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Abstract

The benefits of Software Product Lines (SPL) are very appealing: software development becomes better,
faster, and cheaper. Unfortunately, these benefits come at the expense of a migration from a family of
products to a SPL. Feature Location could be useful in achieving the transition to SPLs. This work presents
our FeLLaCaM approach for Feature Location. Our approach calculates similarity to a description of the
feature to locate, occurrences where the candidate features remain unchanged, and changes performed to
the candidate features throughout the retrospective of the product family. We evaluated our approach in
two long-living industrial domains: a model-based family of firmwares for induction hobs that was developed
over more than 15 years, and a model-based family of PLC software to control trains that was developed
over more than 25 years. In our evaluation, we compare our FeLLaCaM approach with two other approaches
for Feature Location: (1) FLL (Feature Location through Latent Semantic Analysis) and (2) FLC (Feature
Location through Comparisons). We measure the performance of FeLLaCaM, FLL, and FLC in terms of
recall, precision, Matthews Correlation Coefficient, and Area Under the Receiver Operating Characteristics
curve. The results show that FeLLaCaM outperforms FLL and FLC.

Keywords: Feature Location, Long-Living Software Systems, Architecture Sustainability, Software
Product Lines, Model-Driven Engineering

1. Introduction

Software Product Lines (SPLs) [1] are capable of
generating new products with the benefit of enabling
a systematic reuse of the features that have already
been developed in a family of products. The benefits
of SPLs are very appealing: software development
becomes better, faster, and cheaper when SPLs are
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used [2]. Unfortunately, these benefits come at the
expense of having to perform a migration from a
family of products to a SPL. This migration requires
deep knowledge about the product family, and is not
straightforward.

Researchers are investigating various techniques
[3] to locate features in a product family, which
could be useful in the transition to SPLs. Overall,
these techniques extract features by means of a
query (which describes the feature to be located)
and the main assets of the product family (e.g.,
implementation code or specification models). The
idea is that words in the query encode domain
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knowledge, and that features are implemented using
a similar set of words throughout the assets of
the product family. However, the utility of these
techniques has yet to be fully validated in industrial
scenarios, especially in industrial environments where
families of products are developed over decades.
When software products have been operating for
more than 15 years, they are known as long-living [4].

Through this work, we present our FeLLaCaM
approach for Feature Location. Given a long-living
product family, our FeLLaCaM approach does not
only take into account the query that describes
the feature to be located, but it also takes into
account the occurrences where the candidate features
remain unchanged as well as the changes performed
to the candidate features throughout product model
retrospective. Our idea is to take advantage of the
sustainability design [4, 5] (that long-living software
systems should have) to address the challenge of Fea-
ture Location. If these already long-living product
families are fully successful from a suitability point
of view, their feature realizations supported changes
during its life-cycle while remaining intact [6].

Our approach is materialized as an evolutionary
algorithm, guided by the feature description, feature
commonality, and feature modifications. The similar-
ity of a candidate feature to the feature description
is calculated by means of Latent Semantic Analysis
[7]. The feature commonality and the feature modifi-
cations throughout the product family are calculated
by means of Conceptualized Model Patterns [8]. The
output of the approach is a set of solutions that can
materialize the target feature.

We evaluated our approach in two long-living in-
dustrial domains, with both the model-based product
family of BSH and the model-based product family
of CAF:

• The BSH group (www.bsh-group.com) produces
a family of firmwares for their induction hobs
(sold under the brands of Bosch and Siemens).
BSH has been developing this family of software
products over more than 15 years.

• CAF (www.caf.net/en) produces a family of
PLC software to control the trains they man-

ufacture. CAF has been developing this family
of software products over more than 25 years.

In our evaluation, we compare our FeLLaCaM
approach with two other approaches for Feature
Location: (1) FLL (Feature Location through Latent
Semantic Analysis) and (2) FLC (Feature Location
through Comparisons). FLL is a version of FeLLa-
CaM which is guided only by feature descriptions, as
are other current Feature Location approaches. FLC
is our implementation of the algorithms to locate
features presented in [9]. Similar to other works [10,
11, 9, 12, 13, 14], FLC performs model comparison
to locate the features. We apply FeLLaCaM, FLL,
and FLC to the product families of BSH and CAF.
Although neither BSH nor CAF are immune to
the problem of knowledge vaporization [15], they
provided us with documentation about some of their
feature realization decisions [16]. For each one of the
96 features in BSH and the 121 features in CAF,
the documentation provided a feature description and
the approved feature realization. Taking the feature
descriptions and the product families as input, we
measure the performance of FeLLaCaM, FLL, and
FLC in terms of recall, precision, Matthews Correla-
tion Coefficient (MCC), and Area Under the Receiver
Operating Characteristics curve (AUC) using the
approved features as oracle.

The results show that FeLLaCaM and FLL achieve
similar recall results (about 81%), while FLC ob-
tains values around 57.96%. However, in terms of
precision, FeLLaCaM (about 78.61%) outperforms
both FLL (about 20.18%) and FLC (about 43.09%).
The same occurs with MCC, FeLLaCaM obtains a
value about 0.73, while FLL and FLC obtain values
around 0.35. The AUC measurement also confirms
that FeLLaCaM (about 0.87) provides better results
than FLL (about 0.79) and FLC (about 0.7). In
the face of already long-living SW systems (designed
for sustainability) our FeLLaCaM approach improved
the Feature Location.

The remainder of the paper is structured as fol-
lows: Section 2 provides a basic background of the
formalization of the architecture and variability of
the products used by our industrial partners. These
are used in our running example. Section 3 presents
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an overview of our FeLLaCaM approach. Section 4
describes the representation that is used to encode
model fragments. Section 5 describes the generation
of model fragments. Section 6 presents how the
suitability of each model fragment is determined for
the problem. Section 7 presents an overview of
our implementation. Section 8 evaluates FeLLaCaM
in two industrial domains and presents the results.
Section 9 discusses the results. Section 10 describes
the threats to validity. Section 11 summarizes the
related work. Finally, Section 12 states the relevant
conclusions.

2. Background

This section presents the Domain-Specific Lan-
guage (DSL) used by our industrial partner BSH to
specify the architecture of their Induction Hobs (IH)
and then generate the firmware from the models,
the IHDSL. IHDSL will be used throughout the
rest of the paper to present a running example.
Then, the Common Variability Language (CVL)
is presented. CVL is the language used by our
FeLLaCaM approach to formalize the location of the
features as reusable model fragments.

2.1. The Induction Hobs Domain-Specific Language
(IHDSL)

The newest IHs feature full cooking surfaces, where
dynamic heating areas are automatically generated
and activated or deactivated depending on the shape,
size, and position of the cookware placed on top.
In addition, there has been an increase in the type
of feedback provided to the user while cooking,
such as the exact temperature of the cookware, the
temperature of the food being cooked, or even real-
time measurements of the actual consumption of the
IH. All of these changes are made possible at the
expense of increasing the software complexity.

The Domain-Specific Language used by our indus-
trial partner to specify the Induction Hobs (IHDSL)
is composed of 46 meta-classes, 74 references among
them, and more than 180 properties. However, in
order to increase legibility and due to intellectual
property rights concerns, we show a simplified subset
of the IHDSL at the top of Figure 1.

Inverters are in charge of transforming the input
electric supply to match the specific requirements
of the IH. Then, the energy is transferred to the
inductors through the channels. There can be several
alternative channels, which enable different heating
strategies depending on the cookware placed on top
of the IH at run-time. The path followed by the
energy through the channels is controlled by the
power manager. Inductors are the elements where the
energy is transformed into an electromagnetic field.
Inductors can be organized into groups to heat larger
cookware while sharing the user interface controllers.

