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ABSTRACT
Video games have characteristics that differentiate their develop-
ment and maintenance from classic software development and
maintenance. These differences have led to the coining of the term
Game Software Engineering to name the emerging subfield that
intersects Software Engineering and video games. One of these
differences is that video game developers perceive more difficulties
than other non-game developers when it comes to locating bugs.
Our work proposes a novel way to locate bugs in video games by
means of evolving simulations. As the baseline, we have chosen
BLiMEA, which targets classic software engineering and uses bug
reports and the defect localization principle to locate bugs. We also
include Random Search as a sanity check in the evaluation. We
evaluate the approaches in a commercial video game (Kromaia).
The results for F-measure range from 46.80%. to 70.28% for five
types of bugs. Our approach improved the results of the baseline by
20.29% in F-measure. To the best of our knowledge, this is the first
approach that is designed specifically for bug localization in video
games. A focus group with professional video game developers has
confirmed the acceptance of our approach. Our approach opens a
new research direction for bug localization for both game software
engineering and possibly classic software engineering.

CCS CONCEPTS
• Software and its engineering→ Search-based software en-
gineering; Software maintenance tools.
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1 INTRODUCTION
Today, video game development is one of the fastest growing in-
dustries in the world. Such is the relevance and depth that video
games have in our society that, if we put it in terms of developer
population, the video game industry is responsible for 8.8M active
developers as of 2019 [29]. According to the same report, the total
number of active software developers is 18.9M, so almost one out of
every two developers is involved in the games sector. Furthermore,
video game development is instrumental in achieving the vision of
the Metaverse. This might suggest that the number of video game
developers will continue to grow in the future as the Metaverse is
developed.

Video games present characteristics that differentiate their devel-
opment and maintenance from the development and maintenance
of classic software; for example, how developers contribute to video
games vs. non-games by working on different kinds of artifacts (e.g.,
shaders, meshes, or prefabs). In addition, game developers perceive
more difficulties than other non-game developers when locating
bugs as well as reusing code [24].

Nowadays, most video games are developed by means of so-
called game engines. A game engine refers to a development envi-
ronment that integrates a graphics engine and a physics engine as
well as a set of tools that wraps around them in order to accelerate
development. The most popular ones are Unity [30] and Unreal
Engine [18], but it is also possible for a studio to make its own
specific engine (e.g., CryEngine [13]).

A key artifact of game engines are software models. Developers
can create video game content directly using code (e.g., C++) or
the software models of the engines. On the one hand, the code
allows developers to have more control over the content. On the
other hand, software models are much less bound to the underlying
implementation and technology and raise the abstraction level
using terms that are much closer to the problem domain. This
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Figure 1: Overview of video game artifacts.
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means that developers are liberated from a significant part of the
implementation details of physics and graphics and can focus on the
content of the game itself (see Figure 1). Unity and Unreal propose
their own modeling language, and a recent survey in Model-Driven
Game Development [36] reveals that UML and Domain Specific
Language (DSL) models are also adopted by development teams.

Current approaches for locating bugs in software focus on source
code, while the approaches needed to locate bugs in video games
should consider other artifacts such as software models [24]. Never-
theless, a fault localization survey [34] reveals that none of the bug
localization approaches consider models as the source of the bugs,
which poses a considerable problem for developers since much of
the video game content remains unexplored. Actually, Politowski
et al. argue that the way in which developers deal with bugs must
inevitably be different in video games than in traditional software
since the artifacts used are also different [25].

The lack of specific bug localization approaches leads to a longer
development time, which sometimes causes delays in the deadlines
and postponement of the launch date. This results in the video
game being released with an excessive number of bugs, such as
the case of the blockbuster Cyberpunk 2077 [17]. After nine years
of development, Cyberpunk 2077 was released with so many bugs
that it was withdrawn from the stores, and, a year after its release,
patches are still being released to fix its bugs.

There are significant differences between Classic Software Engi-
neering and Game Software Engineering [1, 25]. Our work argues
that the differences can become opportunities for tackling the chal-
lenge of bug localization in video games. Specifically, we propose
leveraging game simulations to locate bugs in the software models
of video games. In video games, it is common to include non-player
characters (NPCs). They accompany the player in the adventure,
are the enemies to beat, or simply populate the world recreated in
the video game. These NPCs have pre-programmed behaviors and
can be used to launch gameplay simulations. For example, in a first-
person shooter game (such as the popular Doom video game), NPCs
roam the levels looking for weapons and power-ups to confront
other NPCs or the player himself.

In this paper, we propose an evolutionary algorithm for bug
localization in software models that leverages model simulations.
Our approach, called EMoSim, evolves simulations that produce
traces that are relevant for locating bugs. To put our approach in
perspective, we have compared it with a baseline, BLiMEA [2, 3].
BLiMEA uses bug reports and the defect localization principle[21]
(as many bug localization approaches do [34]), and it is specifically
designed to locate bugs in software models. We also included Ran-
dom Search as a sanity check in the evaluation. We have done one
evaluation using the Kromaia case study. Kromaia is a video game
about flying and shooting with a spaceship in a three-dimensional
space 1. It was released on PC, PlayStation, and translated to eight
different languages. The metrics applied are widely accepted by the
software engineering community in the domain of evolutionary
algorithms, such as precision, recall, and F-measure.

The results show that EMoSiM outperforms the baseline and the
random search approaches. The results for F-measure range from

1See the official Playstation trailer to learn more about Kromaia: https://youtu.be/
EhsejJBp8Go

46.80%. to 70.28% for five types of bugs. Our approach improved the
results of the baseline by 20.29% in F-measure. The statistical anal-
ysis performed provides quantitative evidence of the impact of the
approach and indicates that this impact is significant. Furthermore,
a focus group has confirmed the acceptance of our approach.

To the best of our knowledge, this is the first approach that
specifically deals with bug localization in video games. We claim
the following:

• Ourwork suggests that the current ideas of leveraging bug re-
ports and the defect localization principle may not be enough
to locate bugs in video games.

• Our results show that our idea of evolving simulations is a
promising, novel way to locate bugs in video games.

