industry and academia
is narrowing. Video games present themselves as powerful tools to push the boundaries of software knowledge.

Keywords: Computer Games, Video Games, Game Software Engineering, Systematic Literature Review, SLR, industry-scale.

1. Introduction

In 2021, the video game industry generated total revenues of
$180.3 billion (up 1.4% over 2020 [1]), and it keeps growing
after having already surpassed the revenues of the movie and
music industries combined in 2019 [2], this makes it the largest
entertainment industry in terms of revenue.

Video games are advanced software products and, at the same
time, they are complex works of creativity and art [3]. This
merge of disciplines, the need for the product to be fun, and the
unrelenting growth of the video game industry have created sig-
nificant differences between traditional Software Engineering
(SE) and Game Software Engineering (GSE) [4]. These condi-
tions require constant and fast communication among develop-
ers, flexible design, and maintainable implementation. More-
over, video games tend to be products with a much more lim-
ited life cycle than other software products [5]. In Section 2, we
present more differences and similarities between GSE and tra-
ditional SE, showing that the differences outnumber the similar-
ities. For these reasons, we propose that GSE be considered an
independent domain that presents divergence from traditional
software engineering.

Email addresses: jchueca@usj.es (Jorge Chueca), jveron@usj.es
(Javier Verón), jfont@usj.es (Jaime Font), mfperez@usj.es (Francisca
Pérez), ccetina@usj.es (Carlos Cetina)

1.1. Goals and Contributions

Many authors [6, 7, 4, 5] argue that GSE and traditional SE
differ more than they might be currently conceived. We aim to
show whether or not GSE has enough volume and interest by
the community to be considered a whole domain instead of a
small software engineering subtopic.

In addition, we also want to shed light on the current state of
research on software engineering techniques, approaches, and
methods being applied to computer games and to compare their
evolution before and after 2009 (last year covered by the previ-
ous GSE survey [5]), in order to provide background informa-
tion for any relevant GSE work in the future. This background
information will also benefit both experts and newcomers to this
field by showing the tendencies and gaps in current research.
Furthermore, the results of the survey lead to the identification
of several potential future research directions for GSE.

Finally, this study tightens the gap between industry and
academia, showing both of them how to nourish each other. We
present a large set of industry-scale research that invites prac-
titioners to publish their expertise in research venues, and we
show SE researchers that GSE is a fertile domain with plenty of
case studies to build up the knowledge of software.

Preprint submitted to Elsevier September 8, 2023

1.2. Lack of Existing SLRs

Some authors have reviewed different topics of video games
as a software domain. However, there is a dearth of system-
atic reviews on more general topics such as Software Engineer-
ing. The three main approaches to reviewing the topic of video
games as software have been surveys and interviews (six stud-
ies), grey literature (seven studies), and academic literature
(nine studies). Table 1 shows the studies that we found about
GSE, followed by a brief commentary of each study.

Table 1: Scientific reports on GSE.

Approach Studies Total

Surveys and Murphy et al. [8] 6
Interviews Kasurinen et al. [9]

Nandhakumar et al. [10]
Kasurinen et al. [6]
McKenzie et al. [11]
Musil et al. [12]

Grey Literature Politowski et al. [13] 7
Reviews Politowski et al. [14]

Politowski et al. [15]
Politowski et al. [16]
Ullmann et al. [17]
Petrillo et al. [18]
Washburn et al. [19]

Academic Literature Engström et al. [3] 9
Reviews Mizutani et al. [20]

Viana et al. [21]
Zhu et al. [22]
Politowski et al. [23]
Osborne et al. [24]
Vargas et al. [25]
Aleem et al. [26]
Ampatzoglou et al. [5]

The surveys and interviews that deal with the domain of
games as software are the following: Murphy et al. [8] surveyed
14 game and non-game developers, finding different practices
among these domains. Kasurinen et al. [9] conducted 27 in-
terviews with professional game developers to understand how
they test their products. Nandhakumar et al. [10] surveyed and
observed three different development companies to explore the
challenges of conceptualizing and realizing the desired user ex-
perience. Kasurinen et al. [6] interviewed 33 professionals from
different game development companies, focusing on the par-
ticular characteristics of video game business topics. McKen-
zie et al. [11] interviewed 12 participants from New Zealand’s
game industry, revealing that custom agile methodologies are
the leading practice for developers. Musil et al. [12] created
a questionnaire for Austrian game studios relating scope and
industry-specific problems.

Some contributions are only reported in the grey literature
and at professional venues such as the Game Developers Con-
ference. Politowski et al. have surveyed postmortem project an-

alyzes from the grey literature to find what software engineering
processes are being used in the video game industry [13] and
the main development problems in the current industry [14].
They have also surveyed grey literature on existing testing pro-
cesses [15]. Politowsky et al. created a dataset of more than
200 postmortems gathering 1,035 problems related to software
engineering in video games [16]. Ullmann et al. read 440
postmortem problems to identify anti-patterns in game devel-
opment [17]. Petrillo et al. [18] examined 20 postmortems to
find how agile methodologies are applied in video game devel-
opment and how the lack of a rigorous methodology is related
to an increase in problems found in development. Washburn et
al. [19] analyzed 155 postmortems, finding best practices and
pitfalls in game development.

Other researchers have sought answers by reviewing aca-
demic literature. Engström et al. [3] conducted a SLR, bridg-
ing the gap between the creative and technical nature of video
games. Mizutani et al. [20] performed a SLR on the usage of
software architectures in game mechanics. Viana et al. [21] car-
ried out a SLR on Software Engineering for Pervasive Games.
Zhu and Wang [22] analyzed the state of the art of Model-
Driven Game Development (MDGD) research with a literature
review. Politowski et al. [23] performed a literature review and
a survey of developers about the topic of automated video game
testing. Osborne et al. [24] conducted a SLR about processes
and management in GSE research. Vargas et al. [25] performed
a mapping study to reveal the growth in the quality of serious
games. Aleem et al. [26] carried out a SLR on the production
life cycle of video games.

All of the previous academic literature reviews focus on spe-
cific topics within GSE. To the best of our knowledge, the
only study that addresses software and its engineering in video
games is the SLR published by Ampatzoglou and Stamelos in
2010 [5], which is highlighted in bold in Table 1. They con-
firmed that GSE is “a fertile domain” with high activity, in-
tensity growth, and open avenues to continue and validate their
study with future research.

This study consolidates the hypothesis given by Ampat-
zoglou and Stamelos [5], providing an updated perspective on
the state and evolution of GSE. The results of their study and
ours are compared, rendering the state of GSE from its begin-
ning to the present. The difference between our study and pre-
vious research is that our study explores the last decade of GSE,
which has never been researched before, and it also focuses on
industry-scale evidence.

1.3. Structure of this work
The remainder of this study report is structured as follows:

Section 2 displays some background on video games as soft-
ware and presents the previous related work. Section 3 ad-
dresses the research questions and the study design, explaining
the review method step by step as we performed it. Section 4
presents the results we obtained as the data extracted from the
reviewed studies answering the research questions. Section 5
presents a discussion of those results. Section 6 looks forward
into the future of GSE. Section 7 presents possible threats to
validity, limitations, and a quality assessment of this review.

2

Finally, Section 8 concludes the study report and identifies the
next steps for future work.

2. Background

Video games are software and, thus, present similarities with
methods and techniques that are present in Software Engineer-
ing. Nevertheless, video games are a unique piece of software
in terms of size, complexity, and creativity, constituting plenty
of differences between GSE and traditional SE. As we per-
formed the literature review, we discovered how the research
community earmarked efforts to determine the nature of video
games as software, finding their similarities and differences
with traditional software.

We performed a manual search of the research in order to
find the similarities and differences between these two fields.
We found that there are four main similarities shared between
GSE and traditional SE:

• The design decisions are based on a commercial perspec-
tive, with priority on the business side [7, 26, 27, 28, 29].

• Technical work is similar between the fields. Even if the
requirements are specific for each domain, the program-
ming work must adhere to those requirements [2, 7, 27].

• Both face similar problems in project scope, dropping fea-
tures, and design. [7, 10, 27, 28, 30, 31].

• Despite potential disparities due to team size and role
heterogeneity, project management exhibits similarity be-
tween the two fields, as game development teams have
adopted agile methodologies from traditional software en-
gineering [3, 4, 7, 31, 32].

On the other hand, the differences we found have a criti-
cal impact on the approach of video games towards software.
The studies concerning GSE that tackle the differences have ten
points in common:

• The teams developing a video game are multidisciplinary,
with non-engineer heterogeneous roles (e.g., art, music,
animation, or marketing) that must be integrated into the
work pipeline [31, 6, 8, 3, 12, 33, 18, 26, 10].

• The process of game development is highly iterative, and
the design is made while implementing the software it-
self [31, 7, 4, 3, 12]. This leads to a dearth of non-agile
methodologies for video game development [6, 8, 11, 18].

• Video game developers usually have fixed deadlines in a
market where delaying a release can impact the business
considerably [5, 12].

• Video game developers must manage a large number of
assets since customers expect large amounts of content,
mirroring the industry’s progression from smaller, techno-
logically limited games to the current trend of expansive,
content-rich gaming experiences [31, 6, 7].

• Video games also place emphasis on player experience
testing and game-specific testing. This emphasis on player
experience takes into account the interconnection of aes-
thetics, interactive mechanics, and storytelling. Game-
specific testing encompasses comprehensive gameplay
evaluation, including controls, mechanics, and level de-
sign assessments, such as balancing. Not only must game
developers perform technical testing, but they also need to
test the artistic nature of their products. [6, 7, 33, 9].

• Post-release features and content addition are standard
practices in the video game industry. The product’s life
cycle can be extended years after launch [7, 33].

• Video games have non-functional endemic requirements
that are highly subjective and more focused on player ex-
perience [33, 7, 32, 26, 10]. These user-driven require-
ments cannot be described technically since they are based
on the purely subjective opinion of the users and focus on
abstract concepts such as “fun” [4], “entertainment”, “aes-
thetics”, “flow” [32], or “creativity” [33] instead of being
based on real-world and measurable concepts as in tradi-
tional software [7].

• Video games require the management of complex soft-
ware systems that must communicate and synchronize
with each other for an understandable and enjoyable ex-
perience. These systems include 2D & 3D rendering,
physics, sound, and artificial intelligence [7, 12, 26].

• The complexity of video games usually forces game de-
velopers to use sophisticated tools called “game engines”
that require specific expertise. These engines require skills
other than software frameworks, such as art, design, or
musical skills. These engines are also used differently than
frameworks. To ease the design and implementation pro-
cess, the game developer often uses scripting languages
or domain-specific modeling languages that are different
from the language the engine is coded [7, 2, 8, 32].

While GSE shares some traditional practices with SE, many
other practices differ, and there is a need for specificity while
dealing with video game software. These facts bring us to the
same conclusion that many other researchers have come to pre-
viously [6, 7, 4]: Game Software Engineering is a scientific
domain rather than a soft skill topic with only a peripheral re-
search activity [5].

3. Review Method

The systematic review process details how to analyze and
synthesize the evidence addressed by other scientific studies re-
lated to the subject in an unbiased and repeatable way. We fol-
lowed the guidelines given by Kitchenham and Charters [34].
The stages of a systematic review are divided into three main
phases: Planning the review, Conducting the review, and Re-
porting the review [34, 35]. Every phase is a combination of
other more straightforward procedures: The Planning phase

3

combines the specification of research questions and the devel-
opment and validation of the review protocol. The Conducting
phase requires the identification of relevant research, the se-
lection of the primary studies, the assessment of the studies’
quality, the extraction of the required data, and the synthesis of
the data. Finally, the Reporting phase is performed by writing
the review report and validating it. Following the best prac-
tices [36, 5] to plan our review, we define the following six
elements: research questions, search process, inclusion and ex-
clusion criteria, quality assessment, data collection, and data
analysis.

The first and second authors participated in every step of the
review process, double-checking every step to ensure the accu-
racy of the inclusion and exclusion processes and the quality
assessment. When disagreements occurred, the two reviewers
discussed the possibilities. If both reviewers did not reach a
consensus, the other authors resolved the dichotomy.

3.1. Research Questions
Alves et al. [37] use a classification approach for the maturity

of a particular method or tool. This is a revision of Kitchen-
ham’s levels of study design in software engineering based
on the evidence hierarchy [38]. This classification’s strongest
ranks are evidence obtained from industrial studies and evi-
dence obtained from industrial practice. The rating “industrial
practice” indicates that the method has already been approved
and adopted by some organizations. Such daily engineering
practice provides convincing proof of the study’s validity [37].
By selecting only studies with industrial relations, we ensure
that the quality of our provided results matches the high stan-
dards of the industry.

This research field is growing actively year by year, and thus
in quality and maturity [5]. Because of that, we have the op-
portunity to specify the systematic review to focus on software
engineering for industry-scale computer games. The term
“industry-scale computer game” refers to games and tools de-
veloped in industrial practice or for commercial purposes, thus,
we do not consider academic prototypes as industry-scale com-
puter games. This study addresses similar research questions
(RQ1, RQ2, RQ3, and RQ4) from Ampatzoglou and Stame-
los’ [5] study with adaptations to our more restrictive research
domain to allow for a more straightforward comparison.

RQ1: Has the intensity of the research activity on software en-
gineering for industry-scale computer game development
changed over the years?

RQ2: How have software engineering research topics in the do-
main of industry-scale computer games changed over the
years?

RQ3: How have research approaches in the domain of industry-
scale computer games changed over the years?

RQ4: How have empirical research methods in the domain of
industry-scale computer games changed over the years?

RQ5: What is the quality of industry-scale computer game re-
search currently?

RQ1 shows the existence of an increase or a decrease in re-
search activity. We compared the variation for research in soft-
ware engineering in computer games since 2009 to the cor-
responding variation of the years prior to 2009, as provided
by [5].

To address RQ2, RQ3, and RQ4, we used the data gathered
in the review and also compared it with the current research
study on the topic by Ampatzoglou and Stamelos [5] prior to
2009. We associated each primary study with a research topic,
a specific research approach, and a specific research empirical
methodology, similar to what Ampatzoglou and Stamelos did.
For each RQ, we add a discussion drawing conclusions from
the additional evidence obtained, shedding some light on the
current state of GSE and identifying future trends.

With regard to RQ2, the classification system of the primary
studies that [5] employed is the ACM Computing Classification
System, which was widely adopted in computing-related engi-
neering research. The ACM CCS was updated in 2012 [39],
replacing the previous 1998 version. We classified the primary
studies with this new version, but we also classified them with
the 1998 version in order to make the comparison. These clas-
sifications are further explained in Section 3.4.1.

With regard to RQ3, scientific research studies can be classi-
fied with respect to their approach [40]. According to the clas-
sification scheme proposed by R.L. Glass et al. [40] and later
on used by Ampatzoglou and Stamelos [5], scientific studies
can be categorized by the overall approach undertaken in per-
forming the research. The main scientific approach categories
are descriptive, exploratory, and empirical approaches [5]. De-
scriptive studies describe a system, tool, or method. Moreover,
SLRs are considered to be descriptive. Exploratory studies de-
termine the best research design, data collection method, and
selection of subjects. The findings of empirical studies are
based on direct or indirect observation of real subjects.

