
Prototyping Dynamic Software Product Lines to

Evaluate Run-Time Reconfigurations

Carlos Cetina, Pau Giner, Joan Fons, Vicente Pelechano

Centro de Investigación en Métodos de Producción de Software
Universidad Politécnica de Valencia
Camino de Vera s/n, E-46022, Spain
{ccetina, pginer, jjfons, pele}@dsic.upv.es

Abstract

Dynamic Software Product Lines (DSPL) encompass systems that are
capable of modifying their own behavior with respect to changes in their
operating environment by using run-time reconfigurations. A failure in these
reconfigurations can directly impact the user experience since the reconfig-
urations are performed when the system is already under the users control.
In this work, we prototype a Smart Hotel DSPL to evaluate the reliability-
based risk of the DSPL reconfigurations, specifically, the probability of mal-
functioning (Availability) and the consequences of malfunctioning (Severity).
This DSPL prototype was performed with the participation of human sub-
jects by means of a Smart Hotel case study which was deployed with real
devices. Moreover, we successfully identified and addressed two challenges
associated with the involvement of human subjects in DSPL prototyping:
enabling participants to (1) trigger the run-time reconfigurations and to (2)
understand the effects of the reconfigurations. The evaluation of the case
study reveals positive results regarding both Availability and Severity. How-
ever, the participant feedback highlights issues with recovering from a failed
reconfiguration or a reconfiguration triggered by mistake. To address these
issues, we discuss some guidelines learned in the case study. Finally, although
the results achieved by the DSPL may be considered satisfactory for its par-
ticular domain, DSPL engineers must provide users with more control over
the reconfigurations or the users will not be comfortable with DSPLs.

Key words: Dynamic Software Product Line, Variability Modeling, Smart
Hotel

Preprint submitted to Science of Computer Programming May 28, 2012

1. Introduction

Variability modelling (in the context of Software Product Line engineer-
ing) has proven itself to be an efficient way for dealing with varying user
needs and resource constraints. However, the focus has been on the efficient
derivation of customized product variants that, once created, keep their prop-
erties throughout their lifetime. Previous research [24, 19, 3] shows that the
combination of variability modelling and Dynamic Software Product Lines
(DSPL) can assist a system to determine the steps that are necessary to
reconfigure itself. Specifically, these systems can activate/deactivate their
own features dynamically at run-time according to the fulfillment of context
conditions. These features represent increments in the system functionality.

Variability models specify the possible configurations of a system, while
a Dynamic Product Line Architecture can be rapidly retargeted to a specific
configuration. That is, software variants are managed and variation points
are bound flexibly, but all this is done at runtime and fully automatic. On the
one hand, since the models that form the basis for run-time reconfiguration
are available at design time, it is possible to validate reconfigurations at an
early stage of the development process without first implementing them [5].
However, not all potential run-time failures can be anticipated during system
design [26]. On the other hand, no reliable reconfigurations may desynchro-
nize the model level and the architecture level. Since the reconfiguration is
driven by the variability models and fully automated, this desynchronisation
would lead the system to unexpected results in the next reconfigurations.

In this work, we are concerned with reliability-based risk of run-time re-
configurations. To this end, we have adopted the definition in [37], which
defines reliability risk as a combination of two factors: the probability of mal-
functioning (Availability) and the consequences of malfunctioning (Severity).
We have considered these aspects since they are especially relevant when
dealing with DSPLs. For traditional Software Product Lines, once a product
is obtained for a given configuration, it can be tested intensively before it
reaches the end-users. However, the case of DSPLs is different since different
configurations are obtained at run-time. A failure in DSPL reconfigurations
directly impacts the user experience since the reconfiguration is performed
when the system is already under the user control. Thus, our hypothesis is
that users require a controlled risk of run-time reconfigurations in order to
feel comfortable with DSPLs.

To evaluate the availability and severity of the run-time reconfigurations,

2

we have developed a Smart Hotel case study. The Smart Hotel reconfig-
ures its services according to changes in the surrounding context. A hotel
room changes its features depending on users’ activities to make their stay
as pleasant as possible. Overall, the case study comprises eight scenarios and
eighteen reconfigurations among these scenarios. Each scenario denotes the
specific configuration of the system in terms of active features and architec-
ture components such as services, devices and communication channels.

The run-time reconfiguration among the different scenarios is the main
unit of analysis that we address in this case study. This case study was
deployed in a scale environment with real devices to represent the Smart
Hotel with human subjects participating in the evaluation.

Two major challenges were identified and addressed with the involvement
of human subjects in the evaluation. On the one hand, reconfigurations are
triggered by context events many of which are difficult to be reproduced
in practice (e.g., a fire). To address this challenge, we have developed a
technique that is based on RFID-enabled cards to easily specify the current
context. On the other hand, when reconfigurations are performed, some of
the effects are easily perceived (e.g., an alarm is triggered) while others are
not (e.g., some sensors are deactivated). Thus, we consider that the direct
observation of the physical devices is not enough for evaluating the run-time
reconfigurations. To address this challenge, we provided participants with a
configuration viewer tool which helps them to understand and evaluate the
effects of the reconfigurations.

In this paper, we present the Smart Hotel case study driven by the run-
time reconfigurations of a DSPL. The case study was deployed with real
devices and human subjects were involved to evaluate the reliability-based
risk of reconfigurations. Specifically, we focus on two attributes of reliability-
based risk: probability of malfunctioning (Availability) and the consequences
of malfunctioning (Severity). Moreover, we successfully identified and ad-
dressed two challenges associated with the involvement of human subjects:
enabling participants to (1) trigger the run-time reconfigurations, and to (2)
understand the effects of the reconfigurations.

The evaluation of the DSPL reveals positive results regarding both Avail-
ability and Severity. However, participant feedback highlights issues with the
recovery from a failed reconfiguration or a reconfiguration that is triggered
by mistake. To address these issues, we discuss some guidelines learned in
the case study. Finally, we conclude that the DSPL achieve satisfactory re-
sults with regard to reliability-based risk; nevertheless, DSPL engineers must

3

provide users with more control over the reconfigurations or they will not be
comfortable with DSPLs.

The paper is organized as follows. Section 2 presents the infrastructure of
the DSPL prototype: Variability Modelling, DSPL architecture, and Context
Modelling. Section 3 provides an overview of the Smart Hotel case study and
also gives details about its reconfiguration scenarios. Section 4 describes the
experimentation logistics and the challenges addressed. Section 5 introduces
the results of the evaluation. Section 6 discusses the guidelines learned in
the case study. Finally, Section 7 provides an overview of related work, and
section 8 concludes the paper.

2. DSPL Prototype Overview

In the present work, the participants were involved in a case study to eval-
uate the run-time reconfigurations among the different scenarios of a Smart
Hotel. Many approaches can be applied to realize the dynamic adaptation of
the Smart Hotel such as stochastic model-based [2], reinforcement learning-
based [33] or control theory-based [28]. However, this work focuses on do-
mains where it does not seem economically realistic to meet the individual
requirements of each potential user. Our intent is to focus on commonalities
and abstractions that are valid across a set of users, looking for a trade-off
between personalization and reusability as DSPLs do.

The combination of (1) the variability analysis [7] from SPLs and (2) the
capability of DSPL architectures to activate/deactivate their own features
at run-time reduces production costs to the expense of limiting the level of
detail in dynamic adaptation. This trade-off is acceptable in these domains,
such as the Smart Hotel, since in general the focus is on covering the average
demand, not the needs of each individual.

Next, we present a brief overview of Variability Modelling, DSPL Archi-
tectures, and Context Modelling, and how these techniques are combined to
support the reconfigurations of the Smart Hotel case study as follows:

Variability Modelling: From the different techniques that are suited for
variability analysis, we have chosen feature modelling [8] because it
has good tool support for variability reasoning [1]. Feature modelling
is widely used for the specification of system functionality in a coarse-
grained fashion by means of the feature concept (an increment in system
functionality). As illustrated in Fig. 1, the features are hierarchically

4

Variation Point
Current Config.

