Received: Added at production Revised: Added at production Accepted: Added at production

DOI: XXX/XXXX

EDITORIAL

The New Era of Software Reuse

Rafael Capilla*! | Barbara Gallina? | Carlos Cetina®

1Rey Juan Carlos University, Madrid, Spain
2Mslardalen University, Visteras, Sweden
3Universidad San Jorge, Zaragoza, Spain

Correspondence
Rafael Capilla, Rey Juan Carlos University,
Madrid, Spain. Email: rafael.capilla@urjc.es

For more than forty years, software reuse has been considered the cornerstone of many software development processes in order to save devel-
opment effort and costs and to increase the quality of software. The evolution of different kinds of reusable assets has been wide. For instance,
on one hand, diverse and modern programming languages have brought different ways to achieve reusable code more efficiently and adapted to
modern software platforms. On the other hand, diverse and modern family-oriented engineering methods have enabled the reuse of not only code
but also any other engineering software-related development artefact. However, although software reuse is not mainstream in current software
conferences, researchers and developers still build software with reuse in mind. Nowadays, the challenge for building smart software systems that
exploit contextual information to provide a smart reaction or adaptation to the environment, new Internet application and services that rely on
the notion of micro-services as a form of reusable assets, or open data approaches used to achieve interoperability and reuse of data, are current
trends where developers can find new opportunities for software reuse. This special issue on The New Era of Software Reuse, associated with the
17th International Conference on Software Reuse (ICSR 2018), aims to increase the impact of related research in software reuse. We received
seven submissions and after a rigorous review process, we accepted four articles for publication based on quality and quantity of the new technical
contribution. Each accepted article explores a different perspective of software reuse and presents different techniques to achieve it. The list of

accepted articles is outlined below.

In "A Formal Framework for Measuring Technical Lag in Component Repositories - and its Application to npm", Zerouali and his colleagues state
that reusable open source software components are typically distributed through online package repositories like npm for JavaScript. Such compo-
nent repositories form complex dependency networks that are subject to frequent evolution. As a consequence, many reusable components have
outdated dependencies, increasing their risk of suffering from bugs and security issues in those dependencies. While upgrading one’s dependen-
cies reduces this risk, it incurs additional effort and may be subject to backward incompatibilities. The technical lag measure captures this delicate
balance in a generic way, by quantifying the difference between the currently deployed component release and the 3AlJideal3Ai (e.g., most recent,
most stable, or most secure) release. Based on the technical lag, component maintainers can make more informed decisions about whether and
when to upgrade. In this manuscript, a generic formal framework for measuring this technical lag is proposed. The framework makes it possible to
measure lag in different ways, such as based on the time difference or the version difference. The framework was empirically validated by instanti-
ating it in multiple ways to the npm package dependency network, in order to empirically analyse the presence of technical lag in npm packages and
assess its evolution over time. The authors observed that the presence of technical lag relates to the use of too restrictive dependency constraints,
and that technical lag is increasing over time. External GitHub projects relying on pm packages suffer from a higher technical lag than npm packages
themselves. Deep transitive dependencies tend to induce a high technical lag. The findings suggest the need for more awareness of, and integrated
tool support for, controlling technical lag in reusable software libraries.

In"A Delta-oriented Approach to Support the Safe Reuse of Black-box Code Rewriters" by Benni and his colleagues, the authors argue that large-
scale corrective and perfective maintenance is often automated thanks to rewriting rules using tools such as Python2to3, Spoon or Coccinelle. Such
tools consider these rules as black-boxes and compose multiple rules by chaining them: that is, giving the output of a given rewriting rule as input to

the next one. Therefore, it is up to the developer to identify the right order (if it exists) among all the different rules to yield the right program. In this

2| CAPILLAET AL

paper, a formal model compatible with the black-box assumption is defined that reifies the modifications (As) made by each rule. Leveraging these
(As), the authors propose a way to safely compose multiple rules when applied to the same program by (i) ensuring the isolated application of the
different rules and (ii) identifying unexpected behaviors that were silently ignored before. This approach supports the reusability of code rewriting
rules at large scale. We assess our results on two large-scale case studies: (i) identifying conflicts in the Linux source-code automated maintenance
(by analyzing 35 semantic patches applied to 19 versions of Linux) and (ii) fixing energy anti-patterns existing in Android applications available on
GitHub (by analyzing 22 anti-patterns rewriting rules on 19 Android applications).