With regard to RQ4, empirical research studies can be classi-
fied with respect to the method of empirical investigation used
to evaluate new techniques, methods, and tools [41]. These
method categories are surveys, case studies, and experiments.
Experiments have a set of subjects performing a task in a highly
controlled environment. The results are obtained by observing
the subjects during the experiment, inspecting the task outcome,
or questioning the subjects after performing the task. Surveys
are usually used if the method under study has been in use for
a while. In surveys, a set of subjects is asked to fill in ques-
tionnaires. The results are obtained with valid answers to these
questionnaires. Finally, case studies study a methodology by
monitoring a project, activity, or assignment with respect to it.
The results are obtained with project measurements [42].

The same classification of approaches and empirical methods
was employed in [5], so we can compare the results in that study
with our own and see an evolution of the results before and after
2009.

RQ5 allows us to identify the common problems in current
research that are tampering with the quality of the studies. This
will help researchers to avoid those issues in future work in the
field of GSE.

4

3.2. Literature Search Strategy

We performed a database search to gather all of the studies
that were relevant to the research questions. To do this, we
performed the following steps: search term extraction, database
selection, and selection process.

3.2.1. Search terms
We used PICO (Population, Intervention, Comparison, Out-

come) as suggested by Kitchenham and Charters [34] to find
the search terms for the query.

Population. In software engineering, population refers to the
application area in software engineering [34]. For our study,
this is computer games.

Intervention. In software engineering, intervention refers to
the methodologies, tools, technologies, or procedures that are
used to create the software [34]. In our study, this corresponds
to ’engineering’, ’development’, ’requirements’, ’design’, ’cod-
ing’, ’testing’, ’verification’, ’evolution’, and ’maintenance’.
We have extracted these terms to describe the different soft-
ware engineering activities, comparable to how Mao et al. [43]
extracted the terms for a similar survey reviewing another broad
SE field.

Comparison. In software engineering, comparison refers
to the methodologies, tools, technologies, or procedures being
compared with the intervention [34]. In our study, comparison
is not applicable.

Outcome. In software engineering, outcome refers to fac-
tors that should be important to practitioners [34]. In our study,
the outcome includes approaches that focus on industry-scale
video games and Software Engineering. We decided to per-
form this step manually as part of the inclusion and exclusion
criteria to avoid losing valuable work if it is filtered automat-
ically. There are many studies performed in industry-grade
video games where the word “industrial” does not appear in
the whole study report.

After recognizing the search terms from the research ques-
tions, these terms need modifications and additions to be effec-
tive in a search string.

The term computer game refers to electronic games that are
developed to be executed on a computer. These games can be
nominated as video games, an alternative synonym that refers
to games that are developed to be executed on any device that
supports them, including computers. Even though it is a more
generic term, we included it to extract studies deemed signif-
icant. Since we only intended to review computer games, we
make up for this addition with the selection criteria, which is de-
tailed in Section 3.2.4. With this criteria, we exclude any study
about non-computer games. Video games can also be spelled as
videogames. Additionally, some databases need the distinction
between plural and singular words, so we added these variations
to the search string.

Our Intervention terms can also refer to ideas that are too
broad and can depict concepts outside of the SE field, so we
added the word software before each term. For example, the
term testing can be used in the medical field, and, thus, it is
changed to software testing to ensure its relevance to SE.

For the search string, we used the Boolean operator OR to
combine the terms inside each criterion and the Boolean oper-
ator AND between Population and Intervention. The terms of
Population must appear in the title, abstract, or keywords of the
searched studies to ensure the focus on computer game devel-
opment. The terms of Intervention must appear anywhere in the
studies found. The resulting search string is as follows:

TITLE-ABS-KEY (“computer game” OR “computer games”
OR “video game” OR “video games” OR “videogame” OR
“videogames”) AND ALL (“software engineering” OR “soft-
ware development” OR “software requirements” OR “soft-
ware design” OR “software coding” OR “software testing” OR
“software verification” OR “software evolution” OR “software
maintenance”)

3.2.2. Databases
We have considered the Scopus, Web of Science, IEEE, and

ACM databases for this survey. We chose these based on the
prior experience of Dyba et al. [44] and Kitchenham and Br-
ereton [45]. These studies stated that using IEEE and ACM as
well as two indexing databases is appropriate [46]. During the
search, we considered all of the full years from 2009 to 2021
(both included). Fig. 1 shows the number of search results per
database.

3.2.3. Search process
Both reviewers followed the review and selection process de-

picted in Fig. 1 using the 3,491 total results from the search in
the four databases. To achieve the selection of studies for data
extraction, the process performed had the following steps:

1. The reviewers searched four databases using the search
string to collect the primary studies. We show the search
results from each database in Fig. 1.

2. The total number of 3,491 studies was filtered to exclude
517 duplicate records, decreasing it to 2,974 studies.

3. The non-duplicated studies were filtered, and we excluded
all non-relevant studies for this study. For the fulfilment
of this step, we applied the exclusion criteria considering
each study’s title and keywords. The selection decreased
to 614 studies, which we selected for the following step.

4. We filtered the 614 studies. This time, we filtered the stud-
ies by abstract with the same exclusion criteria, and 362
were eliminated. The selection decreased to 252 studies
not meeting any exclusion criterion.

5. We also filtered this selection of 252 studies by their rel-
evance in answering the research questions, applying the
inclusion criteria to the full text of each selected study. The
selection again decreased to a final selection of 90 studies.

6. We selected all of the references from the selection of 90
studies for the application of backward snowballing [47].
We performed snowballing to search for possible missing
studies. The initial list of snowballing studies counted was
591 studies.

5

Scopus
(2030)WoS

(827)

ACM
(272)

IEEE
(362)

Total articles
(3491)

Publications
meeting exclusion

criteria
(2360)

Title and keywords
review
(2974)

Publications not
meeting inclusion

criteria
(162)

Full text review
(252)

Quality Assessment
and Data Collection

Final selection
(90)

Duplicate records
(517)

Abstract review
(614)

Publications
meeting exclusion

criteria
(362)

1)

2)

3)

8)

5)

4)

Snowballing
(591)

Snowballing
selection

(8)

Final list of unique
publications

(98)

Surveyed
publications

(98)

Exclusion and
inclusion criteria

(583)

6)

7)

Figure 1: Overview of the search process

7. We filtered the 591 studies in the initial snowballing list
by applying exclusion and inclusion criteria to their title
and keywords, abstract, and full text, with eight studies
meeting all of the inclusion criteria and not meeting any
exclusion criterion. We added these eight studies to the
previous final selection.

8. With the final list of 98 unique publications, we performed
a quality assessment and data collection of every primary
study in the final selection to collect information that was
suitable to answer our research questions.

As a result of this process, we confirmed all 98 selected stud-
ies as final sources. It is relevant to note that we could not re-
trieve three full-text study reports from any digital library. We
contacted the authors, but only one of them answered. Thus
there were two studies out of the 252 in the full-text review that
we could not review.

The following subsections explain the inclusion/exclusion
criteria, the quality assessment process, and the data extraction
process.

3.2.4. Selection criteria
To answer our research questions, we evaluated the retrieved

studies according to the following exclusion and inclusion cri-
teria. All of the studies in our review had to be relevant to Soft-
ware Engineering (classified under a SE topic) and focus on
computer games. We discarded all of the studies that met any
exclusion criteria from our study. In contrast, the studies that
met all of the inclusion criteria were the ones selected for our
study. Our process had six stages of filtering using the exclusion
or inclusion criteria: identifying all relevant studies (3,491), re-
moving duplicate records (517), excluding publications by ti-
tle (2,974), excluding publications by abstract (362), excluding
publications by full text (162), and excluding publications from
the snowballing list (582).

The following criteria state when we excluded a study from
our study:

• Studies that were duplicates of other studies.

• Studies that were not written in English.

• Studies that were not published online between 2009 to
2021.

• Studies presenting non-peer-reviewed material.

• Studies presenting peer-reviewed but not published in
journals, conferences, or workshops.

• Studies that were summaries of conferences/editorials.

• Non-primary studies.

The following criteria state when we included a study in the
study:

• Studies that were not focused on the social and educational
impact of video games, such as serious games.

6

• Studies that were not focused on Artificial Intelligence
(AI).

• Studies that were not focused on Content Creation.

• Studies that were in the field of Software Engineering.

• Studies that were focused on software engineering applied
to industry-scale computer games development.

During this process, we found several interesting studies
which we decided to exclude for not being closely related to
computer games or software engineering issues. The main fo-
cus of these studies is on “artificial intelligence”, “mobile gam-
ing”, virtual reality”, “augmented reality”, “content creation”,
and “serious games”. The term serious game, as explained
by Cheng et al. [48], “has become a popular and particular
term referring to any kind of video game-based learning and
training (e.g., business, military, medical, marketing) or the so-
called ’edutainment’”. We did not include studies about serious
games because these studies focus on the health, social, or edu-
cational implications of games and not on the software that runs
them or the engineering methodologies used to develop them.
Similarly, studies on “content creation” and “artificial intelli-
gence” for video games are more focused on the content itself
and applications rather than the SE behind them [49]. It is also
important to note that we only considered full primary studies
from journals, conferences, and workshops for the review. We
have removed other studies, such as posters, summaries, and
non-peer-reviewed studies, from the survey.

Since the selection process is not affected by the order of exe-
cution of the selection criteria, we present the criteria in no par-
ticular order. Fig. 1 shows the entire process that we followed
with the number of excluded studies and included studies.

The final selection consisted of ninety-eight (98) studies.
These studies are presented in the Studies Included in the Re-
view section at the end of the study report along with the com-
plete data-set extracted from the study in the APPENDIX.

3.3. Quality Assessment
The assessment of the quality of primary studies is critical

in a SLR [34] since it helps validate that the methodology and
results of these studies are solid. Similarly to Ampatzoglou et
al. [5], the quality of the published studies is satisfactory be-
cause of the high standards of the publishing process of the se-
lected journals, conferences, and workshops. That is why our
quality criteria were not used for filtering purposes to include
or exclude primary studies in the review. As Kitchenham et
al. [50] proposed, we assessed primary studies using questions.
We show these questions in TABLE 2. Similar to Galster et
al. [51] and Ali et al. [52], we adopted the quality assessment in-
strument used by Dyba et al. [53], and we decided to use a three-
point scale to answer each question, either as “Yes”, “To Some
Extent”, or “No”. Using a three-point scale, we avoided ne-
glecting statements where authors provided only limited infor-
mation to answer the assessment questions [52]. We assigned
each quality assessment question a numerical value as answer
(“Yes” = 1, “To Some Extent” = 0.5, and “No” = 0). A quality

score was given to a study by summing up the scores for all of
the questions asked [52]. We provide the results of the qual-
ity assessments in Fig. 7. However, as TABLE 2 shows, these
scores refer to the quality of the reporting of a study rather than
its actual quality [51]. As we explained in Section 3.1, by se-
lecting only studies with industrial relations, we ensure that the
actual quality of the results matches the high standards of the
industry.

Because our questions for this quality assessment (shown in
TABLE 2) are the same as the ones used in [51], we also fol-
lowed their approach by applying the quality criteria to all of
the studies included in the review rather than only to studies
that report empirical methods.

Table 2: Questions to Assess Study Quality

N Question

Q1 Is there a rationale provided for why the study was
undertaken?

Q2 Is there an adequate description of the context (e.g.,
industry, laboratory setting, products used, etc.) in
which the research was carried out?

Q3 Is there a justification and description for the
research design?

Q4 Is there a clear statement of the findings, including
data that supports findings?

Q5 Did the researcher(s) critically examine their own
role, potential bias, and influence during the study?

Q6 Are limitations and credibility of the study
discussed explicitly?

3.4. Data Extraction

We show the information collected from the studies in TA-
BLE 3. This data is tabulated and statistically analyzed to inves-
tigate the intensity changes of the research activity on the topic,
the most active journals and conferences in GSE research, the
SE topics currently addressed in GSE research and the num-
ber of studies employing each research approach and method.
We collected the data for F1 to F7 from the meta-information
of study reports. We collected F1, F3, F6, and F7 to keep that
information of the study reports. F2 records the year of pub-
lication and helps to answer all of our RQs as they are time-
related. F4 and F5 help manifest the most active research pub-
lication outlets and publishers for GSE studies. F8 records the
quality score for each study. F9 records software engineering
research topics based on the ACM classifications of 1998 and
2012. F10 and F11 record each study’s research approach and
method based on the selection criteria introduced in Section 3.1.
F12 records the limitations or threats addressed by the authors
of each study.

7

Table 3: Data collection form

N Field Research question

F1 Author(s) n/a
F2 Year RQ1, RQ2, RQ3, RQ4
F3 Title n/a
F4 Venue (journal or conference) RQ1
F5 Publisher RQ1
F6 Keywords n/a
F7 Abstract n/a
F8 Quality score RQ5
F9 SE research topic RQ2
F10 Research approach RQ3
F11 Empirical research method RQ4
F12 Limitations RQ5

3.4.1. Classifying topics

This section clarifies the classification of each study concern-
ing the software engineering issue it involves. The classification
system employed is the ACM Computing Classification System
(CCS). In 2012, ACM undertook a major revision of the CCS,
but we classified the primary studies using the 1998 version
in order to compare our study with Ampatzoglou and Stame-
los’ study [5]. We also included the 2012 version classification
for two main reasons: to check how appropriate it is for GSE
classification and to be able to compare future work to ours by
using the newest version of this classification system if needed.
The topics used for the 1998 ACM CCS version are shown in
TABLE 4, and the topics used for the 2012 ACM CCS version
are shown in TABLE 5.

The topics shown for either classification system are not the
complete list of categories. Each one of the topics encompasses
more subtopics. We used the classification systems with that
depth of detail in order to ensure that we could group the results
into representative topics.

Both reviewers performed the primary study classification
for both CCS versions while performing the full-text review.
For the classification process, the authors checked if the study
under review was already classified under one of the two ver-
sions of the CCS. We reviewed studies dating from 2009 to
2021; therefore, some of them still used the 1998 version in-
stead of the 2012 version. If the study was already classified
with either of the two CCS versions, the author currently re-
viewing the study maintained that topic and classified it for the
other version of the CCS. The author did this for the two ver-
sions if it was not classified using any CCS version. When the
two authors reviewed and classified the study.

It is also worth noting that all software testing and usability
testing are included in the topic 5.3.4 Software verification and
validation for the 2012 version of the CCS since they did not
match well in any other topic.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Figure 2: Increase in GSE Research Activity

0

2

4

6

8

10

12

14

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Workshop Conference Journal Total

Figure 3: Research activity per year and publication type

4. Results

This section shows the data extracted from the Literature Re-
view of the 98 studies concerning the research questions spec-
ified in Section 3.1. Additionally, the data is compared with
the research activity of the previous decades. To compare with
the data until 2009, we consider the study by Ampatzoglou and
Stamelos [5], but our selection criteria are more restrictive be-
cause our study focuses on industry-scale computer games. In
order to address this issue, we have reviewed how many studies
of the final selection in Ampatzoglou and Stamelos’ study [5]
match our criteria. The previous SLR identified 84 studies
from 1994 until 2009 (15 years). Of those studies, only 24 are
industry-scale. We show these studies in the APPENDIX. The
number indicates the position on the list of studies provided by
their authors. Our SLR found 98 industry-scale studies from
2009 to 2021 (12 years). The data-set of the whole search
process, selection process, data collection, and quality crite-
ria are available at https://svit.usj.es/SLR-GSE-dataset/ and at
https://doi.org/10.5281/zenodo.8242657.