Optional

Mandatory

Single Choice
Multiple Choice

Requires

Excludes

Variability
Modelling

(Feature Model)

Simplified Smart Hotel

Piped Music Security

Siren

Automated Illumination

Silent
Alarm

Visual
Alarm

Infrared
Sensor

Occupancy Simulation

Lighting
by Occupancy

Alarm

Volumetric
Sensor

Blinking
Lights

In Room
Detection

Figure 1: Feature model of a simplified Smart Hotel.

linked in a tree-like structure through variability relationships such as
optional, mandatory, single choice, and multiple choice.

The Feature Model of Fig. 1 describes a simplified Smart Hotel with
Piped Music, Security, and Automated Illumination. The grey features
are the current features of the smart hotel, while the white features
represent potential variants as they may be activated in the future.

We let JFMK denote the set of all Features (active or inactive) in a
Feature Model. We define the Current Configuration (CC) of a system
as the set of all active features (F) in a Feature model.

CC
def
= {F} | F ∈ JFMK ∧ F.state = Active ∧ CC ⊆ FM

For example, the CC of the Feature Model in Fig. 1 is expressed as
follows:

CCFig.1 = {SimplifiedSmartHotel, P ipedMusic, Security,

InRoomDetection,Alarm, V olumetricSensor,

SilentAlarm,AutomatedIllumination}

Dynamic Product Line Architecture: In order to provide a flexible re-
configuration, we have considered an architecture that is based on dif-
ferent components with communication channels. We classify these
components into two categories: Services and Devices. Each Service
coordinates the interaction between devices to accomplish specific tasks
(these devices can be hardware o software entities).

5

Second Scenario: Nobody is at home.

Lights

Lighting

Service

21Alarm

Security

Service

TV

Multimedia

Service

Presence

Sensors 1
Presence

Sensors

3

2

Security

Service

Presence

Simulator

Alarm

TV Lights

Multimedia

Service
Lighting

Service

Reconfiguration

Device

Service

Channel

First Scenario: The user is at Hotel room.

Smart Home
(DSPL

Architecture)

Second Scenario: Nobody is at Hotel room.

a b

c d

e
f

Figure 2: Impact of active features on system components for two scenarios.

This architecture allows an easy reconfiguration since communication
channels can be established dynamically between the components, and
these components can dynamically appear or disappear from configu-
rations [19].

To achieve the dynamic reconfiguration of the architecture components,
we apply software reconfiguration patterns [17]. Software reconfigura-
tion patterns provide a solution to a reconfiguration problem where the
configuration needs to be updated while the system is operational.

Specifically, we use the Decentralized Control System Reconfiguration
[15]. In this pattern, components notify each other if going to a pas-
sive state. Notified components can cease the communication with its
neighbor component (which is going to a passive state), but can con-
tinue with other component communications.

This pattern provides the following properties to the architecture: (1)
Non interference with those parts of the application that are not im-
pacted by the reconfiguration, and (2) during reconfiguration, impacted
components must complete their current computational activity before
they can be reconfigured.

Figure 2 shows this reconfigurable architecture according to the con-
crete syntax of the PervML1 Domain-Specific Language for Smart En-
vironments. Services are represented by circles, and Devices are rep-
resented by squares. Finally, the channels among services and devices
are depicted by lines.

1http://www.pros.upv.es/labs/projects/pervml

6

To specify which components and channels of the Smart Hotel support
a certain feature, we use a weaving model [12]. Weaving models are
used to define and to capture relationships between models elements
by means of the WLink concept. A WLink express a link between
model elements that has simple linking semantics. Its semantic has to
be refined according to the use of the weaving model.

In our case, a WLink in the weaving model indicates that a given el-
ement in the PervML model will be included in the resulting PervML
configuration if and only if a particular feature of the feature model is
active. For instance, the blue color-coded mappings between features
and PervML elements of Figure 2 are described by four WLinks as fol-
lows: Lighting by Occupancy wlink channel a, Lighting by Occupancy
wlink channel b, Lighting by Occupancy wlink Presence Sensor 1 and
Lighting by Occupancy wlink Presence Sensor 2. That is, by means of
the weaving model, the PervML configuration is instantiated through
the activation/inactivation of features in the Feature Model.

In order to query a weaving model to identify which PervML elements
support a certain feature the Superimposition operator (�) is defined.
The Superimposition takes a Feature and returns the set of components
and channels related to this Feature. Some examples of the relationship
between Features and the Smart Hotel (see Fig. 2) are as follows:

�(LightingByOccupancy) = {a, b, 1, 2},
�(OccupancySimulation) = {c, 3, d}

For example, Lighting by Occupancy is supported by the channels that
are labeled as a and b and the components that are labeled as 1 and
2 as Fig. 2 shows.

Context Modelling We use an ontology-based context model that lever-
ages Semantic Web technology and OWL (Web Ontology Language) [9].
OWL is an ontology markup language that enables context sharing and
context reasoning. In the artificial intelligence literature, an ontology
is a formal, explicit description of concepts in a particular domain of
discourse. It provides a vocabulary for representing domain knowledge
and for describing specific situations in a domain. An ontology-based
approach for context modeling lets us describe contexts semantically
and share common understanding of the structure of contexts among

7

Context
Ontology

(OWL)

Class

(n) # instances

Property

Figure 3: OWL Ontology for Smart Hotel.

users, devices, and services. The main benefit of this model is that it
enables a formal analysis of the domain knowledge, such as performing
context reasoning using first-order logic.

An ontology represents the DSPL context model structure. The ontol-
ogy is described in OWL as a collection of RDF triples, in which each
statement is in the form of (subject, predicate, object). The subject
and object are the ontology objects or individuals and the predicate
is a property relation defined by the ontology. For instance, (John,
Location, Garden) means that John is located in the garden. Figure 3
shows our current ontology for context modelling in Smart Hotels. For
more information about this ontology see [31].

The combination of the above techniques assists the DSPL prototype to
determine the steps that are necessary to reconfigure itself. In particular,
the prototype can activate/deactivate its own features dynamically at run-
time according to the fulfillment of Context Conditions. The feature model
specifies the possible configurations of the system, while the Dynamic Prod-
uct Line Architecture can be rapidly retargeted to a specific configuration as
follows (see Fig. 4).

The first step of the Reconfiguration Process is triggered whenever a con-
text event is raised. For each conext event, the DSPL feed the Ontology
with a RDF triple. Then, the DSPL checks if according to the new state
of the Ontology any of the context conditions are fulfilled. The context
conditions check for values in this ontology. For instance, the Empty-
Room condition is fulfilled when none of the presence detection sensors
is perceiving presence. This can be used to trigger the activation of

8

Smart Home
(DSPL

Architecture)

Trigger: Architecture Increments/Decrements are calculated

Trigger: New
Context Event

Effect: Inserting
Context Event into
the Ontology

Trigger: Fulfillment of
a Context Condition

Effect: Changes in
the state of features
(Resolution)

Run-Time System

Effect: DSPL reconfiguration

1

3

Variability
Modelling

(Feature Model)

Context
Ontology

(OWL)
2

Figure 4: Overview of the model-based reconfiguration process.

both the In Room Detection and the Occupancy Simulation features
when all the inhabitants leave room. We can also define another con-
text condition, Comfort, to trigger the activation of features related to
ease and well-being such as LightingbyOccupancy or PipedMusic.