In "Variability management in safety-critical systems design & dependability analysis", de Oliveira and his colleagues highlight the importance
of safety-critical systems for many application domains and where safety properties are a key driver to engineer critical aspects and avoid system
failures. For the benefits of large-scale reuse, software product lines (SPLs) have been adopted in the critical systems industry. However, the inte-
gration of safety analysis in the SPL development process is non-trivial. Also, the different usage contexts of safety-critical systems complicates
component fault modeling tasks and the identification of potential hazards. In this light, better methods become necessary to estimate the impact
of dependability properties during Hazard Analysis and Risk Assessment. Existing methods incorporating the analysis of safety properties in SPLs
are limited as they do not include hazard analysis and component fault modeling. In this paper, the authors present a novel DEPendable Software
Product Line Engineering (DEPendable-SPLE) approach, which extends traditional SPL processes to support the reuse of safety assets. The work
describes a detailed analysis of the impact of product and context features on the SPL design, safety analysis and safety requirements. The approach
is validated using areal case study from the aerospace domain to illustrate how to model and reuse safety properties, but also to achieve a reduction
of the the effort and costs for certifying system variants.

In "REI: An integrated measure for software reusability", Zozas and his colleagues state the need that an efficient selection among candidate
reusable assets should be performed in terms of functional fitness and adaptability. In this article, the authors propose a reusability index (REI) as a
synthesis of various software metrics and evaluate its ability to quantify reuse, based on the IEEE Standard on Software Metrics Validity. REl over-
comes the limitations of the literature by synthesizing various metrics that influence reusability and considering multiple aspects of reusability, such
as structural quality, external quality, documentation, availability, etc. The novelty of the proposed index lies in the fact that a holistic (i.e., not only
dependent on structural aspects of software) and quantifiable measure of reusability is proposed. As validation, the proposed index is compared to
existing ones through a case study on 80 reusable open-source assets. The results of the study suggest that the proposed index presents the highest
predictive and differential power; it is the most consistent in ranking reusable assets, and the most strongly correlated to their levels of reuse. To
illustrate the applicability of the proposed index they run a pilot study, where real-world reuse decisions have been compared to decisions imposed
by the use of metrics (including REI).

In addition, the guest co-editors of this special issue together with John Favaro have documented a significant piece of the history of software
reuse in the form of an overview article titled "Opportunities for Software Reuse in an Uncertain World: From Past to Emerging Trends". In this
invited paper, the authors describe part of the history from old forms of software reuse to current trends such as open data reuse, services and
micro-services, reusable features, and the reuse of safety-critical assets. In addition, the authors provide an updated view of current trends of reuse
practices in different application domains. Also, in order to understand what reuse practitioners think, the authors conducted an online survey to
interview practitioners and developers about 14 questions in a similar vein to the survey that was conducted in 1993 by Bill Frakes. The results
comparing both surveys for similar questions bring an interesting outcome about the evolution of reuse practices and how these are integrated with
other software engineering processes and open source approaches. To conclude, the authors provide a research roadmap for the future as a set of
four main trends that may guide researchers into new forms of software reuse.

Finally, we would like to thank the authors of all submissions and the reviewers for their effort and commitment in providing a rigorous review
process and a valuable contribution to the discipline of software reuse. We are also very grateful to Gerardo Canfora, Editor-in-Chief, for his
continuous support in this special issue.

How to cite this article: ONE, Capilla R.,and TWO (2019), Title, J Softw Evol Proc., 2017;00:1-6.

	The New Era of Software Reuse