4.1. RQ1 Research Intensity
The most straightforward comparison to address the evolu-

tion of the research intensity is counting the final number of
studies on this topic before and after 2009. There are 24 stud-
ies before 2009 to compare to our data-set of 98 studies after

8

https://svit.usj.es/SLR-GSE-dataset/
https://doi.org/10.5281/zenodo.8242657

Table 4: GSE Research Topics CCS ’98

Software Engineering Topic Before 2009 After 2009

D.2.0 General 2 8.33% 2 2.02%
D.2.1 Requirements/Specifications 9 37.50% 8 8.08%
D.2.2 Design Tools and Techniques 0 0.00% 15 15.15%
D.2.3 Coding Tools and Techniques 3 12.50% 6 6.06%
D.2.4 Software/Program Verification 0 0.00% 6 6.06%
D.2.5 Testing and Debugging 3 12.50% 12 12.12%
D.2.6 Programming Environments 2 8.33% 3 3.03%
D.2.7 Distribution, Maintenance and 0 0.00% 3 3.03%
Enhancement
D.2.8 Metrics 0 0.00% 10 10.10%
D.2.9 Management 5 20.83% 12 12.24%
D.2.10 Design 0 0.00% 5 5.05%
D.2.11 Software Architecture 0 0.00% 10 10.10%
D.2.12 Interoperability 0 0.00% 2 2.02%
D.2.13 Software Reuse 0 0.00% 4 4.04%

2009. There has been over four times more industry-scale re-
search from 2009 to 2021 than before 2009. Furthermore, the
time interval in which we conducted our study is three years
shorter.

Fig. 2 shows an increase in the research intensity within our
time frame. It shows the number of publications relative to the
first year of the time frame, 2009. In addition to the increase
compared to previous years, GSE research has kept increasing
until now and shows a tendency to keep growing in the future.

Figure 3 shows the distribution of publications per year di-
vided by type of publication: Journal (29), Conference (61),
or Workshop (8). Most of the studies are published in confer-
ences, followed by journals, and lastly, workshops. We found
86 different venues of publication for the 98 studies.

4.2. RQ2 Research Topics

TABLE 4 and Fig. 4 show the comparison between the top-
ics of our data-set and the previous data-set [5] filtered by our
selection criteria excluding all non industy-scale. It is worth
mentioning that every single topic has been researched more
after 2009, with the exceptions of D.2.0 General, with the same
number of studies found (two), and D.2.1 Requirements/Speci-
fications with only one study less (from nine to eight).

With the increase in research intensity and maturity, the field
has also evolved to be more evenly distributed among the dif-
ferent research topics, as shown in TABLE 4 and Fig. 4. The
main topic before 2009 was D.2.1 Requirements/Specification.
After 2009, we find studies on every topic categorized in the
1998 version of the ACM CCS, emphasizing topics D.2.2 De-
sign Tools and Techniques, D.2.8 Metrics, and D.2.11 Software
Architecture. These are the three topics with the biggest in-
crease in interest by the community and part of the five top-
ics most studied, along with D.2.5 Testing and Debugging and
D.2.9 Management after 2009.

TABLE 5 shows how the 2012 version of the ACM CCS top-
ics does not represent GSE as its previous version. In contrast

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

D.2.0 D.2.1 D.2.2 D.2.3 D.2.4 D.2.5 D.2.6 D.2.7 D.2.8 D.2.9 D.2.10D.2.11D.2.12D.2.13

Before 2009 After 2009

Figure 4: Research Topics

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Implementation

(12)

Design

(38)

General

(2)

Management

(15)

Analysis

(10)

Quality

(21)

2009-11 2012-14 2015-17 2018-2021

Figure 5: Research Topics Growth Timeline

9

Table 5: GSE Research Topics CCS ’12

Software Engineering Topic # %

5.1.1 Contextual software domains 4 4.04%
5.1.2 Software system structures 14 14.14%
5.1.3 Software functional properties 2 2.02%
5.1.4 Extra-functional properties 3 3.03%
5.2.1 General programming languages 0 0.00%
5.2.2 Formal language definitions 1 1.01%
5.2.3 Compilers 0 0.00%
5.2.4 Context specific languages 3 3.03%
5.2.5 System description languages 2 2.02%
5.2.6 Development frameworks 3 3.03%
and environments
5.2.7 Software configuration management 0 0.00%
and version control systems
5.2.8 Software libraries and repositories 0 0.00%
5.2.9 Software maintenance tools 0 0.00%
5.3.1 Designing software 14 14.14%
5.3.2 Software development process 13 13.27%
management
5.3.3 Software development techniques 9 9.09%
5.3.4 Software verification and validation 26 26.26%
5.3.5 Software post-development issues 4 4.04%
5.3.6 Collaboration in software development 0 0.00%
5.3.7 Search-based software engineering 0 0.00%

to its previous version, the 2012 one shows the studies as un-
evenly distributed, with empty topics and a small number of
topics that are very populated.

Fig. 5 shows the timeline of publications per research topic.
In order to make this chart more legible, we have grouped the
years into four sets of three years except for the last one, which
contains four years. For the same reason, we collapsed the four-
teen CCS ’98 topics into six broader topics, as Ampatzoglou
and Stamelos did [5].

It can be observed that more than 70% of the research has
been done in the second half of the time frame for General,
Management, and Quality. Implementation and Design have
continued to grow in the last few years with more than 65% and
50% publications, respectively. The only exception is Analysis,
which presents more intensity in the first half of the time frame.

The rest of this section features the description of primary
studies to represent the state of the art of GSE. We grouped
these descriptions by the Research Topics CCS ’98. Each de-
scription has a citation to the list of studies included in this SLR.
It is relevant to note that we separated the list of the review
studies from the list of references, so the citation to the review
studies can be distinguished by the S- prefix. Additionally, the
reader can find a table filled with the full study data-set in the
APPENDIX.

4.2.0. General
In two studies, [S1, S2], the authors test the security of

industry-scale online video games.

4.2.1. Requirements/Specifications
In two studies [S3, S4], the authors propose that semantic

models can be beneficial for the design and development of
video games. In [S5, S6], the authors explore the definition
of video games as multi-agent systems. In [S7], the authors ex-
plore how requirements engineering is used in the video game
industry.

In [S8], the authors perform a qualitative study regarding the
tool infrastructure of game industry developers.

Two studies [S9, S10] interview game developers to illustrate
the experiences of trying to make accessible games and how
they manage requirements engineering, respectively.

4.2.2. Design Tools and Techniques
Two studies highlight the importance of analyzing the ex-

perience that players have with video games in a pragmatic
and hedonic way (from a cultural and emotional perspec-
tive) [S11, S12].

In two studies [S13, S14], the authors focus on accessi-
bility by proposing eye-gaze interaction systems. Two stud-
ies [S15, S16] focus on improving the User Interface (UI)
and reviewing its relationship with the game world. Another
study [S17] interviews game developers to illustrate the most
widely used practices for achieving an optimal user experience.
In [S18], the authors presented a usability inspection method
that can be used in the early stages of Model-Driven video game
development.

Furthermore, two studies propose the usage of Model-Driven
Development in video games, comparing it to Code-centric
Development [S19] or using it with Software Product Lines
(SPL) [S20]. In four studies [S21, S22, S23, S24], the authors
investigate modelling in video games, focusing on the design
and its analysis. Finally, in [S25], the authors examine the po-
tential of using Text-To-Speech (TTS) to prototype voice acting
in game development.

4.2.3. Coding Tools and Techniques
In [S26], the authors focus on the video game domain to ex-

plain a technique of parallel software that is focused on data
movement. Four studies deal with rendering [S27, S28, S29,
S30], explaining illumination algorithms and 3D rendering ef-
fects used in the industry. These provide a technique for in-
creasing modularity and encapsulation of shaders in real-time
graphics APIs, and thus explore which rendering technique pro-
vides the most attractive results for the users.

Additionally, in [S31], the authors propose a framework and
methodology for optimising the building of systems, for exam-
ple this framework can be used for building shader systems.

4.2.4. Software/Program Verification
Two studies deal with mathematical models for verifying and

validating video game gameplay and logic [S32, S33]. In three
studies, the authors create frameworks for analysis and evalu-
ation, focusing on Real-time Strategy (RTS) games [S34], the
usability of video games developed with Model-Driven Devel-
opment [S35], and Unreal Engine 4 blueprints [S36]. In [S37],
the authors detect hot spots in the code of video games.

10

4.2.5. Testing and Debugging
Two studies explore new testing methods, where the au-

thors present an incremental method for extracting adaptive
tests from formal, object-oriented specifications [S38] and use
combinatorial testing to establish a framework to improve the
testing efficiency of video games [S39]. Another two studies
describe approaches for automatic verification and testing in
node-based visual script notation [S40] and code [S41].

Furthermore, one of the most important tasks of video games
is to provide quality entertainment to their players, so they need
a significant amount of testing on user-centered issues, usually
through playtesting. In two studies, experiences and methods of
playtesting are described and performed for independent video
game development studios (indie studios) [S42, S43]. The sec-
ond study also explores the differences between the highlighted
features in game review analysis and in play-test reporting.
In [S44], the authors explore the usage of players’ game re-
views as a cheap and effective way of collecting user feedback.

Moreover, crashes in video games significantly produce a
negative user experience, so a new crash reporting system is
proposed in [S45], improving data reliability, data availability,
and query responsiveness while reducing CPU and memory us-
age. In [S46], the authors investigate how to collect and cen-
tralize events with a distributed system for debugging in online
video games. In addition, in [S47], the authors propose a tax-
onomy for bug types after analyzing common existing bugs in
industrial games, and, in [S48], the authors focus on fixing bugs
at runtime.

Finally, in [S49], the authors study the differences and sim-
ilarities between software and game industries on testing and
quality assurance.

4.2.6. Programming Environments
In [S50], the authors present an engine is presented focused

on creating visual novels. Another study compares open source
game engines with traditional software frameworks finding dif-
ferences [S51]. Finally, [S52] presents a tool to ease communi-
cation among game development departments.

4.2.7. Distribution, Maintenance and Enhancement
In [S53], the authors explore how Lehman’s laws of soft-

ware evolution are applied in video games. In two more stud-
ies [S54, S55], the differences between traditional software and
video games patches are highlighted, providing an extensive
analysis of the impact on the users after every patch in an
industry-scale competitive online video game and how these af-
fect players’ engagement.

4.2.8. Metrics
In four studies [S56, S57, S58, S59], the authors investigate

the capture of metrics. Furthermore, three studies [S60, S61,
S62] present how to analyze metrics and telemetry data based
on the player’s gameplay for the improvement of the next video
game titles or pattern generation. Finally, in [S63, S64, S65],
the authors present the definition and usage of new and adapted
usability heuristics.

4.2.9. Management
In [S66], the authors introduce a maturity model that fo-

cuses on evaluating video game development methodologies in
an organization. Also, in [S67], the authors attempt to adapt
the ISO/IEC 29110 to be applicable to the video game indus-
try, concluding that very small companies could benefit from it.
Furthermore, some studies investigate how traditional Software
Engineering management techniques could be applied to video
game development [S68, S69] or compare them with techniques
and frameworks that are already being used in video game de-
velopment [S70]. Some studies explore how development life
cycle models could be used in video games [S71], what frame-
work video game development processes should follow [S72],
and how to manage and improve communication among the
members of a development team [S73].

In [S74], the authors present a survey exploring risk man-
agement in the video games industry. In [S75], the authors
also present a survey along with postmortem examples to study
how crunch affects the industry and its employees. In one
study [S76], the authors present a survey to professional game
developers about technical debt, a problem that they are aware
of for which almost no solution has been implemented. Finally,
[S77] presents a survey dealing with how video game compa-
nies are using SCRUM sprints.

4.2.10. Design
Three studies concern the Game Design Document (GDD),

reviewing how GDDs are written in the industry with no stan-
dard and proposing new guides for building them [S78, S79,
S80]. In [S81], the authors use a gameplay data analysis to fix
and improve game design. In [S82], modding is described as a
common practice among video game communities where open-
source video game software is customized.

4.2.11. Software Architecture
With regard to the network architecture in online games,

in [S83], the authors propose a software architecture for traffic
generation in massively multiplayer online role-playing games
(MMORPGs), whereas in [S84] the authors analyze network-
ing approaches of online video games and exploitable security
concerns. In [S85], the authors introduce a high-performance
and robust rendering pipeline. In [S86], a survey deals with
the differences in the usage of architectures between traditional
software and video game development and its evolution in the
last years.

In addition, in two studies [S87, S88], the authors present
an evaluation of a simple method to find architectural problems
in a product line of computer games that use the Model-View-
Controller (MVC) pattern, and they apply the MVC pattern in
video game development to prove that it solves common prob-
lems. [S89] employs multi-threading in a video game engine
to demonstrate that the performance is improved. In [S90],
the authors describe an architecture for economy systems in
video games that reduces their implementation and mainte-
nance costs. In [S91], the authors theorize about formal models
being useful for video game development. In [S92], the authors

11

explore how the multiple platforms in the market affect both
software and video game development.

4.2.12. Interoperability
In two studies [S93, S94], the authors explain how they cre-

ated middleware for multiplayer games.

4.2.13. Software Reuse
In [S95] presents an engine allowing generic platform-

independent video game creation. Two studies [S96, S97] deal
with DSLs for code generation at runtime for the video game
domain.

Finally, in [S98], the authors focus on code transpiling to
solve the issue of changing a game engine that is currently in
use while in development.

0%

10%

20%

30%

40%

50%

60%

70%

80%

Descriptive Empirical Exploratory

Before 2009 After 2009

0%

10%

20%

30%

40%

50%

60%

Case Study Experiment Survey

Before 2009 After 2009

Figure 6: Research Approaches and Empirical Research Methods

4.3. RQ3 Research Approaches

GSE practitioners have shifted their research approach dras-
tically in the last few years, as shown in Fig. 6. Currently, there
is almost a complete lack of Exploratory studies, decreasing
from more than 40% to 1% of the studies. In contrast, empiri-
cal methods have more than doubled in interest in the last few
years. It is worth noting that, in the last decade, exploratory pa-
pers are almost non-existent for industry-scale computer games.

0

3

6

9

12

15

18

21

65.554.543.532.521.510.50

N
u

m
b

er
 o

f
P

u
b

li
ca

ti
o

n
s

Quality Assesment Score

Figure 7: Publication count per quality total

4.4. RQ4 Empirical Methods
According to Fig. 6, the case study was the least widely con-

ducted empirical method by researchers before 2009, but it has
evolved to be the most widely conducted method since 2009 in
more than 50% of the empirical studies.

4.5. RQ5 Research Quality
With regard to the quality questions elucidated in Section 3.3,

we find that most studies got “Yes” or “To Some Extent” to
the questions about motivation and context (Q1 & Q2). Fig. 8
also reveals how the justification of the research design and the
inclusion of data that support findings (Q3 & Q4) is less ad-
dressed by the community. Nevertheless, more than 70% of the
studies tackle them, at least, to some extent. Finally, GSE re-
searchers generally lack an explanation of the critical examina-
tion of their own work, either of potential biases and influences
affecting their study or the limitations of that work (Q5 & Q6).

There are 41 out of 98 studies that address (at least to some
extent) the limitations of the study, and 13 out of 98 address
their own potential bias or influence. The questions least ad-
dressed by the community (Q5 & Q6) generally comprise the
section devoted to study limitations, threats to validity, or sim-
ilar. This section only appears in 13 studies. The rest of the
studies that acknowledge their study validity do it briefly in-
side other sections related to method, discussion, or conclu-
sion. Even when the studies present threats to validity, 13 do
not present mitigation strategies, another 13 studies perform the
mitigation, and 15 intend to pursue it as future work.