The second step of the Reconfiguration Process is triggered when a con-
text condition is fulfilled. Since a given condition can trigger the activa-
tion/deactivation of several features, we define the Resolution concept
(R) to represent the set of changes triggered by a condition. A res-
olution is a list of pairs where each pair is conformed by a Feature
(F) and the state of the feature (S). Each resolution is associated to
a context condition and represents the change (in terms of feature ac-
tivation/deactivation) produced in the system when the condition is
fulfilled.

R
def
= {(F, S)} | F ∈ JFMK ∧ S ∈ {Active, Inactive}

For instance, the conditions EmptyRoom and Comfort are associated
to the following resolutions:

REmptyRoom = {(OccupancySimulation,Active), (InRoomDetection,Active),

(LightingByOccupancy, Inactive)}
RComfort = {(PipedMusic, Active), (LightingbyOccupancy,Active)}

The REmptyRoom resolution means that, when the Smart Hotel senses
that it is empty (condition), it must reconfigure itself to deactivate
Lighting by Occupancy and to activate both Occupancy Simulation and
In Room Detection.

9

The third step of the reconfiguration process (see Fig 4) addresses the ar-
chitecture reconfiguration of the DSPL. In the REmptyRoom example, the
DSPL queries the Feature Model to determine the architecture for that
specific context. The architecture increments and decrements are cal-
culated in order to determine the actions that are necessary to modify
the current configuration of the DSPL.

These increments and decrements indicate how system components should
be reorganized for the reconfiguration in order to move from one configura-
tion of the system (User in the room, see left side of Figure 2) to another
configuration (Nobody in the room, see right side of Figure 2). As illustrated
in Fig. 2, the presence sensors are no longer used for lighting (communication
channels a and b are disabled), and they are used to provide information to
the security service instead (communication channels e and f are enabled).
In addition, the presence simulation service (labelled as 3) is activated, and
the communication channels required for this service to communicate with
multimedia (channel c) and lighting (channel d) are established.

3. Case Study: Smart Hotel DSPL

This section introduces the case study of a smart hotel, which reconfigures
its services and devices according to changes in the surrounding context,
as described in the previous section. The smart hotel was chosen as the
reconfiguration-based case study for two main reasons: first, its nature as a
shared environment in which different users use the same room over time.
The clients each have their own preferences for the room, which should be
adjusted to improve the quality of their stay; secondly, the preferences of the
clients change depending on the activity performed (e.g., the clients usually
have different preferences when they are watching a movie than when they
are working).

Overall, the smart hotel case study describes the stay of one client in
different scenarios. This includes the check-in process and the way the room
interacts with the client and changes its features depending on the client
activities in order to make the stay as pleasant as possible. To give an idea
of the dimensions of the case study, we present the following metrics:

According to the Feature Modelling technique, the Smart Hotel presents
thirty nine Features. Some examples of these features are the Tem-
perature Control feature, which offers a heating and cooling system;

10

the Device Synchronization feature which synchronizes the devices that
the user can have (e.g., laptop, mp3 player, or PDA) or the Security
feature, which secures the room when the user is absent.

The main concepts of the Smart Hotel DSPL architecture are Services, De-
vices, and the Communication Channels among them. The Smart Ho-
tel has thirteen Services, twenty Devices and thirty-five Chan-
nels. For instance, the Multimedia Service can establish communica-
tion channels to devices such as PDAs or MP3 players.

In the Smart Hotel, users can perform different activities. Specifically, our
case study addresses eight Scenarios. These scenarios are: Check-in,
Entering the Room, Working, Watching a Movie, Sleeping, Leaving the
Room, Housekeeping and Check-out.

Detailed documentation about this case study is publicly available online
at http://www.carloscetina.com/papers/smart-hotel.pdf.

3.1. Reconfiguration Scenarios of the Smart Hotel

This section provides a brief description of all the scenarios that make up
the Smart Hotel DSPL. These scenarios cover possible situations that can
occur in the smart room of a hotel. The descriptions also indicate the goal
of each scenario from the point of view of reconfiguration.

Check-In. When the user registers (online from the internet or at the hotel’s
reception desk), he is provided with a wizard that makes a few questions
to set up the room according to his preferences.

Goal: To reconfigure the room according to the preferences of each
user.

Entering the room. When the user enters the room, the smart room de-
tects all the devices that the user is traveling with.

Goal: To integrate the functionality of the user’s devices with the room
services.

Activity. The room reconfigures itself according to the activities that the
user performs in it. The activities can be working, watching a movie
or sleeping.

Goal: To reconfigure the room services according to the specific activity
that the user is performing at any given moment.

11

Leaving the room. When the user leaves, the room is reconfigured to dis-
able the services that are no longer needed. Because no one is in the
room, it is reconfigured to save energy. The room takes into account
when the user has planned to come back (agenda) so that the room is
the conditions preferred by the user (illumination and temperature).

Goal: To save energy while there are no users in the room without
disturbing them when they come back.

Housekeeping. The room is reconfigured to guarantee the user’s privacy
when the cleaning service is working in the room. All displays where
personal information of the client can be obtained (e.g., TV) are dis-
abled to guarantee privacy.

Goal: To guarantee the user’s privacy when the user is not in the room
but the hotel staff is.

Check-Out. Finally, when the user finishes the stay in the room, the smart
room stops being personalized for that user and its services are recon-
figured in order to save energy.

Goal: To reconfigure the room to energy-saver mode for the periods
when there is no user using it.

By combining the scenarios introduced above in different ways, we can
describe a user’s stay at the Smart Hotel. For example, the user checks in
the hotel (Check-in scenario) at the reception desk. When he receives his
room card, he can immediately enter his room. When he enters the room
(Entering the room scenario), he has some free time and he decides to watch a
movie selecting one from the hotel’s pay-per-view service (Watching a movie
scenario). Since it is late, after watching the movie, the user decides to go
to sleep (Sleeping scenario). The next morning, the system wakes him up at
the time that he has scheduled. The user leaves the room (Leaving the room
scenario). During the user’s absence, the hotel’s cleaning service performs
the room’s maintenance (Housekeeping scenario). When the user comes back
(Entering the room scenario), he has to pack everything to return home.
When everything is prepared, he leaves the room (Leaving the room scenario)
and then checks out at the hotel’s reception desk (Check-out scenario).

The above description is just one of the possible users stays at the Smart
Hotel. Combining the scenarios of the case study is possible to describe other
users stays as follows:

12

• Stay 1: Check-in→ Entering the Room → Watching a Movie→
Sleeping → Leaving the room

• Stay 2: Check-in → Entering the Room → Leaving the room → En-
tering the Room → Watching a Movie

Both Stay 1 and Stay 2 involve a reconfiguration from Entering the Room to
Watching a Movie. However, there is one previous reconfiguration (depicted
as →) in the case of Stay 1, and there are three previous reconfigurations in
the case of Stay 2. Since the previous configurations may impact the result of
the current reconfiguration (for instance the context model stores the events
history, see Section2), we are interested in performing reconfigurations in the
context of stays as real as possible (by means of humans participants) instead
of preparing pairs of a trigger and expected reconfiguration.

4. Experimentation Logistics of the Smart Hotel DSPL

In this Smart Hotel DSPL, we are concerned with reliability-based risk
of the run-time reconfigurations. This reliability-based risk depends on the
probability that the DSPL reconfiguration will fail in the operational envi-
ronment and the adversity of that failure. For the purpose of this work, we
have adopted the definition in [37], which defines risk as a combination of two
factors: probability of malfunctioning (Availability) and the consequences of
malfunctioning (Severity). The probability of failure depends on the proba-
bility of the existence of a fault combined with the possibility of exercising
that fault. Whereas a fault is a feature of a system that precludes it from
operating according to its specification, a failure occurs if the actual output
of the system for some input differs from the expected output [37].