• The discussion of our results helps advance the understand-
ing of bugs in video games.

• Our approach benefits from the experience of NPCs in video
games. However, similar agents can also be developed for
apps to evaluate the potential benefits of evolving simula-
tions to locate bugs in classic software engineering.

The remainder of the paper is structured as follows. In Section 2,
we present the case study (Kromaia) and the bugs. In Section 3, we
describe our approach, EMoSim. In Section 4, we evaluate our ap-
proach in Kromaia and discuss the results. In Section 5, we examine
the related work of the area. Finally, we present our conclusions in
Section 6.

2 BACKGROUND
The case study that we use to evaluate the work presented here is
performed using the bosses of the video game Kromaia. The game
in Kromaia takes place in a three-dimensional space. Each of the
levels involves a player’s spaceship flying from a starting point to
a target destination reaching the goal before being destroyed. The
level involves exploring floating structures, avoiding asteroids, and
finding items along the route, while protected by basic enemies
that try to damage the player’s spaceship by firing projectiles. If
the player manages to reach the destination, the final boss corre-
sponding to that level appears and must be defeated in order to
complete the level.

The bosses are specified with the Shooter Definition Model Lan-
guage (SDML). SDML is a DSL model for the video game domain.
This DSL follows the main ideas of MDE using models for Software
Engineering. The models are created using SDML and interpreted
at runtime. Specifically, SDML defines aspects that are included
in video game entities: the anatomical structure (including which
parts are used in it, their physical properties, and how they are
connected to each other); the amount and distribution of vulnerable
parts, weapons, and defenses in the structure/body of the character;
and the movement behaviours associated to the whole body or its
parts. This modeling language has concepts such as hulls, links,
weak points, weapons, and AI components. Examples of the mod-
els, the metamodel, and an online visualizer to show the models as
they would be seen in the Kromaia video game can be found at the
following URL: https://svit.usj.es/models22/bl-in-mgse.

By leveraging game simulations, we want to locate the bugs that
are related to the models that specify the bosses using SDML. The
simulations used in this work simulate a duel between a boss and

https://youtu.be/EhsejJBp8Go
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a human player. The simulated player is an algorithm that is able
to act like a human player. It was created by the developers of the
Kromaia video game. We used their algorithm for our approach.
During the simulation, the simulated player faces the boss in or-
der to destroy the weak points that are available at that moment,
whereas the boss acts according to the anatomy, behaviour, and
attack/defense balance that is included in its model, trying to de-
feat the simulated player. In the simulation, both the boss and the
simulated player try to win the match and do not avoid confronta-
tion, try to prevent draw/tie games, and try to ensure that there
is a winner. The algorithm can fight a boss by applying different
strategies. Hence, the algorithm can be parametrized to define the
fighting strategy. The simulation parameters were provided by the
developers based on the analysis of battles between human players
and bosses.

The developers that implemented the bosses provided us with
the types of bugs that are the most common when creating the
models. The most common bugs listed by the developers are the
following:

• A boss is invincible because a Weak Point is Hidden (WPH).
This bug occurs when a vital point in the boss is inaccessible
or invisible. Vital points are vulnerable parts of the bosses.
If they are inaccessible or invisible, the player cannot reach
them; thus, the player will never be able to defeat the boss.

• A boss is invincible because a Weak Point is Overlapped
(WPO). This bug occurs when solid objects overlap each
other when they are not supposed to. This can trigger sce-
narios similar to those described in the previous bug.

• A boss has wrong behaviour because of Bad Link Indexes
(BLI). This bug occurs when the links between the parts of
a boss are incorrectly assigned. This causes the physics to
become erratic; thus, the movement of the boss will not be
as expected.

• A boss has wrong behaviour because a Hull is Not Linked
(HNL). This bug occurs when the hulls are not attached
to any other part of the boss. In this case, the hull works
independently without taking into account the rest of the
model.

• A boss has wrong behaviour because a Hull Movement is
Blocked (HMB). This bug occurs when the hulls are incor-
rectly positioned. Incorrect positioning blocks the movement
of other parts of the model; for example, the position of one
hull invades the space of the other. If they invade each other
the physics have unpredictable behavior.

It is important to clarify that bosses can be built either using
SDML software models or directly with C++. The intuition of the
developers is that they make fewer mistakes and are more efficient
working with the models than with the code, and an experiment
confirmed this [15]. However, even though the models abstract
implementation details in contrast to the code, these can be sources
of bugs such as those indicated above.

In the interviews that we conducted with the developers that led
to identifying these types of bugs, the developers acknowledged
that these types of bugs are not limited to bosses. These types of
bugs have occurred in other enemies and in other games that they
developed in the past. Therefore, in the evaluation, we consider the

types of bugs presented above, and our evolutionary approach lever-
ages the simulations to locate the most relevant model elements
for the bugs.

3 EVOLVING SIMULATIONS TO LOCATE BUGS
IN SOFTWARE MODELS OF VIDEO GAMES

This section describes how our evolutionary algorithm tackles the
challenge of bug localization in video games. We first present an
overview of our approach and subsequently provide the details of
the approach and our adaptation of the evolutionary algorithm to
work with game simulations.

Initialize Population

Software Models with Bugs
EMoSim

input

EMoSim

Simulation
population

Fitness
function

stop?

EMoSim

output

Ranked
simulation traces

no

yes
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Figure 2: EMoSim approach.

3.1 Overview of the Approach
We call our approach EMoSim, Evolutionary algorithm for bug
localization in software Models leveraging the game Simulations.
The general structure of the approach is introduced in Figure 2.
Our EMoSim approach takes as input a set of software models in
which we want to locate the bug. The goal of EMoSim is to obtain a
ranked list of simulation traces that are ordered by their relevance
in locating the bug.

The search space for our approach is determined by the number
of possible simulations. To explore the search space, EMoSim uses
an evolutionary algorithm that enables the exploration of a large
number of possible simulations. The evolutionary algorithm and
its adaptation to the bug localization problem in software models
of video games are described in the following sections.