It is worth noting that only 7 studies use best practices or
widely accepted methods. The validation of other studies relies
on performance evaluations or user acceptance by conducting
questionnaires to practitioners in the industry.

5. Discussion

5.1. RQ1 Research Intensity
As games grow in size and complexity, developers need new

techniques and approaches to manage their ambitious software.
We observed in Section 4.1 that the number of studies on GSE
has been growing over time and that interest in GSE research
matches the continuous growth of the video game industry [1].
The GSE research community is responding by bringing inno-
vation to them.

12

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Q1 Q2 Q3 Q4 Q5 Q6

No (0) To Some Extent (0.5) Yes (1)

Figure 8: Research Quality

The 98 studies are dispersed among 86 different venues of
publication. These results show that, while there are emerg-
ing venues out there that are focused on GSE research (such
as IEEE Transactions on Games, Conference on Games, ICSE
Workshop on Games and Software Engineering, or Workshop
on Automated Software Engineering for Computer Games), the
research community in this field is still scattered. The full list
of publications by venue is displayed in the supplementary ma-
terial.

It is worth noting that, even though there are no focused
venues, these are linked to a few publishers. IEEE holds the
majority of publications, with 40% of the publications. This is
in contrast with the previous years, when ACM was the main
publisher [5].

The growing body of research dedicated to Game Software
Engineering (GSE) signifies a rising interest in enhancing the
development and maintenance of video games. This surge in
scholarly attention highlights the recognition of games as com-
plex software systems that require specialized engineering prac-
tices to ensure their quality, stability, and efficient production.
As the video game industry continues to expand, the signifi-
cance of GSE research becomes even more apparent, showcas-
ing a direct response to the industry’s demand for more effective
tools and techniques.

5.2. RQ2 Research Topics

Before 2009, the main topic in GSE research was D.2.1 Re-
quirements/Specification. It is usual for a young domain to at-
tract researchers on this topic [5].

Video games are a special type of software with a major fo-
cus on user experience and interface, as video games require
the player to perform a great range of actions while at the same
time being enjoyable. At the same time, they are complex sys-
tems with many subsystems of high quality and a large amount
of content that interact with each other. Some studies on D.2.2
Design Tools and Techniques focus on user experience and in-
terface, while some of them focus on the documentation of
the systems. Studies on D.2.11 Software Architecture focus on
the architecture of those systems. These two topics tackle the

challenges of size and complexity that characterize the high-
standard industry of video games. This is probably a reason
behind the increase in research on those two topics.

The increase of interest in D.2.8 Metrics can also be ex-
plained by the nature of this domain of software. These large
systems, along with the high population of players, can pro-
vide plenty of data, which helps improve game experience and
performance. This leads to researchers and industry developers
growing interested in getting and managing heuristics from the
software usage.

It is also worth noting that the interest in D.2.5 Testing and
Debugging is similar before and after 2009. Following the pre-
vious reasoning, video games as software are big, with a high
density of features that can increase unwanted behavior. In this
field, there is also a difference between software testing, which
focuses on errors in the logic of the systems, and game-play
testing, which considers meeting the standards of quality and
the player’s experience. These standards deal with the correct
enjoyment, quality, and performance. The increase in interest
in topic D.2.5 goes together with the high amount of effort and
resources that the industry puts into testing [5].

We observed that D.2.9 Management is the second most stud-
ied topic. As seen in Section 2, development teams are big-
ger and more heterogeneous than traditional SE teams. The
fact that practitioners and researchers are focusing on this topic
means that managing large software and teams is still an ongo-
ing problem that needs to be addressed because of the great rise
in super productions of video games.

The studies in the 2012 version of the ACM CCS topics
are very unevenly distributed, with empty topics and a small
number of topics that are very populated. The best example is
the topic 5.3.4 Software verification and validation. Most of
the studies that are categorized in three different topics from
the 1998 CCS (D.2.1 Requirements/Specification, D.2.5 Test-
ing and Debugging, and D.2.8 Metrics) are all collapsed inside
the 5.3.4 topic from the 2012 CCS. Also, these three categories
have proven to be of great interest to the community. The 2012
ACM CCS replaces the traditional 1998 version of the ACM
CSS in serving as the de facto standard classification system
for the computing field [39]. However, it does not render the
current state of the GSE research domain correctly, making the
differences between these two fields more evident.

We observed that research related to Analysis has more inten-
sity from 2009 to 2014, while more than the 70% of the research
related to General, Management, and Quality has been done
from 2015 to 2021 and the intensity of the research related to
Implementation and Design has continued to grow from 2018 to
2021. The video game industry experienced significant growth
during the early 2010s, with the rise of mobile gaming [54] and
indie game development [55]. This expansion may have led
to an increasing volume of research on management for new
emerging development teams of different sizes and on quality
to meet the demands of a growing and diverse player base. In
later years, as the market became more competitive, there could
have been a greater emphasis on design and implementation as-
pects to stand out from the competition by offering a software
aspect that demonstrates superior performance and scalability.

13

Finally, we observed some established and emerging trends
in the reviewed studies, which are discussed further in Sec-
tion 6:

• Model Driven Engineering appears in multiple studies on
different aspects of GSE [S18, S19, S22, S35, S36].

• Software reuse appears to be a recurring practice and sub-
ject of research for both different products and different
platforms [S95, S50, S98, S89, S92, S8, S20, S36, S92,
S1].

• The approach reported in many studies is evaluated in
a specific environment and it is not trivial to generalize
it [S55, S54, S34, S62, S2, S13].

• The implementation of traditional software engineering
methodologies in game development teams often proves
ineffective [S66, S70, S71, S77, S75].

• Games as a Service (GaaS) are becoming increasingly
prevalent in the gaming industry [S54, S55, S62, S2, S94,
S93].

• Multiplayer online games create the demand for reliable,
robust, and secure systems that operate without compro-
mising performance [S93, S94, S83, S2].

• Many studies propose the use and improvement of Game
Design Documents (GDDs) for better communication and
documentation [S4, S5, S6, S78, S79, S80, S77]. However,
an established standard for them is yet to be achieved and
they do not seem to be a definitive solution.

• Among the requirements that need to be defined in video
games, there are several differences compared to tradi-
tional software, and these requirements have not yet been
addressed specifically [S7, S3, S4, S5, S6].

• Testing is another recurring topic in GSE since it is more
challenging to automate than traditional software [S38,
S39, S40, S41, S42, S43, S44, S46, S48, S49].

As the gaming landscape evolves, games are expanding in
size and intricacy, necessitating new strategies and methodolo-
gies to manage the complexity that arises from their develop-
ment effectively. Developers are confronted with the challenge
of creating games that offer expansive worlds, interconnected
mechanics, and rich narratives, which in turn demand innova-
tive approaches to ensure smooth software development. This
drive for innovation stems from the recognition that traditional
software engineering practices might need to address the unique
challenges presented by game development.

5.3. RQ3 Research Approaches

Exploratory studies are usually expected to be more promi-
nent in a young research area and interest in this research ap-
proach decreases as the field develops [5]. This may be why it
is the least exciting approach for practitioners. There is almost
a complete lack of studies using this approach, decreasing from

more than 40% to 1% in the last decade. This decrease may be
a cause for the lack of quality in the report about the studies.
We addressed this in Section 4.1, where the issues related to the
validity of the research are poorly questioned.

Empirical methods have more than doubled in interest in the
last few years. As GSE has grown in maturity, companies have
noticed the benefits of collaborating with researchers and have
started doing it in a more active way. This has increased the
number of empirical studies and decreased the gap between in-
dustry and academic research. This results in practitioners pre-
senting industry-scale demonstrations for their studies. The hy-
pothesis of GSE growth in maturity is also supported by the re-
sults, which conclude that the field has also evolved to be more
evenly distributed among the different research topics.

Along with the increase in intensity, the concurrent trajectory
of GSE research methods underscores a meaningful alignment
between research and industry. This implies that researchers are
proactive in addressing the evolving challenges stemming from
developing sophisticated games. This alignment fosters a sym-
biotic relationship between academia and industry, as research
innovations are poised to directly contribute to improving game
development processes.

5.4. RQ4 Empirical Methods
The fact that case studies are the empirical method that has

been most widely conducted by researchers since 2009. This
can be a sign that the gap between industry and academic re-
search is smaller since surveys were previously the majority,
and now case studies are. In the past, companies were only in-
volved in research at a surface level, answering surveys. Now
there are plenty of case studies that nourish GSE.

Experiments were also expected to increase since 2009 [5],
but the research evidence does not support this hypothesis. The
video game industry is fast-paced, having less development
time than traditional software [56]. This rush can explain the
reduced number of experiments applied. Experiments require
more effort and are more time-consuming than case studies,
which have a strong short-term impact with direct implemen-
tation of the product.

GSE research makes use of in-depth case studies that are
drawn from industrial game development initiatives. This col-
laborative synergy not only strengthens the relevance of GSE
research but also leads to the creation of practical tools and
techniques that address the specific needs of the gaming in-
dustry. As companies openly share their experiences and chal-
lenges, the research community gains access to invaluable data
and context, ultimately reducing the gap between theoretical
advancements and pragmatic modern game development.

5.5. RQ5 Research Quality
In Section 4.5, we stated that best practices or widely ac-

cepted methods to report limitations are only used by seven
studies. This situation can be explained by the lack of explo-
ration in GSE research strategies and practices due to the em-
pirical nature and relative youth of this field.

The average score of all the studies is 3.49, with a standard
deviation of 1.34. Although the field of research has matured to

14

the point where there are a lot of industry-scale demonstrations,
the study reporting needs to be more rigorous.

It becomes imperative to ensure that research outcomes are
communicated with a higher degree of clarity, transparency, and
repeatability. Researchers must acknowledge the importance
of adopting standardized methodologies, rigorous experimen-
tal designs, and systematic documentation practices to effec-
tively validate and communicate their findings. This will lead
to meaningful and informed decision-making in both academia
and industry.

6. Future Directions

In this section, we analyze the different research challenges
that are open in the field of work of GSE. We present in the
following subsections the challenges, why they exist, and the
open problems for each challenge. We also provide recommen-
dations and potential future research lines in the identified ar-
eas.

6.1. Cross-fertilization between GSE and MDE

GSE is a fertile field for Model Driven Engineering (MDE)
research to thrive [S18, S22, S19, S36, S35]. The heterogeneity
of the profiles involved in the creation of a video game makes
it necessary to have approaches that allow profiles without re-
quiring specific programming knowledge to participate in the
creation process. In engines such as Unity and Unreal En-
gine, where many development processes have been presented
in an abstract way through models, templates, blueprints, and
flowcharts, reducing the prominence of the source code gener-
ated from these models. This practice is what the MDE research
community has been pursuing for decades in classic software
engineering. Nevertheless, the MDE research community does
not seem to be fully aware of the modeling success achieved
by video games given the tiny presence of GSE work in MDE

venues. There is an opportunity for the MDE research commu-
nity to learn from the success of models in video games in the
hope of transferring it to other SE domains. It also provides
the GSE community with an opportunity to leverage MDE ap-
proaches for video game models.

6.2. Game Software Product Lines
GSE is a domain where software reuse is constant, either

adapting systems and elements from different games in a com-
pany or within the same game (the same element can appear in
different parts of the same game) [S98, S89, S36, S20, S92, S8].
The urgency of the sector to meet deadlines hinders the invest-
ment of time in developing and implementing specific tech-
niques for code reuse. Some advances have been made towards
this, such as the development of game engines [S95, S50].
However, other advances in reuse have not yet been applied
with the same success as in the case of software product lines
and the planned reuse approach they propose. We think that in
the near future there will be a growing body of work from the
GSE reuse community that leverages SE reuse techniques to the
GSE world and adapts them for maximum benefit. Software
reuse is also a key feature in porting video games to different
platforms.

6.3. The Blossoming of Publishing Platforms
There are many platforms on which to publish video games.

With the growth of the video game industry, multi-platform
publishing is the norm. These platforms have different input
schemes, different computing power, different audiences, differ-
ent operating systems, and different hardware [S98, S92, S41,
S1]. Video games need to comply with the high industry stan-
dards in all of the platforms on which they release their soft-
ware. These platforms also change rapidly with new console
and hardware releases. Porting a game from one platform to
another is not a trivial task and developers spend a lot of re-
sources doing it. However, GSE research neglects this topic

Key insights

RQ1: The landscape of industry-scale GSE research is witnessing an x4 growth, with 98 studies published across 86 distinct
venues. This surge in activity underscores the intensifying interest in GSE, a field that is evolving but is dispersed.

RQ2: The shift in the topic interest by the researchers indicates an increase in the maturity of industry-scale GSE research. As
the video game market becomes more competitive, GSE research provides more sophisticated techniques and methods.

RQ3: Recent years have seen a remarkable doubling in interest in empirical methods, reflecting the maturation of GSE.
Industry recognition of collaboration benefits has led to an active increase in empirical studies, narrowing the industry-
academia gap.

RQ4: Case studies have surged as the primary empirical method used by researchers since 2009. This shift suggests a further
reduction in the industry-academia gap, marking a transition from surveys to more immersive case studies. This change
reflects deeper industry involvement in GSE, showcasing a richer understanding of real-world scenarios.

RQ5: While the research field has progressed, marked by a substantial presence of industry-scale demonstrations, there is
still a demand for increased rigor in study reporting.

15

We expect more work on GSE techniques and tools that help
developers when porting video games across platforms.

6.4. The Multifaceted Nature of GSE

As previously mentioned in Section 5.2, one challenge that
most research in software engineering has (traditional or video
games) is the need for generalization of findings. The ap-
proach reported in GSE work is usually evaluated in a spe-
cific environment that cannot be generalized directly to all
cases [S55, S54, S34, S62, S2, S13]. In video games, this prob-
lem is amplified due to the inherent heterogeneity of the field.
Video games are being made by teams of very different sizes,
from solo indie developers to big corporations with hundreds
of employees. There are many platforms with plenty of differ-
ences among them. There are also plenty of genres that change
the software significantly, from physics-based action games in
3D to puzzle games in 2D. The underlying software that com-
poses the genres amplifies the differences in the software be-
tween games (and sometimes in the same game), making it dif-
ficult to generalize findings for GSE research. There is a need
to tackle the challenge of generalization in the context of GSE
settings.

6.5. Planning and Scheduling Issues

The video game industry focuses on agile methodologies.
Many report that agile is not properly implemented in the teams
and there are misconceptions about different agile methodolo-
gies [S66, S70, S71, S77]. Crunch time is a term used in the
game industry to describe high-stress periods working overtime
that can last months when releasing a video game [S75]. The
multidisciplinary teams in game development are using agile
methodologies as a legacy from traditional software engineer-
ing [7], but these methods suffered from crunch time [S75].
The way in which many companies are adopting existing SE
methodologies is clearly not the optimal solution when devel-
opers need to rely on crunch time. The GSE community can
put effort into finding new best practices for creating games and
adapting agile methods for game development teams of differ-
ent sizes in order to avoid crunch culture.

6.6. The Consequences of Games as a Service

The GSE community is expected to follow the growth, ma-
turity, and needs of the industry. The five topics that show
the greatest interest from practitioners (D.2.2 Design Tools and
Techniques, D.2.5 Testing and Debugging, D.2.8 Metrics, D.2.9
Management, and D.2.11 Software Architectures) will prob-
ably hold this research intensity over the next few years as
they tackle the problems in an industry that keeps growing
in projects and team sizes. Nevertheless, a part of the video
game industry has veered towards a business model approach
called Games as a Service (GaaS) [57]. Similar to the con-
cept of Software as a Service (SaaS), these are products that
do not end development upon release. For this reason, topic
D.2.7 Distribution, Maintenance, and Enhancement may see
an increase in engagement by both industry and the research
community. Because of the GaaS trend, software maintenance

will be a major issue in the video game industry in the fu-
ture [S54, S55, S62, S2, S94, S93].