It is difficult to find exact estimates for the probability of failure of in-
dividual components in the system. In this paper, we adopt the severity
classification used in [26] (see Table 1). Therefore, we use a coarse-grained
scale, defined as high (H), middle (M), and low (L). We did not adopt an
ordinal scale (e.g., 1 to 5) because the values do not truly represent the dif-
ferences between scales in ratio or distance. In fact, the differences in their
values only give indications of their relative rankings. If needed, the scaling
definition can be refined later to be more fine-grained or an ordinal scale can
be used.

13

Attribute High Middle Low
Availability No single point

failure
Only one single
point of failure

The number of sin-
gle points of fail-
ures > 1

Failure
Severity

(aka critical) A
failure may cause
major system
damage or loss of
production.

(aka margin) A
failure may cause
minor system dam-
age, delay, or mi-
nor loss of produc-
tion.

(aka minor) A
failure may not
cause system dam-
age but will result
in unscheduled
maintenance or
repair.

Table 1: Scale Definition of Reliability Metrics.

4.1. Participants and Training

The participants were 5th-year computer engineering students at the
Technical University of Valencia, Spain. In order to motivate the partici-
pants, the experimental tasks were course assessment tasks. However, the
participants were explicitly not advised that the assessment tasks were part
of a formal experiment in order to avoid any spurious effect as a result of the
participants being aware of being studied (i.e., avoiding the “Good Subject”
effect [30]).

For training purposes, there were two lectures (2 hours each) covering the
main concepts of a DSPL and introducing the Smart Hotel DSPL. They also
received training on the use of MoRE [4], the Model-based Reconfiguration
Engine of the DSPL that supports the case study. MoRE was also used on
other course related assignments.

4.2. Challenges to Introduce Human participants in DSPL Evaluation

Two major challenges were identified and addressed with the involvement
of human subjects in the DSPL evaluation. DSPL reconfigurations are trig-
gered by context events, many of which are difficult to reproduce in practice
(e.g., a fire). To successfully evaluate DSPLs, we must enable participants
to trigger those reconfigurations that are relevant for the experi-
mentation, not only those reconfigurations that can be easily triggered.

When reconfigurations are performed some of the effects can be easily per-
ceived (e.g., an alarm is triggered) while others are not (e.g., some sensors

14

Figure 5: Context Cards for triggering DSPL reconfigurations.

are deactivated). To successfully evaluate DSPLs, we must enable partici-
pants to understand and evaluate the effects of reconfigurations. If
participants misunderstand reconfiguration effects, they will not be able to
apply the classifications scales of Availability and Severity.

4.2.1. Enabling Participants to Trigger Reconfigurations

Reconfigurations in the case study are triggered by different environmen-
tal conditions. When participants are experimenting with the reconfigura-
tion scenarios, they should be able to reproduce these situations in order
to validate the system reaction. Since many context events are difficult to
reproduce in practice (e.g., simultaneous events that occur in different rooms
or there is fire in the room), simulating them is a must.

The control of context events is essential for the evaluation of DSPLs,
since context changes are the events that drive the reconfiguration of the
DSPL. Mechanisms should be provided to users to allow them to easily
change the current context of the system. In this way, users can move from
one configuration to another configuration by applying context changes.

In order to provide an intuitive representation of context events that
users could manipulate easily, we provided them with cards that depicted
these events. The use of the card metaphor was chosen since it is a familiar
concept for most people [35].

Each context card represents a context event (such as “phone ringing”).
During evaluation sessions, the users were given a deck of context cards.
The deck included the events that could affect the particular DSPL being
evaluated. The users could then make use of the context cards as the building
blocks for triggering the reconfiguration of the DSPL.

The design of the context cards was driven by the elements defined in

15

the Smart Hotel ontology. Each card involved a specific instantiation of a
class from the ontology. The information provided in the card included the
type element and, optionally, some relevant attributes regarding its particular
instantiation (such as the location where the event takes place). When the
cards were designed, we tried to avoid including too much information. Thus,
the users could easily recognize the different cards at a glance (see Fig. 5,
right).

In order to automate the evaluation process, the Context Cards were
enhanced with RFID tags (see Fig. 5, left). When a card is placed on the table
it is automatically detected by an RFID antenna, and the context ontology
is updated accordingly. In this way, the cards can be easily manipulated as
if it was part of a card game. Furthermore, they are also closely integrated
with the DSPL reconfiguraton engine (MoRE). That is, setting a context
card close to the RFID antenna triggered the different reconfigurations by
means of MoRE.

During the evaluation, the users could add and remove multiple cards
from the table in order to define a specific context. The reconfiguration
engine reconfigured the DSPL to fit the new context as it changed. Thus,
the users could observe how the DSPL was reconfigured as they changed the
context events.

The use of context cards enables users to evaluate the reaction of the sys-
tem in different combinations of context events. Furthermore, putting users
in control of the context definition provides valuable feedback. During our
evaluation sessions, the users suggested new context cards and specific re-
configurations for certain context combinations that had not been previously
considered by designers. Some new context cards were designed to group
different events on a single card. Thus, a single card could represent the
instantiation of several elements of the Smart Hotel ontology. This simplifies
the activation of multiple conditions for users.

4.2.2. Enabling Participants to Evaluate the Reconfigurations

According to Dey in [10], one of the biggest challenges to the usability of
context-aware applications (as is the case of a DSPL such as [24, 20, 36, 34,
25, 29]) is the difficulty that users have understanding why the applications
do what they do. Dey defines the intelligibility concept as the support for
users in understanding, or developing correct mental models of what a system
is doing. This is done by providing explanations of why the system is taking
a particular action and supporting users in predicting how the system might

16

User at Hotel room User left the Hotel room

Reconfiguration

Figure 6: Visualizing reconfiguration effects by means of the Configuration Viewer.

respond to a particular input.
Since the DSPLs that we are developing are context-dependant, intelligi-

bility becomes a challenge for their evaluation. When the Smart Hotel is re-
configured, some of the consequences are easily perceivable by users (e.g., an
alarm is triggered) while others are not (e.g., some sensors are deactivated).
Thus, we considered that the direct observation of the physical devices by the
user is not enough for evaluating the DSPL reconfigurations. Mechanisms
are required by users to allow them to fully understand the reconfiguration
consequences (e.g. changes that are produced in rooms where the user is not
present, etc.).

For the evaluation process a Configuration Viewer has been developed
to provide users with visual information about the reconfiguration effects
in the system. This tool provides a graphical representation of the relevant
entities in the Smart Hotel room. These entities include the devices, services,
and communication channels among them. When a context condition is
activated, it is also depicted in the Configuration Viewer. Thus, the user can
easily perceive that motion sensors are enabled and provide information to
the alarm system when the room becomes empty. Without the Configuration
Viewer, users cannot be sure whether or not the presence detection has been
turned on when they leave the room. As Fig. 6 shows, direct observation of
the physical devices is not enough to evaluate run-time reconfigurations.

Since we are interested in the evaluation of DSPL reconfigurations, it
is not enough to represent the Smart Hotel room in a single state. There-
fore, complementary information is provided to the users through our tool
to depict what has changed from the previous configurations. By clicking on
services or devices, the users get detailed information indicating changes in

17

Current context

New Context Event

KNX Devices

Configuration
Viewer

Smart Hotel Smart Hotel Context

Figure 7: Experimentation set-up.

the configuration (e.g., the motion sensors provide the user with the follow-
ing message: “motion sensors no longer in use to control lighting, currently
in use to control security.”).

This use of the visualization tool enabled users to provide more accurate
feedback during the DSPL evaluation since they could determine what has
actually changed.