3.2 Adapting the EMoSim approach
Evolutionary algorithms are inspired by Darwin’s evolutionary the-
ory, where a population of individuals is modified through crossover
and mutation operators [9]. Hence, to develop an evolutionary al-
gorithm, the following elements must be defined:

• Representation of the individuals.
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• Evaluation of the individuals using a fitness function for
each objective to determine a quantitative measure of their
ability to solve the problem under consideration.

• Selection of the individuals to transmit from one generation
to another.

• Creation of new individuals using genetic operators (cross-
over and mutation) to explore the search space.

The following subsections describe the design of these elements
of our evolutionary algorithm for bug localization in software mod-
els of video games.

3.2.1 Individual representation. To represent a candidate so-
lution (individual), we use a vector representation. Each vector’s
dimension represents a parameter of the simulation. Thus, an in-
dividual is defined as a set of parameters applied to a simulation.
The size of the individual corresponds to the number of parameters
(dimensions) in the vector. The simulation parameters were pro-
vided by the developers based on the analysis of battles between
real players and bosses.

Figure 3 shows two examples of individuals. Each simulation
emulates the behaviour of a player when the battle with the boss
occurs. For example, the parameters can define how many steps the
simulated player takes in each hull of the boss, the order in which
the hulls are visited following different patterns (one by one, visit
one skip one, visit one skip three...), if the player requires all of the

Legend Player movement Attack

Steps in
the hull Order ... Remaining

steps Direction

10 0 -2 1...

Player

Boss

Simulation with a conservative player

Individual 1

Steps in
the hull Order ... Remaining

steps Direction

20 2 -5 1...

Player

Boss

Simulation with an explorer player

Individual 2

Figure 3: Representation of a simulation as an individual.

remaining steps in the hull when he/she is attacked by it, or the
direction used to visit the hulls of the boss.

Each example in Figure 3 corresponds to different parameters
applied to a simulation. In both cases, the triangle corresponds
to the simulated player, the circles and lines that connect them
correspond to the boss, the dashed and dotted lines correspond
to the path that follows the simulated player in his/her strategy,
and the crosses correspond to the attacks that the simulated player
performs to the hulls. The upper example shows the simulation of
a conservative player in which the player attacks the first hull and
then moves away. The lower example shows the simulation of an
explorer player in which the player attacks the first hull then skips
one and attacks the following hulls to the end of the boss.

3.2.2 Fitness function. Once a solution is created, it should be
assessed using a fitness function quantifying the quality of the
proposed simulation. The input of this step is a set of simulations;
the output is the set of simulations, where each simulation has been
assigned a fitness value regarding its relevance for the bug.

We use a fitness function that is similar to the fitness function
presented in [8]. This fitness rewards simulations that have behaved
as the developers intended for their game. In [8], the goal of the
work was to generate game content (bosses); therefore, it made
sense to reward those bosses who behaved as the developers desired.
In this work, the goal is different. Since we are looking for bugs, we
use the same fitness function except that we rank the simulation
traces in reverse order. This means that we rank as first the simu-
lations that are farthest from what the developers expected. The
idea is that if they have strayed from what the developers expected,
they might be relevant when locating a bug.

For each simulation, our approach collects information about
the battle and key events in order to calculate the fitness value.
The information retrieved from the simulation is the data that
the developers regard as relevant, using their domain knowledge.
Hence, our approach takes into account the percentage of simulated
player victories (𝑣𝑖𝑐𝑡𝑜𝑟𝑦) and the percentage of simulated player
health left once the player wins a duel (ℎ𝑒𝑎𝑙𝑡ℎ).

The calculation of 𝑣𝑖𝑐𝑡𝑜𝑟𝑦 and ℎ𝑒𝑎𝑙𝑡ℎ is performed in the same
way as in [8]:

• 𝑉𝑖𝑐𝑡𝑜𝑟𝑦 is the difference between the number of simulated
player victories (𝑉𝑃 ) and the optimal number of victories
(𝑉𝑂 , 33%, according to the developers of Kromaia and their
criteria):

𝑣𝑖𝑐𝑡𝑜𝑟𝑦 = 1 − |𝑉𝑂 −𝑉𝑃 |
𝑉𝑂

(1)

• 𝐻𝑒𝑎𝑙𝑡ℎ, which refers to completed duels that end in simu-
lated player victories, is the average difference between the
player’s health percentage once the duel is over (𝐻𝑃 ) and
the optimal health level that the player should have at that
point (𝐻𝑂 , 20%, according to the developers of Kromaia):

ℎ𝑒𝑎𝑙𝑡ℎ = 1 −
∑𝑉𝑃
𝑑=1

|𝐻𝑂−𝐻𝑃 |
𝐻𝑂

𝑉𝑃
(2)

To normalize the values of both 𝑣𝑖𝑐𝑡𝑜𝑟𝑦 andℎ𝑒𝑎𝑙𝑡ℎ, our approach
limits the range of values that each calculation can take between 0
and 1. Values less than 0 will get a value equal to 0 (which means
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0%). Likewise, values greater than 1 will get a value equal to 1
(which means 100%).

The fitness value of a simulation is the average value between
the 𝑣𝑖𝑐𝑡𝑜𝑟𝑦 and the ℎ𝑒𝑎𝑙𝑡ℎ values described above. Finally, our
algorithm ranks the simulations in ascending order with lower
fitness values first. A lower fitness value means that the simulation
has had a result that the developers would not approve of.

3.2.3 Selection. To select individuals, we use the wheel selection
mechanism, i.e., the selection of an individual is directly propor-
tional to its relative fitness in the population. This mechanism gives
a higher probability of selection to the fittest solutions while still
giving a chance to every solution.

In each iteration, the algorithm selects individuals from the pop-
ulation (𝑃𝑛) for the next generation of the population (𝑃𝑛+1). The
selected individuals will be the ones that generate the next individ-
uals using genetic operations.