2.2. The Common Variability Language applied to
IHs

To formalize the variability among the products
of the SPL, we need a variability specification that
captures which model fragments are used by each of
the products that can be built from the SPL. The
presented FeLLaCaM approach uses the Common
Variability Language (CVL) [17] due to its expres-
siveness to properly formalize the feature realizations
in terms of model fragments. CVL defines variants of
a base model conforming to MOF [18] (Meta-Object
Facility, the Object Management Group metalan-
guage for defining modeling languages) by replacing
variable parts of the base model with alternative
model replacements found in a library.

The base model is a model described by a given
DSL (here, IHDSL) that serves as the base for dif-
ferent variants defined over it. In CVL, the elements
of the base model that are subject to variations are
the placement fragments (hereafter placements). A
placement can be any element or set of elements that
is subject to variation. To define alternatives for a
placement, we use a replacement library, which is a
model that is described in the same DSL as the base
model that will serve as a base to define alternatives
for a placement. Each one of the alternatives for
a placement is a replacement fragment (hereafter
replacement). Similarly to placements, a replacement
can be any element or set of elements that can be used
as variation for a placement.

The bottom of Figure 1 shows an example of
variability specification of IH through CVL. In the
product realization layer, two placements are defined
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Figure 1: CVL applied to IHDSL

over an IH base model (P1 and P2). Then, four
replacements are defined over an IH library model
(R1, R2, R3, and R4). In the feature specification
layer, a Feature Model is defined that formalizes the
variability among the IH based on the placements
and replacements. For instance, P1 can only be
substituted by R4 (which is optional), but P2 can
be replaced by R1, R2, or R3.

Note that each placement and replacement have a
signature, which is a set of references (boundaries) go-
ing from and towards that placement or replacement.

A placement can only be replaced by replacements
with matching signatures. That is, the signature of
the placement and the signature of the replacement
have to be the same. For instance, the P2 signature
has a reference from a power manager (outside the
placement) to an inductor (inside the placement),
while the R4 signature is a reference from a power
manager (inside the replacement) to an inductor
(outside the replacement). P2 cannot be substituted
by R4 since their signatures do not match. The
signature of R1 is a reference from a power manager
(outside the replacement) to an inductor (inside the
replacement); therefore P1 can be substituted by R1
as their signatures match.

Throughout the rest of the paper, we will use the
term Feature Location as ’the process of obtaining
the particular model elements (as a model fragment)
that realize a particular feature defined by a given
textual description’.

3. Overview of our FeLLaCaM Approach

This section presents the proposed FeLLaCaM
approach for Feature Location in long-living model-
based product families. The objective of the ap-
proach is to provide the model fragment from a given
product family that realizes a specific feature being
requested by the user. To do this, the approach
receives as input a product family (including all the
revisions for each of the product models present in
the family) and relies on an evolutionary algorithm
that iterates a population of model fragments and
evolves them using genetic operations. The evolu-
tionary algorithm is guided by a fitness operation
that takes into account the feature description, the
feature commonality, and the feature modifications.
As output, the approach provides a list of model
fragments that might be realizing the feature.

The top of Figure 2 shows an example of input to
our approach.

• A set of product model retrospectives (here-
after the term retrospective will be used to refer
to the product model and the set of past revi-
sions for that particular product model created
over the time) that contains the target feature.
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Figure 2: Overview of FeLLaCaM

The engineer selects a subset of product models
from the entire family of products that include
the feature to be located.

• A feature description of the target feature,
using natural language. Typically these de-
scriptions can come from textual documentation
of the products, comments in the code, bug
reports, or oral descriptions from the engineers.
Therefore, the query will include some domain-
specific terms that are similar to those used when
specifying the product models. The knowledge
of the engineers about the domain and the
product models will be useful in selecting the
textual description from the sources available.

The center of Figure 2 shows a simplified represen-
tation of the main steps of our approach.

• The initialize population step calculates an
initial population of model fragments from the
input set of product models. This initial popu-
lation of model fragments is randomly extracted
from the product models.

• The genetic operations generate the new gen-
eration of model fragments. First, a selection
operation selects the model fragments that will
be used as parents of the new model fragments.
The fitness values are used to ensure that the
best model fragments are chosen as parents.
Then, a crossover operation mixes the model
elements of the two parents into a new model
fragment. Finally, a mutation operation intro-
duces variations in the new model fragment (by
adding or removing model elements) in hopes
that the new model fragment achieves better
fitness values than its parents.

• The fitness step assigns values that assess how
good each model fragment is in the following
terms:

– Feature description. The more terms
shared between the feature description and
the properties of the model fragment, the
higher this fitness value.
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– Feature commonality. The more occur-
rences of the model fragment across the
product model retrospective, the higher
this fitness value.

– Feature modifications. The more modifi-
cations performed on the model fragment
across the product model retrospective, the
lower this fitness value.

The output of FeLLaCaM (see the bottom of
Figure 2) is a set of model fragments that realize
the target feature. The ranking can be ordered
following different criteria, such as the similarity to
the feature description, feature commonality, and
feature modifications.

In overall, the aim of the approach is to find the fea-
ture realization that matches the feature description
given by the user. To do so, the approach performs
a search (among the different model fragments, ob-
tained applying mutation and crossover operations,
that could be realizations for the feature description)
guided by a fitness function. To do so the fitness
function will assign values based on the similarity
with the textual description, the commonality of that
feature realization candidate and the modifications
overcome through the previous revisions of that
product model.

The following sections describe the representation
used to encode model fragments in our FeLLaCaM
approach. Furthermore, these sections also describe
the genetic operations of FeLLaCaM to generate new
model fragments and how the fitness of each model
fragment is determined in terms of similarity to the
feature description, feature commonality, and feature
modifications.

4. Model Fragment Encoding of the FeLLa-
CaM Approach

The possible solutions of our proposed approach
are model fragments that realize the target feature.
Traditionally, evolutionary algorithms encode each
possible solution of the problem as a string of binary
values. Each position of the string has two possible
values: 0 or 1.

However, encoding each model fragment as a string
of binary values is not straightforward. Each in-
dividual of our proposed approach will be a model
fragment that is defined in one of the product models.
In other words, each individual is a set of model
elements that are present in one of the product
models.

Product Model 4
Model Fragment 4

Product Model 2
Model Fragment 1
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Figure 3: Representation of Model Fragments

Figure 3 shows two examples of our representation
of model fragments. We denote each model element
of the product model with a letter. In the example
of the upper part of Figure 3, the letters A and F
correspond to inverters, the letters B, D, G, and
I correspond to channels, and the letters E and J
correspond to inductors. Therefore, the string of
binary values that represents the model fragment
from this product model has the positions that
correspond to each letter with a value of 0 or 1. If
the model element appears in the model fragment,
the value will be 1; if the model element does not
appear in the model fragment the value will be 0.

Each model fragment representation depends on
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the product model that it came from. Both of
the examples in Figure 3 represent the same model
fragment, but they come from different product
models. Throughout the rest of the paper, we will
refer to each individual as a model fragment that is
part of a product model.

5. Genetic Operations of the FeLLaCaM Ap-
proach

The generation of model fragments is performed
by applying genetic operators that we have adapted
to work on model fragments. In other words, new
fragments based on the existing ones are gener-
ated through the use of two genetic operators: the
crossover operator and the mutation operator.

5.1. Crossover

In our encoding, there are two elements that can
be mapped across the different individuals: the
model fragment and the referenced product model.
Therefore, our crossover operation will take the
model fragment from the first parent and the product
model from the second parent, generating a new
individual that contains elements from both parents
and thus preserving the basic mechanics of the
crossover operation.