4.3. Experiment Operation

In the experimental set-up, a scale environment with real devices was used
to represent the Smart Hotel. Therefore, the participants could interact with
the same devices that can be found in a real deployment (see Fig. 7, top-
left). The Configuration Viewer was used during the experiments to keep
track of the system evolution. This tool graphically depicts the devices, the
services, and the connections among them that are present in the system
at any given moment (see Fig. 7, bottom-left). Since the reconfigurations
are performed as a response to context events, mechanisms are provided for
triggering them. We adopted RFID cards to set the Smart Hotel context
(see Fig. 7, right). Each of the cards symbolized context information such as
the presence of users or the occurrence of different events. These cards were
combined to insert events in the ontology and to trigger reconfigurations in
the Smart Hotel.

During the experiment, the same user interaction with the environment
(activating a presence detector) produced different results according to the
current configuration of the system (which depended on the context expressed

18

by the cards). For example, an initial scenario could consist of a room where
one inhabitant is present. The cards that defined this scenario are the ones
illustrated in Fig. 7. In this scenario, the system architecture was organized
in such a way that the piped music was available and the presence sensors
were used by the lighting service. The user of the prototype could listen to
the music and the lights were turned on/off as the user interacted with the
sensors. If the card that represented the hotel inhabitant was removed, the
sensors were automatically no longer used for the purpose of light control
but for security instead. As a consequence, when the user of the prototype
interacted with the sensors again, the alarm went off (see this reconfiguration
example online2).

The above description is a small example of the evaluation performance
of the reconfigurations introduced by DSPLs. Detailed specifications of the
configurations and reconfigurations that make up the case study can be found
in http://www.carloscetina.com/papers/smart-hotel.pdf. There are
several videos available about the reconfiguration of our prototype Smart
Hotel at http://www.autonomic-homes.com.

4.4. Data Collection

After each reconfiguration of the case study, the participants answered a
questionnaire. The questionnaire asked the participant to set the Availability
and Failure Severity for each reconfiguration according to the Scale Definition
(see Table 1). The participants also indicated the number of context cards
that they used to trigger the reconfigurations and whether or not they used
the configuration viewer. Finally, the participants answered two questions
related to the resulting configurations: “Do you think that the provided
reconfiguration is adequate for the context conditions?” and “Do you think
that further customization is required to fit your particular needs?”. These
two questions required the participants to provide a short explanation.

Reconfiguration failures could be caused by not only run-time errors but
also specification errors, design errors, implementation errors or operational
errors. However, lines between the former causes are blurred, and users may
not clearly distinguish between them. Hence, when something goes wrong it
may be hard for the participants to correctly attribute it to any particular
cause. The use of a Model Based Reconfiguration Engine such as MoRE en-

2http://www.youtube.com/watch?v=OVtE_RFeEKo&fmt=22

19

abled us to keep traces of each reconfiguration: context ontology, variability
and architecture models (both before and after the reconfiguration) and also
the effects of the reconfigurations in terms of increments and decrements as
described in Section 2. These reconfiguration traces turn out to be valuable
information to achieve a more careful examination of reported failures in
order to discard those failures out of the scope of run-time reconfigurations.

5. Experimentation Results

According to the results of the case study, most reconfigurations (87%)
were reported as high Availability (see Fig. 8, Tables 2 and 3 for detailed
information). This is mainly due to the fact that the Smart Hotel DSPL
combines the Decentralized Control System Reconfiguration Pattern [15] and
the FaMa framework [1] (variability analysis). That is, the Smart Hotel
DSPL validates the resulting configuration of each reconfiguration before it
is actually performed. If the reconfiguration led to an invalid configuration
according to the feature model, then the reconfiguration would not be per-
formed. However, experimentation revealed that even though the configura-
tions were validated in terms of features, some of them went wrong in terms
of the devices, services, or channels that make up the resulting configuration.

Single points of failure (9% + 4%) were identified mainly on devices and
services that were not properly set up in the resulting configuration. In other
words, some of these components remained in the old configuration when
they were not supposed to, and others changed to a new configuration when
they were not supposed to. Several subjects specifically reported that the
configuration viewer eased the task of identifying these points of failure. In
fact, 92% of the participants made use of the configuration viewer. However,
they also reported that, in most of the cases, they double-checked the viewer
by means of direct interaction with the smart devices and services. It was
not until almost all of the scenarios were completed that most subjects began
to fully trust the configuration viewer.

Overall, the DSPL reached a high level of Availability in most of the
case study reconfigurations. However, experimentation revealed that even
though DSPLs make use of run-time validation, they are not completely free
of reconfiguration failures. To address this issue, we suggest complementing
DSPLs with configuration viewers to help users easily detect points of failure.

With regard to the failure severity, few failures (8%) were indicated as
critical (high severity). These critical failures were mostly related to services

20

9%

4%

87%

Availability

Middle Low High

35%

8%

57%

Failure Severity

Margin Critical Minor

92% 89% 77%

8% 11% 23%

Configuration
Viewer

Configuration
Acceptance

User
Personalization

Yes No

Figure 8: Overall results from the Case Study.

that provide inputs to other services. For instance, the Presence Service
provided inputs to the following services: Temperature, Multimedia, and Il-
lumination. In practice, the lines between producer and consumer services
were blurred, and the subjects could not clearly distinguish between them.
Hence, when something went wrong it was hard to correctly attribute it to
just one specific service. Therefore, the subjects perceived that several ser-
vices were malfunctioning at the same time. This suggests that services of
this kind require more development resources (e.g. testing, quality control,
etc.), since they affect the overall perception of the system.

With regard to context cards for triggering reconfigurations, Table 3 indi-
cates the number of cards that were normally used to trigger the case study
reconfigurations (minimum and maximum are shown as an indicator). The
subjects did not reported any problems related to the understanding of these
context cards. In fact, the subjects not only reported new combinations
of the current context cards that should have their own reconfigurations,
they also suggested new context cards and reconfigurations for these cards.
The context card technique has provided us with interesting insights into
the understanding and expectations that users have about reconfigurations.
Context cards have not only proven to be a successful technique for setting
the context for reconfigurations, but also for capturing reconfiguration re-
quirements. Therefore, we suggest using this technique for both evaluation
and requirements elicitation in DSPLs.

With regard to the configuration acceptance, we asked the users whether
or not they considered the system reaction to be adequate taking into account
the defined context events. Acceptance for the reconfiguration scenarios was
high (89%). Most of the users considered behaviour provided to be a good
response to the context defined with the cards, but they also considered that
there was still room for improvement (as illustrated by the user personaliza-

21

tion factor).
With regard to the user personalization factor, the users were asked

whether or not they would modify the system reaction to better fit their
needs. Since the specific needs of each user were very diverse (sometimes re-
sponding to opposite criteria), we identified the scenarios that could require
more fine-grained reconfiguration capabilities. The subjects suggested con-
figuration changes that were important and personally beneficial to them.
They transformed configurations from conventional to personal. However,
we do not believe that it is economically realistic to build specific features
that individually suit participants. Our intent is to focus on commonalities
and abstractions that are valid across a set of users, looking for a trade-off
between Personalization and Reusability. In fact, the collected data sup-
ports that, although participants would modify the case study configurations
(77%), most of them thought that the provided reconfiguration is adequate
for the context conditions (89%).

6. Lessons Learned

Based on our experiences from this case study, we present the lessons that
we learned to assist researchers in the context of DSPLs.

6.1. Introducing User Confirmations to Reconfigurations

During the evaluation of our DSPL, some subjects reported that they
had triggered unintended reconfigurations by mistake. In other words, they
mistakenly set up the context for one reconfiguration scenario (i.e. Enter-
ingTheRoom - LeavingTheRoom), when they really wanted a different re-
configuration scenario (i.e., EnteringTheRoom - Working). Unintended re-
configurations of this kind were not counted as DSPL failures since they
were human mistakes. However, this behaviour raised an interesting point
regarding whether or not a reconfiguration should be confirmed before its
execution.