3.2.4 Genetic operators. To better explore the search space, the
crossover and mutation operators are presented below:

• Crossover: We use a single, random, cut-point crossover.
It starts by selecting and splitting two parent solutions at
random.When two parent individuals are selected, a random
cut point is determined to split them into two sub-vectors.
Then, the crossover creates two child solutions by putting
the first part of the first parent with the second part of the
second parent for the first child and putting the first part of
the second parent with the second part of the first parent for
the second child.
Each solution has the same length, which is the number of
parameters for the simulation. When applying the crossover
operator, the new solutions have the same length.

• Mutation: This operator consists of randomly changing one
or more parameters in the simulations. Given an individual,
the mutation operator first randomly selects some positions
in the vector representation of the individual. Then, the
selected dimensions are replaced by another value of the
parameter. These values are not randomly generated num-
bers; they are selected from a catalogue of values that the
developers have collected from battles between real players
and bosses.

As a result, new simulations are created. In other words, the
new simulations represent other possible solutions that might be
relevant for locating the bug. Overall, the aim of the approach is
to find the most relevant simulation to locate the target bug. To do
so, the algorithm of EMoSim performs a search that is guided by
a fitness function. This search is done among the different simula-
tions (previously obtained by applying the mutation and crossover
operations) that could be relevant to locate the bug.

4 EVALUATION
This section presents an evaluation of the approach: the oracle
preparation, the experimental setup, the results obtained, the sta-
tistical analysis performed, the discussion of the results, and the
threats to validity.

There are two aspects that we evaluate regarding the use of the
simulations in our approach and the different bugs involved in the

process. In order to address the evaluation of these aspects, we
formulated the following three research questions:

• 𝑅𝑄1: What is the performance in terms of solution quality
of the EMoSim, the baseline, and the random search ap-
proaches?

• 𝑅𝑄2: Is there any difference in performance among the dif-
ferent types of bugs?

• 𝑅𝑄3: Are the performance results obtained by the EMoSim,
the baseline, and the random search approaches significant?

Answering 𝑅𝑄1 allows us to compare the performance results
(in terms of recall, precision, and F-measure) of our approach and
the baseline approach. In addition, we compare our approach with
a random search (RS) sanity check. If RS outperforms an intelligent
search method, we can conclude that there is no need to use meta-
heuristic search. Answering 𝑅𝑄2 with the same metrics allows us
to know if the type of bug influences the results. Answering 𝑅𝑄3
allow us to properly compare the approaches, to provide formal and
quantitative evidence (statistical significance) that the approaches
do in fact have an impact on the comparison metrics (i.e., that the
differences in the results were not obtained by mere chance), and to
show that those differences are significant in practice (effect size).

4.1 Oracle preparation
To evaluate the approach, we applied it to the Kromaia video game,
which is a commercial video game released on PC and PlayStation 4.
For the case study, we extracted the oracle from the documentation
of the video game. The oracle is the ground truth and is used to
compare the results provided by the EMoSim, the baseline (BLiMEA
[2]), and the random search (RS) approaches.

The BLiMEA approach uses an evolutionary algorithm that iter-
ates through the models of a system and assesses model fragments
as possible sources of bugs. Although this approach is not specific
for video games, the approach can be useful for locating bugs in
systems that use models. A recent survey [34] on bug localiza-
tion techniques did not identify any other approach that considers
models as the source of the bugs or a specific approach for bug
localization in video games.

BLiMEA uses a multi-objective evolutionary algorithm with two
fitness functions: Information Retrieval (IR) and modification times-
pan. This approach receives a bug description and a set of product
models as input. The output is a set where each model fragment
has been assigned two fitness values: the similarity to the bug
description and the timespan to the most recent model-fragment
modifications. Since BLiMEA needs more information as input than
EMoSiM, we augmented the test cases with the information that
BLiMEA needs.

To prepare the oracle, a total of 30 bugs were randomly selected
from the entire documentation, i.e., six bugs for each type of the five
types of bug. These bugs contained natural language bug descrip-
tions and the approved model fragments that contained the target
bugs. Each model had more than 1000 model elements. For each of
the bugs, we created two different test cases that were needed as
input by the approaches. One of them included the set of product
models where that bug was manifested and a bug description for
BLiMEA. The second one included the set of product models where



MODELS ’22, October 23–28, 2022, Montreal, QC, Canada Casamayor et al.

D
oc

um
en

ta
tio

n 
fro

m
in

du
st

ria
l p

ar
tn

er

R
an

do
m

 s
el

ec
tio

n

Software
Models of

VG Content

Bug
Reports

Model
Fragment
Source of

Bug
Oracle

Test Cases

Test Cases

EMoSim
(this work)

BLiMEA
(baseline)

Random Search
(sanity check)

Ranked
Simulation Traces

Ranked
Model Fragments

C
om

pa
ris

on
 to

 o
ra

cl
e

R
ep

or
ts

Fo
cu

s 
G

ro
up

Ranked
Model Fragments

Model Fragment

Se
le

ct
ed

 d
oc

um
en

te
d 

bu
gs

Figure 4: Evaluation process.

that bug was manifested for EMoSim and RS. All of them were
obtained from the documentation.

4.2 Experimental setup
Figure 4 shows an overview of the process that was followed in
the evaluation. The left part of the figure shows the inputs of the
evaluation process, which are the models with bugs and bug reports
from the industrial partner.

The baseline, BLiMEA, produces a ranking of model fragments
that are the most relevant to the bug. EMoSim produces a ranking
of traces. The trace contains all of the model elements that the
interpreter has used at runtime during the simulation. All of the
model elements that appear in the trace form the most relevant
model fragment according to the trace for the bug. Then, we can
compare the model fragments with an oracle in order to check
accuracy.

After running the approaches, in order to compare them, we take
the best solutions from each of the approaches for each of the bugs
(the first solution in the ranking) as suggested in [23]. Then, we
compare them to the actual solution (from the oracle) that contains
the model fragment of the target bug in order to get a confusion
matrix.