To achieve the above, our crossover operation is
based on model comparisons. Figure 4 shows an
example of the application of the crossover operation
on model fragments. First, we select the model
fragment from the first parent. Then, we select the
product model from the second parent. The model
fragment (from first parent) is then compared with
the product model (from the second parent). If the
comparison finds the model fragment in the product
model, the operation creates a new individual with
the model fragment taken from the first parent
but referencing the product model from the second
parent. In the case that the comparison does not
find a similar element, the crossover will return the
first parent unchanged.

This operation enables the search space to be
expanded to a different product model, i.e., both
model fragments (the one from the first parent and

the one from the new individual) will be the same.
However, since each of them is referencing a different
product model, they will mutate differently and
provide different individuals in further generations.

5.2. Mutation

Figure 5 shows an example of our mutation for
model fragments. Each model fragment is associated
to a product model, and the model fragment mutates
in the context of its associated product model. In
other words, the model fragment will gain or drop
some elements, but the resulting model fragment will
still be part of the referenced product model. The
mutation possibilities of a given model fragment are
driven by its associated product model.

To perform the mutation, the type of mutation that
will occur (either the addition or removal of elements)
is decided randomly:

• Subtractive Mutation: This kind of mutation
randomly removes some elements from the model
fragment. The only constraint is that the
elements be selected from the edges of the
model fragment (they are connected with a
single element). Therefore, the resulting model
fragment is still connected (we can navigate from
any element to any other element through the
connections between the elements) and it is not
split into several isolated groups of elements.
Since the resulting model fragment is a subset
of the original model fragment and the original
was present in the referenced product model, the
resulting product model will always be present in
the referenced product model.

• Additive Mutation: This kind of mutation
randomly adds some elements to the model
fragment. The only constraint is that the re-
sulting model fragment be part of the referenced
product model. To achieve this, the boundaries
of the model fragment with the rest of the
product model are identified and then a random
element from the boundary is added to the
resulting model fragment. By doing so, the
mutated model fragment will be part of the
referenced product model.
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As a result, a new model fragment is created,
but it still references the same product model. In
other words, the individual represents other possible
feature realizations (that are present in the product
model) for the specific feature being located.

6. Fitness of the FeLLaCaM Approach

In evolutionary algorithms, the fitness step is used
to imitate the different degrees of adaptation to the
environment that different individuals have. Follow-
ing this idea, our fitness step is used to determine the
suitability of each model fragment to the problem.
The input of this step is a population of model
fragments, and the output produced is a set where
each model fragment has been assigned with three
fitness values: similarity to the feature description,
feature commonality throughout the product model

retrospective, and feature modifications throughout
the product model retrospective.

6.1. Model Fragment similarity to the Feature De-
scription

To assess the relevance of each model fragment
in relation to the feature description provided by
the user, we apply methods based on Information
Retrieval (IR) techniques. Specifically, we apply
Latent Semantic Analysis (LSA) [7] to analyze the
relationships between the description of the feature
provided by the user and the model fragments. There
are many IR techniques, but most of the efforts show
better results when applying LSA [19, 20, 21].

LSA constructs vector representations of a query
and a corpus of text documents by encoding them
as a term by document co-occurrence matrix, (i.e.,
a matrix where each row corresponds to terms and
each column corresponds to documents, with the last
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Figure 6: Fitness Operation via Latent Semantic Analysis (LSA)

column corresponding to the query). Each cell holds
the number of occurrences of a term (row) inside a
document or the query (column).

LSA provides good results when applied to source
code [19, 20, 21], product models are representations
at a higher abstraction level than the source code
and the language used to build them is closer to the
feature description language; therefore, we expect it
to work better than when applied to source code.

In our work, the documents are model fragments,
i.e., a document of text is generated from each of
the model fragments. The text of the document
corresponds to the names and values of the properties
and methods of each model fragment (e.g. a model
element of the class inductor will contain some
properties related to its coil manufacturer and heat
potential). The query is constructed from the terms
that appear in the feature description. If the textual
terms used for the model and the feature description
differ too much the LSA will not work. Therefore,
the text from the documents (model fragments)
and the text from the query (feature description)
are homogenized by applying well-known Natural
Language Processing techniques to eventually reduce
this gap. If the languages used differ too much,
other techniques as manual annotation of the model
elements could be applied at the expense of increasing
the effort.

• First, the text is tokenized (divided into words).
Usually, a white space tokenizer can be applied

(which splits the strings whenever it finds a
white space), but for some sources of description,
more complex tokenizers need to be applied.
For instance, when the description comes from
documents that are close to the implementation
of the product, some words could be using
CamelCase naming.

• Second, we apply the Parts-of-Speech (POS)
tagging technique. POS tagging analyzes the
words grammatically and infers the role of each
word in the text provided. As a result, each
word is tagged, which allows the removal of
some categories that do not provide relevant
information. For instance, conjunctions (e.g.,
or), articles (e.g., a) or prepositions (e.g., at)
are words that are commonly used and do not
contribute relevant information that describes
the feature, so they are removed.

• Third, stemming techniques are applied to unify
the language that is used in the text. This tech-
nique consists of reducing each word to its roots,
which allows different words that refer to similar
concepts to be grouped together. For instance,
plurals are turned into singulars (inductors to
inductor) or verbs tenses are unified (using and
used are turned into use).

The union of all the keywords extracted from the
documents (model fragments) and from the query
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(feature description) are the terms (rows) used by
our LSA fitness.

Figure 6 (left) shows an example of the co-
occurrence matrix for our running example. Each
column is one of the model fragments. The last
column is the query obtained from the feature
description of the user. Each row is one of the
terms extracted from the corpuses of text composed
by all of the model fragments and the query itself
(we show the terms before the stemming process to
improve readability). Each cell shows the number
of occurrences of each of the terms in the model
fragments.

Once the matrix is built, we normalize and decom-
pose it into a set of vectors using a matrix factoriza-
tion technique called Singular Value Decomposition
(SVD) [22]. One vector that represents the latent
semantics of the document is obtained for each model
fragment and the query. Finally, the similarities
between the query and each model fragment are
calculated as the cosine between the two vectors. The
fitness value that is given to each model fragment
is the one that we obtain when we calculate the
similarity, obtaining values between -1 and 1.

Figure 6 (right) shows a three-dimensional graph
of the LSA results. The graph shows the represen-
tation of each one of the vectors, which are labeled
with letters that represent the names of the model
fragments. Finally, after the cosines are calculated,
we obtain a value for each of the model fragments,
indicating its similarity with the query.

6.2. Model Fragment Commonality and Modifica-
tions in the Product Family

To assess the relevance of each model fragment
in terms of feature commonality and feature modifi-
cations throughout the product model retrospective,
we apply Conceptualized Model Patterns (CMP) [8].
Given a model fragment, CMP allows alternative
model fragments (throughout the product model
retrospective) that match the model signature of
the given model fragment to be extracted (see the
model signature of Section 2.2). By calculating the
differences among the given model fragment and the
alternative model fragments, we can determine the
commonality and modification fitness.

We adapted CMP to calculate feature commonality
and modifications throughout the product model
retrospective as follows:

• First, the model fragment signature is calcu-
lated for an input model fragment; that is,
we calculate the boundary information between
the model fragment and the rest of the model
elements of the product model. Specifically,
we calculate the set of incoming and outgoing
relationships regarding the model fragment and
the product model (see Step 1 of Figure 7).