After analyzing the unintended reconfigurations performed in our case
study, we realized that they can be classified into three different categories.
These categories take into account the implications of returning to the source
configuration. The three categories are the following:

Round-trip. If there is a reconfiguration that leads directly to the source
configuration from the unintended configuration, then we classify the

22

Source
Configuration

Unintended
Configuration

Source
Configuration

Unintended
Configuration

Source
Configuration

Unintended
Configuration

Stop
Configuration

Round-trip One-way N-stops

1 2 1 1

2

3

Figure 9: Categories for confirmation of reconfigurations.

reconfiguration as a round-trip one (see Figure 9, left). In our case
study, some subjects performed unintended round-trip reconfigurations
between EnteringTheRoom and LeavingTheRoom configurations. For
these unintended round-trip reconfigurations, the subjects did not re-
quire any special support since they could easily find the way to return
to the source configuration. In fact, most of the reconfigurations were
not reported as unintended ones in our case study, and those that were
reported as unintended did not require support to find the way back.
Based on this experience, we do not think that DSPLs should ask for
user confirmation before performing a round-trip reconfiguration.

One-way. If there is no reconfiguration that leads directly (or indirectly)
to the source configuration from the unintended configuration, then we
classify the reconfiguration as a one-way one (see Fig. 9, center). In
our case study, some of the subjects performed unintended one-way
reconfigurations between the LeavingTheRoom and Check-Out config-
urations. For these unintended one-way reconfigurations, the subjects
always required support since they could not find a way back to the
source configuration. Based on this experience, we suggest that DSPLs
should ask for user confirmation before performing a one-way recon-
figuration. This suggestion comes from the fact that once a one-way
reconfiguration has been performed, it is not possible to find a way
back to the source configuration.

N-stops. If there is a set of of reconfigurations that leads to the source
configuration from the unintended configuration, then we classify the

23

reconfiguration as a N-stops one (see Fig. 9, right). In our case study,
some of the subjects performed unintended N-stop reconfigurations be-
tween the EnteringTheRoom and Activity configurations. For these un-
intended N-stops reconfigurations, almost all the subjects could easily
find the way to return to the source configuration. However, a few sub-
jects took a long time to find the way back. Based on this experience,
we suggest that DSPLs should ask for user confirmation before per-
forming an N-stops reconfiguration when the number of stops exceeds
a certain limit. The purpose of our suggestion is to only require con-
firmation for critical reconfigurations. We also suggest identifying the
acceptable limit of stops by applying Considerate Computing [14] tech-
niques. These techniques take into account the domain particularities
of the DSPL in order to determine when the number of reconfiguration
stops is not trivial.

Since unintended reconfigurations can occur in DSPLs driven by context
events [24, 20, 36, 34, 25, 29] or by user actions [16], we believe that confir-
mation patterns defined in this study can help DSPLs engineers to mitigate
the unintended reconfigurations. Furthermore, we think that these confir-
mation patterns are specially relevant for DSPLs driven by context events,
since users of these DSPLs usually do not control all the feasible context
events and can miss a specific configuration because of it. The confirmation
guidelines that came from our case study experience can contribute to avoid
this kind of undesired behaviour.

6.2. Improving Reconfiguration Feedback

When the subjects of the study perceived the effects of a specific recon-
figuration, they sometimes noticed that the result was not the expected one.
In those cases, they indicated the presence of a reconfiguration failure, and
they also evaluated the severity of the failure. One of the main issues with
the evaluation process was related to the termination of the reconfigurations.

Since, each reconfiguration involves changes in different devices, services
or communication channels, a delay between the event and the system reac-
tion is introduced. This delay varies from reconfiguration to reconfiguration.
Some subjects reported that it was difficult for them to determine whether
the reconfiguration process was completed or there were still actions pend-
ing. This could lead to misidentifying failure or to misevaluating severity,

24

since a subject could start evaluating a reconfiguration before it was actually
finished.

To address this issue, our configuration viewer was enhanced with notifi-
cation messages that indicated the completion of each reconfiguration. The
subjects were provided with feedback regarding the overall process as well as
at the service/device level. When a service or device was in the process of
reconfiguration, it was depicted as busy (a waiting icon) in the configuration
viewer.

Most of the subjects reported that they found this reconfiguration feed-
back to be very useful not only for failed reconfigurations but also for regular
reconfigurations. Therefore, we suggest that DSPLs should provide feedback
about the termination of reconfigurations, especially, when reconfigurations
involve human users.

6.3. Introducing Rollback Capabilities to Reconfigurations

Our case study raised another important concern in connection with
DSPL recovery after a failure. Once a reconfiguration failure was identified
and evaluated, a few subjects required support to resume the experimenta-
tion. They reported problems in performing the next reconfiguration after
the failure. In other words, they did not find a simple way to reach another
configuration of the case study. Below, we present the main kinds of issues
reported and how we think they should be addressed in DSPLs.

Unexpected configurations. After a failure reconfiguration, a few sub-
jects reported that the resulting configuration was not the expected
one. In place of the expected configuration (i.e., WatchingAMovie),
they got another configuration (i.e., Working). In most of these cases,
the subjects could perform a new reconfiguration in order to reach the
expected configuration. However, a few of the cases required several
reconfigurations to reach the expected configuration. To address this
issue, in DSPLs, we suggest introducing some sort of “undo” operation
that returns the system directly to the previous configuration.

This has several implications for the design of DSPLs since some ac-
tions have collateral effects that cannot be easily undone (e.g., sending
an e-mail). The handling of compensation actions to reverse a recon-
figuration should be studied, also the consequences of a rollback need
to be explained so that users can be provided information to help them

25

choose among different compensation actions and understand how they
relate to their desired goals.

Unknown configurations. After a failure reconfiguration, some subjects
reported that they failed to identify the resulting configuration in the
Smart Hotel documentation. In other words, the resulting configura-
tion was different from all the documented configurations that made
up the case study. The Feature Model of the Smart Hotel defines more
configurations than the ones considered in our case study. These un-
known configurations imply that the subjects could not identify the set
of reconfigurations that led to the expected configuration. Therefore,
they needed support to continue the experimentation. To address this
issue, we strongly suggest an “undo” operation that returns the system
directly to the previous configuration. Note that for Unknown config-
urations, we think that the “undo” operation should be mandatory.
However, for Unexpected configurations, we think that the “undo” op-
eration should be optional since users have an alternative to achieve
the expected configuration.

The DSPL that supports this case study makes use of Feature Models
at run-time to determining how to perform the reconfigurations. According
to a recent discussion on DSPL architectures [6], other DSPL approaches
make use of different techniques to perform reconfigurations (i.e., QoS prop-
erties or UML profiles). Although the details are different, these DSPLs are
based on variability specifications, and their reconfiguration can also lead
to Unexpected configurations or Unknown configurations. Even though these
DSPLs could achieve an expected configuration from any given Unexpected or
Unknown configuration, our experience suggests that introducing an “undo
reconfiguration” operation is simpler and more practical from the viewpoint
of the DSPL user.

Overall, the main motivation of the rollback capabilities is to keep the user
in control of the reconfigurations, no matter the reconfigurations are triggered
by mistake or intentionally. That is, whenever the user disagrees with the
resulting configuration he or she has the option to undo the reconfigurations.
For instance, even though the user goes to sleep and the room reconfigures
(correctly) to the sleeping configuration, if the resulting configuration does
not match the user expectations, he or she can go back to the previous
configuration.

26

7. Related Work

Since DSPL architectures are retargeted to different configurations at
run-time, they could benefit from current approaches for adaptive architec-
ture evaluation. Specifically, Yacoub and Ammar [37] proposed a method for
reliability risk assessment at the architecture level. This method is based on
component-based systems in which implementation entities explicitly invoke
each other. Liu et al. [26] also proposed a method for evaluating reliability by
means of fault tolerance and fault prevention. They identified architectural
design patterns to build an adaptive architecture that is capable of prevent-
ing or recovering from failures. In comparison with our work, these methods
do not address runtime reconfigurations that are driven by variability speci-
fications such as Feature Models. However, we have succesfully applied some
of these proven techniques (such as estimation of availability and severity)
to the evaluation of DSPLs.