A confusion matrix is a table that allows the visualization of the
performance of a classification algorithm. In our case, each solu-
tion is a model fragment that is composed of a subset of the model
elements that are present in the model (where the bug is being lo-
cated). Since the granularity will be at the level of model elements,
the presence or absence of each model element will be considered
as a classification. Therefore, our confusion matrices will distin-
guish between two values (TRUE/presence and FALSE/absence).
The confusion matrix arranges the results of the comparison into
four categories:

• True positive (TP): a model element present in the predicted
model fragment that is also present in the model fragment
from the oracle,

• True Negative (TN): a model element not present in the
predicted model fragment that is not present in the model
fragment from the oracle,

• False Positive (FP): an element present in the predicted model
fragment that is not present in the model fragment from the
oracle, and

• False Negative (FN): an element not present in the predicted
model fragment that is present in the model fragment from
the oracle.

The confusion matrix holds the results of the comparison be-
tween the predicted model fragments and the model fragments
from the oracle. The result of the sum of all of the categories
(TP+TN+FP+FN) is the number of model elements (n) of the model
that contains the predicted model fragment. However, in order to
evaluate the performance of the approach, it is necessary to ex-
tract some measurements from the confusion matrix. Specifically,
we create a report that includes three performance measurements
(recall, precision, and F-measure) for each of the test cases for the
approaches.

Recall
(

𝑇𝑃
𝑇𝑃+𝐹𝑁

)
measures the number of elements of the model

fragment from the oracle that are correctly retrieved by the pro-
posed model fragment.

Precision
(

𝑇𝑃
𝑇𝑃+𝐹𝑃

)
measures the number of elements from the

proposed model fragment that are correct according to the ground
truth (the oracle).

F-measure
(
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

)
corresponds to the harmonic

mean of precision and recall.
Recall values can range between 0 (i.e., no single model ele-

ment from the model fragment from the oracle is present in any
of the model fragments of the predicted solution) and 1 (i.e., all of
the model elements from the oracle are present in the predicted
solution).

Precision values can range between 0 (i.e., no single model ele-
ment from the model fragment predicted is present in the model
fragment from the oracle) and 1 (i.e., all of the model elements from
the predicted solution are present in the model fragment from the
oracle). A value of 1 in precision and 1 in recall implies that both
the predicted model fragment and the model fragment from the
oracle are the same.

4.3 Implementation details
Each time that we run an approach, we obtain a set of results for a
bug. As the approaches perform genetic operations, chance could
affect the results. In order to minimize the effect of chance, we
execute each of the approaches 30 times for each of the bugs as
suggested in [4]. For BLiMEA, we used the same parameters as
reported in [3]. For EMoSim, we started from those reported in [8]
(as we used the same simulation) and made sure they converged.
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Table 1: Mean values and standard deviations for Recall, Precision, and F-measure for each type of bug.

EMoSiM Baseline RS

Recall ± (𝜎) Precision ± (𝜎) F-measure ± (𝜎) Recall ± (𝜎) Precision ± (𝜎) F-measure ± (𝜎) Recall ± (𝜎) Precision ± (𝜎) F-measure ± (𝜎)

BLI 63.61 ± 19.70 38.12 ± 7.23 46.80 ± 7.83 31.94 ± 9.45 27.55 ± 8.32 28.55 ± 5.13 87.5 ± 9.99 3.48 ± 0.31 6.70 ± 0.59
HMB 77.78 ± 20.18 32.87 ± 3.58 45.76 ± 6.46 46.26 ± 23.53 19.77 ± 6.59 26.53 ± 8.20 95 ± 4.59 1.88 ± 0.17 3.69 ± 0.33
HNL 75 ± 14.41 35.23 ± 5.06 47.66 ± 6.54 38.34 ± 22.97 14.40 ± 3.81 19.86 ± 4.45 89.44 ± 7.12 1.88 ± 0.21 3.67 ± 0.40
WPH 61.67 ± 24.65 29.93 ± 3.15 39.08 ± 9.77 42.16 ± 24.86 18.95 ± 6.56 25.60 ± 11.68 82.77 ± 10.84 1.65 ± 0.19 3.23 ± 0.37
WPO 60.93 ± 5.26 83.30 ± 3.66 70.28 ± 3.99 40.94 ± 5.26 55.82 ± 3.80 47.17 ± 4.57 84.13 ± 17.36 8.25 ± 1.02 15.01 ± 1.96
ALL 68.03 ± 18.56 42.53 ± 19.65 49.22 ± 12.29 39.89 ± 18.64 26.32 ± 15.48 28.93 ± 11.32 87.90 ± 10.68 3.26 ± 2.45 6.16 ± 4.38

For purposes of replicability, the implementation source code
and the data (software models and oracles) are publicly available,
including the CSV files used as input in the statistical analysis
at the following URL: http://www.gamesoftwareengineering.com/
models22/bl-in-mgse.

4.4 Results
In this section, we present the results obtained in EMoSim (this
work), BLiMEA (baseline), and the RS (sanity check) approaches in
Kromaia. Table 1 shows the mean values and standard deviations
for recall, precision, and F-measure for each approach. EMoSim and
BLiMEA obtained better results than the RS. For the first research
question (RQ1), the EMoSim approach obtained the best results in
precision and F-measure, providing an average value of 42.53 in
precision and 49.22 in F-measure.

Table 1 shows the mean values and standard deviations for recall,
precision, and F-measure for each type of bug. For the second
research question (RQ2), theWPO bug type obtained the best results
in precision and F-measure, providing an average value of 83.30
in precision and 70.28 in F-measure. Overall, in terms of precision,
and F-measure, EMoSim outperformed the other two approaches.
RS yielded better recall values since it includes all of the model
elements (relevant and not relevant) and does not discriminate (as
the precision value shows). That is why when comparing for F-
measure (which harmonizes recall and precision), RS comes out
worse.

4.5 Statistical Analysis
To properly compare the approaches, all of the data resulting from
the empirical analysis was analyzed using statistical methods fol-
lowing the guidelines in [4].

4.5.1 Statistical Significance. The test that we must follow de-
pends on the properties of the data. Since our data does not follow
a normal distribution in general, our analysis requires the use of
non-parametric techniques. There are several tests for analyzing
this kind of data; however, the Quade test shows that it is more
powerful than the others when working with real data [19]. In ad-
dition, according to Conover [12], the Quade test has shown better
results than the others when the number of algorithms is low (no
more than four or five algorithms).