• We then match the model fragment signature
against each product model from the product
model retrospective (the set of past revisions for
that particular product model). If the match is
positive, the model fragment of that particular
product that matches with the model fragment
signature is extracted. We denote the set of
extracted model fragments as Alternative Model
Fragments (AMF) (see Step 2 of Figure 7).

• The commonality of the input model fragment
is determined by the number of occurrences of
the input model fragment in AMF. This value
represents the times that the model fragment re-
mained unaltered throughout the product family
(see Step 3 of Figure 7).

• The modifications of the input model fragment
is determined by the summation of model dif-
ferences (in terms of model elements) between
the input model fragment and each model frag-
ment of the AMF. This value represents the
total number of changes performed to the input
model fragment throughout the product model
retrospective (see Step 4 of Figure 7).

Figure 8 shows the application of our adapted CMP
to Model Fragment 5 (MF5) of the running example.
The first column shows MF5, the second column
shows the model fragment signature calculated for
the model fragment, and the third column shows the
matching of the model fragment signature against
each of the product models (AMF1-AMF6).

Figure 9 depicts the model comparisons between
MF5 and its AMF (AMF1-AMF6) calculated by
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Figure 8: Application of our adapted CMP to MF5

means our CMP. There are two occurrences of MF5
in AMF (AMF3 and AMF4); therefore, the feature
commonality value is 2. There are two differences
(in terms of model elements) between MF5 and
AMF1. There are also two differences between MF5
and AMF2 and two differences between MF5 and
AMF6. Finally, there are four differences between
MF5 and AMF5. Therefore, the feature modification
value is 10. Both the feature commonality and
feature modification values, in conjunction with the
similarity to the feature description (see Section 6.1),
are the fitness values that guide the evolutionary
algorithm of our FeLLaCaM approach.

7. Implementation Details

Our algorithm is based on NSGA-II [23], one
of the most frequently used multiobjective genetic

AMF1
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Figure 9: Feature commonality and modification values of MF5

algorithms. Given a population of model fragments
(where each model fragment has a fitness value
for its feature description (see section 6.1), feature
commonality and feature modifications (see section
6.2)), NSGA-II orders these model fragments by
means of nondominated sorting. A model fragment
is nondominated whether does not exist another
model fragment better than the current one in some
fitness value without worsening other fitness value.
As a result, NSGA-II finds pareto-optimal model
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fragments.

We implemented our evolutionary algorithm as
outlined in Algorithm 1. During the generation of
the initial population (Lines 3-8), model fragments
are randomly generated. The algorithm evaluates
the fitness for each model fragment and adds it
to the initial population. During the evolution
process (Lines 11-18), new offspring is generated
as a result of selecting model fragments (by means
of the binary tournament selection), recombining
them and applying a mutation operation. The
algorithm evaluates the fitness for each offspring and
adds it to a temporal population (Line 17). By
means of a combination of non-dominated sorting and
crowding distance sorting [23], the algorithm selects
the model fragments from both the old population
and the temporal population (Line 19) to create a
new population (Line 20).

Algorithm 1 FeLLaCaM (NSGA-II-based)
Require: Psize, pcrossover, pmutation, evalmax

Ensure: PF (a set of nondominated solutions)
1: P = ∅
2: evaluations = 0
3: for i = 1 to Psize do
4: s = NewSolution()
5: EvaluateF itness(s)
6: evaluations = evaluations+ 1
7: P = P + s
8: end for
9: while (evaluations < evalmax) do

10: PO = ∅
11: for i = 1 to Psize/2 do
12: parents = Selection(P )
13: offsp = Crossover(parents, pcrossover)
14: offsp =Mutation(offsp, pmutation)
15: EvaluateF itness(offsp)
16: evaluations = evaluations+ 1
17: PO = PO + offsp
18: end for
19: P = P ∪ PO

20: RankingAndCrowdingDistance(P )
21: end while
22: PF = BestFront(P )

Table 1: FeLLaCaM configuration parameters
Parameter description Value
Size: Population Size 100
µ: Number of Parents 2

λ: Number of offspring from µ parents 2
r: Solutions replaced at population size 2

pcrossover: Crossover probability 0.9
pmutation: Mutation probability 0.1

The crossover operation is applied with a crossover
probability of 0.9. The mutation operation is applied
with a probability of 0.1. The number of generations
(repetitions of the genetic operations and fitness
loop) allowed for the algorithm is 2500, as it is the
value needed by our case studies to converge (Note
that this value is case specific). The rest of the
settings are detailed in Table 1. We have principally
chosen values for those settings that are commonly
used in the literature [24].

As suggested by [25] and confirmed in [26], tuned
parameters can outperform default values generally,
but they are far from optimal in individual problem
instances. Therefore, the objective of this paper is
not to tune the values to improve the performance of
our algorithm but rather to compare it to a different
version of our algorithm using default parameter
values.

We have used the Eclipse Modeling Framework
to manipulate the models and CVL to manage
the fragments of models and implement CMP. The
IR techniques used to process the language have
been implemented using OpenNLP [27] for the POS-
Tagger and Snowball [28] for the stemming. The
LSI has been implemented using the Efficient Java
Matrix Library (EJML [29]). The genetic operations
are built upon the Watchmaker Framework for Evo-
lutionary Computation [30].

8. Evaluation

This section presents the evaluation of our ap-
proach: the oracle preparation, the compared ap-
proaches, the experimental setup with a description
of the case studies where we applied the evaluation,
and the results obtained. To evaluate the approach,
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we applied it to two long-living industrial case studies
from two of our partners: BSH, the leading manu-
facturer of home appliances in Europe; and CAF, an
international provider of railway solutions all over the
world.

8.1. Oracle Preparation

The oracle will be considered the ground truth and
will be used to compare the results provided by the
approach. To prepare the oracle, our industrial part-
ners provided us with documentation about feature
decisions that they have been taken in the product
models. These feature decisions comprise feature
descriptions using natural language (e.g., these de-
scriptions can come from textual documentation) and
the approved feature realizations, which are a set of
model fragments that realize a target feature.

Next, we apply the methods based on IR tech-
niques as described in Subsection 6.1 to the feature
descriptions, and the approved feature realizations
provided by our industrial partners are considered
the oracle.

8.2. Compared Approaches

We are going to compare the presented approach
(FeLLaCaM) with two other approaches for Feature
Location in Models: (1) FLL (Feature Location
through Latent Semantic Analysis) and (2) FLC
(Feature Location through Comparisons).

FLL is a version of FeLLaCaM which is guided only
by the feature description using LSA (see Subsection
6.1). This comparison will enable us to determine the
impact of the feature commonality and modifications
fitness values present in FeLLaCaM. Hence, FLL is
a Single-Objective Evolutionary Algorithm (SOEA),
whereas FeLLaCaM is Multi-Objective Evolutionary
Algorithm (MOEA). The work in [31] shows that
common MOEA measures such as hypervolume [32]
are not necessarily suitable for comparing solutions
by MOEAs (our FeLLaCaM approach) with solutions
by SOEAs (FLL in this work). Therefore, in order
to compare FLL with FeLLaCaM, we first take the
best solution of FLL for its single-objective (the
similarity with the feature description). Second, we
take the best solution of FeLLaCaM with regard

to the objective of FLL (the similarity with the
feature description) as described in [31]. Finally,
we compare the best solution obtained in both FLL
and FeLLaCaM with the oracle in order to obtain
performance measurements.