For SPL evaluation, several approaches have produced results in connec-
tion to quality properties such as reliability. For example: the extended
goal-based model [18], the F-SIG Feature-softgoal interdependency graph
[22], the Benavides et al. [1] approach, Zhang et al. [38] Bayesian Belief
Network (BBN). There are also other methods that are not based on Fea-
ture Models: COVAMOF (ConIPF Variability Modelling Framework) [32]
and Quality Requirements of a Software Family (QRF) method [27]. Most of
these approaches usually remain at the Domain Engineering phase of SPLs
only, they do not address run-time reconfigurations as our work does. There-
fore, these approaches are not suitable for DSPL evaluation.

Other approaches address reliability evaluation of SPL products at run-
time. The RAP approach [21] defines how the reliability requirements should
be mapped to the architecture and how the architecture should be analyzed
in order to validate whether or not the requirements are met. Etxeberria et
al. [11] also take into account reliability at run-time and present a generic ap-
proach that can be combined with existing architecture evaluation methods
such as PASA [23] or SALUTA [13]. However, both the RAP and Etxeber-
ria approaches are oriented to static products only. Conversely, our work
addresses the evaluation of reconfigurable products such as these in DSPLs.
Furthermore, we address the challenges of evaluating reconfigurable products
and we provide guidelines to improve the development of future DSPLs.

27

8. Concluding Remarks

With more and more devices being added to our surroundings, simplic-
ity becomes greatly appreciated by users. Dynamic Software Product Lines
(DSPL) encompasses systems that are capable of modifying their own behav-
ior with respect to changes in their operating environment by using run-time
reconfigurations. However, failures in these reconfigurations directly impact
the user experience since the reconfigurations are performed when the sys-
tem is already under user control. This is in contrast to SPLs where all the
configurations are performed before delivering the system to the users.

Given the importance of run-time reconfigurations in DSPLS, we have
evaluated the reliability-based risk of these reconfigurations, specifically, the
probability of malfunctioning (Availability) and the consequences of malfunc-
tioning (Severity). The evaluation has been performed by means of the Smart
Hotel case study which was deployed with real devices with the participation
of human subjects.

Furthermore, we successfully identified and addressed two challenges as-
sociated with the involvement of human subjects in DSPL evaluation. On
the one hand, DSPL reconfigurations are triggered by context events many of
which are difficult to reproduce in practice. To evaluate DSPLs, we success-
fully applied a technique based on Context Cards to enable participants to
trigger reconfigurations. On the other hand, when reconfigurations are per-
formed, some of the effects are easily perceived (e.g., an alarm is triggered)
while others are not (e.g., some sensors are deactivated). For this problem,
we successfully applied a technique to enable participants to understand and
evaluate the effects of reconfigurations. If participants misunderstand the
reconfiguration effects, they will not be able to apply the classification scales
of Availability and Severity. We believe that these techniques can also con-
tribute to the evaluation of more quality properties in the context of DSPLs.

The evaluation of the case study reveals positive results regarding both
Availability and Severity. We hope that these positive results encourage
researchers and practitioners to apply DSPL to other promising areas of
research such as mobile devices or automotive systems. However, the par-
ticipant feedback in this study highlihts issues with recovery from a failed
reconfiguration or a reconfiguration triggered by mistake. To address these
issues, we have provided some guidelines learned in the case study.

From the evaluation of the Smart Hotel DSPL, we consider the following
as our key contributions:

28

• The identification and solution of two challenges associated with
the involvement of human subjects in DSPL evaluation: to (1) trig-
ger run-time reconfigurations and to (2) understand the effects of the re-
configurations. These techniques can be applied not only to reliability-
based risk but also to other quality properties that require the execution
of reconfigurations by human users, for instance, usability or security.

• The experimentation results, which reveal the maturity of run-time
reconfigurations with regard to both Availability and Severity. These
results can encourage researchers and practitioners to apply DSPL to
other promising domains.

• The identification and solution of key issues for user accep-
tance of DSPLs: to (1) recover from a failed reconfiguration, and to
(2) recover from a reconfiguration triggered by mistake.

Finally, we conclude that the DSPL has achieved satisfactory results re-
garding reliability-based risk; nevertheless, DSPL engineers must provide
users with more control over the reconfigurations or the users will not be
comfortable with DSPLs even though they achieve a high level of reliability.

Acknowledgments.

We are grateful to the participants of this case study. We also thank both
Esteban Saiz and David Unio who helped in preparing the Smart Hotel Case
Study. This work has been developed with the support of MICINN under
the project EVERYWARE TIN2010-18011.

29

Appendix A

Availability Failure Severity
Reconfiguration High Middle Low Minor Margin Critical
1 Check-In - Entering 95% 5% 0% 60% 39% 1%
2 Entering - Sleeping 86% 12% 2% 63% 33% 4%
3 Entering - Working 88% 9% 3% 65% 30% 5%
4 Entering - Movie 85% 13% 2% 56% 37% 7%
5 Sleeping - Working 85% 11% 4% 62% 30% 8%
6 Working - Sleeping 84% 8% 8% 65% 29% 6%
7 Sleeping - Movie 90% 3% 7% 61% 32% 7%
8 Movie - Sleeping 88% 11% 1% 64% 31% 5%
9 Working - Movie 87% 12% 1% 65% 29% 6%
10 Movie - Working 89% 10% 1% 68% 27% 5%
11 Sleeping - Leaving 86% 9% 5% 58% 34% 8%
12 Movie - Leaving 84% 15% 1% 67% 26% 7%
13 Working - Leaving 86% 9% 5% 56% 33% 11%
14 Entering - Leaving 85% 5% 10% 65% 29% 6%
15 Leaving - Entering 89% 0% 11% 63% 32% 5%
16 Leaving - H. Keeping 81% 17% 2% 18% 57% 25%
17 H. Keeping - Leaving 79% 15% 6% 9% 68% 23%
18 Leaving - Check-Out 96% 3% 1% 58% 39% 3%

Table 2: Results of the Case Study grouped by reconfigurations, part 1.

30

Cards Viewer Acceptance Perso.
Reconfiguration Min Max Yes No Yes No Yes No
1 Check-In - Entering 1 2 72% 28% 97% 3% 79% 21%
2 Entering - Sleeping 3 4 73% 27% 86% 14% 77% 23%
3 Entering - Working 4 4 89% 11% 84% 16% 74% 26%
4 Entering - Movie 3 4 92% 8% 90% 10% 71% 29%
5 Sleeping - Working 4 5 87% 13% 84% 16% 75% 25%
6 Working - Sleeping 3 4 94% 6% 86% 14% 77% 23%
7 Sleeping - Movie 4 5 95% 5% 90% 10% 78% 22%
8 Movie - Sleeping 3 4 92% 8% 86% 14% 82% 18%
9 Working - Movie 3 3 94% 6% 91% 9% 81% 19%
10 Movie - Working 3 5 96% 4% 84% 16% 77% 23%
11 Sleeping - Leaving 3 6 97% 3% 88% 12% 73% 27%
12 Movie - Leaving 3 4 97% 3% 87% 13% 72% 28%
13 Working - Leaving 3 4 96% 4% 88% 12% 67% 33%
14 Entering - Leaving 2 3 96% 4% 88% 12% 70% 30%
15 Leaving - Entering 2 3 97% 3% 96% 4% 78% 22%
16 Leaving - H. Keeping 2 3 99% 1% 86% 14% 87% 13%
17 H. Keeping - Leaving 2 3 98% 2% 87% 13% 85% 15%
18 Leaving - Check-Out 2 3 97% 3% 96% 4% 78% 22%

Table 3: Results of the Case Study grouped by reconfigurations, part 2.