6.7. GSE Security

Multiplayer online games comprise a significant part of the
user base of video games. These games need to build network
systems that are reliable, robust, and secure [S93, S94, S83, S2].
Online video games synchronize large amounts of data pro-
vided by different platforms without latency in order to be com-
petitive. With the rise of Massive Multiplayer Online (MMO)
games, bandwidth usage and high traffic are issues that have
greater complexity in the GSE domain. These games portray
large complex 3D worlds with physics calculations involved
and many players interacting with each other. Online games
can also be competitive in nature, giving users a platform for
what is called e-sports (tournaments where professional video
game players compete). This raises the concern of cheaters and
the need for anti-cheat technology that detects players who ex-
ploit the vulnerabilities of the software.

6.8. Weaving Software and Art Design

The fact that software, art, design, and sound are tightly
connected in video games poses difficulties in documenting
the development. Practitioners cannot produce software with-
out taking into account the design that will make the game
fun and the art and sound that will surround the experience.
The communication among the multidisciplinary team mem-
bers must be clear and fluid. The GSE research community
is already putting effort into this topic by proposing improve-
ments for these documents called Game Design Documents
(GDDs) [S4, S5, S6, S78, S79, S80, S77]. Nonetheless, there is
no established standard for the making of GDDs; every prac-
titioner develops these documents in their own fashion. To
address the evolving needs of game development teams, fu-
ture directions must focus on improving and exploring meth-
ods, possibly veering out of the traditional GDD creation due
to the static nature of GDDs that hinders iteration and prototyp-
ing [58].

6.9. A New Wave of Requirements Research for GSE

Video game development focuses on the fun and entertain-
ment of the players. Traditional SE usually does not bother
with this, making GSE a domain that needs a change in
how researchers approach requirements engineering (RE). Even
though RE is a topic that has lost attention from the GSE com-
munity, research still needs to be done in this field. RE can
help define the final user experience desired by developers. It
can facilitate tasks of gameplay testing because quality assur-
ance developers will have a clearer objective when testing. We
think that, in the future, there will be more RE work applied
to GSE that properly exploits the particularities of the domain
(e.g., in fields such as user experience evaluation or video game
balancing) [S7, S3, S4, S5, S6].

16

6.10. Testing and Debugging in the Face of Gameplay Subjec-
tivity

Similarly to RE, testing in video games is peculiar due
to the player’s subjectivity for fun. This divides testing in
two when applied to GSE: traditional testing, which searches
for software bugs and faults that make the program misbe-
have [S38, S39, S40, S41, S46, S48]; and gameplay testing,
which affects how the user perceives the experience (e.g., the
game is unbalanced and unfair) [S42, S43, S44, S49]. GSE has
to deal with large code bases with high interactivity among ob-
jects and large amounts of assets that make bug reproduction
a difficult task that needs to be addressed. Additionally, when
performing gameplay testing, the human tester has to spot bugs
while playing the game, making this process subjective to hu-
man opinion and ideas. There is a need for automation and new
techniques in the testing and debugging domain.

6.11. Green GSE

Video games need to comply with high industry standards in
terms of performance while creating complex 3D worlds. GSE
is a field that needs to take advantage of the hardware acceler-
ation of graphic cards to provide stable execution of the game
with constant Frames Per Second (FPS). This makes code per-
formance a significant concern to developers [S86, S89]. It
can also affect other aspects of the game and the user experi-
ence such as long loading screens, which are states in which
the game loads all the needed assets. Additionally, low perfor-
mance in code leads to high energy usage that affects portable
machines such as laptops and mobile phones. Reducing energy
usage with better performant software also plays an important
role in ecology [59] since millions of players are consuming
video games. In the end, having fast code in video games is an
open issue that has many implications and the next generation
of games will need improvements in code performance.

6.12. Search-Based GSE

Search-Based Software Engineering (SBSE) is a steady and
popular topic among the SE community [60]. The key ingre-
dient for SBSE approaches is the fitness function that guides
the search. In video games, there are Non-Playable Characters
(NPCs), agents with artificial intelligence that can behave like
the player. These NPCs can be used to perform simulations,
which are an opportunity to guide the search in SBSE, improv-
ing the fitness function. Also, the high user base of video games
(blockbusters gather hundreds of millions of players) can con-
tribute to the vision of Humans as Fitness Function [61], where
humans share the load of assessing candidate solutions.

6.13. Content Creation and Artificial Intelligence

The scope of this review has omitted content creation and
artificial intelligence. There is also a need to analyze the state
of the art in these domains and how GSE is present in them.

7. Threats to Validity and Quality Assessment

7.1. Threats to validity
Wohlin et al. propose a classification for assessing the

validity of the results with four categories of validity con-
cerns [62, 63]. In this section, we test our review against these
categories.

Internal Validity: This category can be a validity threat when
the results of an investigation may be affected by factors
affecting the dependent variables without the researcher’s
knowledge. In our work, this could be a threat when we
selected the studies to review. To reduce the likelihood of
erroneous exclusions or inclusions, we defined the crite-
ria for when a study can be excluded or included in Sec-
tion 3.2.4. We used the same criteria for evaluating all of
the studies from the total studies list to the final selection.
In the same way, we performed the data collection and the
quality assessment of each selected study following the
criteria defined in Sections 3.4 and 3.3, respectively.

External Validity: This category addresses the likelihood of
generalizing the results of the findings. In order to min-
imize the threat of the primary studies collected from the
databases not being representative of the target population,
we used the ACM and IEEE databases in addition to two
indexing databases (Scopus and Web of Science), in the
way suggested by Petersen et al. [46]. We reported this
process in Section 3.2.2.

Conclusion Validity: This category is concerned with the re-
liability of the relationship between the treatments and the
outcome of an experiment. In our case, the results might
be compromised if researchers were looking for a specific
outcome. To avoid this threat, we conducted the search
method using best practices in SLRs [34, 45, 64]. The
only case for discarding a study was if it did not match
the inclusion criteria or if it matched any exclusion crite-
ria. Also, as explained in Section 3.2.4, two reviewers per-
formed the selection process, and all disagreements were
resolved by discussing the decision of each reviewer and
consulting a third author if necessary.

Construct Validity: This category is related to the concepts,
theories, and measures that the researchers have in mind.
Examples of issues are whether the concepts are defined
clearly enough before measurements are defined, and in-
teraction of different treatments when persons are involved
in more than one study [62]. To prevent this threat, we de-
fined the research questions for researchers to know what
to investigate, and we defined a search process for all of
the reviewers of this work to follow. The research ques-
tions are provided in Section 3.1, and the search process is
explained in Section 3.2.3.

7.2. Assessment of review
As an assessment of this review, we have performed an eval-

uation using four quality assessment (QA) questions from the

17

work of Kitchenham et al. [36] about systematic literature re-
views in software engineering. We answer the questions by us-
ing the specified criteria by Kitchenham et al.

QA1: Are the review’s inclusion and exclusion criteria described
and appropriate?

Yes, we explicitly defined the inclusion criteria in the
study.

QA2: Is the literature search likely to have covered all relevant
studies?

Yes, the authors have searched four digital libraries with
the extra search strategy of snowballing.

QA3: Did the reviewers assess the quality/validity of the included
studies?

Yes, the authors have explicitly defined quality criteria and
extracted them from each primary study.

QA4: Were the basic data/studies adequately described?

Yes, we presented information about each study.

These quality assessment criteria might be biased as they are
somewhat subjective. In order to minimize erroneous results,
two researchers evaluated these quality criteria independently.
A different researcher outside of the review process resolved all
discrepancies.

7.3. Other threats and limitations

Another threat to the validity of our study is due to the fact
that 8.08% of our final selection are workshop reports. The
inclusion of these studies in the SLR might have altered the
review results due to the nature of these studies with respect to
journals and conferences.

Finally, it is worth noting that our review only focuses on
computer games and industry-scale studies. Therefore, it might
not be safe to generalize it to the whole GSE research. These
would also include studies focusing on non-computer games
and studies with evidence obtained from academic studies, ex-
pert opinions or observations, demonstration or working out
academic prototypes, or with no evidence at all.

8. Conclusion

This study presents an SLR to study software engineering re-
search for industry-scale computer games. This review com-
prises 98 studies portraying the current relationship between
GSE academia and industry.

Our findings reveal that research on GSE continues increas-
ing in interest and that the industry benefits from it (with over
four times more research than before 2009). Nevertheless, these
studies need to be more rigorous with the critical examination
of their work.

We have observed an evolution in the research topics that
draw the most attention from practitioners. The categories re-
lated to a young domain are decreasing, leading to a more

mature field with research about architecture and design tech-
niques as the main topics. We expect this trend to continue, with
topics related to software maintenance and games as a service
(GaaS) gaining relevance in the upcoming years.

The 2012 ACM CCS does not correctly represent the GSE
research domain. The studies that we reviewed were unevenly
distributed in this categorization. This contrast supports the
claim that GSE and traditional SE are diverging. A new clas-
sification for GSE might be needed in the near future. In ad-
dition, the GSE research community is completely dispersed,
with no main venues holding GSE studies yet. We also expect
specialized journals and conferences on GSE research to start
appearing over the next few years.

The research approaches and empirical methods used by the
community support the hypothesis that GSE is an independent,
mature, and growing domain. Our study shows how the gap
between industry and scientific research is narrowing, even in
the rapidly changing industry of video games.

Our results confirm the assumptions from the previous work
by Ampatzoglou and Stamelos [5]: “more elaborate empirical
research methods are going to be employed”, “a wider range
of topics is going to be covered”, and “game engineering is
a scientific domain rather than a soft skill topic with only a
peripheral research activity”.

This study provides background information for any relevant
future GSE work, helping the community to explore the re-
search gaps that GSE presents within an industry that shows
great interest in academic research. This indicates a bright
future for the growing field of Game Software Engineering.
While GSE is still a young field, it is growing and maturing
each day. We presented many lines of research for the future,
making GSE a fertile domain that is constantly growing.

According to the report provided by S. Shuermans and C.
Voskoglou in 2019 [65], there are 18.9M software developers,
of which 8.8M are game developers. The research in GSE is
relevant to almost half of the software developers in the world
and is, directly or indirectly, relevant to all the roles that deal
with the other aspects of development: art, music, design, nar-
rative, etc.

The large democratization of game development poses an
opportunity for the mainstream engines (Unity and Unreal) to
teach and divulge software engineering practices for develop-
ers that do not have an engineering background. Developers
that built expertise in these engines often lack experience in SE
methods and could benefit from them. Not only can large or-
ganizations benefit from GSE research, but small video game
studios can also cover many roles with a reduced team. In these
scenarios, automatizing processes, performing accessible test-
ing practices, or team management methodologies can promote
serious changes in development. They can facilitate the techni-
cal process and reduce the technical debt of developers so that
they can focus on the creative and fun part of the video game
craft.

This study provides a bridge between industry and academia
so that they can nourish each other. It shows traditional SE re-
searchers that GSE deals with pieces of software that are com-
plex enough to address most topics that traditional SE also cov-

18

ers. Researchers can find complete and industrial cases for their
studies inside video game development. By providing a large
sample of research studies in GSE, we hope that industrial prac-
titioners are encouraged to publish their industrial-scale exper-
tise. Video games are powerful tools that can push the bound-
aries of software knowledge.

Acknowledgements

This work was supported in part by the Ministry of Economy
and Competitiveness (MINECO) through the Spanish National
R+D+i Plan and ERDF funds under the Project VARIATIVA
under Grant PID2021-128695OB-I00, and in part by the Gob-
ierno de Aragón (Spain) (Research Group S05 20D).

Studies Included in the Review

[S1] L. Chen, N. Shashidhar, D. Rawat, M. Yang, C. Kadlec, Investigating
the security and digital forensics of video games and gaming systems: A
study of pc games and ps4 console, in: 2016 International Conference on
Computing, Networking and Communications (ICNC), IEEE, 2016, pp.
1–5.

[S2] B. D. Bryant, H. Saiedian, A state saturation attack against massively
multiplayer online videogames., ICISSP (2021) 217–225.

[S3] J. Kessing, T. Tutenel, R. Bidarra, Designing semantic game worlds, in:
Proceedings of The third workshop on Procedural Content Generation in
Games, 2012, pp. 1–9.

[S4] C. Marı́n-Lora, M. Chover, J. M. Sotoca, A game logic specification pro-
posal for 2d video games, in: World Conference on Information Systems
and Technologies, Springer, 2020, pp. 494–504.

[S5] C. Marı́n-Lora, A. Cercós, M. Chover, J. M. Sotoca, A first step to specify
arcade games as multi-agent systems, in: World Conference on Informa-
tion Systems and Technologies, Springer, 2020, pp. 369–379.

[S6] C. Marı́n-Lora, M. Chover, J. M. Sotoca, A multi-agent specification for
the tetris game, in: International Symposium on Distributed Computing
and Artificial Intelligence, Springer, 2021, pp. 169–178.

[S7] J. Kasurinen, A. Maglyas, K. Smolander, Is requirements engineering
useless in game development?, in: International Working Conference on
Requirements Engineering: Foundation for Software Quality, Springer,
2014, pp. 1–16.

[S8] J. Kasurinen, J.-P. Strandén, K. Smolander, What do game developers
expect from development and design tools?, in: Proceedings of the 17th
International Conference on Evaluation and Assessment in Software En-
gineering, 2013, pp. 36–41.

[S9] J. Kulik, J. Beeston, P. Cairns, Grounded theory of accessible game de-
velopment, in: The 16th International Conference on the Foundations of
Digital Games (FDG) 2021, 2021, pp. 1–9.

[S10] M. Daneva, How practitioners approach gameplay requirements? an
exploration into the context of massive multiplayer online role-playing
games, in: 2014 IEEE 22nd International Requirements Engineering
Conference (RE), IEEE, 2014, pp. 3–12.

[S11] J. L. González Sánchez, R. M. Gil Iranzo, F. L. Gutiérrez Vela, Enrich-
ing evaluation in video games, in: IFIP Conference on Human-Computer
Interaction, Springer, 2011, pp. 519–522.

[S12] J. L. G. Sánchez, F. L. G. Vela, F. M. Simarro, N. Padilla-Zea, Playabil-
ity: analysing user experience in video games, Behaviour & Information
Technology 31 (10) (2012) 1033–1054.

[S13] S. Vickers, H. Istance, M. Smalley, Eyeguitar: making rhythm based
music video games accessible using only eye movements, in: Proceed-
ings of the 7th international conference on advances in computer enter-
tainment technology, 2010, pp. 36–39.

[S14] H. Istance, A. Hyrskykari, L. Immonen, S. Mansikkamaa, S. Vickers,
Designing gaze gestures for gaming: an investigation of performance,
in: Proceedings of the 2010 Symposium on Eye-Tracking Research &
Applications, 2010, pp. 323–330.

[S15] N. Zulfa, D. Yuniasri, P. Damayanti, D. Herumurti, A. A. Yunanto, The
effect of ui and ux enhancement on bomberman game based on game
experience questionnaire (geq), in: 2020 International Seminar on Appli-
cation for Technology of Information and Communication (iSemantic),
IEEE, 2020, pp. 543–547.