Traditionally, Feature Location in models has been
performed through model comparisons among the
members of the family of models [10, 11, 9, 12, 13, 14].
These works classify the elements based on their
similarity and identify the dissimilar elements as the
features realizations. The predominant technology of
choice to implement their approaches is EMF Model
Compare. EMF Model Compare relies on Model
Matching to perform the comparisons. To relate
our work to the above works, we also compare our
approach to FLC. FLC is our implementation of the
algorithms to locate features presented in [9]. As the
above works, FLC also uses EMF Model Compare to
perform the model comparisons. Conversely to our
approach, FLC do not use: evolutionary algorithm,
LSA, nor the model retrospective.

8.3. Experimental Setup

The goals of this experiment are both the evalu-
ation of our FeLLaCaM approach in terms of per-
formance measurements and the comparison of FeL-
LaCaM with FLL and FLC. Figure 10 shows an
overview of the process that was followed to perform
the evaluation. The left part of the figure shows
the inputs of the evaluation process provided by our
industrial partners, which are the product family and
a feature description for each of the features present
in each case study. The descriptions have been
extracted from internal documents by our industrial
partners and have an average of 50 words each. They
do not follow any specific template, an example of
feature description can be seen in the top right part
of Figure 2.

Then, each of the feature descriptions and the
family of models are fed to the three different ap-
proaches, resulting in a feature realization in the
form of a model fragment. Then, the resulting
feature realizations are compared with the oracle.
To compare them, we are going to use an error
matrix [33], also known as confusion matrix.
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A confusion matrix is a table that is often used
to describe the performance of a classification model
(in this case the approaches evaluated) on a set of
test data (the resulting model fragments) for which
the true values are known (from the oracles). In
our case, each feature realization is a model fragment
composed of a subset of the model elements that are
present in the product model (where the feature is
being located). Since, the granularity will be at the
level of model elements, each model element presence
or absence will be considered as a classification.
Therefore, our confusion matrices will distinguish
between two values (TRUE or presence and FALSE
or absence).

Figure 11 shows an example of the comparison
process performed to compare a result from one
of the evaluated approaches with the ground truth
from the oracle and the resulting confusion matrix.
The left part shows the actual realization of the
feature #1 (obtained from the oracle and considered
the ground truth) while the right part shows the
predicted realization of the feature #1 outputted by
the approach. The confusion matrix arranges the
results of the comparison into four categories:

• True positive (TP): A model element present in
the predicted realization that is also present in
the actual realization (e.g.: model element B is
a TP).

• True Negative (TN): A model element not
present in the predicted realization that is not
present in the actual realization (e.g.: model

element H is a TN)

• False Positive (FP): A model element present in
the predicted realization that is not present in
the actual realization (e.g.: model element A is
a FP)

• False Negative (FN): A model element not
present in the predicted realization that is
present in the actual realization (e.g.: model
element D is a FN)

The confusion matrix holds the results of the
comparison between the predicted results and the
actual results. However, in order to evaluate the
performance of the approach it is necessary to extract
some measurements from the confusion matrix. The
next subsection presents the five measurements that
we use to evaluate the performance of our approach.

8.3.1. Performance measurements
In this subsection we present the five measure-

ments (derived from the confusion matrices) used to
evaluate the performance of the presented approach
(FeLLaCaM) and to compare it with two other ap-
proaches (FLL and FLC). The five measurements are
Precision, Recall, F-Measure, Matthews Correlation
Coefficient (MCC), and Area Under the Receiver
Operating Characteristics curve (AUC).
Precision measures the number of elements from

the prediction (result of the approach) that are
correct according to the ground truth (the oracle).
Recall measures the number of elements of the
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ground truth (the oracle) that are correctly retrieved
by the prediction (result of the approach). The F-
measure combines both recall and precision as the
harmonic mean of precision and recall. The Recall,
Precision and F-Measure are calculated as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F −measure = 2 ∗ Precision ∗Recall
Precision+Recall

Recall values can range between 0% (which means
that no single model element from the realization of
the feature obtained from the oracle is present in any
of the model fragments of the feature candidate) to
100% (which means that all the model elements from
the oracle are present in the feature candidate).

Precision values can range between 0% (which
means that no single model fragment from the feature
candidate is present in the realization of the feature
obtained from the oracle) to 100% (which means that
all the model fragments from the feature candidate
are present in the feature realization from the oracle).
A value of 100% precision and 100% recall implies
that both feature realizations are the same.

However, none of these measures correctly handle
negative examples (TN). The MCC is a correlation
coefficient between the observed and predicted binary
classifications that takes into account all the observed
values (TP,TN,FP,FN) and is defined as follows:

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

In addition, a Receiver Operating Characteristics
(ROC) [34] graph is a technique for visualizing,
organizing and selecting classifiers based on their
performance that has into account the TN rate. In
a ROC graph, the Rate of True Positives (TPR) and
the Rate of False Positives (FPR) are compared into
a two-dimensional space. By doing so, the graph
depicts relative tradeoffs between benefits (TP) and
costs (FP). A common method to compare different
classifiers is to compare their ROC curves calculating
the AUC. The TPR and FPR are calculated as
follows:

TPR = Recall =
TP

TP + FN

FPR =
FP

FP + TN

8.3.2. BSH
The first case study where we apply our evaluation

process is BSH (already presented in Section 2.1
as the running example). The oracle is composed
of 46 induction hob models and its revisions over
time where, on average, each product model is
composed of more than 500 elements. The oracle
includes 96 different features that can be part of a
particular product model. Those features correspond
to products that are currently being sold or will be
released to the market in the near future. For each of
the 96 features, we create a test case that includes the
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set of product models where that feature is used and a
feature description (this information is obtained from
the documentation).

For this case study, we executed 30 independent
runs for each of the 96 test cases for each approach (as
suggested by [35]), i.e., 96 (features) x 3 (approaches)
x 30 repetitions = 8640 independent runs.

8.3.3. CAF
The second case study where we apply our eval-

uation process is CAF. Their trains can be seen all
over the world and in different forms (regular trains,
subway, light rail, monorail, etc.). A train unit is
furnished with multiple pieces of equipment through
its vehicles and cabins. These pieces of equipment
are often designed and manufactured by different
providers, and their aim is to carry out specific
tasks for the train. Some examples of these devices
are: the traction equipment, the compressors that
feed the brakes, the pantograph that harvests power
from the overhead wires, or the circuit breaker that
isolates or connects the electrical circuits of the train.
The control software of the train unit is in charge
of making all the equipment cooperate to achieve
the train functionality while guaranteeing compliance
with the specific regulations of each country.

The DSL of our industrial partner has the required
expressiveness to describe the interaction between
the main pieces of equipment installed in a train
unit. Moreover, this DSL also has the required
expressiveness to specify non-functional aspects re-
lated to regulation, such as the quality of signals
from the equipment or the different levels of installed
redundancy.

As an example, the high voltage connection se-
quence can be described with the DSL. One of the
scenarios from this sequence is the one presented
when it is initiated, under demand from the train
driver, who requests its start through interface de-
vices fitted inside the cabin. The control software is
in charge of raising the pantograph to harvest power
from the overhead wire and of closing the circuit
breaker so the energy can get to converters that adapt
the voltage to charge batteries which, in turn, power
the traction equipment. Another example of the
functionality that the DSL can specify is the coupling

between train units. A train unit can physically
connect to a second train unit and control it in order
to increase its passenger capacity or to rescue the
second train unit in case it has suffered any damage
while functioning.

Again, we extract an oracle that is composed
of 23 trains (and its revisions over time) where
each product model is composed of more than 1200
elements on average. They are built from 121
different features that can be part of a particular
product model. For each of the 121 features, we
create a test case that includes the set of product
models where that feature is used and a feature
description (this information is obtained from the
documentation).