The 𝑝−𝑉𝑎𝑙𝑢𝑒𝑠 obtained in the test are 7.901𝑥10−13, 5.761𝑥10−13,
and 1.42𝑥10−14 for recall, precision, and F-measure, respectively.
Since the 𝑝−𝑉𝑎𝑙𝑢𝑒𝑠 are smaller than 0.05, we can state that there are

differences among the algorithms for the performance indicators
of recall, precision, and F-measure.

However, with the Quade test, we cannot know which of the al-
gorithms gives the best performance. In this case, the performance
of each algorithm should be individually compared against all of the
other alternatives. In order to do this, we perform an additional post
hoc analysis. This kind of analysis performs a pair-wise comparison
among the results of each algorithm, determining whether statis-
tically significant differences exist among the results of a specific
pair of algorithms.

Table 2 shows the 𝑝 − 𝑉𝑎𝑙𝑢𝑒𝑠 of Holm’s post hoc analysis for
the case study and the performance indicators for the algorithms.
All the 𝑝 −𝑉𝑎𝑙𝑢𝑒𝑠 obtained are smaller than their corresponding
significance threshold value (0.05), indicating that the differences
in performance among the three algorithms are significant.

Table 2: Holm’s post hoc 𝑝−𝑉𝑎𝑙𝑢𝑒𝑠 for each pair of algorithms
in Kromaia.

Recall Precision F-measure

EMoSim vs Baseline 4.9𝑥10−6 0.00056 1.6𝑥10−6
EMoSim vs RS 6𝑥10−7 3𝑥10−10 3𝑥10−10
Baseline vs RS 1𝑥10−9 3𝑥10−10 3𝑥10−10

4.5.2 Effect size. When comparing algorithms with a large e-
nough number of runs, statistically significant differences can be
obtained even if they are so small as to be of no practical value [4].
Thus, it is important to assess if an algorithm is statistically better
than another and to assess the magnitude of the improvement.
Effect size measures are needed to analyze this.

For a non-parametric effect size measure, we use Vargha and
Delaney’s 𝐴12 [20, 33]. 𝐴12 measures the probability that running
one algorithm yields higher values than running another algorithm.
If the two algorithms are equivalent, then 𝐴12 will be 0.5.

Table 3 shows the values of the effect size statistics between
pair-wise comparisons of algorithms in Kromaia. Specifically, the
upper part of the table shows the 𝐴12 values, whereas the lower
part of the table shows Cliff’s Delta [11] values for recall, precision,
and F-measure. From the results, we can determine how much the
quality of the solution is influenced using our approach (EMoSim)
compared to the baseline (BLiMEA) and Random Search. The mag-
nitude of improvement using EMoSim instead of the baseline can
be interpreted as being large according to the magnitude scales
[26] of the Cliff Delta values. According to the 𝐴12 value, EMoSim

http://www.gamesoftwareengineering.com/models22/bl-in-mgse
http://www.gamesoftwareengineering.com/models22/bl-in-mgse
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Table 3: Effect size measures for comparing each pair of al-
gorithms in Kromaia.

𝐴12

Recall Precision F-measure

EMoSim vs Baseline 0.8668252 0.8180737 0.8834721
EMoSim vs RS 0.1872771 1 1
Baseline vs RS 0.02378121 1 0.9881094

Cliff’s Delta

Recall Precision F-measure

EMoSim vs Baseline 0.7336504 (large) 0.6361474 (large) 0.7669441 (large)
EMoSim vs RS -0.6254459 (large) 1 (large) 1 (large)
Baseline vs RS -0.9524376 (large) 1 (large) 0.9762188 (large)

obtains better results in F-measure than the baseline in 88.35% of
the runs. Hence, EMoSim has an actual impact on performance.
EMoSim obtains better results in precision and F-measure than
Random Search in 100% of the runs.

4.6 Discussion
Despite the rise of video games and the arrival of the metaverse
(where some video games can be seen as an embryo of the meta-
verse), video game research has not received much attention yet.
Within the software engineering research community, the efforts of
Pascarella et al. [24] are relevant in understanding the differences
between Classic Software Engineering (CSE) and Game Software
Engineering (GSE). Similarly, Politowski et al. [25] dedicated efforts
to understand the testing differences between CSE and GSE. Our
work also advances the understanding of the differences between
CSE and GSE in relation to Bug Localization (BL).

For decades, in CSE, the scientific community has exploited the
textual descriptions of bug reports to locate bugs [34]. More recently,
the defect principle has also proven useful for locating bugs [37].
However, GSE can be a completely different animal when it comes
to BL as we argue below.

The baseline of our evaluation was successful in the context of
CSE, for example, by locating bugs in the firmware that controls
induction hobs from the brands of the BSH group (Bosch, Siemens,
Gaggenau, Neff, Balay, among others) [3]. This success was obtained
by exploiting the information from the bug reports and the defect
principle as other approaches in the literature [34]. However, in
the context of this GSE work, the baseline results obtained lower
values in the mainmeasures (precision, recall, and F-measure). After
analyzing the results, both the bug report and the defect principle
fail to successfully guide the localization of the bug.

Many would argue that the main requirement of video games
is to be fun. This requirement may have an impact on the bugs of
video games. By checking the bug reports or the conditions for the
defect principle, it does not seem like either of these are connected
to fun. However, simulations may be better suited to providing an
idea of fun or lack of fun. In EMoSim, the simulations are ordered
by how far they are from what the developers consider to be the
ideal experience (and in their opinion the most fun). Our intuition is
that thinking about the lack of fun heuristics can help design better

guides to locate bugs in video games. All in all, video game devel-
opers seem to be more concerned about bugs that imperceptibly
frustrate the player than a null pointer exception.