[S16] K. Jørgensen, Between the game system and the fictional world: a study
of computer game interfaces, Games and Culture 7 (2) (2012) 142–163.

[S17] J. Nandhakumar, N. S. Panourgias, H. Scarbrough, From knowing it
to “getting it”: Envisioning practices in computer games development,
Information Systems Research 24 (4) (2013) 933–955.

[S18] S. Abrahão, E. Insfran, J. Á. Carsı́, A. Fernandez, Early usability
in model-driven game development, in: International Conference on
Product-Focused Software Process Improvement, Springer, 2016, pp.
713–722.

[S19] Á. Domingo, J. Echeverrı́a, O. Pastor, C. Cetina, Evaluating the benefits
of model-driven development - empirical evaluation paper, in: S. Dustdar,
E. Yu, C. Salinesi, D. Rieu, V. Pant (Eds.), Advanced Information Sys-
tems Engineering - 32nd International Conference, CAiSE 2020, Greno-
ble, France, June 8-12, 2020, Proceedings, Vol. 12127 of Lecture Notes
in Computer Science, Springer, 2020, pp. 353–367.

[S20] E. F. do Prado, D. Lucrédio, A flexible model-driven game development
approach, in: 2015 IX Brazilian Symposium on Components, Architec-
tures and Reuse Software, IEEE, 2015, pp. 130–139.

[S21] G. W. De Oliveira, S. Julia, L. M. S. Passos, Game modeling using work-
flow nets, in: 2011 IEEE International Conference on Systems, Man, and
Cybernetics, IEEE, 2011, pp. 838–843.

[S22] F. M. Barreto, S. Julia, Modeling and analysis of video games based on
workflow nets and state graphs, in: Proceedings of 24th Annual Interna-
tional Conference on Computer Science and Software Engineering, 2014,
pp. 106–119.

[S23] F. M. Barreto, S. JUliA, Formal approach based on petri nets for mod-
eling and verification of video games, Computing and Informatics 40 (1)
(2021) 216–248.

[S24] Á. Domingo, J. Echeverrı́a, Ó. Pastor, C. Cetina, Comparing uml-based
and dsl-based modeling from subjective and objective perspectives, in:
M. La Rosa, S. Sadiq, E. Teniente (Eds.), Advanced Information Systems
Engineering, Springer International Publishing, Cham, 2021, pp. 483–
498.

[S25] H. Engström, P. A. Östblad, Using text-to-speech to prototype game di-
alog, Computers in Entertainment (CIE) 16 (4) (2018) 1–16.

[S26] M. J. Best, D. Jacobsen, N. Vining, A. Fedorova, Collection-focused
parallelism, in: 5th USENIX Workshop on Hot Topics in Parallelism
(HotPar 13), 2013.

[S27] H. Sa’dyah, K. Fathoni, D. K. Basuki, A. Basofi, The fundamental top-
ics of static global illumination algorithms for 3d games, in: 2018 IEEE
3rd international conference on communication and information systems
(ICCIS), IEEE, 2018, pp. 237–241.

[S28] H. Xu, C. P. Wang, A review and development of 3-d accelerator tech-
nology for games, in: 2009 Second International Symposium on Intelli-
gent Information Technology and Security Informatics, IEEE, 2009, pp.
59–63.

[S29] Y. He, T. Foley, T. Hofstee, H. Long, K. Fatahalian, Shader components:
modular and high performance shader development, ACM Transactions
on Graphics (TOG) 36 (4) (2017) 1–11.

[S30] V. Stojanovic, D. Blackwood, D. Gilmour, J. P. Isaacs, R. E. Falconer,
Comparison of advanced and standard real-time 3d rendering methods for
interactive landscapes (short paper version), in: 2013 17th International
Conference on Information Visualisation, IEEE, 2013, pp. 539–544.

[S31] K. A. Seitz Jr, T. Foley, S. D. Porumbescu, J. D. Owens, Staged metapro-
gramming for shader system development, ACM Transactions on Graph-
ics (TOG) 38 (6) (2019) 1–15.

[S32] A. Yacoub, M. E. A. Hamri, C. Frydman, Dev-promela: modeling, ver-
ification, and validation of a video game by combining model-checking
and simulation, Simulation 96 (11) (2020) 881–910.

[S33] R. Rezin, I. Afanasyev, M. Mazzara, V. Rivera, Model checking in multi-
player games development, in: 2018 IEEE 32nd International Conference
on Advanced Information Networking and Applications (AINA), IEEE,
2018, pp. 826–833.

[S34] S. Ding, N. Tang, T. Lin, S. Zhao, Rts-gameflow: a new evaluation
framework for rts games, in: 2009 International Conference on Com-
putational Intelligence and Software Engineering, IEEE, 2009, pp. 1–4.

19

[S35] A. Fernandez, E. Insfran, S. Abrahão, J. Á. Carsı́, E. Montero, Inte-
grating usability evaluation into model-driven video game development,
in: International Conference on Human-Centred Software Engineering,
Springer, 2012, pp. 307–314.

[S36] N. Igawa, T. Yokogawa, M. Takahashi, K. Arimoto, Model checking
of visual scripts created by ue4 blueprints, in: 2020 9th International
Congress on Advanced Applied Informatics (IIAI-AAI), IEEE, 2020, pp.
512–515.

[S37] S. Morisaki, N. Kasai, K. Kanamori, S. Yamamoto, Detecting source
code hotspot in games software using call flow analysis, in: 2019 20th
IEEE/ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel/Distributed Computing (SNPD),
IEEE, 2019, pp. 484–489.

[S38] M. Ghoreshi, H. Haghighi, An incremental method for extracting tests
from object-oriented specification, Information and Software Technology
78 (2016) 1–26.

[S39] B. R. Sagi, R. Silvestrini, Application of combinatorial tests in video
game testing, Quality Engineering 29 (4) (2017) 745–759.

[S40] I. Hasegawa, T. Yokogawa, Automatic verification for node-based visual
script notation using model checking, in: International Conference on
Formal Engineering Methods, Springer, 2019, pp. 52–68.

[S41] S. Iftikhar, M. Z. Iqbal, M. U. Khan, W. Mahmood, An automated model
based testing approach for platform games, in: 2015 ACM/IEEE 18th
International Conference on Model Driven Engineering Languages and
Systems (MODELS), IEEE, 2015, pp. 426–435.

[S42] P. Mirza-Babaei, N. Moosajee, B. Drenikow, Playtesting for indie stu-
dios, in: Proceedings of the 20th International Academic Mindtrek Con-
ference, 2016, pp. 366–374.

[S43] P. Mirza-Babaei, S. Stahlke, G. Wallner, A. Nova, A postmortem on
playtesting: Exploring the impact of playtesting on the critical reception
of video games, in: Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems, 2020, pp. 1–12.

[S44] X. Tong, Positioning game review as a crucial element of game user
feedback in the ongoing development of independent video games, Com-
puters in Human Behavior Reports 3 (2021) 100077.

[S45] D. Zagieboylo, K. A. Zaman, Cost-efficient and reliable reporting
of highly bursty video game crash data, in: Proceedings of the 8th
ACM/SPEC on International Conference on Performance Engineering,
2017, pp. 201–212.

[S46] D. Festa, D. Maggiorini, L. A. Ripamonti, A. Bujari, Supporting dis-
tributed real-time debugging in online games, in: 2017 14th IEEE Annual
Consumer Communications & Networking Conference (CCNC), IEEE,
2017, pp. 737–740.

[S47] A. Truelove, E. S. de Almeida, I. Ahmed, We’ll fix it in post: what do
bug fixes in video game update notes tell us?, in: 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE), IEEE, 2021,
pp. 736–747.

[S48] C. Lewis, J. Whitehead, Repairing games at runtime or, how we learned
to stop worrying and love emergence, IEEE software 28 (5) (2011) 53–59.

[S49] J. Kasurinen, K. Smolander, What do game developers test in their prod-
ucts?, in: Proceedings of the 8th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, 2014, pp. 1–10.

[S50] S. Lynch, K. Pedersen, F. Charles, C. Hargood, M22-a modern visual
novel framework, in: Proceedings of the 8th International Workshop on
Narrative and Hypertext, 2019, pp. 9–13.

[S51] C. Politowski, F. Petrillo, J. E. Montandon, M. T. Valente, Y.-G.
Guéhéneuc, Are game engines software frameworks? a three-perspective
study, Journal of Systems and Software 171 (2021) 110846.

[S52] D. MacCormick, L. Zaman, Subvis: the use of subjunctive visual pro-
gramming environments for exploring alternatives in game development,
in: Proceedings of the 14th International Conference on the Foundations
of Digital Games, 2019, pp. 1–11.

[S53] T. Nummenmaa, A. Kultima, K. Alha, T. Mikkonen, Applying lehman’s
laws to game evolution, in: Proceedings of the 2013 International Work-
shop on Principles of Software Evolution, 2013, pp. 11–17.

[S54] A. Kica, A. La Manna, L. O’Donnell, T. Paolillo, M. Claypool, Nerfs,
buffs and bugs-analysis of the impact of patching on league of legends, in:
2016 International Conference on Collaboration Technologies and Sys-
tems (CTS), IEEE, 2016, pp. 128–135.

[S55] X. Zhong, J. Xu, Game updates enhance players’ engagement: a case of
dota2, in: 2021 4th International Conference on Information Management

and Management Science, 2021, pp. 117–123.
[S56] A. Drachen, A. Canossa, Analyzing spatial user behavior in computer

games using geographic information systems, in: Proceedings of the 13th
international MindTrek conference: Everyday life in the ubiquitous era,
2009, pp. 182–189.

[S57] T. C. Kohwalter, L. G. P. Murta, E. W. G. Clua, Capturing game teleme-
try with provenance, in: 2017 16th Brazilian Symposium on Computer
Games and Digital Entertainment (SBGames), IEEE, 2017, pp. 66–75.

[S58] K. Hullett, N. Nagappan, E. Schuh, J. Hopson, Data analytics for game
development: Nier track, in: 2011 33rd International Conference on Soft-
ware Engineering (ICSE), IEEE, 2011, pp. 940–943.

[S59] L. B. Jacob, T. C. Kohwalter, A. F. Machado, E. W. Clua, D. De Oliveira,
A non-intrusive approach for 2d platform game design analysis based
on provenance data extracted from game streaming, in: 2014 Brazilian
Symposium on Computer Games and Digital Entertainment, IEEE, 2014,
pp. 41–50.

[S60] Y. Zeleke, J. C. Osborn, R. G. Sanfelice, Analyzing action games: a
hybrid systems approach, in: Proceedings of the 14th International Con-
ference on the Foundations of Digital Games, 2019, pp. 1–11.

[S61] K. Hullett, N. Nagappan, E. Schuh, J. Hopson, Empirical analysis of
user data in game software development, in: Proceedings of the 2012
ACM-IEEE International Symposium on Empirical Software Engineer-
ing and Measurement, IEEE, 2012, pp. 89–98.

[S62] J. L. Miller, J. Crowcroft, Avatar movement in world of warcraft battle-
grounds, in: 2009 8th Annual Workshop on Network and Systems Sup-
port for Games (NetGames), IEEE, 2009, pp. 1–6.

[S63] S. Papaloukas, K. Patriarcheas, M. Xenos, Usability assessment heuris-
tics in new genre videogames, in: 2009 13th Panhellenic Conference on
Informatics, IEEE, 2009, pp. 202–206.

[S64] P. Sweetser, D. Johnson, P. Wyeth, A. Ozdowska, Gameflow heuristics
for designing and evaluating real-time strategy games, in: Proceedings
of the 8th Australasian Conference on Interactive Entertainment: Playing
the System, 2012, pp. 1–10.

[S65] R. Yanez-Gomez, J. L. Font, D. Cascado-Caballero, J.-L. Sevillano,
Heuristic usability evaluation on games: a modular approach, Multimedia
Tools and Applications 78 (4) (2019) 4937–4964.

[S66] S. Aleem, L. F. Capretz, F. Ahmed, A digital game maturity model
(dgmm), Entertainment Computing 17 (2016) 55–73.

[S67] J. Kasurinen, K. Smolander, Defining an iterative iso/iec 29110 deploy-
ment package for game developers, International Journal of Information
Technologies and Systems Approach (IJITSA) 10 (1) (2017) 107–125.

[S68] C. M. Kanode, H. M. Haddad, Software engineering challenges in game
development, in: 2009 Sixth International Conference on Information
Technology: New Generations, IEEE, 2009, pp. 260–265.

[S69] A. Fatima, T. Rasool, U. Qamar, Gdgse: Game development with global
software engineering, in: 2018 IEEE Games, Entertainment, Media Con-
ference (GEM), IEEE, 2018, pp. 1–9.

[S70] H. Scarbrough, N. Panourgias, J. Nandhakumar, The role of objects in
the coordination of knowledge-intensive projects: A study of computer
games development, in: 2012 45th Hawaii International Conference on
System Sciences, IEEE, 2012, pp. 4952–4960.

[S71] R. Ramadan, Y. Widyani, Game development life cycle guidelines, in:
2013 International Conference on Advanced Computer Science and In-
formation Systems (ICACSIS), IEEE, 2013, pp. 95–100.

[S72] N. B. Ahmad, S. A. R. Barakji, T. M. Abou Shahada, Z. A. Anabtawi,
How to launch a successful video game: A framework, Entertainment
computing 23 (2017) 1–11.

[S73] R. McDaniel, Communication and knowledge management strategies
in video game design and development: A case study highlighting key
organizational narratives, in: 2015 IEEE International Professional Com-
munication Conference (IPCC), IEEE, 2015, pp. 1–8.

[S74] M. Schmalz, A. Finn, H. Taylor, Risk management in video game de-
velopment projects, in: 2014 47th Hawaii International Conference on
System Sciences, IEEE, 2014, pp. 4325–4334.

[S75] H. Edholm, M. Lidström, J.-P. Steghöfer, H. Burden, Crunch time:
The reasons and effects of unpaid overtime in the games industry, in:
2017 IEEE/ACM 39th International Conference on Software Engineer-
ing: Software Engineering in Practice Track (ICSE-SEIP), IEEE, 2017,
pp. 43–52.

[S76] K. Borowa, A. Zalewski, A. Saczko, Living with technical debt—a per-
spective from the video game industry, IEEE Software 38 (06) (2021)

20

65–70.
[S77] J.-W. Liu, C.-Y. Ho, J. Y. Chang, J. C.-A. Tsai, The role of sprint plan-

ning and feedback in game development projects: Implications for game
quality, Journal of Systems and Software 154 (2019) 79–91.

[S78] M. A. Winget, W. W. Sampson, Game development documentation and
institutional collection development policy, in: Proceedings of the 11th
annual international ACM/IEEE joint conference on Digital libraries,
2011, pp. 29–38.

[S79] M. G. Salazar, H. A. Mitre, C. L. Olalde, J. L. G. Sánchez, Proposal
of game design document from software engineering requirements per-
spective, in: 2012 17th International Conference on Computer Games
(CGAMES), IEEE, 2012, pp. 81–85.

[S80] E. Guardiola, The gameplay loop: a player activity model for game de-
sign and analysis, in: Proceedings of the 13th International Conference
on Advances in Computer Entertainment Technology, 2016, pp. 1–7.

[S81] M. S. El-Nasr, Developing games that capture and engage users, in:
2019 IEEE/ACM 41st International Conference on Software Engineer-
ing: Companion Proceedings (ICSE-Companion), IEEE, 2019, pp. 9–10.