For this case study, we executed 30 independent
runs for each of the 121 test cases for each approach,
i.e., 121 (features) x 3 (approaches) x 30 repetitions
= 10890 independent runs. The sum for the two case
studies presented gives a total of 19530 independent
runs.

8.4. Results
In this section, we present the results obtained for

each case study in FeLLaCaM, FLL and FLC. Figure
12 shows the charts with the recall and precision
results for the industrial domain of BSH (left column)
and CAF (right column). A dot in a graph represents
the average result of precision and recall for each
feature (96 features in BSH and 121 features in CAF)
for the 30 repetitions. The first row of charts shows
the results of FeLLaCaM, the second row of charts
shows the results of FLL, and the third row of charts
shows the results of FLC.

Table 2 shows the mean values of precision, recall,
F-measure, MCC and AUC for the approaches eval-
uated in the two case studies. FeLLaCaM and FLL
obtain similar results for recall (an average value of
81%) while FLC obtains an average value of 57.96%.
FeLLaCaM reaches the best results for precision,
providing a precision value of 83.59% in the BSH
case study and a precision value of 73.62% in the
CAF case study. FLC is the second in precision,
with values of 44.27% in BSH and 41.90% in CAF.
FLL achieves a precision value of 22.95% in the BSH
case study and a precision value of 17.41% in the
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Figure 12: Mean Precision and Recall for FeLLaCaM, FLL and FLC

CAF case study. In terms of precision, FeLLaCaM
(78.61% BSH-CAF) outperforms FLC (43.09% BSH-
CAF) and FLL (20.18% BSH-CAF).

Regarding MCC measurements, FeLLaCaM
reaches the best results, providing a value of 0.76
in the BSH case study and a value of 0.71 in the
CAF case study. FLL and FLC obtains similar
results, an average value of 0.35. In terms of AUC
measurement, FeLLaCaM obtains the best results,
a value of 0.88 in the BSH case study and a value
of 0.87 in the CAF case study. It is followed by
FLL with an average value of 0.79. Finally, FLC
obtains an average value of 0.7. Figure 13 shows
the graphical representation of the ROC curves for

FeLLaCaM, FLL and FLC in BSH and CAF.

9. Discussion

The results of evaluating our approach show that
the obtained solutions do not include all the model
elements of the features. We detected that this
happens because the fitness step that guides the
evolutionary algorithm is not giving the highest
fitness values to the approved feature realizations.
The following paragraphs explain the issues that are
causing this outcome:

1. Incomplete feature description: The feature
description does not completely describe the
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Figure 13: ROC curves for FeLLaCaM, FLL and FLC in BSH and CAF

approved feature realization. The second column
of Figure 14 illustrates this issue: the feature
description includes the DomainTermA but it
does not include the DomainTermB. However,
DomainTermB is included in the approved fea-
ture realization and it should be part of a
complete feature description.

2. Vocabulary mismatch: For a particular con-
cept, the term used in the feature description
is different from the term used in the approved
feature realization. The third column of Figure
14 illustrates this issue: the feature description
includes the DomainTermA that differs from the
DomainTermA’ included in the approved feature
realization. However, both DomainTermA and
DomainTermA’ stand for the same concept.

3. Domain terms in the code generation
rules: Model elements of the approved
feature realization may lack domain terms
that are embedded in the code generation
rules. The fourth column of Figure 14

illustrates this issue: the approved feature
realization includes the DomainTermB. The
code generation rules include the DomainTermA
and Implementation terms. However, a complete
feature description includes both DomainTermA
and DomainTermB.

4. Modification of boundary model elements:
Model elements that play the role of boundary
information (incoming and outgoing relation-
ships regarding the model fragment and the
product model) of the approved feature realiza-
tion are modified through the product model
retrospective.

5. Modification of no-boundary model ele-
ments: Model elements that are within the ap-
proved feature realization are modified through
the product model retrospective.

The issues 1-3 (incomplete feature description,
vocabulary mismatch, and domain terms in the
code generation rules) negatively influence the fitness
value of feature similarity. These issues not only pe-
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Table 2: Mean values and standard deviations for Precision,
Recall, F-measure, MCC, and AUC in the two case studies

Precision ± (σ)

Case Study FeLLaCaM FLL FLC

BSH 83.59 ± 9.86 22.95 ± 12.36 44.27±14.53
CAF 73.62 ± 10.27 17.41 ± 11.02 41.90±16.16

Recall ± (σ)

Case Study FeLLaCaM FLL FLC

BSH 81.48 ± 9.09 81.95 ± 12.12 57.71±12.97
CAF 79.07 ± 10.42 81.50 ± 10.83 58.20±15.66

F-measure ± (σ)

Case Study FeLLaCaM FLL FLC

BSH 81.99 ± 6.86 33.77 ± 15.10 48.13±11.54
CAF 75.57 ± 7.62 27.01 ± 14.64 45.98±13.44

MCC ± (σ)

Case Study FeLLaCaM FLL FLC

BSH 0.76 ± 0.12 0.36 ± 0.01 0.31 ± 0.01
CAF 0.71 ± 0.14 0.34 ± 0.01 0.39 ± 0.18

AUC ± (σ)

Case Study FeLLaCaM FLL FLC

BSH 0.88 ± 0.07 0.73 ± 0.17 0.66 ± 0.14
CAF 0.87 ± 0.07 0.85 ± 0.13 0.73 ± 0.10

nalize the similitude between the feature description
and the approved feature realization, but also suggest
similitude of the feature description with incorrect
feature realizations.

The issues 4-5 (modification of boundary and no-
boundary model elements) negatively influence the
fitness values of feature commonality and feature
modification. Modifications to the boundary infor-
mation of the model fragment penalize the extrac-
tion of model fragments as AMF (see Section 6.2).
Consequently, commonality fitness will achieve lower
values. In addition, modifications to the model
elements within the model fragment (that do not alter
the boundary information) penalize the modifications
fitness.

Figure 15 shows the occurrences of each issue
in the features of the case studies. Note that a
particular feature can be affected by several issues
simultaneously. The first group of bars shows the
occurrences of each issue in the 96 features of the BSH
case study, whereas the second group of bars show

1. Incomplete 
feature description

2. Vocabulary 
mismatch

3. Domain terms in 
the code generation 
rules

Feature
Description

DomainTermA DomainTermA, 
DomainTermB

DomainTermA, 
DomainTermB
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DomainTermA, 
DomainTermB

DomainTermA’, 
DomainTermB

DomainTermA

Code
Generation
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Implementation terms Implementation terms DomainTermB,
Implementation terms

Implementation
Code

Implementation terms, 
DomainTermA, 
DomainTermB

Implementation terms, 
DomainTermA’,
DomainTermB

Implementation terms, 
DomainTermA, 
DomainTermB

Figure 14: Illustration of Issues 1-3

the occurrences of each issue in the 121 features of
the CAF case study. The third group of bars shows
the mean value of occurrences of each issue in the
two case studies. The fourth group of bars shows
the mean value of occurrences in the case studies of
the issues 1-3 (53.67%) and the issues 4-5 (25.36%).
In industrial domains like the ones of our industrial
partners, issues 1-3 (that negatively influence the
feature similarity) are more frequent than issues 4-
5 (that negatively influence the feature commonality
and modifications).