As occurs in CSE, GSE developers accelerate the development
through the use of frameworks or libraries (see Figure 1). This can
potentially be a source of bugs. For example, the developers are very
careful not to completely overlap a weak point with hulls (hulls
can only be destroyed after the weak point is destroyed). This can
cause a blocking bug by making the enemy indestructible and the
player unable to progress through the game. The developers have to
prevent this situation by taking into account the behavior of the boss
and the interaction of the boss with other objects. Our approach
revealed blocking bugs where the boss was indestructible because
one weak point overlapped another weak point. The bugs that
our approach locates are not due to errors in the well-formedness
of the models, but rather are produced by errors that appear due
to the interaction of different elements at runtime. The approach
based on evolving simulations has allowed developers to detect this
previously unknown source of bugs because it is at runtime when
the interactions trigger the bugs. Nevertheless, more research is
needed in the bugs caused by the well-formedness of the models.

The results also show that the different types of bugs (WPH,
WPO, BLI, HNL, and HMB) obtain different values of recall, preci-
sion, and F-measure. This reveals that, in order to put the perfor-
mance of different approaches into perspective, future research on
BL in video games must report the types of bugs that have been
used in their evaluation. It is not enough to talk about bugs in video
games in general.

The reason why EMoSim did not achieve better results (closer to
100% precision and recall) is because sometimes the bugs are related
to parameters of model elements. In this work, the granularity
of the simulation traces is at the model element level (not the
parameter level). To improve the results, future research should
extend the approach to work with the granularity that is at the
level of parameters of model elements.

One may think that in order to use EMoSim it is necessary to
develop the simulations that guide the search from scratch. How-
ever, in the case of video games, Non-Playable Characters (NPCs)
are created as part of the usual development. These NPCs act as
enemies, cooperate with the player, or simply wander the video
game worlds for a more realistic feel. These NPCs are the raw ma-
terial for the simulations, which significantly reduces the effort of
applying EMoSim. A simulated player can interact with the NPCs
(as is the case in this work), and it is even possible for several NPCs
to interact with each other (e.g., several bots in a deathmatch map
of a first-person shooter game). Our approach is a twist on the usual
use of NPCs in video games, using them to locate bugs.

As part of the development (e.g., an app), in the case of CSE,
there are no agents that are equivalent to the NPCs of video games.
However, future research should explore the results that the ap-
proach of this work in BL for CSE would obtain if these agents were
built. A simulation-based approach like EMoSim can potentially
help to find bugs related to user experience in CSE.

Furthermore, we ran a focus group to acquire feedback from
four software engineers of the industrial partner. One of them has
been developing video games for 15 years, two have developed
video games for six years, and the last one only has two years
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of experience developing video games. They all participated in
the development of Kromaia, either from its inception (the most
experienced developer) or creating new content for the game (the
other three developers). Specifically, the focus group was composed
of the following open questions: (1)What do you think of the results
of the approaches?, (2) How do you feel about locating bugs in video
games using simulation traces?, (3) How do you imagine the use
of EMoSim in video games of other genres and in more complex
video games?

The engineers stated that the results of EMoSim were far supe-
rior to the results of the baseline. In their opinion, the idea of the
baseline to favor results related to the latest modifications does not
help find errors. In the event of a bug, the developers recognized
that the first thing that they intuitively do is to check the latest
modifications; however, in their experience, these are not usually
the source of bugs since many of the bugs go unnoticed until the
game is completed and played from start to finish.

On the other hand, the developers found the information of the
traces to be very relevant in locating bugs. All four agreed that this
meant moving from a bug localization based on gut-feeling to a bug
localization based on evidence. In their opinion, the information
of the traces is underutilized and traces contain latent information
about the frustrating or difficult moments for the player.

The engineers also mentioned that EMoSim can be used for
other video game genres and more complex problems (such as
locating bugs in whole levels). To do this, they informally revisited
some game genres (e.g., first person shooters, fighting games, or
strategy games) to conclude that they provide the basic ingredients
for applying EMoSim. They imagined how they are going to use
the non-playable characters (known as NPCs in the video game
domain) of those games as part of the simulation for the fitness
function of EMoSim. The less experienced developer also stressed
the importance of the presentation of the information of traces.
In his opinion, it would help to convert the traces into heat maps
on the software models where the model elements have different
colors based on the number of occurrences in the trace.

4.7 Threats to Validity
To acknowledge the threats to the validity of our work, we use the
classification suggested by De Oliveira et al. [14].

1) Conclusion Validity threats. We considered random varia-
tion by executing the approaches 30 times for each of the bugs as
suggested in [4]. We used measurements that are widely accepted
in the software engineering research community (recall, precision,
and F-measure) [5] to analyze the obtained confusion matrix, and
we showed the average of the results. We also used a statistical test
(Quade test) and effect size measurements (𝐴12 and Cliff’s Delta)
following accepted guidelines [5]. We addressed the lack of a mean-
ingful comparison baseline by comparing the results obtained from
our EMoSim approach with a baseline and a sanity check.

2) Internal Validity threats. We used values from the litera-
ture for the approaches to address the poor parameter settings. As
suggested by Arcuri and Fraser [5], default values are good enough
to measure the performance. We also used two main indicators (vic-
tory and health) to calculate the fitness of a simulation as performed
in [8]. To address the lack of real problem instances, the evaluation

of our work was performed using a commercial video game, and
the problem artifacts were directly obtained from the developers
and the documentation of the game. We randomly selected six bugs
for each type of the five types of bug from the entire documentation
because the number of bugs in each category is similar. However,
further research should be done in this direction.

3) Construct Validity threats. We addressed the threat of the
lack of assessing the validity of cost measures by performing a
fair comparison of our approach with the baseline and the sanity
check. Moreover, our evaluation was performed using three mea-
surements (recall, precision, and F-measure) that are widely used
in the software engineering research community [5].

4) External Validity threats. Our approach was evaluated in
a commercial video game, whose instances were collected from
real-world problems to mitigate the threat of the lack of a clear
object selection strategy. To mitigate the generalization threat, our
approach has been designed to be generic and applicable not only
to the Kromaia video game but also for locating bugs in other
different video games. Our approach can be applied to any software
model that conforms to MOF (the OMG metalanguage for defining
modeling languages), and the text elements that are associated to
the models are extracted automatically using the reflective methods
provided by the Eclipse Modeling Framework. In addition, our
approach requires the three main ingredients of SBSE approaches:
encoding, operators, and fitness function. The operators are the
widespread crossover and mutation operators. The encoding and
the fitness function depend on the simulated player. We can apply
our approach to other video games where simulated players are
available. These simulated players are available in popular game
genres such as car games, FPS games, or RTS games. For those cases
were there is no simulated player, the developers should ponder
the tradeoff of the cost of developing the simulated player and the
benefits of locating bugs with our approach.