[S82] W. Scacchi, Modding as an open source approach to extending com-
puter game systems, in: IFIP International Conference on Open Source
Systems, Springer, 2011, pp. 62–74.

[S83] M. Suznjevic, I. Stupar, M. Matijasevic, A model and software architec-
ture for mmorpg traffic generation based on player behavior, Multimedia
systems 19 (3) (2013) 231–253.

[S84] B. Bryant, H. Saiedian, An evaluation of videogame network architec-
ture performance and security, Computer Networks 192 (2021) 108128.

[S85] M. Kenzel, B. Kerbl, D. Schmalstieg, M. Steinberger, A high-
performance software graphics pipeline architecture for the gpu, ACM
Transactions on Graphics (TOG) 37 (4) (2018) 1–15.

[S86] A. I. Wang, N. Nordmark, Software architectures and the creative pro-
cesses in game development, in: International Conference on Entertain-
ment Computing, Springer, 2015, pp. 272–285.

[S87] T. Olsson, D. Toll, A. Wingkvist, M. Ericsson, Evaluation of a static ar-
chitectural conformance checking method in a line of computer games, in:
Proceedings of the 10th international ACM Sigsoft conference on Quality
of software architectures, 2014, pp. 113–118.

[S88] T. Ollsson, D. Toll, A. Wingkvist, M. Ericsson, Evolution and evaluation
of the model-view-controller architecture in games, in: 2015 IEEE/ACM
4th International Workshop on Games and Software Engineering, IEEE,
2015, pp. 8–14.

[S89] A. Mohebali, T. K. Chiew, Redefining game engine architecture
through concurrency, in: International Conference on Intelligent Software
Methodologies, Tools, and Techniques, Springer, 2014, pp. 149–161.

[S90] W. K. Mizutani, F. Kon, Unlimited rulebook: A reference architecture
for economy mechanics in digital games, in: 2020 IEEE International
Conference on Software Architecture (ICSA), IEEE, 2020, pp. 58–68.

[S91] T. Nummenmaa, E. Berki, T. Mikkonen, Exploring games as formal
models, in: 2009 Fourth South-East European Workshop on Formal
Methods, IEEE, 2009, pp. 60–65.

[S92] A. Srinivasan, V. N. Venkatraman, Architectural convergence and plat-
form evolution: Empirical test of complementor moves in videogames,
IEEE Transactions on Engineering Management 67 (2) (2018) 266–282.

[S93] J. Kienzle, A. Denault, Journey: A massively multiplayer online game
middleware, IEEE Software 28 (05) (2011) 38–44.

[S94] J. Donkervliet, J. Cuijpers, A. Iosup, Dyconits: Scaling minecraft-like
services through dynamically managed inconsistency, in: 2021 IEEE 41st
International Conference on Distributed Computing Systems (ICDCS),
IEEE, 2021, pp. 126–137.

[S95] F. Boaventura, V. T. Sarinho, Mendiga: A minimal engine for digi-
tal games, International Journal of Computer Games Technology 2017
(2017).

[S96] B. J. Geisler, F. J. Mitropoulos, S. Kavage, Gamespect: Aspect oriented
programming for a video game engine using meta-languages, in: 2019
SoutheastCon, 2019, pp. 1–8.

[S97] B. J. Geisler, S. L. Kavage, A multi-engine aspect-oriented language
with modeling integration for video game design, in: R. Ali, H. Kaindl,
L. A. Maciaszek (Eds.), Evaluation of Novel Approaches to Software En-
gineering, Springer International Publishing, Cham, 2021, pp. 336–359.

[S98] F. Nunnari, A. Héloir, Write-Once, Transpile-Everywhere: Re-using
Motion Controllers of Virtual Humans Across Multiple Game Engines,
2018, pp. 435–446.

References

[1] T. Wijman, The games market and beyond in 2021: The year in numbers,
[Online; accessed 22-December-2021] (2021).
URL https://newzoo.com/insights/articles/the-games-
market-in-2021-the-year-in-numbers-esports-cloud-

gaming

[2] C. Politowski, F. Petrillo, J. E. Montandon, M. T. Valente, Y.-G.
Guéhéneuc, Are game engines software frameworks? a three-perspective
study, Journal of Systems and Software 171 (2021) 110846.

[3] H. Engström, B. B. Marklund, P. Backlund, M. Toftedahl, Game devel-
opment from a software and creative product perspective: A quantitative
literature review approach, Entertainment Computing 27 (2018) 10–22.

[4] C. Lewis, J. Whitehead, The whats and the whys of games and software
engineering, in: Proceedings of the 1st international workshop on games
and software engineering, 2011, pp. 1–4.

[5] A. Ampatzoglou, I. Stamelos, Software engineering research for com-
puter games: A systematic review, Information and Software Technology
52 (9) (2010) 888–901.

[6] J. Kasurinen, M. Palacin-Silva, E. Vanhala, What concerns game devel-
opers? a study on game development processes, sustainability and met-
rics, in: 2017 IEEE/ACM 8th Workshop on Emerging Trends in Software
Metrics (WETSoM), 2017, pp. 15–21.

[7] J. Kasurinen, Games as software: Similarities and differences between
the implementation projects, in: Proceedings of the 17th International
Conference on Computer Systems and Technologies 2016, 2016, pp. 33–
40.

[8] E. Murphy-Hill, T. Zimmermann, N. Nagappan, Cowboys, ankle sprains,
and keepers of quality: How is video game development different from
software development?, in: Proceedings of the 36th International Confer-
ence on Software Engineering, 2014, pp. 1–11.

[9] J. Kasurinen, K. Smolander, What do game developers test in their prod-
ucts?, in: Proceedings of the 8th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, 2014, pp. 1–10.

[10] J. Nandhakumar, N. S. Panourgias, H. Scarbrough, From knowing it to
“getting it”: Envisioning practices in computer games development, In-
formation Systems Research 24 (4) (2013) 933–955.

[11] T. McKenzie, M. M. Trujillo, S. Hoermann, Software engineering prac-
tices and methods in the game development industry, in: Extended Ab-
stracts of the Annual Symposium on Computer-Human Interaction in Play
Companion Extended Abstracts, 2019, pp. 181–193.

[12] J. Musil, A. Schweda, D. Winkler, S. Biffl, A survey on the state of the
practice in video game software development, Institute of Software Tech-
nology and Interactive Systems, Tech. Rep. (2010) 13.

[13] C. Politowski, L. Fontoura, F. Petrillo, Y.-G. Guéhéneuc, Are the old days
gone? a survey on actual software engineering processes in video game
industry, in: Proceedings of the 5th International Workshop on Games
and Software Engineering, 2016, pp. 22–28.

[14] C. Politowski, F. Petrillo, G. C. Ullmann, Y.-G. Guéhéneuc, Game indus-
try problems: An extensive analysis of the gray literature, Information
and Software Technology 134 (2021) 106538.

[15] C. Politowski, F. Petrillo, Y.-G. Guéhéneuc, A survey of video game test-
ing, in: 2021 IEEE/ACM International Conference on Automation of
Software Test (AST), IEEE, 2021, pp. 90–99.

[16] C. Politowski, F. Petrillo, G. C. Ullmann, J. de Andrade Werly, Y.-G.
Guéhéneuc, Dataset of video game development problems, in: Proceed-
ings of the 17th International Conference on Mining Software Reposito-
ries, 2020, pp. 553–557.

[17] G. C. Ullmann, C. Politowski, Y.-G. Guéhéneuc, F. Petrillo, J. E. Mon-
tandon, Video game project management anti-patterns, in: Proceedings of
the 6th International ICSE Workshop on Games and Software Engineer-
ing: Engineering Fun, Inspiration, and Motivation, 2022, pp. 9–15.

[18] F. Petrillo, M. Pimenta, Is agility out there? agile practices in game de-
velopment, in: Proceedings of the 28th ACM International Conference on
Design of Communication, 2010, pp. 9–15.

[19] M. Washburn Jr, P. Sathiyanarayanan, M. Nagappan, T. Zimmermann,
C. Bird, What went right and what went wrong: an analysis of 155 post-
mortems from game development, in: Proceedings of the 38th Interna-
tional Conference on Software Engineering Companion, 2016, pp. 280–
289.

[20] W. K. Mizutani, V. K. Daros, F. Kon, Software architecture for digital

21

https://newzoo.com/insights/articles/the-games-market-in-2021-the-year-in-numbers-esports-cloud-gaming
https://newzoo.com/insights/articles/the-games-market-in-2021-the-year-in-numbers-esports-cloud-gaming
https://newzoo.com/insights/articles/the-games-market-in-2021-the-year-in-numbers-esports-cloud-gaming
https://newzoo.com/insights/articles/the-games-market-in-2021-the-year-in-numbers-esports-cloud-gaming

game mechanics: A systematic literature review, Entertainment Comput-
ing 38 (2021) 100421.

[21] J. R. M. Viana, N. P. Viana, F. A. M. Trinta, W. V. De Carvalho, A sys-
tematic review on software engineering in pervasive games development,
in: 2014 Brazilian Symposium on Computer Games and Digital Enter-
tainment, IEEE, 2014, pp. 51–60.

[22] M. Zhu, A. I. Wang, Model-driven game development: A literature re-
view, ACM Computing Surveys (CSUR) 52 (6) (2019) 1–32.

[23] C. Politowski, Y.-G. Guéhéneuc, F. Petrillo, Towards automated video
game testing: still a long way to go, in: Proceedings of the 6th Interna-
tional ICSE Workshop on Games and Software Engineering: Engineering
Fun, Inspiration, and Motivation, 2022, pp. 37–43.

[24] A. Osborne O’Hagan, G. Coleman, R. V. O’Connor, Software develop-
ment processes for games: A systematic literature review, in: European
Conference on Software Process Improvement, Springer, 2014, pp. 182–
193.

[25] J. A. Vargas, L. Garcı́a-Mundo, M. Genero, M. Piattini, A systematic
mapping study on serious game quality, in: Proceedings of the 18th In-
ternational Conference on Evaluation and Assessment in Software Engi-
neering, 2014, pp. 1–10.

[26] S. Aleem, L. F. Capretz, F. Ahmed, Game development software engi-
neering process life cycle: a systematic review, Journal of Software Engi-
neering Research and Development 4 (1) (2016) 1–30.

[27] S. Aleem, L. F. Capretz, F. Ahmed, A digital game maturity model
(dgmm), Entertainment Computing 17 (2016) 55–73.

[28] K. Borowa, A. Zalewski, A. Saczko, Living with technical debt—a per-
spective from the video game industry, IEEE Software 38 (06) (2021)
65–70.

[29] J. Kasurinen, A. Maglyas, K. Smolander, Is requirements engineering
useless in game development?, in: Requirements Engineering: Foun-
dation for Software Quality: 20th International Working Conference,
REFSQ 2014, Essen, Germany, April 7-10, 2014. Proceedings 20,
Springer, 2014, pp. 1–16.

[30] F. Ahmed, M. Zia, H. Mahmood, S. Al Kobaisi, Open source computer
game application: An empirical analysis of quality concerns, Entertain-
ment Computing 21 (2017) 1–10.

[31] C. M. Kanode, H. M. Haddad, Software engineering challenges in game
development, in: 2009 Sixth International Conference on Information
Technology: New Generations, IEEE, 2009, pp. 260–265.

[32] D. Callele, E. Neufeld, K. Schneider, Requirements engineering and the
creative process in the video game industry, in: 13th IEEE International
Conference on Requirements Engineering (RE’05), IEEE, 2005, pp. 240–
250.

[33] L. Pascarella, F. Palomba, M. Di Penta, A. Bacchelli, How is video
game development different from software development in open source?,
in: 2018 IEEE/ACM 15th International Conference on Mining Software
Repositories (MSR), IEEE, 2018, pp. 392–402.

[34] B. Kitchenham, S. Charters, Guidelines for performing systematic litera-
ture reviews in software engineering (2007).

[35] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, M. Khalil, Lessons
from applying the systematic literature review process within the software
engineering domain, Journal of systems and software 80 (4) (2007) 571–
583.

[36] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey,
S. Linkman, Systematic literature reviews in software engineering–a sys-
tematic literature review, Information and software technology 51 (1)
(2009) 7–15.

[37] V. Alves, N. Niu, C. Alves, G. Valença, Requirements engineering for
software product lines: A systematic literature review, Information and
Software Technology 52 (8) (2010) 806–820.

[38] B. Kitchenham, Procedures for performing systematic reviews, Keele,
UK, Keele University 33 (2004) (2004) 1–26.

[39] A. for Computing Machinery, The 2012 acm computing classification
system, [Online; accessed 07-June-2023] (2012).
URL https://www.acm.org/publications/class-2012

[40] R. L. Glass, I. Vessey, V. Ramesh, Research in software engineering: an
analysis of the literature, Information and Software technology 44 (8)
(2002) 491–506.

[41] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, A. Wesslén,
Experimentation in Software Engineering, Springer, 2000.

[42] M. Felderer, G. H. Travassos, Contemporary Empirical Methods in Soft-

ware Engineering, Springer, 2020.
[43] K. Mao, L. Capra, M. Harman, Y. Jia, A survey of the use of crowdsourc-

ing in software engineering, Journal of Systems and Software 126 (2017)
57–84.

[44] T. Dyba, T. Dingsoyr, G. K. Hanssen, Applying systematic reviews to
diverse study types: An experience report, in: First International Sym-
posium on Empirical Software Engineering and Measurement (ESEM
2007), IEEE, 2007, pp. 225–234.

[45] B. Kitchenham, P. Brereton, A systematic review of systematic review
process research in software engineering, Information and software tech-
nology 55 (12) (2013) 2049–2075.

[46] K. Petersen, S. Vakkalanka, L. Kuzniarz, Guidelines for conducting sys-
tematic mapping studies in software engineering: An update, Information
and software technology 64 (2015) 1–18.

[47] C. Wohlin, Guidelines for snowballing in systematic literature studies and
a replication in software engineering, in: Proceedings of the 18th interna-
tional conference on evaluation and assessment in software engineering,
2014, pp. 1–10.

[48] M.-T. Cheng, J.-H. Chen, S.-J. Chu, S.-Y. Chen, The use of serious games
in science education: a review of selected empirical research from 2002
to 2013, Journal of computers in education 2 (3) (2015) 353–375.

[49] G. N. Yannakakis, J. Togelius, Artificial intelligence and games, Vol. 2,
Springer, 2018.

[50] B. A. Kitchenham, O. P. Brereton, D. Budgen, Z. Li, An evaluation of
quality checklist proposals-a participant-observer case study, in: 13th In-
ternational Conference on Evaluation and Assessment in Software Engi-
neering (EASE) 13, 2009, pp. 1–10.

[51] M. Galster, D. Weyns, D. Tofan, B. Michalik, P. Avgeriou, Variability in
software systems—a systematic literature review, IEEE Transactions on
Software Engineering 40 (3) (2013) 282–306.

[52] M. S. Ali, M. A. Babar, L. Chen, K.-J. Stol, A systematic review of com-
parative evidence of aspect-oriented programming, Information and soft-
ware Technology 52 (9) (2010) 871–887.

[53] T. Dybå, T. Dingsøyr, Empirical studies of agile software development: A
systematic review, Information and software technology 50 (9-10) (2008)
833–859.

[54] A. Fung, The impact of the rise of mobile games on the creativity and
structure of the games industry in china, Mobile Gaming in Asia: Politics,
Culture and Emerging Technologies (2017) 91–103.