On the one hand, FFL is vulnerable to issues 1-
3 because it is guided by feature similarity. On
the other hand, FeLLaCaM is vulnerable to issues
1-3 because it is guided by feature similarity, and
to issues 4-5 because FeLLaCaM is also guided by
feature commonalities and modifications. One may
think that been vulnerable to a lower kind of issues
is positive to locate features. However, the results
show that FeLLaCaM (vulnerable to 1-3 and 4-5)
outperforms FLL (vulnerable to 1-3) in terms of
precision. It turns out that although the inclusion of
feature commonalities and modifications expose the
location to issues 4-5, the resulting multi objective
fitness compensates negative influence of issues 1-
3. The occurrences of issues 1-3 are more frequent
than the occurrences of issues 4-5, and the negative
influence of issues 1-3 misguide the location to include
in the solutions model elements that do not belong
to the approved feature realization.

We measure the precision and recall of the results
of our approach against the oracle. The oracle is
the feature realization approved by our industrial
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Figure 15: Occurrences of each issue in the features of the case studies

partner. A 100% of precision and 100% of recall
indicate that the approach solution is as good as the
feature realization provided by the industrial partner.
That is, we are evaluating whether the performance
of the approach is as good as the performance
of the domain experts that approved the feature
realizations. This is an improvement with regard to
the model fragments obtained mechanically, which
are solutions that are not considered as good as the
provided by the engineers [8].

However, product models might have better fea-
ture realizations than the ones selected by the indus-
trial partners as approved features. Our approach
can help look for these better feature realizations,
since it provides a ranking of solutions that the user
can inspect. The users can also consider the solu-
tions of the ranking as a starting point from where
solutions can be manually refined. Furthermore,
after inspecting the solutions of the ranking (and the
description, commonality and modification values of
each solution), the user may refine the feature de-
scription and iterate the location of solutions towards
feature realizations that achieve better values.

The benefits of using models for software de-
velopment can be very appealing [36]. However,
maintaining a SPL in which the products are specified

using models (and where model fragments materi-
alize features) may arise challenges. In particular,
metamodels evolve over time, and the conformance
between model fragments and the metamodel can
be broken. Migration strategies aim to co-evolve
models and metamodels together, but their appli-
cation is currently not fully automated and is thus
cumbersome and error prone. In another work,
we proposed and evaluated a Variable MetaModel
(VMM) strategy to address the evolution of the
reusable model fragments of a model-based Software
Product Line [37]. Our results indicate that the
VMM achieves better results than the migration
strategy in domains like that of our BSH industrial
partner in terms of indirection, automation, and trust
leak. Nevertheless, there are still open issues (e.g.,
evolutions that turn variabilities into commonalities)
that we plan to address in our future work.

Current research on architecture sustainability fo-
cuses on addressing guidelines [38, 5] for achieving
sustainability, and on methods and metrics for eval-
uating [39] sustainability. These works are useful
to face the challenge of designing SW systems that
are supposed to have a long lifespan. The work
presented in this paper does not research architecture
sustainability in the former sense. Our work explores
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a new direction: is it possible to take advantage
of already long-living software systems (designed
with sustainability in mind) to address the challenge
of Feature Location? If these already long-living
software systems are fully successful from a suitability
point of view, their feature realizations supported
changes during its life-cycle while remaining in-
tact [6]. Our feature commonality and modifications
fitness values promote model fragments that suffered
less modification throughout time.

Model fragment modifications happen even in sys-
tems designed with sustainability in mind. However,
in these software systems the modification issues
are less frequent (and less negative) than the issues
suffered by a Feature Location approach guided by
feature similarity only. Therefore, we claim that, in
the face of already long-living SW systems (designed
for sustainability), our ideas improve the Feature
Location process.

10. Threats to Validity

In order to identify the threats to validity that
are applicable to this work, we have followed the
guidelines suggested by De Oliveira et al. [40].
Conclusion validity threats: The first threat of

this type that has been identified is not accounting
for random variation. To address this threat we
considered 30 independent runs for each feature with
each algorithm. The second threat is the lack of a
meaningful comparison baseline. We addressed this
threat by using a Feature Location through Com-
parison approach as a standard comparison baseline.
The third threat is the lack of a good descriptive
analysis. In this work, we have used precision,
recall, F-measure, MCC, and AUC metrics to analyze
the confusion matrix obtained from the experiments;
however, other metrics could be applied.
Internal validity threats: The first threat of this

type that has been identified is the poor parameter
settings. As suggested by Arcuri and Fraser [25],
default values are good enough to measure the per-
formance of search-based techniques in the context
of testing. These values have been tested in similar
algorithms for Feature Location [41]. In addition,
the choice of the k value in the application of SVD

can produce sub-optimal accuracy when using LSA
for software artifacts [42]. However, we plan to
evaluate all the parameters of our algorithm in future
iterations of our work. The second threat is the
lack of real problem instances. The evaluation of this
paper was applied to two industrial case studies from
two of our partners, BSH and CAF.
Construct validity threats: The threat of this

type that has been identified is the lack of assessment
of the validity of cost measures. To address this
threat, we performed a fair comparison among the
algorithms by generating the same number of model
fragments and using the same number of fitness
evaluations.
External validity threats. The first threat of

this type that has been identified is the lack of a clear
object selection strategy. This threat is addressed
by using two industrial case studies from two of our
partners, BSH and CAF. Our instances are collected
from real-world problems. In addition, we have two
different domains (induction hobs and trains) with
different size and complexity. Besides, this addressed
the second identified threat, the lack of evaluations
for instances of growing size and complexity.

With regard to what extent it is possible to
generalize to other cases, we selected two different
long-living industrial domains in order to mitigate
this threat. Our approach has been designed to be
applied not only to the domains of our industrial
partners but also to other different domains. The
requisites to apply our approach are that the product
family has product model retrospectives, that the set
of models where features have to be located conform
to MOF (the OMG metalanguage for defining mod-
eling languages), and that feature descriptions must
be provided using natural language. Furthermore,
the fitness functions can also be applied to any
MOF-based model. Our approach extracts the text
elements and calculates both the commonalities and
the modifications associated to model fragments in
an automatic fashion, by using the reflective methods
provided by the Eclipse Modeling Framework. That
is, there is no need of knowledge about the domain
of application in order to calculate the fitness values.

It is also worth noting that the language used
for the textual elements of the models and the
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provided feature descriptions must be the same.
This language is specific to each domain, but as
long as both elements are built using the same
terminology, LSA will work. Eventually, some tweaks
can be applied to narrow the gap between both
elements (different tokenizers, stemming, or POS
tagging techniques). For instance, the naming con-
ventions used by companies for model elements,
properties, and functions, can all follow different
formats, but the approach can be tailored to handle
them. In our case studies some model elements
follow the CamelCase convention, while others follow
the Underscore convention. To address that, we
applied different tokenizers in order to obtain the
terms properly. Nevertheless, even if our approach
can theoretically be used to locate features on MOF-
based models from different domains, it should be
applied to these distinct scenarios before assuring its
generalization.

With regard to the kind of models in use, there are
different kinds of models in the models paradigm for
software development, such as sketches for analysis,
models that are reverse engineered from source code,
or models for code generation. The architecture of a
software system can be described with different kinds
of models. However, different kinds of models may
contain different amounts of information. Typically,
the models used for code generation contain the
highest amount of information. In this work, the
models of the two case studies are used to generate
code by our industrial partners. It is necessary
to perform more experiments to know both (1)
the performance of the approach as the amount of
information in the models decreases, and (2) what
is the minimum information amount that an archi-
tecture model must contain to successfully apply the
approach. This is aligned with a recent systematic
review [39] which concludes that using more formal
architecture models could provide more automated
analysis during architecture analysis.

11. Related Work

Other approaches that are related to this work
are classified in three groups taking into account the

underlying techniques used to perform the Feature
Location.