5 RELATEDWORK
This section presents the related works. It is divided into three
subsections taking into account the topics covered in this paper:
bug localization in games, bug localization in games that use models,
and bug localization in models.

5.1 Bug localization in games
Ariyurek et al. [7] developed gameplay agents that are governed by
reinforcement learning (RL), Monte Carlo Tree Search (MCTS), and
inverse RL to mimic human behaviour in simple action-adventure
games, with the goal of identifying bugs. In general, the authors
found that the agents were capable of matching or even outperform-
ing human testers in terms of the errors found. In their following
work [6], they extended the MCTS agent with several modifications
(Transpositions, Knowledge-Based Evaluations, Tree Reuse, Mix-
Max, Boltzmann Rollout, Single Player MCTS, and Computational
Budget) for game testing purposes. Their results showed that MCTS
modifications improve the bug-finding performance of the agents.

Tufano et al. [32] presented RELINE, which is an approach that
uses RL to load test video games. RELINE can be instantiated on
different games using different RL models and reward functions.
Their proof-of-concept study performed on two subject systems
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shows the feasibility of their approach: Given a reward function
that is able to reward the agent when artificial performance bugs
are identified, the agent adapts its behavior continuing to play the
game, whereas EMoSim looks for those bugs.

Zheng et al. [35] rely on deep reinforcement learning (DRL)
to make progress in automated video game testing. However, the
challenge with the existing DRLs is that most of them focus on
winning the game rather than game testing. Their work focuses
on the balance between winning the game (i.e., advancing in the
game) and exploring the game space (i.e., increasing the possibility
of discovering bugs). They mainly leverage evolutionary algorithms
and multi-objective optimization to explore the game space by opti-
mizing the population iteratively, so more states of the game could
be explored and tested, whereas DRL contributes to accomplishing
the mission. They evaluate its effectiveness in two real-world com-
mercial video games, having previously performed an empirical
study to characterize game bugs by analyzing a total of 1,349 real
bugs from four industrial games.

The above approaches do not take into account software models
as the source of the bugs. Models are used in many video game
developments; hence, the models can be the source of the bugs.

5.2 Bug localization in games that use models
Iftikhar et al. [22] propose a software model-based methodology
for automated video game testing. They use UML class diagrams
and UML state machines for the modeling (domain and behavioral,
respectively). Their approach automates test case generation, exe-
cution, and oracle generation. They conduct their evaluation using
two platform games.

Ferdous et al. [16] present a search-based test generation ap-
proach applied to software models. They capture an abstraction
of the desired game behavior in an extended finite state machine
(EFSM) and derive abstract tests of the software model using search-
based algorithms, which are then specified into action sequences
that are executed in the game under test. They used a 3D game to
evaluate the suitability of the approach and five search algorithms
for test generation on three different software models of the game.

These approaches rely on UML or state machines, whereas our
approach is not restricted to these models. As far as we could
determine, there are very few studies in game software engineering
on the use of software models as the source of bugs or performing
the testing taking into account software models as the main artifact.

5.3 Bug localization in models
Outside the game domain, several techniques are used for bug lo-
calization in models. Arcega et al. [2] evaluate how to apply the
existing model-based approaches in order to mitigate the effect of
starting the localization in the wrong place. They also take into
account that software engineers can refine the results at different
stages. They compare different combinations of the application of
bug localization approaches and human refinement. The combina-
tion of their approaches together with manual refinement obtains
the best results.

Troya et al. [31] present an approach to apply Spectrum-Based
Fault Localization (SBFL) for locating the faulty rules in model
transformations. Their approach takes advantage of the information

recovered after the model transformation is run. The inputs of their
approach are a model transformation, a set of assertions, and a
set of source models. Their approach finds the violated assertions
and uses the information of the model transformation coverage to
rank the transformation rules according to their suspiciousness of
containing a bug.

Sánchez-Cuadrado et al. [27] combine static analysis and con-
straint solving to discover errors in ATL transformations. They
developed a tool that uses static analysis to detect problems based
on the textual information and generates witness models using OCL
path conditions and constraint solving. In their subsequent works,
they present an approach that proposes suitable quick fixes for ATL
transformation errors [28]. Their approach performs speculative
analysis to provide information on the impact of the application of
each applicable quick fix and generates a dynamic quick fix rank.
In addition, they constructed a static ranking empirically through
the automated application of quick fixes on transformations.

Burgueño et al. [10] present a static approach to trace errors
in model transformations, taking as input an ATL model transfor-
mation and a set of constraints that specify its expected behavior.
Their approach automatically extracts the footprints of both arti-
facts and compares transformation rules and constraints one by
one, obtaining the overlap of common footprints. The output is
three matching tables that can be used by software engineers to
trace the rules that might be the cause of broken constraints due to
faulty behavior.

The above approaches that take models into account are not
specific to video game development. They were not designed with
the peculiarities of video games in mind nor have they ever been
evaluated in video games.

6 CONCLUSION
For years, bug reporting and the defect localization principle have
proven to be useful for locating bugs in software. Bug localization
in Game Software Engineering has received little attention despite
the rise of video games and the problems that their developers have
in locating bugs.

Our work shows that bug reports and the defect localization
principle are not enough to locate bugs in video games. We propose
a novel route to locate bugs in video games by means of evolving
video game simulations that produce traces that are relevant to
locating bugs. To locate bugs, we leverage non-player characters,
which is one of the key features that are inherent to the video game
domain.

Our proposal of evolving simulations offers significantly better
results. A focus group has confirmed the acceptance of our proposal.
Our discussion of the results helps to advance the understanding
of bugs in video games. Our work opens a novel research direction
for bug localization in video games that could also potentially be
used in Classic Software Engineering.
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