[55] Ó. P. Latorre, et al., Indie or mainstream? tensions and nuances between
the alternative and the mainstream in indie games, Anàlisi (2016) 15–30.

[56] M. McShaffry, Game coding complete, Cengage Learning, 2009.
[57] F. Vaudour, A. Heinze, Software as a service: Lessons from the video

game industry, Global Business and Organizational Excellence 39 (2)
(2020) 31–40.

[58] M. S. O. Almeida, F. S. C. da Silva, A systematic review of game de-
sign methods and tools, in: Entertainment Computing–ICEC 2013: 12th
International Conference, ICEC 2013, São Paulo, Brazil, October 16-18,
2013. Proceedings 12, Springer, 2013, pp. 17–29.

[59] C. Calero, M. Polo, M. Á. Moraga, Investigating the impact on execu-
tion time and energy consumption of developing with spring, Sustainable
Computing: Informatics and Systems 32 (2021) 100603.

[60] T. E. Colanzi, W. K. Assunção, S. R. Vergilio, P. R. Farah, G. Guizzo,
The symposium on search-based software engineering: Past, present and
future, Information and Software Technology 127 (2020) 106372.

[61] F. Pérez, J. Font, L. Arcega, C. Cetina, Empowering the human as the
fitness function in search-based model-driven engineering, IEEE Trans-
actions on Software Engineering (01) (2021) 1–1.

[62] C. Wohlin, M. Höst, K. Henningsson, Empirical research methods in soft-
ware engineering, in: Empirical methods and studies in software engi-
neering, Springer, 2003, pp. 7–23.

[63] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, A. Wesslén,
Experimentation in Software Engineering, Springer Science & Business
Media, 2012.

[64] B. A. Kitchenham, D. Budgen, P. Brereton, Evidence-based software en-
gineering and systematic reviews, Vol. 4, CRC press, 2015.

[65] S. Shuermans, C. Voskoglou, Global developer population report 2019.,
https://www.slashdata.co/?link=%20GlobalDevPop19, [Online;
accessed 13-December-2022] (2019).

22

https://www.acm.org/publications/class-2012
https://www.acm.org/publications/class-2012
https://www.acm.org/publications/class-2012
https://www.slashdata.co/?link=%20GlobalDevPop19

APPENDIX

Table 6: Previous Study Data-set after meeting our selection criteria.

Publisher Citation Type CCS’98 Country Year Method Approach

S04 IEEE Conference D.2.9 Netherlands 2009 - Exploratory
S06 Elsevier Journal D.2.5 Netherlands 2007 Experiment Empirical
S07 Springer Conference D.2.0 Finland 2002 - Descriptive
S09 ACM Journal D.2.0 - 2004 - Descriptive
S10 ACM Conference D.2.1 UK 2009 - Exploratory
S11 IEEE Conference D.2.1 Canada 2005 Case Study Empirical
S18 ACM Conference D.2.1 USA 2004 - Exploratory
S19 Elsevier Journal D.2.3 Canada 2007 - Exploratory
S29 Springer Workshop D.2.5 Canada 2007 - Descriptive
S31 Elsevier Journal D.2.1 UK 2005 Survey Empirical
S34 IEEE Conference D.2.9 USA 2009 - Descriptive
S40 Springer Conference D.2.6 Korea 2004 - Descriptive
S44 IEEE Conference D.2.6 Canada 2004 - Exploratory
S50 ACM Conference D.2.1 Finland 2009 - Descriptive
S53 ACM Conference D.2.9 Finland 2008 - Descriptive
S54 IEEE Conference D.2.1 China 2009 Survey Empirical
S55 ACM Journal D.2.9 Brazil 2009 Survey Empirical
S57 ACM Conference D.2.5 USA 2008 - Exploratory
S58 ACM Conference D.2.1 USA 2008 Survey Empirical
S70 IEEE Conference D.2.9 UK 2005 - Exploratory
S71 ACM Journal D.2.3 USA 2008 - Exploratory
S73 Springer Conference D.2.1 Netherlands 2009 Experiment Empirical
S76 ACM Journal D.2.1 USA 2008 - Exploratory
S79 ACM Journal D.2.3 USA 2009 - Exploratory

Table 7: Study Data-set

Publisher Citation Type CCS’98 CCS’12 Country Year Method Approach QA

S1 IEEE Workshop D.2.0 5.3.4 USA 2016 Case study Empirical 3
S2 SciTePress Conference D.2.0 5.3.4 USA 2021 Case study Empirical 2.5
S3 ACM Workshop D.2.1 5.2.2 Netherlands 2012 - Descriptive 1.5
S4 Springer Journal D.2.1 5.2.5 Spain 2020 Case study Empirical 3
S5 Springer Conference D.2.1 5.1.1 Spain 2020 Case study Empirical 3
S6 Springer Conference D.2.1 5.2.5 Spain 2021 Case study Empirical 2.5
S7 Springer Conference D.2.1 5.3.1 Finland 2014 Survey Empirical 4.5
S8 ACM Conference D.2.1 5.3.1 Finland 2013 Survey Empirical 5.5
S9 ACM Journal D.2.1 5.3.1 UK 2021 Survey Empirical 5
S10 IEEE Conference D.2.1 5.3.1 Netherlands 2014 Survey Empirical 5
S11 Springer Conference D.2.2 5.3.1 Spain 2011 Experiment Empirical 3
S12 Taylor & Journal D.2.2 5.3.1 Spain 2012 - Descriptive 3

Francis Group
S13 ACM Conference D.2.2 5.1.1 UK 2010 Case study Empirical 4
S14 ACM Conference D.2.2 5.3.1 UK 2010 Experiment Empirical 4
S15 IEEE Conference D.2.2 5.1.1 Indonesia 2020 Survey Empirical 4
S16 SAGE Journal D.2.2 5.1.1 Norway 2012 Experiment Empirical 1
S17 INFORMS Journal D.2.2 5.3.3 UK 2013 Survey Empirical 4
S18 Springer Conference D.2.2 5.1.4 Spain 2016 - Descriptive 3.5
S19 Springer Conference D.2.2 5.1.2 Spain 2020 Experiment Empirical 6

23

Table 7: Study Data-set (continued)

Publisher Citation Type CCS’98 CCS’12 Country Year Method Approach QA

S20 IEEE Conference D.2.2 5.3.3 Brazil 2015 Experiment Empirical 6
S21 IEEE Conference D.2.2 5.1.2 Brazil 2011 - Descriptive 1.5
S22 IBM Conference D.2.2 5.1.2 Brazil 2014 - Descriptive 3.5
S23 Slovak Academy Journal D.2.2 5.1.2 Brazil 2021 - Descriptive 2.5

of Sciences
S24 Springer Conference D.2.2 5.2.4 Spain 2021 Experiment Empirical 6
S25 ACM Journal D.2.2 5.3.1 Sweden 2018 Case study Empirical 4.5
S26 USENIX Workshop D.2.3 5.3.1 Canada 2013 Case study Empirical 1.5
S27 IEEE Conference D.2.3 5.3.3 Indonesia 2019 - Descriptive 3
S28 IEEE Conference D.2.3 5.3.3 China 2009 - Descriptive 2.5
S29 ACM Journal D.2.3 5.3.3 USA 2017 Case study Empirical 5
S30 IEEE Conference D.2.3 5.3.3 Germany 2013 Survey Empirical 2
S31 ACM Journal D.2.3 5.2.4 USA 2019 Case study Empirical 4.5
S32 SAGE Journal D.2.4 5.3.4 France 2020 Case study Empirical 4
S33 IEEE Conference D.2.4 5.3.4 Russia 2018 - Descriptive 3.5
S34 IEEE Conference D.2.4 5.3.4 China 2009 Experiment Empirical 1.5
S35 Springer Conference D.2.4 5.1.3 Spain 2012 - Descriptive 2.5
S36 IEEE Conference D.2.4 5.1.3 Japan 2020 - Descriptive 0.5
S37 IEEE Conference D.2.4 5.3.4 Japan 2019 Case study Empirical 3
S38 Elsevier Journal D.2.5 5.3.4 Iran 2016 - Descriptive 3.5
S39 Taylor & Journal D.2.5 5.3.4 USA 2017 Case study Empirical 4

Francis Group
S40 Springer Conference D.2.5 5.3.4 Japan 2019 - Descriptive 3.5
S41 IEEE Conference D.2.5 5.3.4 Pakistan 2015 Case study Empirical 4.5
S42 ACM Conference D.2.5 5.3.4 Canada 2016 Case study Empirical 3.5
S43 ACM Conference D.2.5 5.3.4 Canada 2020 Case study Empirical 3
S44 Elsevier Journal D.2.5 5.3.4 UK 2021 Case study Empirical 5
S45 ACM Conference D.2.5 5.3.4 USA 2017 - Descriptive 4
S46 IEEE Conference D.2.5 5.3.4 Italy 2017 Case study Empirical 2
S47 IEEE Conference D.2.5 5.3.4 USA 2021 - Descriptive 6
S48 IEEE Journal D.2.5 5.3.4 USA 2011 Case study Empirical 3
S49 ACM Conference D.2.5 5.3.2 Finland 2014 Survey Empirical 6
S50 ACM Workshop D.2.6 5.2.6 UK 2019 Case study Empirical 3
S51 Elsevier Journal D.2.6 5.2.6 Canada 2021 Survey Empirical 4.5
S52 ACM Conference D.2.6 5.2.4 Canada 2019 Experiment Empirical 3.5
S53 ACM Workshop D.2.7 5.3.5 Finland 2013 - Descriptive 2
S54 IEEE Conference D.2.7 5.3.5 USA 2016 Case study Empirical 3
S55 ACM Journal D.2.7 5.3.5 China 2021 Experiment Empirical 4
S56 ACM Conference D.2.8 5.3.4 Denmark 2009 Case study Empirical 4
S57 IEEE Conference D.2.8 5.3.4 Brazil 2018 Case study Empirical 1.5
S58 IEEE Conference D.2.8 5.3.4 USA 2011 Case study Empirical 4
S59 IEEE Conference D.2.8 5.3.4 Brazil 2014 - Descriptive 3
S60 ACM Conference D.2.8 5.3.4 USA 2019 Case study Empirical 2.5
S61 IEEE Conference D.2.8 5.3.4 USA 2012 Case study Empirical 4.5
S62 IEEE Workshop D.2.8 5.3.4 UK 2009 - Descriptive 2
S63 IEEE Conference D.2.8 5.1.4 Greece 2009 Case study Empirical 3.5
S64 ACM Conference D.2.8 5.3.4 Australia 2012 Survey Empirical 2.5
S65 Springer Journal D.2.8 5.3.4 Spain 2019 - Descriptive 4
S66 Elsevier Journal D.2.9 5.3.2 Canada 2016 - Descriptive 6
S67 IGI Global Journal D.2.9 5.3.2 Finland 2017 Survey Empirical 4.5

Publishing
S68 IEEE Conference D.2.9 5.3.2 USA 2009 - Exploratory 1
S69 IEEE Conference D.2.9 5.3.2 Pakistan 2018 - Descriptive 1

24

Table 7: Study Data-set (continued)

Publisher Citation Type CCS’98 CCS’12 Country Year Method Approach QA

S70 IEEE Conference D.2.9 5.3.2 UK 2012 Survey Empirical 4.5
S71 IEEE Conference D.2.9 5.3.2 Indonesia 2013 Case study Empirical 2.5
S72 Elsevier Journal D.2.9 5.3.2 United Arab 2017 - Descriptive 3.5

Emirates
S73 IEEE Conference D.2.9 5.3.2 USA 2015 Survey Empirical 4
S74 IEEE Conference D.2.9 5.3.2 USA 2014 Survey Empirical 4
S75 IEEE Conference D.2.9 5.3.2 Sweden 2017 Survey Empirical 6
S76 IEEE Journal D.2.9 5.3.2 Poland 2021 Survey Empirical 4
S77 Elsevier Journal D.2.9 5.3.2 Taiwan 2019 Survey Empirical 5.5
S78 ACM Conference D.2.10 5.3.1 USA 2011 - Descriptive 4
S79 IEEE Conference D.2.10 5.3.1 Mexico 2012 Case study Empirical 5
S80 ACM Conference D.2.10 5.3.1 Germany 2016 Case study Empirical 2.5
S81 IEEE Conference D.2.10 5.3.1 USA 2019 Case study Empirical 0.5
S82 IGI Global Journal D.2.10 5.3.1 USA 2011 - Descriptive 1.5

Publishing
S83 Springer Journal D.2.11 5.1.2 Croatia 2013 Case study Empirical 4
S84 Elsevier Journal D.2.11 5.1.2 USA 2021 - Descriptive 3
S85 ACM Journal D.2.11 5.1.2 Austria 2018 Experiment Empirical 3
S86 Springer Journal D.2.11 5.1.2 Norway 2015 Survey Empirical 4
S87 ACM Conference D.2.11 5.1.2 Sweden 2014 - Descriptive 4
S88 IEEE Workshop D.2.11 5.1.2 Sweden 2015 Case study Empirical 6
S89 Springer Journal D.2.11 5.1.2 Malaysia 2014 Survey Empirical 3.5
S90 IEEE Conference D.2.11 5.1.2 Brazil 2020 Experiment Empirical 5
S91 IEEE Workshop D.2.11 5.3.5 Finland 2009 - Descriptive 2
S92 IEEE Journal D.2.11 5.1.2 USA 2020 - Descriptive 2.5
S93 IEEE Journal D.2.12 5.1.4 Canada 2011 Case study Empirical 4
S94 IEEE Journal D.2.12 5.1.2 Netherlands 2021 Case study Empirical 5
S95 Hindawi Journal D.2.13 5.2.6 Brazil 2017 - Descriptive 2.5
S96 IEEE Conference D.2.13 5.3.3 USA 2019 Case study Empirical 3
S97 Springer Conference D.2.13 5.3.3 USA 2021 Case study Empirical 3
S98 Springer Conference D.2.13 5.3.3 Germany 2018 Case study Empirical 3

25

	Introduction
	Goals and Contributions
	Lack of Existing SLRs
	Structure of this work

	Background
	Review Method
	Research Questions
	Literature Search Strategy
	Search terms
	Databases
	Search process
	Selection criteria

	Quality Assessment
	Data Extraction
	Classifying topics

	Results
	RQ1 Research Intensity
	RQ2 Research Topics
	General
	Requirements/Specifications
	Design Tools and Techniques
	Coding Tools and Techniques
	Software/Program Verification
	Testing and Debugging
	Programming Environments
	Distribution, Maintenance and Enhancement
	Metrics
	Management
	Design
	Software Architecture
	Interoperability
	Software Reuse

	RQ3 Research Approaches
	RQ4 Empirical Methods
	RQ5 Research Quality

	Discussion
	RQ1 Research Intensity
	RQ2 Research Topics
	RQ3 Research Approaches
	RQ4 Empirical Methods
	RQ5 Research Quality

	Future Directions
	Cross-fertilization between GSE and MDE
	Game Software Product Lines
	The Blossoming of Publishing Platforms
	The Multifaceted Nature of GSE
	Planning and Scheduling Issues
	The Consequences of Games as a Service
	GSE Security
	Weaving Software and Art Design
	A New Wave of Requirements Research for GSE
	Testing and Debugging in the Face of Gameplay Subjectivity
	Green GSE
	Search-Based GSE
	Content Creation and Artificial Intelligence

	Threats to Validity and Quality Assessment
	Threats to validity
	Assessment of review
	Other threats and limitations

	Conclusion