11.1. Feature Location through Mechanical Compar-
isons

Some works [10, 11, 9, 12, 13, 43, 44, 14] focus on
the location of features over models by comparing the
models with each other to formalize the variability
among them in the form of a Software Product Line:

• Wille et al. [10] present an approach where the
similarity between models is measured following
an exchangeable metric, taking into account
different attributes of the models. Then, the
approach is further refined [11] to reduce the
number of comparisons needed to mine the
family model.

• The authors in [9] propose a generic approach to
automatically compare products and locate the
feature realizations in terms of a CVL model.
In [12], the approach is refined to automatically
formalize the feature realizations of new product
models that are added to the system. A similar
approach is proposed in [43] where the Feature
Location results are validated in an industrial
environment.

• Martinez et al. [13] propose an extensible
approach based on comparisons to extract the
feature formalization over a family of models.
In addition, they provide means to extend the
approach to locate features over any kind of asset
based on comparisons.

• The MoVaPL approach [14] considers the identi-
fication of variability and commonality in model
variants as well as the extraction of a Model-
based Software Product Line (MSPL) from the
features identified on these variants. MoVaPL
builds on a generic representation of models
making it suitable for any MOF-based models.

However, all of these approaches are based on me-
chanical comparisons among the models, classifying
the elements based on their similarity and identifying
the dissimilar elements as the features realizations.
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In contrast, our work does not rely on model com-
parisons to locate the features. Specifically, in our
work, humans are involved in the search by means
an evolutionary algorithm. Domain experts and
application engineers become part of the process,
contributing their knowledge of the domain in order
to tailor the approach by (1) providing the feature
description that guides the search and (2) selecting
the best realization among the ranking provided as
output. The model fragments obtained mechanically
are less recognizable by software engineers than those
obtained with the participation of software engineers
[44].

11.2. Feature Location through Information Retrieval
(IR)

There are many Feature Location approaches that
have been proposed to find relevant code taking tex-
tual information as input [45]. For example, Marcus
et al. [46] used IR techniques to map descriptions
expressed in natural language (NL) to source code.
Cavalcanti et al. [47] used IR techniques to assign
change requests in software maintenance or evolution
tasks based on context information. Kimmig et
al. [48] proposed an approach for translating NL
queries to concrete parameters of the Eclipse JDT
code query engine.

Recently, several approaches have been proposed
to improve the effectiveness of Feature Location. For
example, Wang et al. [49] proposed a code search
approach, which incorporates user feedback to refine
the query. Hill et al. [50] proposed automatically
extracting NL phrases to categorize them into a
hierarchy in order to help developers to discriminate
the relevance of results and to reformulate queries.
Zou et al.[51] investigated the “answer style” of
software questions with different interrogatives and
proposed a re-ranking approach to refine search
results.

Other approaches have been proposed to improve
the effectiveness of Feature Location by getting in-
formation from public repositories [52] or expanding
a user query with semantically similar words from
websites [53]. For example, Dietrich et al. [54]
improved the efficacy of future queries using feed-
back captured from a validated set of queries and

traceability links. Lv et al. [55] enrich each API with
its online documentation to match the query based
on text similarity.

Even though these approaches improve the ef-
fectiveness of Feature Location, they require an
additional effort to enrich the code, to keep the docu-
mentation synchronized with the changes in the code
throughout maintenance and evolution activities, and
to incorporate users’ feedback. In contrast, our work
does not require additional efforts to enrich the code
or the query.

11.3. Feature Location through Search-based software
Engineering

Lopez-Herrejon et al. [41] evaluate three standard
search-based techniques (evolutionary algorithm, hill
climbing, and random search) in order to calculate
the relationships of a feature model. The authors do
not address how each feature is materialized as our
work does. Therefore, both works are complimen-
tary: [41] calculates the feature relationships of the
feature specification layer, while our work locates the
model fragments of the product realization layer (see
Figure 1).

Harman et al. [56] performed a survey on the topic
of search-based software engineering applied to SPLs.
They present an overview of recent articles classified
according to themes such as configuration, testing,
or architectural improvement. Lopez-Herrejon et
al. [57] performed a preliminary systematic mapping
study at the connection of search-based software engi-
neering and SPL. They categorized the articles along
a known framework for SPL development. These two
surveys indicate that search-based software engineer-
ing techniques are being applied to SPLs. However,
these surveys do not identify works that focus on
finding model fragments that materialize the features
of the SPL, as our work does.

Font et al. [44] propose a generic approach to
locate features among a family of product models
based on a human-in-the-loop process. The features
are located by comparison of models and the interac-
tion of engineers that provide their knowledge of the
domain. The approach is further refined in [58] and
generalized through the use of a genetic algorithm
to create the model fragments. They introduce a
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genetic operator for mutation that can work over a
single model fragment and a crossover operator that
combines two different product models. The results
show that the use of a genetic algorithm allows the
approach to provide accurate location of features in
spite of inaccurate information on the part of the
user.

However, since the work from [58] is designed to
locate features by comparisons among the members
of a family, the participation of the software engineers
is limited and the resultant model fragments are
less recognizable to them. In contrast, in this
paper, we augment the participation of humans
(feature description) with architecture sustainable
ideas. Our results show that introducing architecture
sustainable ideas in Feature Location contributes to
improving the precision results.

12. Conclusions

Since the benefits of SPLs are very appealing but
the migration of a product family to a SPL requires
deep knowledge and is not straightforward, Feature
Location could be useful in easing this migration. In
this paper, we present our FeLLaCaM approach for
Feature Location. Our approach takes into account
the following to locate a feature: the description of
the feature to be located, the occurrences across the
product model retrospective in which the candidate
feature remains unchanged, and the changes made
to the candidate features across the product model
retrospective.

We have validated our approach in two different
long-living industrial domains that have a model-
based product family (firmware of induction hobs
in the BSH group and control software of trains in
CAF). In addition, we have compared the results of
our approach with two other approaches for Feature
Location: FLL a version of our approach which
is guided only by feature descriptions, and FLC
which performs comparisons among the different
product models. We have measured the performance
of the approaches in terms of recall, precision, F-
measure, MCC, and AUC using the approved feature
realizations as oracle. Our results have shown that
FeLLaCaM outperforms FLL and FLC in terms

of precision since our approach has reached about
78.61%, whereas FLL has reached about 20.18% and
FLC about 43.09%. Moreover, the MCC and AUC
measurements have confirmed that our approach
provides better results than FLL and FLC.

The presented approach is based on standards as
the MOF metalanguage (used to create DSL for
describing architectures for the different domains).
Therefore, it is generic and can be applied to any
domain that fulfills three requisites: (1) The existence
of a product family with product model retrospec-
tives where we can benefit from commonality and
changes fitness. Usually, these kind of data is found
in long-lived systems that have overcome enough
evolution. (2) The set of models used to describe
the architecture of the system must conform to MOF
meta language (see section 2.2). (3) The language
used for the textual elements of the models and
the feature descriptions provided must be the same.
This language is particular for each domain, but
as long as both elements are built using the same
terminology the LSA will work. Eventually, some
tweaks can be applied to narrow the gap between
both elements (different tokenizers, stemming or POS
tagging techniques).

Our approach goes a step beyond the Feature
Location problem because we explicitly introduce
feature commonality and modifications throughout
the product model retrospective to guide the location
of features. In industrial environments where the
product family has been developed over decades, our
FeLLaCaM approach improves the precision results.
Furthermore, current research on architecture sus-
tainability focuses on addressing guidelines [38, 5] for
achieving sustainability, and on methods and metrics
for evaluating [39] sustainability. Our work explores
a new direction: to take advantage of already long-
living software systems (designed with sustainability
in mind) to address the challenge of Feature Location.
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