References

[1] D. Benavides, R. A. Cortés, and P. Trinidad. Automated reasoning
on feature models. LNCS, Advanced Information Systems Engineering:
17th International Conference, CAiSE 2005, 3520:491–503, 2005.

[2] M. N. Bennani and D. A. Menasce. Resource allocation for autonomic
data centers using analytic performance models. In ICAC ’05: Proceed-
ings of the Second International Conference on Automatic Computing,
Washington. USA, 2005.

[3] C. Cetina, J. Fons, and V. Pelechano. Applying Software Product Lines
to Build Autonomic Pervasive Systems. Software Product Line Confer-
ence, 2008. SPLC 2008. 12th International, 8-12 Sept. 2008.

[4] C. Cetina, P. Giner, J. Fons, and V. Pelechano. Autonomic computing

31

through reuse of varibility models at run-time: The case of smart homes.
Computer, pages 46–52, October 2009.

[5] C. Cetina, P. Giner, J. Fons, and V. Pelechano. Using feature models for
developing self-configuring smart homes. Fifth International Conference
on Autonomic and Autonomous Systems (ICAS 2009), April 2009.

[6] C. Cetina, P. Trinidad, V. Pelechano, and A. Ruiz-Cortés. An archi-
tectural discussion on dspl. 2nd International Workshop on Dynamic
Software Product Line (DSPL08), 2008.

[7] J. Coplien, D. Hoffman, and D. Weiss. Commonality and variability in
software engineering. Software, IEEE, 15(6):37–45, Nov/Dec 1998.

[8] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged configuration us-
ing feature models. In Proceedings of the Third Software Product Line
Conference 2004, pages 266–282. Springer, LNCS 3154, 2004.

[9] M. Dean and G. Schreiber. OWL web ontology language reference. W3C
recommendation, W3C, February 2004.

[10] A. K. Dey. Modeling and intelligibility in ambient environments. Journal
of Ambient Intelligence and Smart Environments (JAISE), 1(1):57–62,
January 2009.

[11] L. Etxeberria and G. Sagardui. Variability driven quality evaluation in
software product lines. In SPLC ’08: Proceedings of the 2008 12th Inter-
national Software Product Line Conference, pages 243–252, Washington,
DC, USA, 2008. IEEE Computer Society.

[12] D. D. Fabro. Metadata management using model weaving and model
transformation. PhD thesis, University of Nantes, September 2007.

[13] E. Folmer, J. van Gurp, and J. Bosch. Scenario-based assessment of soft-
ware architecture usability. In Proceedings of Workshop on Bridging the
Gaps Between Software Engineering and Human-Computer Interaction,
pages 61–68, 2003.

[14] W. W. Gibbs. Considerate computing. Scientific American, 292(1):54–
61, 2004.

32

[15] H. Gomaa and M. Hussein. Dynamic software reconfiguration in soft-
ware product families. In Software Product-Family Engineering, 5th
International Workshop, pages 435–444, 2003.

[16] H. Gomaa and M. Hussein. Dynamic software reconfiguration in software
product families. Software Product-Family Engineering, pages 435 – 444,
2004.

[17] H. Gomaa and M. Hussein. Software reconfiguration patterns for dy-
namic evolution of software architectures. In 4th Working IEEE / IFIP
Conference on Software Architecture, pages 79–88, 2004.

[18] B. Gonzalez-Baixauli, M. Laguna, and Y. Crespo. Product line require-
ments based on goals, features and use cases. International Workshop
on Requirements Reuse in System Family Engineering, pages 4–6, 2004.

[19] S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid. Dynamic software
product lines. Computer, 41(4):93–95, April 2008.

[20] S. Hallsteinsen, E. Stav, A. Solberg, and J. Floch. Using product line
techniques to build adaptive systems. Software Product Line Conference,
2006 10th International, pages 10 pp.–, 21-24 Aug. 2006.

[21] A. Immonen. A method for predicting reliability and availability at the
architecture level. In Software Product Lines, pages 373–422. 2006.

[22] S. Jarzabek, B. Yang, and S. Yoeun. Addressing quality attributes in do-
main analysis for product lines. Software, IEE Proceedings -, 153(2):61–
73, April 2006.

[23] W. L. and S. C. Pasa a method for the performance assessment of soft-
ware architectures. In Proceedings of the Third International Workshop
on Software and Performance (WOSP2002, pages 179–189. ACM Press,
2002.

[24] J. Lee and K. Kang. A feature-oriented approach to developing dynam-
ically reconfigurable products in product line engineering. In Software
Product Line Conference, 2006 10th International, 2006.

[25] T. Lemlouma and N. Layaida. Context-aware adaptation for mobile
devices. Mobile Data Management, 2004. Proceedings. 2004 IEEE In-
ternational Conference on, pages 106–111, 2004.

33

[26] Y. Liu, M. A. Babar, and I. Gorton. Middleware architecture evaluation
for dependable self-managing systems. In QoSA ’08: Proceedings of
the 4th International Conference on Quality of Software-Architectures,
pages 189–204, Berlin, Heidelberg, 2008. Springer-Verlag.

[27] E. Niemelä and A. Immonen. Capturing quality requirements of product
family architecture. Inf. Softw. Technol., 49(11-12):1107–1120, 2007.

[28] S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, T. Jayram, and J. Bi-
gus. Using control theory to achieve service level objectives in perfor-
mance management. Real-Time Syst., 23(1-2):127–141, 2002.

[29] C. Parra, X. Blanc, and L. Duchien. Context Awareness for Dynamic
Service-Oriented Product Lines. Software Product Line Conference,
2009. SPLC 2009. 13th International, 24-28 Agust. 2009.

[30] R. Rosnow and R. Rosenthal. People studying people: Artifacts and
ethics in behavioral research. W.H. Freeman and Company, 1997.

[31] E. Serral, P. Valderas, and V. Pelechano. A model driven development
method for developing context-aware pervasive systems. In UIC ’08:
Proceedings of the 5th international conference on Ubiquitous Intelli-
gence and Computing, Berlin, 2008.

[32] M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch. Covamof: A frame-
work for modeling variability in software product families. In SPLC,
pages 197–213, 2004.

[33] G. Tesauro, N. Jong, R. Das, and M. Bennani. A hybrid reinforce-
ment learning approach to autonomic resource allocation. Autonomic
Computing, 2006. ICAC ’06. IEEE International Conference on, pages
65–73, June 2006.

[34] P. Trinidad, , A. Ruiz-Cortés, and J. P. na. Mapping feature models
onto component models to build dynamic software product lines. Inter-
national Workshop on Dynamic Software Product Line, 2007.

[35] M. J. Weal, D. Cruickshank, D. T. Michaelides, K. Howland, and
G. Fitzpatrick. Supporting domain experts in creating pervasive expe-
riences. In Pervasive Computing and Communications, 2007. PerCom

34

’07. Fifth Annual IEEE International Conference on, pages 108–113,
March 2007.

[36] J. White, D. C. Schmidt, E. Wuchner, and A. Nechypurenko. Automat-
ing product-line variant selection for mobile devices. Software Product
Line Conference, 2007. SPLC 2007. 11th International, pages 129–140,
10-14 Sept. 2007.

[37] S. M. Yacoub and H. H. Ammar. A methodology for architecture-level
reliability risk analysis. IEEE Trans. Softw. Eng., 28(6):529–547, 2002.

[38] H. Zhang, S. Jarzabek, and B. Yang. Quality prediction and assessment
for product lines. page 1031. 2003.

35

